/* * Copyright (c) 1994, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package java.lang; import java.io.ObjectStreamField; import java.io.UnsupportedEncodingException; import java.nio.charset.Charset; import java.util.ArrayList; import java.util.Arrays; import java.util.Comparator; import java.util.Formatter; import java.util.Locale; import java.util.Objects; import java.util.StringJoiner; import java.util.regex.Matcher; import java.util.regex.Pattern; import java.util.regex.PatternSyntaxException; /** * The {@code String} class represents character strings. All * string literals in Java programs, such as {@code "abc"}, are * implemented as instances of this class. *
* Strings are constant; their values cannot be changed after they * are created. String buffers support mutable strings. * Because String objects are immutable they can be shared. For example: *
* String str = "abc"; *
* is equivalent to: *
* char data[] = {'a', 'b', 'c'}; * String str = new String(data); *
* Here are some more examples of how strings can be used: *
** System.out.println("abc"); * String cde = "cde"; * System.out.println("abc" + cde); * String c = "abc".substring(2,3); * String d = cde.substring(1, 2); *
* The class {@code String} includes methods for examining * individual characters of the sequence, for comparing strings, for * searching strings, for extracting substrings, and for creating a * copy of a string with all characters translated to uppercase or to * lowercase. Case mapping is based on the Unicode Standard version * specified by the {@link java.lang.Character Character} class. *
* The Java language provides special support for the string * concatenation operator ( + ), and for conversion of * other objects to strings. String concatenation is implemented * through the {@code StringBuilder}(or {@code StringBuffer}) * class and its {@code append} method. * String conversions are implemented through the method * {@code toString}, defined by {@code Object} and * inherited by all classes in Java. For additional information on * string concatenation and conversion, see Gosling, Joy, and Steele, * The Java Language Specification. * *
Unless otherwise noted, passing a null argument to a constructor * or method in this class will cause a {@link NullPointerException} to be * thrown. * *
A {@code String} represents a string in the UTF-16 format * in which supplementary characters are represented by surrogate * pairs (see the section Unicode * Character Representations in the {@code Character} class for * more information). * Index values refer to {@code char} code units, so a supplementary * character uses two positions in a {@code String}. *
The {@code String} class provides methods for dealing with
* Unicode code points (i.e., characters), in addition to those for
* dealing with Unicode code units (i.e., {@code char} values).
*
* @author Lee Boynton
* @author Arthur van Hoff
* @author Martin Buchholz
* @author Ulf Zibis
* @see java.lang.Object#toString()
* @see java.lang.StringBuffer
* @see java.lang.StringBuilder
* @see java.nio.charset.Charset
* @since JDK1.0
*/
public final class String
implements java.io.Serializable, Comparable The {@code offset} argument is the index of the first byte of the
* subarray, and the {@code count} argument specifies the length of the
* subarray.
*
* Each {@code byte} in the subarray is converted to a {@code char} as
* specified in the method above.
*
* @deprecated This method does not properly convert bytes into characters.
* As of JDK 1.1, the preferred way to do this is via the
* {@code String} constructors that take a {@link
* java.nio.charset.Charset}, charset name, or that use the platform's
* default charset.
*
* @param ascii
* The bytes to be converted to characters
*
* @param hibyte
* The top 8 bits of each 16-bit Unicode code unit
*
* @param offset
* The initial offset
* @param count
* The length
*
* @throws IndexOutOfBoundsException
* If the {@code offset} or {@code count} argument is invalid
*
* @see #String(byte[], int)
* @see #String(byte[], int, int, java.lang.String)
* @see #String(byte[], int, int, java.nio.charset.Charset)
* @see #String(byte[], int, int)
* @see #String(byte[], java.lang.String)
* @see #String(byte[], java.nio.charset.Charset)
* @see #String(byte[])
*/
@Deprecated
public String(byte ascii[], int hibyte, int offset, int count) {
checkBounds(ascii, offset, count);
char value[] = new char[count];
if (hibyte == 0) {
for (int i = count; i-- > 0;) {
value[i] = (char)(ascii[i + offset] & 0xff);
}
} else {
hibyte <<= 8;
for (int i = count; i-- > 0;) {
value[i] = (char)(hibyte | (ascii[i + offset] & 0xff));
}
}
this.value = value;
}
/**
* Allocates a new {@code String} containing characters constructed from
* an array of 8-bit integer values. Each character cin the
* resulting string is constructed from the corresponding component
* b in the byte array such that:
*
* The behavior of this constructor when the given bytes are not valid
* in the given charset is unspecified. The {@link
* java.nio.charset.CharsetDecoder} class should be used when more control
* over the decoding process is required.
*
* @param bytes
* The bytes to be decoded into characters
*
* @param offset
* The index of the first byte to decode
*
* @param length
* The number of bytes to decode
* @param charsetName
* The name of a supported {@linkplain java.nio.charset.Charset
* charset}
*
* @throws UnsupportedEncodingException
* If the named charset is not supported
*
* @throws IndexOutOfBoundsException
* If the {@code offset} and {@code length} arguments index
* characters outside the bounds of the {@code bytes} array
*
* @since JDK1.1
*/
public String(byte bytes[], int offset, int length, String charsetName)
throws UnsupportedEncodingException {
if (charsetName == null)
throw new NullPointerException("charsetName");
checkBounds(bytes, offset, length);
this.value = StringCoding.decode(charsetName, bytes, offset, length);
}
/**
* Constructs a new {@code String} by decoding the specified subarray of
* bytes using the specified {@linkplain java.nio.charset.Charset charset}.
* The length of the new {@code String} is a function of the charset, and
* hence may not be equal to the length of the subarray.
*
* This method always replaces malformed-input and unmappable-character
* sequences with this charset's default replacement string. The {@link
* java.nio.charset.CharsetDecoder} class should be used when more control
* over the decoding process is required.
*
* @param bytes
* The bytes to be decoded into characters
*
* @param offset
* The index of the first byte to decode
*
* @param length
* The number of bytes to decode
*
* @param charset
* The {@linkplain java.nio.charset.Charset charset} to be used to
* decode the {@code bytes}
*
* @throws IndexOutOfBoundsException
* If the {@code offset} and {@code length} arguments index
* characters outside the bounds of the {@code bytes} array
*
* @since 1.6
*/
public String(byte bytes[], int offset, int length, Charset charset) {
if (charset == null)
throw new NullPointerException("charset");
checkBounds(bytes, offset, length);
this.value = StringCoding.decode(charset, bytes, offset, length);
}
/**
* Constructs a new {@code String} by decoding the specified array of bytes
* using the specified {@linkplain java.nio.charset.Charset charset}. The
* length of the new {@code String} is a function of the charset, and hence
* may not be equal to the length of the byte array.
*
* The behavior of this constructor when the given bytes are not valid
* in the given charset is unspecified. The {@link
* java.nio.charset.CharsetDecoder} class should be used when more control
* over the decoding process is required.
*
* @param bytes
* The bytes to be decoded into characters
*
* @param charsetName
* The name of a supported {@linkplain java.nio.charset.Charset
* charset}
*
* @throws UnsupportedEncodingException
* If the named charset is not supported
*
* @since JDK1.1
*/
public String(byte bytes[], String charsetName)
throws UnsupportedEncodingException {
this(bytes, 0, bytes.length, charsetName);
}
/**
* Constructs a new {@code String} by decoding the specified array of
* bytes using the specified {@linkplain java.nio.charset.Charset charset}.
* The length of the new {@code String} is a function of the charset, and
* hence may not be equal to the length of the byte array.
*
* This method always replaces malformed-input and unmappable-character
* sequences with this charset's default replacement string. The {@link
* java.nio.charset.CharsetDecoder} class should be used when more control
* over the decoding process is required.
*
* @param bytes
* The bytes to be decoded into characters
*
* @param charset
* The {@linkplain java.nio.charset.Charset charset} to be used to
* decode the {@code bytes}
*
* @since 1.6
*/
public String(byte bytes[], Charset charset) {
this(bytes, 0, bytes.length, charset);
}
/**
* Constructs a new {@code String} by decoding the specified subarray of
* bytes using the platform's default charset. The length of the new
* {@code String} is a function of the charset, and hence may not be equal
* to the length of the subarray.
*
* The behavior of this constructor when the given bytes are not valid
* in the default charset is unspecified. The {@link
* java.nio.charset.CharsetDecoder} class should be used when more control
* over the decoding process is required.
*
* @param bytes
* The bytes to be decoded into characters
*
* @param offset
* The index of the first byte to decode
*
* @param length
* The number of bytes to decode
*
* @throws IndexOutOfBoundsException
* If the {@code offset} and the {@code length} arguments index
* characters outside the bounds of the {@code bytes} array
*
* @since JDK1.1
*/
public String(byte bytes[], int offset, int length) {
checkBounds(bytes, offset, length);
this.value = StringCoding.decode(bytes, offset, length);
}
/**
* Constructs a new {@code String} by decoding the specified array of bytes
* using the platform's default charset. The length of the new {@code
* String} is a function of the charset, and hence may not be equal to the
* length of the byte array.
*
* The behavior of this constructor when the given bytes are not valid
* in the default charset is unspecified. The {@link
* java.nio.charset.CharsetDecoder} class should be used when more control
* over the decoding process is required.
*
* @param bytes
* The bytes to be decoded into characters
*
* @since JDK1.1
*/
public String(byte bytes[]) {
this(bytes, 0, bytes.length);
}
/**
* Allocates a new string that contains the sequence of characters
* currently contained in the string buffer argument. The contents of the
* string buffer are copied; subsequent modification of the string buffer
* does not affect the newly created string.
*
* @param buffer
* A {@code StringBuffer}
*/
public String(StringBuffer buffer) {
synchronized(buffer) {
this.value = Arrays.copyOf(buffer.getValue(), buffer.length());
}
}
/**
* Allocates a new string that contains the sequence of characters
* currently contained in the string builder argument. The contents of the
* string builder are copied; subsequent modification of the string builder
* does not affect the newly created string.
*
* This constructor is provided to ease migration to {@code
* StringBuilder}. Obtaining a string from a string builder via the {@code
* toString} method is likely to run faster and is generally preferred.
