/* * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ // This file is available under and governed by the GNU General Public // License version 2 only, as published by the Free Software Foundation. // However, the following notice accompanied the original version of this // file: // //--------------------------------------------------------------------------------- // // Little Color Management System // Copyright (c) 1998-2017 Marti Maria Saguer // // Permission is hereby granted, free of charge, to any person obtaining // a copy of this software and associated documentation files (the "Software"), // to deal in the Software without restriction, including without limitation // the rights to use, copy, modify, merge, publish, distribute, sublicense, // and/or sell copies of the Software, and to permit persons to whom the Software // is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. // //--------------------------------------------------------------------------------- #include "lcms2_internal.h" // This function is here to help applications to prevent mixing lcms versions on header and shared objects. int CMSEXPORT cmsGetEncodedCMMversion(void) { return LCMS_VERSION; } // I am so tired about incompatibilities on those functions that here are some replacements // that hopefully would be fully portable. // compare two strings ignoring case int CMSEXPORT cmsstrcasecmp(const char* s1, const char* s2) { register const unsigned char *us1 = (const unsigned char *)s1, *us2 = (const unsigned char *)s2; while (toupper(*us1) == toupper(*us2++)) if (*us1++ == '\0') return 0; return (toupper(*us1) - toupper(*--us2)); } // long int because C99 specifies ftell in such way (7.19.9.2) long int CMSEXPORT cmsfilelength(FILE* f) { long int p , n; p = ftell(f); // register current file position if (p == -1L) return -1L; if (fseek(f, 0, SEEK_END) != 0) { return -1L; } n = ftell(f); fseek(f, p, SEEK_SET); // file position restored return n; } // Memory handling ------------------------------------------------------------------ // // This is the interface to low-level memory management routines. By default a simple // wrapping to malloc/free/realloc is provided, although there is a limit on the max // amount of memoy that can be reclaimed. This is mostly as a safety feature to prevent // bogus or evil code to allocate huge blocks that otherwise lcms would never need. #define MAX_MEMORY_FOR_ALLOC ((cmsUInt32Number)(1024U*1024U*512U)) // User may override this behaviour by using a memory plug-in, which basically replaces // the default memory management functions. In this case, no check is performed and it // is up to the plug-in writter to keep in the safe side. There are only three functions // required to be implemented: malloc, realloc and free, although the user may want to // replace the optional mallocZero, calloc and dup as well. cmsBool _cmsRegisterMemHandlerPlugin(cmsContext ContextID, cmsPluginBase* Plugin); // ********************************************************************************* // This is the default memory allocation function. It does a very coarse // check of amount of memory, just to prevent exploits static void* _cmsMallocDefaultFn(cmsContext ContextID, cmsUInt32Number size) { if (size > MAX_MEMORY_FOR_ALLOC) return NULL; // Never allow over maximum return (void*) malloc(size); cmsUNUSED_PARAMETER(ContextID); } // Generic allocate & zero static void* _cmsMallocZeroDefaultFn(cmsContext ContextID, cmsUInt32Number size) { void *pt = _cmsMalloc(ContextID, size); if (pt == NULL) return NULL; memset(pt, 0, size); return pt; } // The default free function. The only check proformed is against NULL pointers static void _cmsFreeDefaultFn(cmsContext ContextID, void *Ptr) { // free(NULL) is