提交 f2ffda22 编写于 作者: A alanb

6899694: Dual-pivot quicksort improvements

Reviewed-by: jjb
Contributed-by: vladimir.yaroslavskiy@sun.com, joshua.bloch@google.com
上级 ba983aa8
......@@ -57,12 +57,14 @@ public class Arrays {
// Suppresses default constructor, ensuring non-instantiability.
private Arrays() {}
// Sorting
/*
* Sorting of primitive type arrays.
*/
/**
* Sorts the specified array into ascending numerical order.
*
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort,
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
* offers O(n log(n)) performance on many data sets that cause other
* quicksorts to degrade to quadratic performance, and is typically
......@@ -70,38 +72,38 @@ public class Arrays {
*
* @param a the array to be sorted
*/
public static void sort(long[] a) {
sort(a, 0, a.length);
public static void sort(int[] a) {
DualPivotQuicksort.sort(a);
}
/**
* Sorts the specified range of the specified array into ascending order. The
* range of to be sorted extends from the index {@code fromIndex}, inclusive,
* to the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
* Sorts the specified range of the array into ascending order. The range
* to be sorted extends from the index {@code fromIndex}, inclusive, to
* the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
* the range to be sorted is empty.
*
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort,
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
* offers O(n log(n)) performance on many data sets that cause other
* quicksorts to degrade to quadratic performance, and is typically
* faster than traditional (one-pivot) Quicksort implementations.
*
* @param a the array to be sorted
* @param fromIndex the index of the first element, inclusively, to be sorted
* @param toIndex the index of the last element, exclusively, to be sorted
* @param fromIndex the index of the first element, inclusive, to be sorted
* @param toIndex the index of the last element, exclusive, to be sorted
*
* @throws IllegalArgumentException if {@code fromIndex > toIndex}
* @throws ArrayIndexOutOfBoundsException
* if {@code fromIndex < 0} or {@code toIndex > a.length}
*/
public static void sort(long[] a, int fromIndex, int toIndex) {
rangeCheck(a.length, fromIndex, toIndex);
DualPivotQuicksort.sort(a, fromIndex, toIndex - 1);
public static void sort(int[] a, int fromIndex, int toIndex) {
DualPivotQuicksort.sort(a, fromIndex, toIndex);
}
/**
* Sorts the specified array into ascending numerical order.
*
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort,
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
* offers O(n log(n)) performance on many data sets that cause other
* quicksorts to degrade to quadratic performance, and is typically
......@@ -109,38 +111,38 @@ public class Arrays {
*
* @param a the array to be sorted
*/
public static void sort(int[] a) {
sort(a, 0, a.length);
public static void sort(long[] a) {
DualPivotQuicksort.sort(a);
}
/**
* Sorts the specified range of the specified array into ascending order. The
* range of to be sorted extends from the index {@code fromIndex}, inclusive,
* to the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
* Sorts the specified range of the array into ascending order. The range
* to be sorted extends from the index {@code fromIndex}, inclusive, to
* the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
* the range to be sorted is empty.
*
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort,
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
* offers O(n log(n)) performance on many data sets that cause other
* quicksorts to degrade to quadratic performance, and is typically
* faster than traditional (one-pivot) Quicksort implementations.
*
* @param a the array to be sorted
* @param fromIndex the index of the first element, inclusively, to be sorted
* @param toIndex the index of the last element, exclusively, to be sorted
* @param fromIndex the index of the first element, inclusive, to be sorted
* @param toIndex the index of the last element, exclusive, to be sorted
*
* @throws IllegalArgumentException if {@code fromIndex > toIndex}
* @throws ArrayIndexOutOfBoundsException
* if {@code fromIndex < 0} or {@code toIndex > a.length}
*/
public static void sort(int[] a, int fromIndex, int toIndex) {
rangeCheck(a.length, fromIndex, toIndex);
DualPivotQuicksort.sort(a, fromIndex, toIndex - 1);
public static void sort(long[] a, int fromIndex, int toIndex) {
DualPivotQuicksort.sort(a, fromIndex, toIndex);
}
/**
* Sorts the specified array into ascending numerical order.
*
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort,
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
* offers O(n log(n)) performance on many data sets that cause other
* quicksorts to degrade to quadratic performance, and is typically
......@@ -149,37 +151,37 @@ public class Arrays {
* @param a the array to be sorted
*/
public static void sort(short[] a) {
sort(a, 0, a.length);
DualPivotQuicksort.sort(a);
}
/**
* Sorts the specified range of the specified array into ascending order. The
* range of to be sorted extends from the index {@code fromIndex}, inclusive,
* to the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
* Sorts the specified range of the array into ascending order. The range
* to be sorted extends from the index {@code fromIndex}, inclusive, to
* the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
* the range to be sorted is empty.