*
* @param builder
* A {@code StringBuilder}
*
* @since 1.5
*/
public String(StringBuilder builder) {
this.value = Arrays.copyOf(builder.getValue(), builder.length());
}
/*
* Package private constructor which shares value array for speed.
* this constructor is always expected to be called with share==true.
* a separate constructor is needed because we already have a public
* String(char[]) constructor that makes a copy of the given char[].
*/
String(char[] value, boolean share) {
// assert share : "unshared not supported";
this.value = value;
}
/**
* Returns the length of this string.
* The length is equal to the number of Unicode
* code units in the string.
*
* @return the length of the sequence of characters represented by this
* object.
*/
public int length() {
return value.length;
}
/**
* Returns {@code true} if, and only if, {@link #length()} is {@code 0}.
*
* @return {@code true} if {@link #length()} is {@code 0}, otherwise
* {@code false}
*
* @since 1.6
*/
public boolean isEmpty() {
return value.length == 0;
}
/**
* Returns the {@code char} value at the
* specified index. An index ranges from {@code 0} to
* {@code length() - 1}. The first {@code char} value of the sequence
* is at index {@code 0}, the next at index {@code 1},
* and so on, as for array indexing.
*
* If the {@code char} value specified by the index is a
* surrogate, the surrogate
* value is returned.
*
* @param index the index of the {@code char} value.
* @return the {@code char} value at the specified index of this string.
* The first {@code char} value is at index {@code 0}.
* @exception IndexOutOfBoundsException if the {@code index}
* argument is negative or not less than the length of this
* string.
*/
public char charAt(int index) {
if ((index < 0) || (index >= value.length)) {
throw new StringIndexOutOfBoundsException(index);
}
return value[index];
}
/**
* Returns the character (Unicode code point) at the specified
* index. The index refers to {@code char} values
* (Unicode code units) and ranges from {@code 0} to
* {@link #length()}{@code - 1}.
*
* If the {@code char} value specified at the given index
* is in the high-surrogate range, the following index is less
* than the length of this {@code String}, and the
* {@code char} value at the following index is in the
* low-surrogate range, then the supplementary code point
* corresponding to this surrogate pair is returned. Otherwise,
* the {@code char} value at the given index is returned.
*
* @param index the index to the {@code char} values
* @return the code point value of the character at the
* {@code index}
* @exception IndexOutOfBoundsException if the {@code index}
* argument is negative or not less than the length of this
* string.
* @since 1.5
*/
public int codePointAt(int index) {
if ((index < 0) || (index >= value.length)) {
throw new StringIndexOutOfBoundsException(index);
}
return Character.codePointAtImpl(value, index, value.length);
}
/**
* Returns the character (Unicode code point) before the specified
* index. The index refers to {@code char} values
* (Unicode code units) and ranges from {@code 1} to {@link
* CharSequence#length() length}.
*
* If the {@code char} value at {@code (index - 1)}
* is in the low-surrogate range, {@code (index - 2)} is not
* negative, and the {@code char} value at {@code (index -
* 2)} is in the high-surrogate range, then the
* supplementary code point value of the surrogate pair is
* returned. If the {@code char} value at {@code index -
* 1} is an unpaired low-surrogate or a high-surrogate, the
* surrogate value is returned.
*
* @param index the index following the code point that should be returned
* @return the Unicode code point value before the given index.
* @exception IndexOutOfBoundsException if the {@code index}
* argument is less than 1 or greater than the length
* of this string.
* @since 1.5
*/
public int codePointBefore(int index) {
int i = index - 1;
if ((i < 0) || (i >= value.length)) {
throw new StringIndexOutOfBoundsException(index);
}
return Character.codePointBeforeImpl(value, index, 0);
}
/**
* Returns the number of Unicode code points in the specified text
* range of this {@code String}. The text range begins at the
* specified {@code beginIndex} and extends to the
* {@code char} at index {@code endIndex - 1}. Thus the
* length (in {@code char}s) of the text range is
* {@code endIndex-beginIndex}. Unpaired surrogates within
* the text range count as one code point each.
*
* @param beginIndex the index to the first {@code char} of
* the text range.
* @param endIndex the index after the last {@code char} of
* the text range.
* @return the number of Unicode code points in the specified text
* range
* @exception IndexOutOfBoundsException if the
* {@code beginIndex} is negative, or {@code endIndex}
* is larger than the length of this {@code String}, or
* {@code beginIndex} is larger than {@code endIndex}.
* @since 1.5
*/
public int codePointCount(int beginIndex, int endIndex) {
if (beginIndex < 0 || endIndex > value.length || beginIndex > endIndex) {
throw new IndexOutOfBoundsException();
}
return Character.codePointCountImpl(value, beginIndex, endIndex - beginIndex);
}
/**
* Returns the index within this {@code String} that is
* offset from the given {@code index} by
* {@code codePointOffset} code points. Unpaired surrogates
* within the text range given by {@code index} and
* {@code codePointOffset} count as one code point each.
*
* @param index the index to be offset
* @param codePointOffset the offset in code points
* @return the index within this {@code String}
* @exception IndexOutOfBoundsException if {@code index}
* is negative or larger then the length of this
* {@code String}, or if {@code codePointOffset} is positive
* and the substring starting with {@code index} has fewer
* than {@code codePointOffset} code points,
* or if {@code codePointOffset} is negative and the substring
* before {@code index} has fewer than the absolute value
* of {@code codePointOffset} code points.
* @since 1.5
*/
public int offsetByCodePoints(int index, int codePointOffset) {
if (index < 0 || index > value.length) {
throw new IndexOutOfBoundsException();
}
return Character.offsetByCodePointsImpl(value, 0, value.length,
index, codePointOffset);
}
/**
* Copy characters from this string into dst starting at dstBegin.
* This method doesn't perform any range checking.
*/
void getChars(char dst[], int dstBegin) {
System.arraycopy(value, 0, dst, dstBegin, value.length);
}
/**
* Copies characters from this string into the destination character
* array.
*
* The first character to be copied is at index {@code srcBegin};
* the last character to be copied is at index {@code srcEnd-1}
* (thus the total number of characters to be copied is
* {@code srcEnd-srcBegin}). The characters are copied into the
* subarray of {@code dst} starting at index {@code dstBegin}
* and ending at index:
* The first character to be copied is at index {@code srcBegin}; the
* last character to be copied is at index {@code srcEnd-1}. The total
* number of characters to be copied is {@code srcEnd-srcBegin}. The
* characters, converted to bytes, are copied into the subarray of {@code
* dst} starting at index {@code dstBegin} and ending at index:
*
* The behavior of this method when this string cannot be encoded in
* the given charset is unspecified. The {@link
* java.nio.charset.CharsetEncoder} class should be used when more control
* over the encoding process is required.
*
* @param charsetName
* The name of a supported {@linkplain java.nio.charset.Charset
* charset}
*
* @return The resultant byte array
*
* @throws UnsupportedEncodingException
* If the named charset is not supported
*
* @since JDK1.1
*/
public byte[] getBytes(String charsetName)
throws UnsupportedEncodingException {
if (charsetName == null) throw new NullPointerException();
return StringCoding.encode(charsetName, value, 0, value.length);
}
/**
* Encodes this {@code String} into a sequence of bytes using the given
* {@linkplain java.nio.charset.Charset charset}, storing the result into a
* new byte array.
*
* This method always replaces malformed-input and unmappable-character
* sequences with this charset's default replacement byte array. The
* {@link java.nio.charset.CharsetEncoder} class should be used when more
* control over the encoding process is required.
*
* @param charset
* The {@linkplain java.nio.charset.Charset} to be used to encode
* the {@code String}
*
* @return The resultant byte array
*
* @since 1.6
*/
public byte[] getBytes(Charset charset) {
if (charset == null) throw new NullPointerException();
return StringCoding.encode(charset, value, 0, value.length);
}
/**
* Encodes this {@code String} into a sequence of bytes using the
* platform's default charset, storing the result into a new byte array.
*
* The behavior of this method when this string cannot be encoded in
* the default charset is unspecified. The {@link
* java.nio.charset.CharsetEncoder} class should be used when more control
* over the encoding process is required.
*
* @return The resultant byte array
*
* @since JDK1.1
*/
public byte[] getBytes() {
return StringCoding.encode(value, 0, value.length);
}
/**
* Compares this string to the specified object. The result is {@code
* true} if and only if the argument is not {@code null} and is a {@code
* String} object that represents the same sequence of characters as this
* object.
*
* @param anObject
* The object to compare this {@code String} against
*
* @return {@code true} if the given object represents a {@code String}
* equivalent to this string, {@code false} otherwise
*
* @see #compareTo(String)
* @see #equalsIgnoreCase(String)
*/
public boolean equals(Object anObject) {
if (this == anObject) {
return true;
}
if (anObject instanceof String) {
String anotherString = (String)anObject;
int n = value.length;
if (n == anotherString.value.length) {
char v1[] = value;
char v2[] = anotherString.value;
int i = 0;
while (n-- != 0) {
if (v1[i] != v2[i])
return false;
i++;
}
return true;
}
}
return false;
}
/**
* Compares this string to the specified {@code StringBuffer}. The result
* is {@code true} if and only if this {@code String} represents the same
* sequence of characters as the specified {@code StringBuffer}. This method
* synchronizes on the {@code StringBuffer}.
*
* @param sb
* The {@code StringBuffer} to compare this {@code String} against
*
* @return {@code true} if this {@code String} represents the same
* sequence of characters as the specified {@code StringBuffer},
* {@code false} otherwise
*
* @since 1.4
*/
public boolean contentEquals(StringBuffer sb) {
return contentEquals((CharSequence)sb);
}
private boolean nonSyncContentEquals(AbstractStringBuilder sb) {
char v1[] = value;
char v2[] = sb.getValue();
int n = v1.length;
if (n != sb.length()) {
return false;
}
for (int i = 0; i < n; i++) {
if (v1[i] != v2[i]) {
return false;
}
}
return true;
}
/**
* Compares this string to the specified {@code CharSequence}. The
* result is {@code true} if and only if this {@code String} represents the
* same sequence of char values as the specified sequence. Note that if the
* {@code CharSequence} is a {@code StringBuffer} then the method
* synchronizes on it.