defined a no-op by C99, therefore it is safe to // avoid the check, but it is here just in case... if (Ptr) free(Ptr); cmsUNUSED_PARAMETER(ContextID); } // The default realloc function. Again it checks for exploits. If Ptr is NULL, // realloc behaves the same way as malloc and allocates a new block of size bytes. static void* _cmsReallocDefaultFn(cmsContext ContextID, void* Ptr, cmsUInt32Number size) { if (size > MAX_MEMORY_FOR_ALLOC) return NULL; // Never realloc over 512Mb return realloc(Ptr, size); cmsUNUSED_PARAMETER(ContextID); } // The default calloc function. Allocates an array of num elements, each one of size bytes // all memory is initialized to zero. static void* _cmsCallocDefaultFn(cmsContext ContextID, cmsUInt32Number num, cmsUInt32Number size) { cmsUInt32Number Total = num * size; // Preserve calloc behaviour if (Total == 0) return NULL; // Safe check for overflow. if (num >= UINT_MAX / size) return NULL; // Check for overflow if (Total < num || Total < size) { return NULL; } if (Total > MAX_MEMORY_FOR_ALLOC) return NULL; // Never alloc over 512Mb return _cmsMallocZero(ContextID, Total); } // Generic block duplication static void* _cmsDupDefaultFn(cmsContext ContextID, const void* Org, cmsUInt32Number size) { void* mem; if (size > MAX_MEMORY_FOR_ALLOC) return NULL; // Never dup over 512Mb mem = _cmsMalloc(ContextID, size); if (mem != NULL && Org != NULL) memmove(mem, Org, size); return mem; } // Pointers to memory manager functions in Context0 _cmsMemPluginChunkType _cmsMemPluginChunk = { _cmsMallocDefaultFn, _cmsMallocZeroDefaultFn, _cmsFreeDefaultFn, _cmsReallocDefaultFn, _cmsCallocDefaultFn, _cmsDupDefaultFn }; // Reset and duplicate memory manager void _cmsAllocMemPluginChunk(struct _cmsContext_struct* ctx, const struct _cmsContext_struct* src) { _cmsAssert(ctx != NULL); if (src != NULL) { // Duplicate ctx ->chunks[MemPlugin] = _cmsSubAllocDup(ctx ->MemPool, src ->chunks[MemPlugin], sizeof(_cmsMemPluginChunkType)); } else { // To reset it, we use the default allocators, which cannot be overridden ctx ->chunks[MemPlugin] = &ctx ->DefaultMemoryManager; } } // Auxiliary to fill memory management functions from plugin (or context 0 defaults) void _cmsInstallAllocFunctions(cmsPluginMemHandler* Plugin, _cmsMemPluginChunkType* ptr) { if (Plugin == NULL) { memcpy(ptr, &_cmsMemPluginChunk, sizeof(_cmsMemPluginChunk)); } else { ptr ->MallocPtr = Plugin -> MallocPtr; ptr ->FreePtr = Plugin -> FreePtr; ptr ->ReallocPtr = Plugin -> ReallocPtr; // Make sure we revert to defaults ptr ->MallocZeroPtr= _cmsMallocZeroDefaultFn; ptr ->CallocPtr = _cmsCallocDefaultFn; ptr ->DupPtr = _cmsDupDefaultFn; if (Plugin ->MallocZeroPtr != NULL) ptr ->MallocZeroPtr = Plugin -> MallocZeroPtr; if (Plugin ->CallocPtr != NULL) ptr ->CallocPtr = Plugin -> CallocPtr; if (Plugin ->DupPtr != NULL) ptr ->DupPtr = Plugin -> DupPtr; } } // Plug-in replacement entry cmsBool _cmsRegisterMemHandlerPlugin(cmsContext ContextID, cmsPluginBase *Data) { cmsPluginMemHandler* Plugin = (cmsPluginMemHandler*) Data; _cmsMemPluginChunkType* ptr; // NULL forces to reset to defaults. In this special case, the defaults are stored in the context structure. // Remaining plug-ins does NOT have any copy in the context structure, but this is somehow special as the // context internal data should be malloce'd by using those functions. if (Data == NULL) { struct _cmsContext_struct* ctx = ( struct _cmsContext_struct*) ContextID; // Return to the default allocators if (ContextID != NULL) { ctx->chunks[MemPlugin] = (void*) &ctx->DefaultMemoryManager; } return TRUE; } // Check for required callbacks if (Plugin -> MallocPtr == NULL || Plugin -> FreePtr == NULL || Plugin -> ReallocPtr == NULL) return FALSE; // Set replacement functions ptr = (_cmsMemPluginChunkType*) _cmsContextGetClientChunk(ContextID, MemPlugin); if (ptr == NULL) return FALSE; _cmsInstallAllocFunctions(Plugin, ptr); return TRUE; } // Generic allocate void* CMSEXPORT _cmsMalloc(cmsContext ContextID, cmsUInt32Number size) { _cmsMemPluginChunkType* ptr = (_cmsMemPluginChunkType*) _cmsContextGetClientChunk(ContextID, MemPlugin); return ptr ->MallocPtr(ContextID, size); } // Generic allocate & zero void* CMSEXPORT _cmsMallocZero(cmsContext ContextID, cmsUInt32Number size) { _cmsMemPluginChunkType* ptr = (_cmsMemPluginChunkType*) _cmsContextGetClientChunk(ContextID, MemPlugin); return ptr->MallocZeroPtr(ContextID, size); } // Generic calloc void* CMSEXPORT _cmsCalloc(cmsContext ContextID, cmsUInt32Number num, cmsUInt32Number size) { _cmsMemPluginChunkType* ptr = (_cmsMemPluginChunkType*) _cmsContextGetClientChunk(ContextID, MemPlugin); return ptr->CallocPtr(ContextID, num, size); } // Generic reallocate void* CMSEXPORT _cmsRealloc(cmsContext ContextID, void* Ptr, cmsUInt32Number size) { _cmsMemPluginChunkType* ptr = (_cmsMemPluginChunkType*) _cmsContextGetClientChunk(ContextID, MemPlugin); return ptr->ReallocPtr(ContextID, Ptr, size); } // Generic free memory void CMSEXPORT _cmsFree(cmsContext ContextID, void* Ptr) { if (Ptr != NULL) { _cmsMemPluginChunkType* ptr = (_cmsMemPluginChunkType*) _cmsContextGetClientChunk(ContextID, MemPlugin); ptr ->FreePtr(ContextID, Ptr); } } // Generic block duplication void* CMSEXPORT _cmsDupMem(cmsContext ContextID, const void* Org, cmsUInt32Number size) { _cmsMemPluginChunkType* ptr = (_cmsMemPluginChunkType*) _cmsContextGetClientChunk(ContextID, MemPlugin); return ptr ->DupPtr(ContextID, Org, size); } // ******************************************************************************************** // Sub allocation takes care of many pointers of small size. The memory allocated in // this way have be freed at once. Next function allocates a single chunk for linked list // I prefer this method over realloc due to the big inpact on xput realloc may have if // memory is being swapped to disk. This approach is safer (although that may not be true on all platforms) static _cmsSubAllocator_chunk* _cmsCreateSubAllocChunk(cmsContext ContextID, cmsUInt32Number Initial) { _cmsSubAllocator_chunk* chunk; // 20K by default if (Initial == 0) Initial = 20*1024; // Create the container chunk = (_cmsSubAllocator_chunk*) _cmsMallocZero(ContextID, sizeof(_cmsSubAllocator_chunk)); if (chunk == NULL) return NULL; // Initialize values chunk ->Block = (cmsUInt8Number*) _cmsMalloc(ContextID, Initial); if (chunk ->Block == NULL) { // Something went wrong _cmsFree(ContextID, chunk); return NULL; } chunk ->BlockSize = Initial; chunk ->Used = 0; chunk ->next = NULL; return chunk; } // The suballocated is nothing but a pointer to the first element in the list. We also keep // the thread ID in this structure. _cmsSubAllocator* _cmsCreateSubAlloc(cmsContext ContextID, cmsUInt32Number Initial) { _cmsSubAllocator* sub; // Create the container sub = (_cmsSubAllocator*) _cmsMallocZero(ContextID, sizeof(_cmsSubAllocator)); if (sub == NULL) return NULL; sub ->ContextID = ContextID; sub ->h = _cmsCreateSubAllocChunk(ContextID, Initial); if (sub ->h == NULL) { _cmsFree(ContextID, sub); return NULL; } return sub; } // Get rid of whole linked list void _cmsSubAllocDestroy(_cmsSubAllocator* sub) { _cmsSubAllocator_chunk *chunk, *n; for (chunk = sub ->h; chunk != NULL; chunk = n) { n = chunk->next; if (chunk->Block != NULL) _cmsFree(sub ->ContextID, chunk->Block); _cmsFree(sub ->ContextID, chunk); } // Free the header _cmsFree(sub ->ContextID, sub); } // Get a pointer to small memory block. void* _cmsSubAlloc(_cmsSubAllocator* sub, cmsUInt32Number size) { cmsUInt32Number