*
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort,
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
* offers O(n log(n)) performance on many data sets that cause other
* quicksorts to degrade to quadratic performance, and is typically
* faster than traditional (one-pivot) Quicksort implementations.
*
* @param a the array to be sorted
* @param fromIndex the index of the first element, inclusively, to be sorted
* @param toIndex the index of the last element, exclusively, to be sorted
* @param fromIndex the index of the first element, inclusive, to be sorted
* @param toIndex the index of the last element, exclusive, to be sorted
*
* @throws IllegalArgumentException if {@code fromIndex > toIndex}
* @throws ArrayIndexOutOfBoundsException
* if {@code fromIndex < 0} or {@code toIndex > a.length}
*/
public static void sort(short[] a, int fromIndex, int toIndex) {
rangeCheck(a.length, fromIndex, toIndex);
DualPivotQuicksort.sort(a, fromIndex, toIndex - 1);
DualPivotQuicksort.sort(a, fromIndex, toIndex);
}
/**
* Sorts the specified array into ascending numerical order.
*
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort,
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
* offers O(n log(n)) performance on many data sets that cause other
* quicksorts to degrade to quadratic performance, and is typically
......@@ -188,37 +190,37 @@ public class Arrays {
* @param a the array to be sorted
*/
public static void sort(char[] a) {
sort(a, 0, a.length);
DualPivotQuicksort.sort(a);
}
/**
* Sorts the specified range of the specified array into ascending order. The
* range of to be sorted extends from the index {@code fromIndex}, inclusive,
* to the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
* Sorts the specified range of the array into ascending order. The range
* to be sorted extends from the index {@code fromIndex}, inclusive, to
* the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
* the range to be sorted is empty.
*
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort,
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
* offers O(n log(n)) performance on many data sets that cause other
* quicksorts to degrade to quadratic performance, and is typically
* faster than traditional (one-pivot) Quicksort implementations.
*
* @param a the array to be sorted
* @param fromIndex the index of the first element, inclusively, to be sorted
* @param toIndex the index of the last element, exclusively, to be sorted
* @param fromIndex the index of the first element, inclusive, to be sorted
* @param toIndex the index of the last element, exclusive, to be sorted
*
* @throws IllegalArgumentException if {@code fromIndex > toIndex}
* @throws ArrayIndexOutOfBoundsException
* if {@code fromIndex < 0} or {@code toIndex > a.length}
*/
public static void sort(char[] a, int fromIndex, int toIndex) {
rangeCheck(a.length, fromIndex, toIndex);
DualPivotQuicksort.sort(a, fromIndex, toIndex - 1);
DualPivotQuicksort.sort(a, fromIndex, toIndex);
}
/**
* Sorts the specified array into ascending numerical order.
*
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort,
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
* offers O(n log(n)) performance on many data sets that cause other
* quicksorts to degrade to quadratic performance, and is typically
......@@ -227,49 +229,45 @@ public class Arrays {
* @param a the array to be sorted
*/
public static void sort(byte[] a) {
sort(a, 0, a.length);
DualPivotQuicksort.sort(a);
}
/**
* Sorts the specified range of the specified array into ascending order. The
* range of to be sorted extends from the index {@code fromIndex}, inclusive,
* to the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
* Sorts the specified range of the array into ascending order. The range
* to be sorted extends from the index {@code fromIndex}, inclusive, to
* the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
* the range to be sorted is empty.
*
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort,
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
* offers O(n log(n)) performance on many data sets that cause other
* quicksorts to degrade to quadratic performance, and is typically
* faster than traditional (one-pivot) Quicksort implementations.
*
* @param a the array to be sorted
* @param fromIndex the index of the first element, inclusively, to be sorted
* @param toIndex the index of the last element, exclusively, to be sorted
* @param fromIndex the index of the first element, inclusive, to be sorted
* @param toIndex the index of the last element, exclusive, to be sorted
*
* @throws IllegalArgumentException if {@code fromIndex > toIndex}
* @throws ArrayIndexOutOfBoundsException
* if {@code fromIndex < 0} or {@code toIndex > a.length}
*/
public static void sort(byte[] a, int fromIndex, int toIndex) {
rangeCheck(a.length, fromIndex, toIndex);
DualPivotQuicksort.sort(a, fromIndex, toIndex - 1);
DualPivotQuicksort.sort(a, fromIndex, toIndex);
}
/**
* Sorts the specified array into ascending numerical order.