*
* @param cs
* The sequence to compare this {@code String} against
*
* @return {@code true} if this {@code String} represents the same
* sequence of char values as the specified sequence, {@code
* false} otherwise
*
* @since 1.5
*/
public boolean contentEquals(CharSequence cs) {
// Argument is a StringBuffer, StringBuilder
if (cs instanceof AbstractStringBuilder) {
if (cs instanceof StringBuffer) {
synchronized(cs) {
return nonSyncContentEquals((AbstractStringBuilder)cs);
}
} else {
return nonSyncContentEquals((AbstractStringBuilder)cs);
}
}
// Argument is a String
if (cs instanceof String) {
return equals(cs);
}
// Argument is a generic CharSequence
char v1[] = value;
int n = v1.length;
if (n != cs.length()) {
return false;
}
for (int i = 0; i < n; i++) {
if (v1[i] != cs.charAt(i)) {
return false;
}
}
return true;
}
/**
* Compares this {@code String} to another {@code String}, ignoring case
* considerations. Two strings are considered equal ignoring case if they
* are of the same length and corresponding characters in the two strings
* are equal ignoring case.
*
* Two characters {@code c1} and {@code c2} are considered the same
* ignoring case if at least one of the following is true:
*
* This is the definition of lexicographic ordering. If two strings are
* different, then either they have different characters at some index
* that is a valid index for both strings, or their lengths are different,
* or both. If they have different characters at one or more index
* positions, let k be the smallest such index; then the string
* whose character at position k has the smaller value, as
* determined by using the < operator, lexicographically precedes the
* other string. In this case, {@code compareTo} returns the
* difference of the two character values at position {@code k} in
* the two string -- that is, the value:
*
* Note that this Comparator does not take locale into account,
* and will result in an unsatisfactory ordering for certain locales.
* The java.text package provides Collators to allow
* locale-sensitive ordering.
*
* @see java.text.Collator#compare(String, String)
* @since 1.2
*/
public static final Comparator
* Note that this method does not take locale into account,
* and will result in an unsatisfactory ordering for certain locales.
* The java.text package provides collators to allow
* locale-sensitive ordering.
*
* @param str the {@code String} to be compared.
* @return a negative integer, zero, or a positive integer as the
* specified String is greater than, equal to, or less
* than this String, ignoring case considerations.
* @see java.text.Collator#compare(String, String)
* @since 1.2
*/
public int compareToIgnoreCase(String str) {
return CASE_INSENSITIVE_ORDER.compare(this, str);
}
/**
* Tests if two string regions are equal.
*
* A substring of this {@code String} object is compared to a substring
* of the argument other. The result is true if these substrings
* represent identical character sequences. The substring of this
* {@code String} object to be compared begins at index {@code toffset}
* and has length {@code len}. The substring of other to be compared
* begins at index {@code ooffset} and has length {@code len}. The
* result is {@code false} if and only if at least one of the following
* is true:
*
* A substring of this {@code String} object is compared to a substring
* of the argument {@code other}. The result is {@code true} if these
* substrings represent character sequences that are the same, ignoring
* case if and only if {@code ignoreCase} is true. The substring of
* this {@code String} object to be compared begins at index
* {@code toffset} and has length {@code len}. The substring of
* {@code other} to be compared begins at index {@code ooffset} and
* has length {@code len}. The result is {@code false} if and only if
* at least one of the following is true:
*
* If a character with value {@code ch} occurs in the
* character sequence represented by this {@code String}
* object at an index no smaller than {@code fromIndex}, then
* the index of the first such occurrence is returned. For values
* of {@code ch} in the range from 0 to 0xFFFF (inclusive),
* this is the smallest value k such that:
*
* There is no restriction on the value of {@code fromIndex}. If it
* is negative, it has the same effect as if it were zero: this entire
* string may be searched. If it is greater than the length of this
* string, it has the same effect as if it were equal to the length of
* this string: {@code -1} is returned.
*
* All indices are specified in {@code char} values
* (Unicode code units).
*
* @param ch a character (Unicode code point).
* @param fromIndex the index to start the search from.
* @return the index of the first occurrence of the character in the
* character sequence represented by this object that is greater
* than or equal to {@code fromIndex}, or {@code -1}
* if the character does not occur.
*/
public int indexOf(int ch, int fromIndex) {
final int max = value.length;
if (fromIndex < 0) {
fromIndex = 0;
} else if (fromIndex >= max) {
// Note: fromIndex might be near -1>>>1.
return -1;
}
if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
// handle most cases here (ch is a BMP code point or a
// negative value (invalid code point))
final char[] value = this.value;
for (int i = fromIndex; i < max; i++) {
if (value[i] == ch) {
return i;
}
}
return -1;
} else {
return indexOfSupplementary(ch, fromIndex);
}
}
/**
* Handles (rare) calls of indexOf with a supplementary character.
*/
private int indexOfSupplementary(int ch, int fromIndex) {
if (Character.isValidCodePoint(ch)) {
final char[] value = this.value;
final char hi = Character.highSurrogate(ch);
final char lo = Character.lowSurrogate(ch);
final int max = value.length - 1;
for (int i = fromIndex; i < max; i++) {
if (value[i] == hi && value[i + 1] == lo) {
return i;
}
}
}
return -1;
}
/**
* Returns the index within this string of the last occurrence of
* the specified character. For values of {@code ch} in the
* range from 0 to 0xFFFF (inclusive), the index (in Unicode code
* units) returned is the largest value k such that:
* All indices are specified in {@code char} values
* (Unicode code units).
*
* @param ch a character (Unicode code point).
* @param fromIndex the index to start the search from. There is no
* restriction on the value of {@code fromIndex}. If it is
* greater than or equal to the length of this string, it has
* the same effect as if it were equal to one less than the
* length of this string: this entire string may be searched.
* If it is negative, it has the same effect as if it were -1:
* -1 is returned.
* @return the index of the last occurrence of the character in the
* character sequence represented by this object that is less
* than or equal to {@code fromIndex}, or {@code -1}
* if the character does not occur before that point.
*/
public int lastIndexOf(int ch, int fromIndex) {
if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
// handle most cases here (ch is a BMP code point or a
// negative value (invalid code point))
final char[] value = this.value;
int i = Math.min(fromIndex, value.length - 1);
for (; i >= 0; i--) {
if (value[i] == ch) {
return i;
}
}
return -1;
} else {
return lastIndexOfSupplementary(ch, fromIndex);
}
}
/**
* Handles (rare) calls of lastIndexOf with a supplementary character.
*/
private int lastIndexOfSupplementary(int ch, int fromIndex) {
if (Character.isValidCodePoint(ch)) {
final char[] value = this.value;
char hi = Character.highSurrogate(ch);
char lo = Character.lowSurrogate(ch);
int i = Math.min(fromIndex, value.length - 2);
for (; i >= 0; i--) {
if (value[i] == hi && value[i + 1] == lo) {
return i;
}
}
}
return -1;
}
/**
* Returns the index within this string of the first occurrence of the
* specified substring.
*
* The returned index is the smallest value k for which:
* The returned index is the smallest value k for which:
* The returned index is the largest value k for which:
* The returned index is the largest value k for which:
*
* Examples:
*
* Examples:
* An invocation of this method of the form
*
*
* If the length of the argument string is {@code 0}, then this
* {@code String} object is returned. Otherwise, a
* {@code String} object is returned that represents a character
* sequence that is the concatenation of the character sequence
* represented by this {@code String} object and the character
* sequence represented by the argument string.
* Examples:
*
* If the character {@code oldChar} does not occur in the
* character sequence represented by this {@code String} object,
* then a reference to this {@code String} object is returned.
* Otherwise, a {@code String} object is returned that
* represents a character sequence identical to the character sequence
* represented by this {@code String} object, except that every
* occurrence of {@code oldChar} is replaced by an occurrence
* of {@code newChar}.
*
* Examples:
* An invocation of this method of the form
* str{@code .matches(}regex{@code )} yields exactly the
* same result as the expression
*
* An invocation of this method of the form
* str{@code .replaceFirst(}regex{@code ,} repl{@code )}
* yields exactly the same result as the expression
*
*
* Note that backslashes ({@code \}) and dollar signs ({@code $}) in the
* replacement string may cause the results to be different than if it were
* being treated as a literal replacement string; see
* {@link java.util.regex.Matcher#replaceFirst}.
* Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
* meaning of these characters, if desired.
*
* @param regex
* the regular expression to which this string is to be matched
* @param replacement
* the string to be substituted for the first match
*
* @return The resulting {@code String}
*
* @throws PatternSyntaxException
* if the regular expression's syntax is invalid
*
* @see java.util.regex.Pattern
*
* @since 1.4
* @spec JSR-51
*/
public String replaceFirst(String regex, String replacement) {
return Pattern.compile(regex).matcher(this).replaceFirst(replacement);
}
/**
* Replaces each substring of this string that matches the given regular expression with the
* given replacement.
*
* An invocation of this method of the form
* str{@code .replaceAll(}regex{@code ,} repl{@code )}
* yields exactly the same result as the expression
*
*
* Note that backslashes ({@code \}) and dollar signs ({@code $}) in the
* replacement string may cause the results to be different than if it were
* being treated as a literal replacement string; see
* {@link java.util.regex.Matcher#replaceAll Matcher.replaceAll}.
* Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
* meaning of these characters, if desired.
*
* @param regex
* the regular expression to which this string is to be matched
* @param replacement
* the string to be substituted for each match
*
* @return The resulting {@code String}
*
* @throws PatternSyntaxException
* if the regular expression's syntax is invalid
*
* @see java.util.regex.Pattern
*
* @since 1.4
* @spec JSR-51
*/
public String replaceAll(String regex, String replacement) {
return Pattern.compile(regex).matcher(this).replaceAll(replacement);
}
/**
* Replaces each substring of this string that matches the literal target
* sequence with the specified literal replacement sequence. The
* replacement proceeds from the beginning of the string to the end, for
* example, replacing "aa" with "b" in the string "aaa" will result in
* "ba" rather than "ab".
