/* * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package sun.java2d.pipe; import java.awt.Shape; import java.awt.BasicStroke; import java.awt.geom.PathIterator; import java.awt.geom.AffineTransform; import java.security.PrivilegedAction; import java.security.AccessController; import java.util.ServiceLoader; import sun.security.action.GetPropertyAction; import sun.awt.geom.PathConsumer2D; /** * This class abstracts a number of features for which the Java 2D * implementation relies on proprietary licensed software libraries. * Access to those features is now achieved by retrieving the singleton * instance of this class and calling the appropriate methods on it. * The 3 primary features abstracted here include: *
* Parts of the system that need to use any of the above features should * call {@code RenderingEngine.getInstance()} to obtain the properly * registered (and possibly trace-enabled) version of the RenderingEngine. */ public abstract class RenderingEngine { private static RenderingEngine reImpl; /** * Returns an instance of {@code RenderingEngine} as determined * by the installation environment and runtime flags. *
* A specific instance of the {@code RenderingEngine} can be * chosen by specifying the runtime flag: *
* java -Dsun.java2d.renderer=<classname>
*
*
* If no specific {@code RenderingEngine} is specified on the command
* or Ductus renderer is specified, it will attempt loading the
* sun.dc.DuctusRenderingEngine class using Class.forName as a fastpath;
* if not found, use the ServiceLoader.
* If no specific {@code RenderingEngine} is specified on the command
* line then the last one returned by enumerating all subclasses of
* {@code RenderingEngine} known to the ServiceLoader is used.
* * Runtime tracing of the actions of the {@code RenderingEngine} * can be enabled by specifying the runtime flag: *
* java -Dsun.java2d.renderer.trace=<any string>
*
* @return an instance of {@code RenderingEngine}
* @since 1.7
*/
public static synchronized RenderingEngine getInstance() {
if (reImpl != null) {
return reImpl;
}
reImpl =
AccessController.doPrivileged(new PrivilegedAction* The specified {@code src} {@link Shape} is widened according * to the specified attribute parameters as per the * {@link BasicStroke} specification. * * @param src the source path to be widened * @param width the width of the widened path as per {@code BasicStroke} * @param caps the end cap decorations as per {@code BasicStroke} * @param join the segment join decorations as per {@code BasicStroke} * @param miterlimit the miter limit as per {@code BasicStroke} * @param dashes the dash length array as per {@code BasicStroke} * @param dashphase the initial dash phase as per {@code BasicStroke} * @return the widened path stored in a new {@code Shape} object * @since 1.7 */ public abstract Shape createStrokedShape(Shape src, float width, int caps, int join, float miterlimit, float dashes[], float dashphase); /** * Sends the geometry for a widened path as specified by the parameters * to the specified consumer. *
* The specified {@code src} {@link Shape} is widened according * to the parameters specified by the {@link BasicStroke} object. * Adjustments are made to the path as appropriate for the * {@link VALUE_STROKE_NORMALIZE} hint if the {@code normalize} * boolean parameter is true. * Adjustments are made to the path as appropriate for the * {@link VALUE_ANTIALIAS_ON} hint if the {@code antialias} * boolean parameter is true. *
* The geometry of the widened path is forwarded to the indicated * {@link PathConsumer2D} object as it is calculated. * * @param src the source path to be widened * @param bs the {@code BasicSroke} object specifying the * decorations to be applied to the widened path * @param normalize indicates whether stroke normalization should * be applied * @param antialias indicates whether or not adjustments appropriate * to antialiased rendering should be applied * @param consumer the {@code PathConsumer2D} instance to forward * the widened geometry to * @since 1.7 */ public abstract void strokeTo(Shape src, AffineTransform at, BasicStroke bs, boolean thin, boolean normalize, boolean antialias, PathConsumer2D consumer); /** * Construct an antialiased tile generator for the given shape with * the given rendering attributes and store the bounds of the tile * iteration in the bbox parameter. * The {@code at} parameter specifies a transform that should affect * both the shape and the {@code BasicStroke} attributes. * The {@code clip} parameter specifies the current clip in effect * in device coordinates and can be used to prune the data for the * operation, but the renderer is not required to perform any * clipping. * If the {@code BasicStroke} parameter is null then the shape * should be filled as is, otherwise the attributes of the * {@code BasicStroke} should be used to specify a draw operation. * The {@code thin} parameter indicates whether or not the * transformed {@code BasicStroke} represents coordinates smaller * than the minimum resolution of the antialiasing rasterizer as * specified by the {@code getMinimumAAPenWidth()} method. *
* Upon returning, this method will fill the {@code bbox} parameter * with 4 values indicating the bounds of the iteration of the * tile generator. * The iteration order of the tiles will be as specified by the * pseudo-code: *
* for (y = bbox[1]; y < bbox[3]; y += tileheight) {
* for (x = bbox[0]; x < bbox[2]; x += tilewidth) {
* }
* }
*
* If there is no output to be rendered, this method may return
* null.
*
* @param s the shape to be rendered (fill or draw)
* @param at the transform to be applied to the shape and the
* stroke attributes
* @param clip the current clip in effect in device coordinates
* @param bs if non-null, a {@code BasicStroke} whose attributes
* should be applied to this operation
* @param thin true if the transformed stroke attributes are smaller
* than the minimum dropout pen width
* @param normalize true if the {@code VALUE_STROKE_NORMALIZE}
* {@code RenderingHint} is in effect
* @param bbox returns the bounds of the iteration
* @return the {@code AATileGenerator} instance to be consulted
* for tile coverages, or null if there is no output to render
* @since 1.7
*/
public abstract AATileGenerator getAATileGenerator(Shape s,
AffineTransform at,
Region clip,
BasicStroke bs,
boolean thin,
boolean normalize,
int bbox[]);
/**
* Construct an antialiased tile generator for the given parallelogram
* store the bounds of the tile iteration in the bbox parameter.