Free = sub -> h ->BlockSize - sub -> h -> Used; cmsUInt8Number* ptr; size = _cmsALIGNMEM(size); // Check for memory. If there is no room, allocate a new chunk of double memory size. if (size > Free) { _cmsSubAllocator_chunk* chunk; cmsUInt32Number newSize; newSize = sub -> h ->BlockSize * 2; if (newSize < size) newSize = size; chunk = _cmsCreateSubAllocChunk(sub -> ContextID, newSize); if (chunk == NULL) return NULL; // Link list chunk ->next = sub ->h; sub ->h = chunk; } ptr = sub -> h ->Block + sub -> h ->Used; sub -> h -> Used += size; return (void*) ptr; } // Duplicate in pool void* _cmsSubAllocDup(_cmsSubAllocator* s, const void *ptr, cmsUInt32Number size) { void *NewPtr; // Dup of null pointer is also NULL if (ptr == NULL) return NULL; NewPtr = _cmsSubAlloc(s, size); if (ptr != NULL && NewPtr != NULL) { memcpy(NewPtr, ptr, size); } return NewPtr; } // Error logging ****************************************************************** // There is no error handling at all. When a function fails, it returns proper value. // For example, all create functions does return NULL on failure. Other return FALSE // It may be interesting, for the developer, to know why the function is failing. // for that reason, lcms2 does offer a logging function. This function does recive // a ENGLISH string with some clues on what is going wrong. You can show this // info to the end user, or just create some sort of log. // The logging function should NOT terminate the program, as this obviously can leave // resources. It is the programmer's responsibility to check each function return code // to make sure it didn't fail. // Error messages are limited to MAX_ERROR_MESSAGE_LEN #define MAX_ERROR_MESSAGE_LEN 1024 // --------------------------------------------------------------------------------------------------------- // This is our default log error static void DefaultLogErrorHandlerFunction(cmsContext ContextID, cmsUInt32Number ErrorCode, const char *Text); // Context0 storage, which is global _cmsLogErrorChunkType _cmsLogErrorChunk = { DefaultLogErrorHandlerFunction }; // Allocates and inits error logger container for a given context. If src is NULL, only initializes the value // to the default. Otherwise, it duplicates the value. The interface is standard across all context clients void _cmsAllocLogErrorChunk(struct _cmsContext_struct* ctx, const struct _cmsContext_struct* src) { static _cmsLogErrorChunkType LogErrorChunk = { DefaultLogErrorHandlerFunction }; void* from; if (src != NULL) { from = src ->chunks[Logger]; } else { from = &LogErrorChunk; } ctx ->chunks[Logger] = _cmsSubAllocDup(ctx ->MemPool, from, sizeof(_cmsLogErrorChunkType)); } // The default error logger does nothing. static void DefaultLogErrorHandlerFunction(cmsContext ContextID, cmsUInt32Number ErrorCode, const char *Text) { // fprintf(stderr, "[lcms]: %s\n", Text); // fflush(stderr); cmsUNUSED_PARAMETER(ContextID); cmsUNUSED_PARAMETER(ErrorCode); cmsUNUSED_PARAMETER(Text); } // Change log error, context based void CMSEXPORT cmsSetLogErrorHandlerTHR(cmsContext ContextID, cmsLogErrorHandlerFunction Fn) { _cmsLogErrorChunkType* lhg = (_cmsLogErrorChunkType*) _cmsContextGetClientChunk(ContextID, Logger); if (lhg != NULL) { if (Fn == NULL) lhg -> LogErrorHandler = DefaultLogErrorHandlerFunction; else lhg -> LogErrorHandler = Fn; } } // Change log error, legacy void CMSEXPORT cmsSetLogErrorHandler(cmsLogErrorHandlerFunction Fn) { cmsSetLogErrorHandlerTHR(NULL, Fn); } // Log an error // ErrorText is a text holding an english description of error. void CMSEXPORT cmsSignalError(cmsContext ContextID, cmsUInt32Number ErrorCode, const char *ErrorText, ...) { va_list args; char