*
* @param target The sequence of char values to be replaced
* @param replacement The replacement sequence of char values
* @return The resulting string
* @since 1.5
*/
public String replace(CharSequence target, CharSequence replacement) {
return Pattern.compile(target.toString(), Pattern.LITERAL).matcher(
this).replaceAll(Matcher.quoteReplacement(replacement.toString()));
}
/**
* Splits this string around matches of the given
* regular expression.
*
* The array returned by this method contains each substring of this
* string that is terminated by another substring that matches the given
* expression or is terminated by the end of the string. The substrings in
* the array are in the order in which they occur in this string. If the
* expression does not match any part of the input then the resulting array
* has just one element, namely this string.
*
* When there is a positive-width match at the beginning of this
* string then an empty leading substring is included at the beginning
* of the resulting array. A zero-width match at the beginning however
* never produces such empty leading substring.
*
* The {@code limit} parameter controls the number of times the
* pattern is applied and therefore affects the length of the resulting
* array. If the limit n is greater than zero then the pattern
* will be applied at most n - 1 times, the array's
* length will be no greater than n, and the array's last entry
* will contain all input beyond the last matched delimiter. If n
* is non-positive then the pattern will be applied as many times as
* possible and the array can have any length. If n is zero then
* the pattern will be applied as many times as possible, the array can
* have any length, and trailing empty strings will be discarded.
*
* The string {@code "boo:and:foo"}, for example, yields the
* following results with these parameters:
*
* An invocation of this method of the form
* str.{@code split(}regex{@code ,} n{@code )}
* yields the same result as the expression
*
* This method works as if by invoking the two-argument {@link
* #split(String, int) split} method with the given expression and a limit
* argument of zero. Trailing empty strings are therefore not included in
* the resulting array.
*
* The string {@code "boo:and:foo"}, for example, yields the following
* results with these expressions:
*
*
* Examples of lowercase mappings are in the following table:
*
* Note: This method is locale sensitive, and may produce unexpected
* results if used for strings that are intended to be interpreted locale
* independently.
* Examples are programming language identifiers, protocol keys, and HTML
* tags.
* For instance, {@code "TITLE".toLowerCase()} in a Turkish locale
* returns {@code "t\u005Cu0131tle"}, where '\u005Cu0131' is the
* LATIN SMALL LETTER DOTLESS I character.
* To obtain correct results for locale insensitive strings, use
* {@code toLowerCase(Locale.ROOT)}.
*
* @return the {@code String}, converted to lowercase.
* @see java.lang.String#toLowerCase(Locale)
*/
public String toLowerCase() {
return toLowerCase(Locale.getDefault());
}
/**
* Converts all of the characters in this {@code String} to upper
* case using the rules of the given {@code Locale}. Case mapping is based
* on the Unicode Standard version specified by the {@link java.lang.Character Character}
* class. Since case mappings are not always 1:1 char mappings, the resulting
* {@code String} may be a different length than the original {@code String}.
*
* Examples of locale-sensitive and 1:M case mappings are in the following table.
*
*
* Note: This method is locale sensitive, and may produce unexpected
* results if used for strings that are intended to be interpreted locale
* independently.
* Examples are programming language identifiers, protocol keys, and HTML
* tags.
* For instance, {@code "title".toUpperCase()} in a Turkish locale
* returns {@code "T\u005Cu0130TLE"}, where '\u005Cu0130' is the
* LATIN CAPITAL LETTER I WITH DOT ABOVE character.
* To obtain correct results for locale insensitive strings, use
* {@code toUpperCase(Locale.ROOT)}.
*
* @return the {@code String}, converted to uppercase.
* @see java.lang.String#toUpperCase(Locale)
*/
public String toUpperCase() {
return toUpperCase(Locale.getDefault());
}
/**
* Returns a string whose value is this string, with any leading and trailing
* whitespace removed.
*
* If this {@code String} object represents an empty character
* sequence, or the first and last characters of character sequence
* represented by this {@code String} object both have codes
* greater than {@code '\u005Cu0020'} (the space character), then a
* reference to this {@code String} object is returned.
*
* Otherwise, if there is no character with a code greater than
* {@code '\u005Cu0020'} in the string, then a
* {@code String} object representing an empty string is
* returned.
*
* Otherwise, let k be the index of the first character in the
* string whose code is greater than {@code '\u005Cu0020'}, and let
* m be the index of the last character in the string whose code
* is greater than {@code '\u005Cu0020'}. A {@code String}
* object is returned, representing the substring of this string that
* begins with the character at index k and ends with the
* character at index m-that is, the result of
* {@code this.substring(k, m + 1)}.
*
* This method may be used to trim whitespace (as defined above) from
* the beginning and end of a string.
*
* @return A string whose value is this string, with any leading and trailing white
* space removed, or this string if it has no leading or
* trailing white space.
*/
public String trim() {
int len = value.length;
int st = 0;
char[] val = value; /* avoid getfield opcode */
while ((st < len) && (val[st] <= ' ')) {
st++;
}
while ((st < len) && (val[len - 1] <= ' ')) {
len--;
}
return ((st > 0) || (len < value.length)) ? substring(st, len) : this;
}
/**
* This object (which is already a string!) is itself returned.
*
* @return the string itself.
*/
public String toString() {
return this;
}
/**
* Converts this string to a new character array.
*
* @return a newly allocated character array whose length is the length
* of this string and whose contents are initialized to contain
* the character sequence represented by this string.
*/
public char[] toCharArray() {
// Cannot use Arrays.copyOf because of class initialization order issues
char result[] = new char[value.length];
System.arraycopy(value, 0, result, 0, value.length);
return result;
}
/**
* Returns a formatted string using the specified format string and
* arguments.
*
* The locale always used is the one returned by {@link
* java.util.Locale#getDefault() Locale.getDefault()}.
*
* @param format
* A format string
*
* @param args
* Arguments referenced by the format specifiers in the format
* string. If there are more arguments than format specifiers, the
* extra arguments are ignored. The number of arguments is
* variable and may be zero. The maximum number of arguments is
* limited by the maximum dimension of a Java array as defined by
* The Java™ Virtual Machine Specification.
* The behaviour on a
* {@code null} argument depends on the conversion.
*
* @throws java.util.IllegalFormatException
* If a format string contains an illegal syntax, a format
* specifier that is incompatible with the given arguments,
* insufficient arguments given the format string, or other
* illegal conditions. For specification of all possible
* formatting errors, see the Details section of the
* formatter class specification.
*
* @return A formatted string
*
* @see java.util.Formatter
* @since 1.5
*/
public static String format(String format, Object... args) {
return new Formatter().format(format, args).toString();
}
/**
* Returns a formatted string using the specified locale, format string,
* and arguments.
*
* @param l
* The {@linkplain java.util.Locale locale} to apply during
* formatting. If {@code l} is {@code null} then no localization
* is applied.
*
* @param format
* A format string
*
* @param args
* Arguments referenced by the format specifiers in the format
* string. If there are more arguments than format specifiers, the
* extra arguments are ignored. The number of arguments is
* variable and may be zero. The maximum number of arguments is
* limited by the maximum dimension of a Java array as defined by
* The Java™ Virtual Machine Specification.
* The behaviour on a
* {@code null} argument depends on the
* conversion.
*
* @throws java.util.IllegalFormatException
* If a format string contains an illegal syntax, a format
* specifier that is incompatible with the given arguments,
* insufficient arguments given the format string, or other
* illegal conditions. For specification of all possible
* formatting errors, see the Details section of the
* formatter class specification
*
* @return A formatted string
*
* @see java.util.Formatter
* @since 1.5
*/
public static String format(Locale l, String format, Object... args) {
return new Formatter(l).format(format, args).toString();
}
/**
* Returns the string representation of the {@code Object} argument.
*
* @param obj an {@code Object}.
* @return if the argument is {@code null}, then a string equal to
* {@code "null"}; otherwise, the value of
* {@code obj.toString()} is returned.
* @see java.lang.Object#toString()
*/
public static String valueOf(Object obj) {
return (obj == null) ? "null" : obj.toString();
}
/**
* Returns the string representation of the {@code char} array
* argument. The contents of the character array are copied; subsequent
* modification of the character array does not affect the returned
* string.
*
* @param data the character array.
* @return a {@code String} that contains the characters of the
* character array.
*/
public static String valueOf(char data[]) {
return new String(data);
}
/**
* Returns the string representation of a specific subarray of the
* {@code char} array argument.
*
* The {@code offset} argument is the index of the first
* character of the subarray. The {@code count} argument
* specifies the length of the subarray. The contents of the subarray
* are copied; subsequent modification of the character array does not
* affect the returned string.
*
* @param data the character array.
* @param offset initial offset of the subarray.
* @param count length of the subarray.
* @return a {@code String} that contains the characters of the
* specified subarray of the character array.
* @exception IndexOutOfBoundsException if {@code offset} is
* negative, or {@code count} is negative, or
* {@code offset+count} is larger than
* {@code data.length}.
*/
public static String valueOf(char data[], int offset, int count) {
return new String(data, offset, count);
}
/**
* Equivalent to {@link #valueOf(char[], int, int)}.
*
* @param data the character array.
* @param offset initial offset of the subarray.
* @param count length of the subarray.
* @return a {@code String} that contains the characters of the
* specified subarray of the character array.
* @exception IndexOutOfBoundsException if {@code offset} is
* negative, or {@code count} is negative, or
* {@code offset+count} is larger than
* {@code data.length}.
*/
public static String copyValueOf(char data[], int offset, int count) {
return new String(data, offset, count);
}
/**
* Equivalent to {@link #valueOf(char[])}.
*
* @param data the character array.
* @return a {@code String} that contains the characters of the
* character array.
*/
public static String copyValueOf(char data[]) {
return new String(data);
}
/**
* Returns the string representation of the {@code boolean} argument.
*
* @param b a {@code boolean}.
* @return if the argument is {@code true}, a string equal to
* {@code "true"} is returned; otherwise, a string equal to
* {@code "false"} is returned.