* The parallelogram is specified as a starting point and 2 delta
* vectors that indicate the slopes of the 2 pairs of sides of the
* parallelogram.
* The 4 corners of the parallelogram are defined by the 4 points:
* * Upon returning, this method will fill the {@code bbox} parameter * with 4 values indicating the bounds of the iteration of the * tile generator. * The iteration order of the tiles will be as specified by the * pseudo-code: *
* for (y = bbox[1]; y < bbox[3]; y += tileheight) {
* for (x = bbox[0]; x < bbox[2]; x += tilewidth) {
* }
* }
*
* If there is no output to be rendered, this method may return
* null.
*
* @param x the X coordinate of the first corner of the parallelogram
* @param y the Y coordinate of the first corner of the parallelogram
* @param dx1 the X coordinate delta of the first leg of the parallelogram
* @param dy1 the Y coordinate delta of the first leg of the parallelogram
* @param dx2 the X coordinate delta of the second leg of the parallelogram
* @param dy2 the Y coordinate delta of the second leg of the parallelogram
* @param lw1 the line width ratio for the first leg of the parallelogram
* @param lw2 the line width ratio for the second leg of the parallelogram
* @param clip the current clip in effect in device coordinates
* @param bbox returns the bounds of the iteration
* @return the {@code AATileGenerator} instance to be consulted
* for tile coverages, or null if there is no output to render
* @since 1.7
*/
public abstract AATileGenerator getAATileGenerator(double x, double y,
double dx1, double dy1,
double dx2, double dy2,
double lw1, double lw2,
Region clip,
int bbox[]);
/**
* Returns the minimum pen width that the antialiasing rasterizer
* can represent without dropouts occuring.
* @since 1.7
*/
public abstract float getMinimumAAPenSize();
/**
* Utility method to feed a {@link PathConsumer2D} object from a
* given {@link PathIterator}.
* This method deals with the details of running the iterator and
* feeding the consumer a segment at a time.
*/
public static void feedConsumer(PathIterator pi, PathConsumer2D consumer) {
float coords[] = new float[6];
while (!pi.isDone()) {
switch (pi.currentSegment(coords)) {
case PathIterator.SEG_MOVETO:
consumer.moveTo(coords[0], coords[1]);
break;
case PathIterator.SEG_LINETO:
consumer.lineTo(coords[0], coords[1]);
break;
case PathIterator.SEG_QUADTO:
consumer.quadTo(coords[0], coords[1],
coords[2], coords[3]);
break;
case PathIterator.SEG_CUBICTO:
consumer.curveTo(coords[0], coords[1],
coords[2], coords[3],
coords[4], coords[5]);
break;
case PathIterator.SEG_CLOSE:
consumer.closePath();
break;
}
pi.next();
}
}
static class Tracer extends RenderingEngine {
RenderingEngine target;
String name;
public Tracer(RenderingEngine target) {
this.target = target;
name = target.getClass().getName();
}
public Shape createStrokedShape(Shape src,
float width,
int caps,
int join,
float miterlimit,
float dashes[],
float dashphase)
{
System.out.println(name+".createStrokedShape("+
src.getClass().getName()+", "+
"width = "+width+", "+
"caps = "+caps+", "+
"join = "+join+", "+
"miter = "+miterlimit+", "+
"dashes = "+dashes+", "+
"dashphase = "+dashphase+")");
return target.createStrokedShape(src,
width, caps, join, miterlimit,
dashes, dashphase);
}
public void strokeTo(Shape src,
AffineTransform at,
BasicStroke bs,
boolean thin,
boolean normalize,
boolean antialias,
PathConsumer2D consumer)
{
System.out.println(name+".strokeTo("+
src.getClass().getName()+", "+
at+", "+
bs+", "+
(thin ? "thin" : "wide")+", "+
(normalize ? "normalized" : "pure")+", "+
(antialias ? "AA" : "non-AA")+", "+
consumer.getClass().getName()+")");
target.strokeTo(src, at, bs, thin, normalize, antialias, consumer);
}
public float getMinimumAAPenSize() {
System.out.println(name+".getMinimumAAPenSize()");
return target.getMinimumAAPenSize();
}
public AATileGenerator getAATileGenerator(Shape s,
AffineTransform at,
Region clip,
BasicStroke bs,
boolean thin,
boolean normalize,
int bbox[])
{
System.out.println(name+".getAATileGenerator("+
s.getClass().getName()+", "+
at+", "+
clip+", "+
bs+", "+
(thin ? "thin" : "wide")+", "+
(normalize ? "normalized" : "pure")+")");
return target.getAATileGenerator(s, at, clip,
bs, thin, normalize,
bbox);
}
public AATileGenerator getAATileGenerator(double x, double y,
double dx1, double dy1,
double dx2, double dy2,
double lw1, double lw2,
Region clip,
int bbox[])
{
System.out.println(name+".getAATileGenerator("+
x+", "+y+", "+
dx1+", "+dy1+", "+
dx2+", "+dy2+", "+
lw1+", "+lw2+", "+
clip+")");
return target.getAATileGenerator(x, y,
dx1, dy1,
dx2, dy2,
lw1, lw2,
clip, bbox);
}
}
}