Buffer[MAX_ERROR_MESSAGE_LEN]; _cmsLogErrorChunkType* lhg; va_start(args, ErrorText); vsnprintf(Buffer, MAX_ERROR_MESSAGE_LEN-1, ErrorText, args); va_end(args); // Check for the context, if specified go there. If not, go for the global lhg = (_cmsLogErrorChunkType*) _cmsContextGetClientChunk(ContextID, Logger); if (lhg ->LogErrorHandler) { lhg ->LogErrorHandler(ContextID, ErrorCode, Buffer); } } // Utility function to print signatures void _cmsTagSignature2String(char String[5], cmsTagSignature sig) { cmsUInt32Number be; // Convert to big endian be = _cmsAdjustEndianess32((cmsUInt32Number) sig); // Move chars memmove(String, &be, 4); // Make sure of terminator String[4] = 0; } //-------------------------------------------------------------------------------------------------- static void* defMtxCreate(cmsContext id) { _cmsMutex* ptr_mutex = (_cmsMutex*) _cmsMalloc(id, sizeof(_cmsMutex)); _cmsInitMutexPrimitive(ptr_mutex); return (void*) ptr_mutex; } static void defMtxDestroy(cmsContext id, void* mtx) { _cmsDestroyMutexPrimitive((_cmsMutex *) mtx); _cmsFree(id, mtx); } static cmsBool defMtxLock(cmsContext id, void* mtx) { cmsUNUSED_PARAMETER(id); return _cmsLockPrimitive((_cmsMutex *) mtx) == 0; } static void defMtxUnlock(cmsContext id, void* mtx) { cmsUNUSED_PARAMETER(id); _cmsUnlockPrimitive((_cmsMutex *) mtx); } // Pointers to memory manager functions in Context0 _cmsMutexPluginChunkType _cmsMutexPluginChunk = { defMtxCreate, defMtxDestroy, defMtxLock, defMtxUnlock }; // Allocate and init mutex container. void _cmsAllocMutexPluginChunk(struct _cmsContext_struct* ctx, const struct _cmsContext_struct* src) { static _cmsMutexPluginChunkType MutexChunk = {defMtxCreate, defMtxDestroy, defMtxLock, defMtxUnlock }; void* from; if (src != NULL) { from = src ->chunks[MutexPlugin]; } else { from = &MutexChunk; } ctx ->chunks[MutexPlugin] = _cmsSubAllocDup(ctx ->MemPool, from, sizeof(_cmsMutexPluginChunkType)); } // Register new ways to transform cmsBool _cmsRegisterMutexPlugin(cmsContext ContextID, cmsPluginBase* Data) { cmsPluginMutex* Plugin = (cmsPluginMutex*) Data; _cmsMutexPluginChunkType* ctx = ( _cmsMutexPluginChunkType*) _cmsContextGetClientChunk(ContextID, MutexPlugin); if (Data == NULL) { // No lock routines ctx->CreateMutexPtr = NULL; ctx->DestroyMutexPtr = NULL; ctx->LockMutexPtr = NULL; ctx ->UnlockMutexPtr = NULL; return TRUE; } // Factory callback is required if (Plugin ->CreateMutexPtr == NULL || Plugin ->DestroyMutexPtr == NULL || Plugin ->LockMutexPtr == NULL || Plugin ->UnlockMutexPtr == NULL) return FALSE; ctx->CreateMutexPtr = Plugin->CreateMutexPtr; ctx->DestroyMutexPtr = Plugin ->DestroyMutexPtr; ctx ->LockMutexPtr = Plugin ->LockMutexPtr; ctx ->UnlockMutexPtr = Plugin ->UnlockMutexPtr; // All is ok return TRUE; } // Generic Mutex fns void* CMSEXPORT _cmsCreateMutex(cmsContext ContextID) { _cmsMutexPluginChunkType* ptr = (_cmsMutexPluginChunkType*) _cmsContextGetClientChunk(ContextID, MutexPlugin); if (ptr ->CreateMutexPtr == NULL) return NULL; return ptr ->CreateMutexPtr(ContextID); } void CMSEXPORT _cmsDestroyMutex(cmsContext ContextID, void* mtx) { _cmsMutexPluginChunkType* ptr = (_cmsMutexPluginChunkType*) _cmsContextGetClientChunk(ContextID, MutexPlugin); if (ptr ->DestroyMutexPtr != NULL) { ptr ->DestroyMutexPtr(ContextID, mtx); } } cmsBool CMSEXPORT _cmsLockMutex(cmsContext ContextID, void* mtx) { _cmsMutexPluginChunkType* ptr = (_cmsMutexPluginChunkType*) _cmsContextGetClientChunk(ContextID, MutexPlugin); if (ptr ->LockMutexPtr == NULL) return TRUE; return ptr ->LockMutexPtr(ContextID, mtx); } void CMSEXPORT _cmsUnlockMutex(cmsContext ContextID, void* mtx) { _cmsMutexPluginChunkType* ptr = (_cmsMutexPluginChunkType*) _cmsContextGetClientChunk(ContextID, MutexPlugin); if (ptr ->UnlockMutexPtr != NULL) { ptr ->UnlockMutexPtr(ContextID, mtx); } }