*/
public static String valueOf(boolean b) {
return b ? "true" : "false";
}
/**
* Returns the string representation of the {@code char}
* argument.
*
* @param c a {@code char}.
* @return a string of length {@code 1} containing
* as its single character the argument {@code c}.
*/
public static String valueOf(char c) {
char data[] = {c};
return new String(data, true);
}
/**
* Returns the string representation of the {@code int} argument.
*
* The representation is exactly the one returned by the
* {@code Integer.toString} method of one argument.
*
* @param i an {@code int}.
* @return a string representation of the {@code int} argument.
* @see java.lang.Integer#toString(int, int)
*/
public static String valueOf(int i) {
return Integer.toString(i);
}
/**
* Returns the string representation of the {@code long} argument.
*
* The representation is exactly the one returned by the
* {@code Long.toString} method of one argument.
*
* @param l a {@code long}.
* @return a string representation of the {@code long} argument.
* @see java.lang.Long#toString(long)
*/
public static String valueOf(long l) {
return Long.toString(l);
}
/**
* Returns the string representation of the {@code float} argument.
*
* The representation is exactly the one returned by the
* {@code Float.toString} method of one argument.
*
* @param f a {@code float}.
* @return a string representation of the {@code float} argument.
* @see java.lang.Float#toString(float)
*/
public static String valueOf(float f) {
return Float.toString(f);
}
/**
* Returns the string representation of the {@code double} argument.
*
* The representation is exactly the one returned by the
* {@code Double.toString} method of one argument.
*
* @param d a {@code double}.
* @return a string representation of the {@code double} argument.
* @see java.lang.Double#toString(double)
*/
public static String valueOf(double d) {
return Double.toString(d);
}
/**
* Returns a canonical representation for the string object.
*
* A pool of strings, initially empty, is maintained privately by the
* class {@code String}.
*
* When the intern method is invoked, if the pool already contains a
* string equal to this {@code String} object as determined by
* the {@link #equals(Object)} method, then the string from the pool is
* returned. Otherwise, this {@code String} object is added to the
* pool and a reference to this {@code String} object is returned.
*
* It follows that for any two strings {@code s} and {@code t},
* {@code s.intern() == t.intern()} is {@code true}
* if and only if {@code s.equals(t)} is {@code true}.
*
* All literal strings and string-valued constant expressions are
* interned. String literals are defined in section 3.10.5 of the
* The Java™ Language Specification.
*
* @return a string that has the same contents as this string, but is
* guaranteed to be from a pool of unique strings.
*/
public native String intern();
}
*
* @deprecated This method does not properly convert bytes into
* characters. As of JDK 1.1, the preferred way to do this is via the
* {@code String} constructors that take a {@link
* java.nio.charset.Charset}, charset name, or that use the platform's
* default charset.
*
* @param ascii
* The bytes to be converted to characters
*
* @param hibyte
* The top 8 bits of each 16-bit Unicode code unit
*
* @see #String(byte[], int, int, java.lang.String)
* @see #String(byte[], int, int, java.nio.charset.Charset)
* @see #String(byte[], int, int)
* @see #String(byte[], java.lang.String)
* @see #String(byte[], java.nio.charset.Charset)
* @see #String(byte[])
*/
@Deprecated
public String(byte ascii[], int hibyte) {
this(ascii, hibyte, 0, ascii.length);
}
/* Common private utility method used to bounds check the byte array
* and requested offset & length values used by the String(byte[],..)
* constructors.
*/
private static void checkBounds(byte[] bytes, int offset, int length) {
if (length < 0)
throw new StringIndexOutOfBoundsException(length);
if (offset < 0)
throw new StringIndexOutOfBoundsException(offset);
if (offset > bytes.length - length)
throw new StringIndexOutOfBoundsException(offset + length);
}
/**
* Constructs a new {@code String} by decoding the specified subarray of
* bytes using the specified charset. The length of the new {@code String}
* is a function of the charset, and hence may not be equal to the length
* of the subarray.
*
*
* c == (char)(((hibyte & 0xff) << 8)
* | (b & 0xff))
*
*
* @param srcBegin index of the first character in the string
* to copy.
* @param srcEnd index after the last character in the string
* to copy.
* @param dst the destination array.
* @param dstBegin the start offset in the destination array.
* @exception IndexOutOfBoundsException If any of the following
* is true:
*
* dstBegin + (srcEnd-srcBegin) - 1
*
*/
public void getChars(int srcBegin, int srcEnd, char dst[], int dstBegin) {
if (srcBegin < 0) {
throw new StringIndexOutOfBoundsException(srcBegin);
}
if (srcEnd > value.length) {
throw new StringIndexOutOfBoundsException(srcEnd);
}
if (srcBegin > srcEnd) {
throw new StringIndexOutOfBoundsException(srcEnd - srcBegin);
}
System.arraycopy(value, srcBegin, dst, dstBegin, srcEnd - srcBegin);
}
/**
* Copies characters from this string into the destination byte array. Each
* byte receives the 8 low-order bits of the corresponding character. The
* eight high-order bits of each character are not copied and do not
* participate in the transfer in any way.
*
*
*
* @deprecated This method does not properly convert characters into
* bytes. As of JDK 1.1, the preferred way to do this is via the
* {@link #getBytes()} method, which uses the platform's default charset.
*
* @param srcBegin
* Index of the first character in the string to copy
*
* @param srcEnd
* Index after the last character in the string to copy
*
* @param dst
* The destination array
*
* @param dstBegin
* The start offset in the destination array
*
* @throws IndexOutOfBoundsException
* If any of the following is true:
*
* dstBegin + (srcEnd-srcBegin) - 1
*
*
*/
@Deprecated
public void getBytes(int srcBegin, int srcEnd, byte dst[], int dstBegin) {
if (srcBegin < 0) {
throw new StringIndexOutOfBoundsException(srcBegin);
}
if (srcEnd > value.length) {
throw new StringIndexOutOfBoundsException(srcEnd);
}
if (srcBegin > srcEnd) {
throw new StringIndexOutOfBoundsException(srcEnd - srcBegin);
}
Objects.requireNonNull(dst);
int j = dstBegin;
int n = srcEnd;
int i = srcBegin;
char[] val = value; /* avoid getfield opcode */
while (i < n) {
dst[j++] = (byte)val[i++];
}
}
/**
* Encodes this {@code String} into a sequence of bytes using the named
* charset, storing the result into a new byte array.
*
*
*
*
* @param anotherString
* The {@code String} to compare this {@code String} against
*
* @return {@code true} if the argument is not {@code null} and it
* represents an equivalent {@code String} ignoring case; {@code
* false} otherwise
*
* @see #equals(Object)
*/
public boolean equalsIgnoreCase(String anotherString) {
return (this == anotherString) ? true
: (anotherString != null)
&& (anotherString.value.length == value.length)
&& regionMatches(true, 0, anotherString, 0, value.length);
}
/**
* Compares two strings lexicographically.
* The comparison is based on the Unicode value of each character in
* the strings. The character sequence represented by this
* {@code String} object is compared lexicographically to the
* character sequence represented by the argument string. The result is
* a negative integer if this {@code String} object
* lexicographically precedes the argument string. The result is a
* positive integer if this {@code String} object lexicographically
* follows the argument string. The result is zero if the strings
* are equal; {@code compareTo} returns {@code 0} exactly when
* the {@link #equals(Object)} method would return {@code true}.
*
* If there is no index position at which they differ, then the shorter
* string lexicographically precedes the longer string. In this case,
* {@code compareTo} returns the difference of the lengths of the
* strings -- that is, the value:
*
* this.charAt(k)-anotherString.charAt(k)
*
*
* @param anotherString the {@code String} to be compared.
* @return the value {@code 0} if the argument string is equal to
* this string; a value less than {@code 0} if this string
* is lexicographically less than the string argument; and a
* value greater than {@code 0} if this string is
* lexicographically greater than the string argument.
*/
public int compareTo(String anotherString) {
int len1 = value.length;
int len2 = anotherString.value.length;
int lim = Math.min(len1, len2);
char v1[] = value;
char v2[] = anotherString.value;
int k = 0;
while (k < lim) {
char c1 = v1[k];
char c2 = v2[k];
if (c1 != c2) {
return c1 - c2;
}
k++;
}
return len1 - len2;
}
/**
* A Comparator that orders {@code String} objects as by
* {@code compareToIgnoreCase}. This comparator is serializable.
*
* this.length()-anotherString.length()
*
*
* @param toffset the starting offset of the subregion in this string.
* @param other the string argument.
* @param ooffset the starting offset of the subregion in the string
* argument.
* @param len the number of characters to compare.
* @return {@code true} if the specified subregion of this string
* exactly matches the specified subregion of the string argument;
* {@code false} otherwise.
*/
public boolean regionMatches(int toffset, String other, int ooffset,
int len) {
char ta[] = value;
int to = toffset;
char pa[] = other.value;
int po = ooffset;
// Note: toffset, ooffset, or len might be near -1>>>1.
if ((ooffset < 0) || (toffset < 0)
|| (toffset > (long)value.length - len)
|| (ooffset > (long)other.value.length - len)) {
return false;
}
while (len-- > 0) {
if (ta[to++] != pa[po++]) {
return false;
}
}
return true;
}
/**
* Tests if two string regions are equal.
*
*
* @param ignoreCase if {@code true}, ignore case when comparing
* characters.
* @param toffset the starting offset of the subregion in this
* string.
* @param other the string argument.
* @param ooffset the starting offset of the subregion in the string
* argument.
* @param len the number of characters to compare.
* @return {@code true} if the specified subregion of this string
* matches the specified subregion of the string argument;
* {@code false} otherwise. Whether the matching is exact
* or case insensitive depends on the {@code ignoreCase}
* argument.
*/
public boolean regionMatches(boolean ignoreCase, int toffset,
String other, int ooffset, int len) {
char ta[] = value;
int to = toffset;
char pa[] = other.value;
int po = ooffset;
// Note: toffset, ooffset, or len might be near -1>>>1.
if ((ooffset < 0) || (toffset < 0)
|| (toffset > (long)value.length - len)
|| (ooffset > (long)other.value.length - len)) {
return false;
}
while (len-- > 0) {
char c1 = ta[to++];
char c2 = pa[po++];
if (c1 == c2) {
continue;
}
if (ignoreCase) {
// If characters don't match but case may be ignored,
// try converting both characters to uppercase.
// If the results match, then the comparison scan should
// continue.
char u1 = Character.toUpperCase(c1);
char u2 = Character.toUpperCase(c2);
if (u1 == u2) {
continue;
}
// Unfortunately, conversion to uppercase does not work properly
// for the Georgian alphabet, which has strange rules about case
// conversion. So we need to make one last check before
// exiting.
if (Character.toLowerCase(u1) == Character.toLowerCase(u2)) {
continue;
}
}
return false;
}
return true;
}
/**
* Tests if the substring of this string beginning at the
* specified index starts with the specified prefix.
*
* @param prefix the prefix.
* @param toffset where to begin looking in this string.
* @return {@code true} if the character sequence represented by the
* argument is a prefix of the substring of this object starting
* at index {@code toffset}; {@code false} otherwise.
* The result is {@code false} if {@code toffset} is
* negative or greater than the length of this
* {@code String} object; otherwise the result is the same
* as the result of the expression
*
*
* this.charAt(toffset+k) != other.charAt(ooffset+k)
*
* and:
*
* Character.toLowerCase(this.charAt(toffset+k)) !=
Character.toLowerCase(other.charAt(ooffset+k))
*
*
* Character.toUpperCase(this.charAt(toffset+k)) !=
* Character.toUpperCase(other.charAt(ooffset+k))
*
* this.substring(toffset).startsWith(prefix)
*
*/
public boolean startsWith(String prefix, int toffset) {
char ta[] = value;
int to = toffset;
char pa[] = prefix.value;
int po = 0;
int pc = prefix.value.length;
// Note: toffset might be near -1>>>1.
if ((toffset < 0) || (toffset > value.length - pc)) {
return false;
}
while (--pc >= 0) {
if (ta[to++] != pa[po++]) {
return false;
}
}
return true;
}
/**
* Tests if this string starts with the specified prefix.
*
* @param prefix the prefix.
* @return {@code true} if the character sequence represented by the
* argument is a prefix of the character sequence represented by
* this string; {@code false} otherwise.
* Note also that {@code true} will be returned if the
* argument is an empty string or is equal to this
* {@code String} object as determined by the
* {@link #equals(Object)} method.
* @since 1. 0
*/
public boolean startsWith(String prefix) {
return startsWith(prefix, 0);
}
/**
* Tests if this string ends with the specified suffix.
*
* @param suffix the suffix.
* @return {@code true} if the character sequence represented by the
* argument is a suffix of the character sequence represented by
* this object; {@code false} otherwise. Note that the
* result will be {@code true} if the argument is the
* empty string or is equal to this {@code String} object
* as determined by the {@link #equals(Object)} method.
*/
public boolean endsWith(String suffix) {
return startsWith(suffix, value.length - suffix.value.length);
}
/**
* Returns a hash code for this string. The hash code for a
* {@code String} object is computed as
*
* using {@code int} arithmetic, where {@code s[i]} is the
* ith character of the string, {@code n} is the length of
* the string, and {@code ^} indicates exponentiation.
* (The hash value of the empty string is zero.)
*
* @return a hash code value for this object.
*/
public int hashCode() {
int h = hash;
if (h == 0 && value.length > 0) {
char val[] = value;
for (int i = 0; i < value.length; i++) {
h = 31 * h + val[i];
}
hash = h;
}
return h;
}
/**
* Returns the index within this string of the first occurrence of
* the specified character. If a character with value
* {@code ch} occurs in the character sequence represented by
* this {@code String} object, then the index (in Unicode
* code units) of the first such occurrence is returned. For
* values of {@code ch} in the range from 0 to 0xFFFF
* (inclusive), this is the smallest value k such that:
*
* s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]
*
* is true. For other values of {@code ch}, it is the
* smallest value k such that:
*
* this.charAt(k) == ch
*
* is true. In either case, if no such character occurs in this
* string, then {@code -1} is returned.
*
* @param ch a character (Unicode code point).
* @return the index of the first occurrence of the character in the
* character sequence represented by this object, or
* {@code -1} if the character does not occur.
*/
public int indexOf(int ch) {
return indexOf(ch, 0);
}
/**
* Returns the index within this string of the first occurrence of the
* specified character, starting the search at the specified index.
*
* this.codePointAt(k) == ch
*
* is true. For other values of {@code ch}, it is the
* smallest value k such that:
*
* (this.charAt(k) == ch) {@code &&} (k >= fromIndex)
*
* is true. In either case, if no such character occurs in this
* string at or after position {@code fromIndex}, then
* {@code -1} is returned.
*
*
* (this.codePointAt(k) == ch) {@code &&} (k >= fromIndex)
*
* is true. For other values of {@code ch}, it is the
* largest value k such that:
*
* this.charAt(k) == ch
*
* is true. In either case, if no such character occurs in this
* string, then {@code -1} is returned. The
* {@code String} is searched backwards starting at the last
* character.
*
* @param ch a character (Unicode code point).
* @return the index of the last occurrence of the character in the
* character sequence represented by this object, or
* {@code -1} if the character does not occur.
*/
public int lastIndexOf(int ch) {
return lastIndexOf(ch, value.length - 1);
}
/**
* Returns the index within this string of the last occurrence of
* the specified character, searching backward starting at the
* specified index. For values of {@code ch} in the range
* from 0 to 0xFFFF (inclusive), the index returned is the largest
* value k such that:
*
* this.codePointAt(k) == ch
*
* is true. For other values of {@code ch}, it is the
* largest value k such that:
*
* (this.charAt(k) == ch) {@code &&} (k <= fromIndex)
*
* is true. In either case, if no such character occurs in this
* string at or before position {@code fromIndex}, then
* {@code -1} is returned.
*
*
* (this.codePointAt(k) == ch) {@code &&} (k <= fromIndex)
*
* If no such value of k exists, then {@code -1} is returned.
*
* @param str the substring to search for.
* @return the index of the first occurrence of the specified substring,
* or {@code -1} if there is no such occurrence.
*/
public int indexOf(String str) {
return indexOf(str, 0);
}
/**
* Returns the index within this string of the first occurrence of the
* specified substring, starting at the specified index.
*
*
* this.startsWith(str, k)
*
* If no such value of k exists, then {@code -1} is returned.
*
* @param str the substring to search for.
* @param fromIndex the index from which to start the search.
* @return the index of the first occurrence of the specified substring,
* starting at the specified index,
* or {@code -1} if there is no such occurrence.
*/
public int indexOf(String str, int fromIndex) {
return indexOf(value, 0, value.length,
str.value, 0, str.value.length, fromIndex);
}
/**
* Code shared by String and AbstractStringBuilder to do searches. The
* source is the character array being searched, and the target
* is the string being searched for.
*
* @param source the characters being searched.
* @param sourceOffset offset of the source string.
* @param sourceCount count of the source string.
* @param target the characters being searched for.
* @param fromIndex the index to begin searching from.
*/
static int indexOf(char[] source, int sourceOffset, int sourceCount,
String target, int fromIndex) {
return indexOf(source, sourceOffset, sourceCount,
target.value, 0, target.value.length,
fromIndex);
}
/**
* Code shared by String and StringBuffer to do searches. The
* source is the character array being searched, and the target
* is the string being searched for.
*
* @param source the characters being searched.
* @param sourceOffset offset of the source string.
* @param sourceCount count of the source string.
* @param target the characters being searched for.
* @param targetOffset offset of the target string.
* @param targetCount count of the target string.
* @param fromIndex the index to begin searching from.
*/
static int indexOf(char[] source, int sourceOffset, int sourceCount,
char[] target, int targetOffset, int targetCount,
int fromIndex) {
if (fromIndex >= sourceCount) {
return (targetCount == 0 ? sourceCount : -1);
}
if (fromIndex < 0) {
fromIndex = 0;
}
if (targetCount == 0) {
return fromIndex;
}
char first = target[targetOffset];
int max = sourceOffset + (sourceCount - targetCount);
for (int i = sourceOffset + fromIndex; i <= max; i++) {
/* Look for first character. */
if (source[i] != first) {
while (++i <= max && source[i] != first);
}
/* Found first character, now look at the rest of v2 */
if (i <= max) {
int j = i + 1;
int end = j + targetCount - 1;
for (int k = targetOffset + 1; j < end && source[j]
== target[k]; j++, k++);
if (j == end) {
/* Found whole string. */
return i - sourceOffset;
}
}
}
return -1;
}
/**
* Returns the index within this string of the last occurrence of the
* specified substring. The last occurrence of the empty string ""
* is considered to occur at the index value {@code this.length()}.
*
*
* k >= fromIndex {@code &&} this.startsWith(str, k)
*
* If no such value of k exists, then {@code -1} is returned.
*
* @param str the substring to search for.
* @return the index of the last occurrence of the specified substring,
* or {@code -1} if there is no such occurrence.
*/
public int lastIndexOf(String str) {
return lastIndexOf(str, value.length);
}
/**
* Returns the index within this string of the last occurrence of the
* specified substring, searching backward starting at the specified index.
*
*
* this.startsWith(str, k)
*
* If no such value of k exists, then {@code -1} is returned.
*
* @param str the substring to search for.
* @param fromIndex the index to start the search from.
* @return the index of the last occurrence of the specified substring,
* searching backward from the specified index,
* or {@code -1} if there is no such occurrence.
*/
public int lastIndexOf(String str, int fromIndex) {
return lastIndexOf(value, 0, value.length,
str.value, 0, str.value.length, fromIndex);
}
/**
* Code shared by String and AbstractStringBuilder to do searches. The
* source is the character array being searched, and the target
* is the string being searched for.
*
* @param source the characters being searched.
* @param sourceOffset offset of the source string.
* @param sourceCount count of the source string.
* @param target the characters being searched for.
* @param fromIndex the index to begin searching from.
*/
static int lastIndexOf(char[] source, int sourceOffset, int sourceCount,
String target, int fromIndex) {
return lastIndexOf(source, sourceOffset, sourceCount,
target.value, 0, target.value.length,
fromIndex);
}
/**
* Code shared by String and StringBuffer to do searches. The
* source is the character array being searched, and the target
* is the string being searched for.
*
* @param source the characters being searched.
* @param sourceOffset offset of the source string.
* @param sourceCount count of the source string.
* @param target the characters being searched for.
* @param targetOffset offset of the target string.
* @param targetCount count of the target string.
* @param fromIndex the index to begin searching from.
*/
static int lastIndexOf(char[] source, int sourceOffset, int sourceCount,
char[] target, int targetOffset, int targetCount,
int fromIndex) {
/*
* Check arguments; return immediately where possible. For
* consistency, don't check for null str.
*/
int rightIndex = sourceCount - targetCount;
if (fromIndex < 0) {
return -1;
}
if (fromIndex > rightIndex) {
fromIndex = rightIndex;
}
/* Empty string always matches. */
if (targetCount == 0) {
return fromIndex;
}
int strLastIndex = targetOffset + targetCount - 1;
char strLastChar = target[strLastIndex];
int min = sourceOffset + targetCount - 1;
int i = min + fromIndex;
startSearchForLastChar:
while (true) {
while (i >= min && source[i] != strLastChar) {
i--;
}
if (i < min) {
return -1;
}
int j = i - 1;
int start = j - (targetCount - 1);
int k = strLastIndex - 1;
while (j > start) {
if (source[j--] != target[k--]) {
i--;
continue startSearchForLastChar;
}
}
return start - sourceOffset + 1;
}
}
/**
* Returns a string that is a substring of this string. The
* substring begins with the character at the specified index and
* extends to the end of this string.
* k {@code <=} fromIndex {@code &&} this.startsWith(str, k)
*
*
* @param beginIndex the beginning index, inclusive.
* @return the specified substring.
* @exception IndexOutOfBoundsException if
* {@code beginIndex} is negative or larger than the
* length of this {@code String} object.
*/
public String substring(int beginIndex) {
if (beginIndex < 0) {
throw new StringIndexOutOfBoundsException(beginIndex);
}
int subLen = value.length - beginIndex;
if (subLen < 0) {
throw new StringIndexOutOfBoundsException(subLen);
}
return (beginIndex == 0) ? this : new String(value, beginIndex, subLen);
}
/**
* Returns a string that is a substring of this string. The
* substring begins at the specified {@code beginIndex} and
* extends to the character at index {@code endIndex - 1}.
* Thus the length of the substring is {@code endIndex-beginIndex}.
*
* "unhappy".substring(2) returns "happy"
* "Harbison".substring(3) returns "bison"
* "emptiness".substring(9) returns "" (an empty string)
*
*
* @param beginIndex the beginning index, inclusive.
* @param endIndex the ending index, exclusive.
* @return the specified substring.
* @exception IndexOutOfBoundsException if the
* {@code beginIndex} is negative, or
* {@code endIndex} is larger than the length of
* this {@code String} object, or
* {@code beginIndex} is larger than
* {@code endIndex}.
*/
public String substring(int beginIndex, int endIndex) {
if (beginIndex < 0) {
throw new StringIndexOutOfBoundsException(beginIndex);
}
if (endIndex > value.length) {
throw new StringIndexOutOfBoundsException(endIndex);
}
int subLen = endIndex - beginIndex;
if (subLen < 0) {
throw new StringIndexOutOfBoundsException(subLen);
}
return ((beginIndex == 0) && (endIndex == value.length)) ? this
: new String(value, beginIndex, subLen);
}
/**
* Returns a character sequence that is a subsequence of this sequence.
*
*
* "hamburger".substring(4, 8) returns "urge"
* "smiles".substring(1, 5) returns "mile"
*
*
* behaves in exactly the same way as the invocation
*
*
* str.subSequence(begin, end)
*
* @apiNote
* This method is defined so that the {@code String} class can implement
* the {@link CharSequence} interface.
*
* @param beginIndex the begin index, inclusive.
* @param endIndex the end index, exclusive.
* @return the specified subsequence.
*
* @throws IndexOutOfBoundsException
* if {@code beginIndex} or {@code endIndex} is negative,
* if {@code endIndex} is greater than {@code length()},
* or if {@code beginIndex} is greater than {@code endIndex}
*
* @since 1.4
* @spec JSR-51
*/
public CharSequence subSequence(int beginIndex, int endIndex) {
return this.substring(beginIndex, endIndex);
}
/**
* Concatenates the specified string to the end of this string.
*
* str.substring(begin, end)
*
* @param str the {@code String} that is concatenated to the end
* of this {@code String}.
* @return a string that represents the concatenation of this object's
* characters followed by the string argument's characters.
*/
public String concat(String str) {
int otherLen = str.length();
if (otherLen == 0) {
return this;
}
int len = value.length;
char buf[] = Arrays.copyOf(value, len + otherLen);
str.getChars(buf, len);
return new String(buf, true);
}
/**
* Returns a string resulting from replacing all occurrences of
* {@code oldChar} in this string with {@code newChar}.
*
* "cares".concat("s") returns "caress"
* "to".concat("get").concat("her") returns "together"
*
*
* @param oldChar the old character.
* @param newChar the new character.
* @return a string derived from this string by replacing every
* occurrence of {@code oldChar} with {@code newChar}.
*/
public String replace(char oldChar, char newChar) {
if (oldChar != newChar) {
int len = value.length;
int i = -1;
char[] val = value; /* avoid getfield opcode */
while (++i < len) {
if (val[i] == oldChar) {
break;
}
}
if (i < len) {
char buf[] = new char[len];
for (int j = 0; j < i; j++) {
buf[j] = val[j];
}
while (i < len) {
char c = val[i];
buf[i] = (c == oldChar) ? newChar : c;
i++;
}
return new String(buf, true);
}
}
return this;
}
/**
* Tells whether or not this string matches the given regular expression.
*
*
* "mesquite in your cellar".replace('e', 'o')
* returns "mosquito in your collar"
* "the war of baronets".replace('r', 'y')
* returns "the way of bayonets"
* "sparring with a purple porpoise".replace('p', 't')
* returns "starring with a turtle tortoise"
* "JonL".replace('q', 'x') returns "JonL" (no change)
*
* {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#matches(String,CharSequence)
* matches(regex, str)}
*
*
* @param regex
* the regular expression to which this string is to be matched
*
* @return {@code true} if, and only if, this string matches the
* given regular expression
*
* @throws PatternSyntaxException
* if the regular expression's syntax is invalid
*
* @see java.util.regex.Pattern
*
* @since 1.4
* @spec JSR-51
*/
public boolean matches(String regex) {
return Pattern.matches(regex, this);
}
/**
* Returns true if and only if this string contains the specified
* sequence of char values.
*
* @param s the sequence to search for
* @return true if this string contains {@code s}, false otherwise
* @since 1.5
*/
public boolean contains(CharSequence s) {
return indexOf(s.toString()) > -1;
}
/**
* Replaces the first substring of this string that matches the given regular expression with the
* given replacement.
*
*
*
*
*
* {@link java.util.regex.Pattern}.{@link
* java.util.regex.Pattern#compile compile}(regex).{@link
* java.util.regex.Pattern#matcher(java.lang.CharSequence) matcher}(str).{@link
* java.util.regex.Matcher#replaceFirst replaceFirst}(repl)
*
*
*
*
*
* {@link java.util.regex.Pattern}.{@link
* java.util.regex.Pattern#compile compile}(regex).{@link
* java.util.regex.Pattern#matcher(java.lang.CharSequence) matcher}(str).{@link
* java.util.regex.Matcher#replaceAll replaceAll}(repl)
*
*
*
*
*
*
* Regex
* Limit
* Result
*
* :
* 2
* {@code { "boo", "and:foo" }}
* :
* 5
* {@code { "boo", "and", "foo" }}
* :
* -2
* {@code { "boo", "and", "foo" }}
* o
* 5
* {@code { "b", "", ":and:f", "", "" }}
* o
* -2
* {@code { "b", "", ":and:f", "", "" }}
* o
* 0
* {@code { "b", "", ":and:f" }}
*
*
*
* @param regex
* the delimiting regular expression
*
* @param limit
* the result threshold, as described above
*
* @return the array of strings computed by splitting this string
* around matches of the given regular expression
*
* @throws PatternSyntaxException
* if the regular expression's syntax is invalid
*
* @see java.util.regex.Pattern
*
* @since 1.4
* @spec JSR-51
*/
public String[] split(String regex, int limit) {
/* fastpath if the regex is a
(1)one-char String and this character is not one of the
RegEx's meta characters ".$|()[{^?*+\\", or
(2)two-char String and the first char is the backslash and
the second is not the ascii digit or ascii letter.
*/
char ch = 0;
if (((regex.value.length == 1 &&
".$|()[{^?*+\\".indexOf(ch = regex.charAt(0)) == -1) ||
(regex.length() == 2 &&
regex.charAt(0) == '\\' &&
(((ch = regex.charAt(1))-'0')|('9'-ch)) < 0 &&
((ch-'a')|('z'-ch)) < 0 &&
((ch-'A')|('Z'-ch)) < 0)) &&
(ch < Character.MIN_HIGH_SURROGATE ||
ch > Character.MAX_LOW_SURROGATE))
{
int off = 0;
int next = 0;
boolean limited = limit > 0;
ArrayList
* {@link java.util.regex.Pattern}.{@link
* java.util.regex.Pattern#compile compile}(regex).{@link
* java.util.regex.Pattern#split(java.lang.CharSequence,int) split}(str, n)
*
*
*
*
* @param regex
* the delimiting regular expression
*
* @return the array of strings computed by splitting this string
* around matches of the given regular expression
*
* @throws PatternSyntaxException
* if the regular expression's syntax is invalid
*
* @see java.util.regex.Pattern
*
* @since 1.4
* @spec JSR-51
*/
public String[] split(String regex) {
return split(regex, 0);
}
/**
* Returns a new String composed of copies of the
* {@code CharSequence elements} joined together with a copy of
* the specified {@code delimiter}.
*
*
*
*
* Regex
* Result
*
* :
* {@code { "boo", "and", "foo" }}
* o
* {@code { "b", "", ":and:f" }} For example,
*
*
* Note that if an element is null, then {@code "null"} is added.
*
* @param delimiter the delimiter that separates each element
* @param elements the elements to join together.
*
* @return a new {@code String} that is composed of the {@code elements}
* separated by the {@code delimiter}
*
* @throws NullPointerException If {@code delimiter} or {@code elements}
* is {@code null}
*
* @see java.util.StringJoiner
* @since 1.8
*/
public static String join(CharSequence delimiter, CharSequence... elements) {
Objects.requireNonNull(delimiter);
Objects.requireNonNull(elements);
// Number of elements not likely worth Arrays.stream overhead.
StringJoiner joiner = new StringJoiner(delimiter);
for (CharSequence cs: elements) {
joiner.add(cs);
}
return joiner.toString();
}
/**
* Returns a new {@code String} composed of copies of the
* {@code CharSequence elements} joined together with a copy of the
* specified {@code delimiter}.
*
* {@code
* String message = String.join("-", "Java", "is", "cool");
* // message returned is: "Java-is-cool"
* }
For example,
*
*
* Note that if an individual element is {@code null}, then {@code "null"} is added.
*
* @param delimiter a sequence of characters that is used to separate each
* of the {@code elements} in the resulting {@code String}
* @param elements an {@code Iterable} that will have its {@code elements}
* joined together.
*
* @return a new {@code String} that is composed from the {@code elements}
* argument
*
* @throws NullPointerException If {@code delimiter} or {@code elements}
* is {@code null}
*
* @see #join(CharSequence,CharSequence...)
* @see java.util.StringJoiner
* @since 1.8
*/
public static String join(CharSequence delimiter,
Iterable extends CharSequence> elements) {
Objects.requireNonNull(delimiter);
Objects.requireNonNull(elements);
StringJoiner joiner = new StringJoiner(delimiter);
for (CharSequence cs: elements) {
joiner.add(cs);
}
return joiner.toString();
}
/**
* Converts all of the characters in this {@code String} to lower
* case using the rules of the given {@code Locale}. Case mapping is based
* on the Unicode Standard version specified by the {@link java.lang.Character Character}
* class. Since case mappings are not always 1:1 char mappings, the resulting
* {@code String} may be a different length than the original {@code String}.
* {@code
* List
*
*
* @param locale use the case transformation rules for this locale
* @return the {@code String}, converted to lowercase.
* @see java.lang.String#toLowerCase()
* @see java.lang.String#toUpperCase()
* @see java.lang.String#toUpperCase(Locale)
* @since 1.1
*/
public String toLowerCase(Locale locale) {
if (locale == null) {
throw new NullPointerException();
}
int firstUpper;
final int len = value.length;
/* Now check if there are any characters that need to be changed. */
scan: {
for (firstUpper = 0 ; firstUpper < len; ) {
char c = value[firstUpper];
if ((c >= Character.MIN_HIGH_SURROGATE)
&& (c <= Character.MAX_HIGH_SURROGATE)) {
int supplChar = codePointAt(firstUpper);
if (supplChar != Character.toLowerCase(supplChar)) {
break scan;
}
firstUpper += Character.charCount(supplChar);
} else {
if (c != Character.toLowerCase(c)) {
break scan;
}
firstUpper++;
}
}
return this;
}
char[] result = new char[len];
int resultOffset = 0; /* result may grow, so i+resultOffset
* is the write location in result */
/* Just copy the first few lowerCase characters. */
System.arraycopy(value, 0, result, 0, firstUpper);
String lang = locale.getLanguage();
boolean localeDependent =
(lang == "tr" || lang == "az" || lang == "lt");
char[] lowerCharArray;
int lowerChar;
int srcChar;
int srcCount;
for (int i = firstUpper; i < len; i += srcCount) {
srcChar = (int)value[i];
if ((char)srcChar >= Character.MIN_HIGH_SURROGATE
&& (char)srcChar <= Character.MAX_HIGH_SURROGATE) {
srcChar = codePointAt(i);
srcCount = Character.charCount(srcChar);
} else {
srcCount = 1;
}
if (localeDependent ||
srcChar == '\u03A3' || // GREEK CAPITAL LETTER SIGMA
srcChar == '\u0130') { // LATIN CAPITAL LETTER I WITH DOT ABOVE
lowerChar = ConditionalSpecialCasing.toLowerCaseEx(this, i, locale);
} else {
lowerChar = Character.toLowerCase(srcChar);
}
if ((lowerChar == Character.ERROR)
|| (lowerChar >= Character.MIN_SUPPLEMENTARY_CODE_POINT)) {
if (lowerChar == Character.ERROR) {
lowerCharArray =
ConditionalSpecialCasing.toLowerCaseCharArray(this, i, locale);
} else if (srcCount == 2) {
resultOffset += Character.toChars(lowerChar, result, i + resultOffset) - srcCount;
continue;
} else {
lowerCharArray = Character.toChars(lowerChar);
}
/* Grow result if needed */
int mapLen = lowerCharArray.length;
if (mapLen > srcCount) {
char[] result2 = new char[result.length + mapLen - srcCount];
System.arraycopy(result, 0, result2, 0, i + resultOffset);
result = result2;
}
for (int x = 0; x < mapLen; ++x) {
result[i + resultOffset + x] = lowerCharArray[x];
}
resultOffset += (mapLen - srcCount);
} else {
result[i + resultOffset] = (char)lowerChar;
}
}
return new String(result, 0, len + resultOffset);
}
/**
* Converts all of the characters in this {@code String} to lower
* case using the rules of the default locale. This is equivalent to calling
* {@code toLowerCase(Locale.getDefault())}.
*
*
* Language Code of Locale
* Upper Case
* Lower Case
* Description
*
*
* tr (Turkish)
* \u0130
* \u0069
* capital letter I with dot above -> small letter i
*
*
* tr (Turkish)
* \u0049
* \u0131
* capital letter I -> small letter dotless i
*
*
* (all)
* French Fries
* french fries
* lowercased all chars in String
*
*
* (all)
*
*
*
*
*
*
* lowercased all chars in String
*
*
* @param locale use the case transformation rules for this locale
* @return the {@code String}, converted to uppercase.
* @see java.lang.String#toUpperCase()
* @see java.lang.String#toLowerCase()
* @see java.lang.String#toLowerCase(Locale)
* @since 1.1
*/
public String toUpperCase(Locale locale) {
if (locale == null) {
throw new NullPointerException();
}
int firstLower;
final int len = value.length;
/* Now check if there are any characters that need to be changed. */
scan: {
for (firstLower = 0 ; firstLower < len; ) {
int c = (int)value[firstLower];
int srcCount;
if ((c >= Character.MIN_HIGH_SURROGATE)
&& (c <= Character.MAX_HIGH_SURROGATE)) {
c = codePointAt(firstLower);
srcCount = Character.charCount(c);
} else {
srcCount = 1;
}
int upperCaseChar = Character.toUpperCaseEx(c);
if ((upperCaseChar == Character.ERROR)
|| (c != upperCaseChar)) {
break scan;
}
firstLower += srcCount;
}
return this;
}
/* result may grow, so i+resultOffset is the write location in result */
int resultOffset = 0;
char[] result = new char[len]; /* may grow */
/* Just copy the first few upperCase characters. */
System.arraycopy(value, 0, result, 0, firstLower);
String lang = locale.getLanguage();
boolean localeDependent =
(lang == "tr" || lang == "az" || lang == "lt");
char[] upperCharArray;
int upperChar;
int srcChar;
int srcCount;
for (int i = firstLower; i < len; i += srcCount) {
srcChar = (int)value[i];
if ((char)srcChar >= Character.MIN_HIGH_SURROGATE &&
(char)srcChar <= Character.MAX_HIGH_SURROGATE) {
srcChar = codePointAt(i);
srcCount = Character.charCount(srcChar);
} else {
srcCount = 1;
}
if (localeDependent) {
upperChar = ConditionalSpecialCasing.toUpperCaseEx(this, i, locale);
} else {
upperChar = Character.toUpperCaseEx(srcChar);
}
if ((upperChar == Character.ERROR)
|| (upperChar >= Character.MIN_SUPPLEMENTARY_CODE_POINT)) {
if (upperChar == Character.ERROR) {
if (localeDependent) {
upperCharArray =
ConditionalSpecialCasing.toUpperCaseCharArray(this, i, locale);
} else {
upperCharArray = Character.toUpperCaseCharArray(srcChar);
}
} else if (srcCount == 2) {
resultOffset += Character.toChars(upperChar, result, i + resultOffset) - srcCount;
continue;
} else {
upperCharArray = Character.toChars(upperChar);
}
/* Grow result if needed */
int mapLen = upperCharArray.length;
if (mapLen > srcCount) {
char[] result2 = new char[result.length + mapLen - srcCount];
System.arraycopy(result, 0, result2, 0, i + resultOffset);
result = result2;
}
for (int x = 0; x < mapLen; ++x) {
result[i + resultOffset + x] = upperCharArray[x];
}
resultOffset += (mapLen - srcCount);
} else {
result[i + resultOffset] = (char)upperChar;
}
}
return new String(result, 0, len + resultOffset);
}
/**
* Converts all of the characters in this {@code String} to upper
* case using the rules of the default locale. This method is equivalent to
* {@code toUpperCase(Locale.getDefault())}.
*
*
* Language Code of Locale
* Lower Case
* Upper Case
* Description
*
*
* tr (Turkish)
* \u0069
* \u0130
* small letter i -> capital letter I with dot above
*
*
* tr (Turkish)
* \u0131
* \u0049
* small letter dotless i -> capital letter I
*
*
* (all)
* \u00df
* \u0053 \u0053
* small letter sharp s -> two letters: SS
*
*
* (all)
* Fahrvergnügen
* FAHRVERGNÜGEN
*
*