*
* <p>The {@code <} relation does not provide a total order on
* all floating-point values; although they are distinct numbers
* {@code -0.0d == 0.0d} is {@code true} and a NaN value compares
* neither less than, greater than, nor equal to any floating-point
* value, even itself. To allow the sort to proceed, instead of using
* the {@code <} relation to determine ascending numerical order,
* this method uses the total order imposed by {@link Double#compareTo}.
* This ordering differs from the {@code <} relation in that {@code -0.0d}
* is treated as less than {@code 0.0d} and NaN is considered greater than
* any other floating-point value. For the purposes of sorting, all NaN
* values are considered equivalent and equal.
*
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort,
* <p>The {@code <} relation does not provide a total order on all float
* values: {@code -0.0f == 0.0f} is {@code true} and a {@code Float.NaN}
* value compares neither less than, greater than, nor equal to any value,
* even itself. This method uses the total order imposed by the method
* {@link Float#compareTo}: {@code -0.0f} is treated as less than value
* {@code 0.0f} and {@code Float.NaN} is considered greater than any
* other value and all {@code Float.NaN} values are considered equal.
*
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
* offers O(n log(n)) performance on many data sets that cause other
* quicksorts to degrade to quadratic performance, and is typically
......@@ -277,110 +275,54 @@ public class Arrays {
*
* @param a the array to be sorted
*/
public static void sort(double[] a) {
sort(a, 0, a.length);
public static void sort(float[] a) {
DualPivotQuicksort.sort(a);
}
/**
* Sorts the specified range of the specified array into ascending order. The
* range of to be sorted extends from the index {@code fromIndex}, inclusive,
* to the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
* Sorts the specified range of the array into ascending order. The range
* to be sorted extends from the index {@code fromIndex}, inclusive, to
* the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
* the range to be sorted is empty.
*
* <p>The {@code <} relation does not provide a total order on
* all floating-point values; although they are distinct numbers
* {@code -0.0d == 0.0d} is {@code true} and a NaN value compares
* neither less than, greater than, nor equal to any floating-point
* value, even itself. To allow the sort to proceed, instead of using
* the {@code <} relation to determine ascending numerical order,
* this method uses the total order imposed by {@link Double#compareTo}.
* This ordering differs from the {@code <} relation in that {@code -0.0d}
* is treated as less than {@code 0.0d} and NaN is considered greater than
* any other floating-point value. For the purposes of sorting, all NaN
* values are considered equivalent and equal.
*
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort,
* <p>The {@code <} relation does not provide a total order on all float
* values: {@code -0.0f == 0.0f} is {@code true} and a {@code Float.NaN}
* value compares neither less than, greater than, nor equal to any value,
* even itself. This method uses the total order imposed by the method
* {@link Float#compareTo}: {@code -0.0f} is treated as less than value
* {@code 0.0f} and {@code Float.NaN} is considered greater than any
* other value and all {@code Float.NaN} values are considered equal.
*
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
* offers O(n log(n)) performance on many data sets that cause other
* quicksorts to degrade to quadratic performance, and is typically
* faster than traditional (one-pivot) Quicksort implementations.
*
* @param a the array to be sorted
* @param fromIndex the index of the first element, inclusively, to be sorted
* @param toIndex the index of the last element, exclusively, to be sorted
* @param fromIndex the index of the first element, inclusive, to be sorted
* @param toIndex the index of the last element, exclusive, to be sorted
*
* @throws IllegalArgumentException if {@code fromIndex > toIndex}
* @throws ArrayIndexOutOfBoundsException
* if {@code fromIndex < 0} or {@code toIndex > a.length}
*/
public static void sort(double[] a, int fromIndex, int toIndex) {
rangeCheck(a.length, fromIndex, toIndex);
sortNegZeroAndNaN(a, fromIndex, toIndex);
}
private static void sortNegZeroAndNaN(double[] a, int fromIndex, int toIndex) {
final long NEG_ZERO_BITS = Double.doubleToLongBits(-0.0d);
/*
* The sort is done in three phases to avoid the expense of using
* NaN and -0.0d aware comparisons during the main sort.
*
* Preprocessing phase: move any NaN's to end of array, count the
* number of -0.0d's, and turn them into 0.0d's.
*/
int numNegZeros = 0;
int i = fromIndex;
int n = toIndex;
double temp;
while (i < n) {
if (a[i] != a[i]) {
n--;
temp = a[i];
a[i] = a[n];
a[n] = temp;
}
else {
if (a[i] == 0 && Double.doubleToLongBits(a[i]) == NEG_ZERO_BITS) {
a[i] = 0.0d;
numNegZeros++;
}
i++;
}
}
// Main sort phase: quicksort everything but the NaN's
DualPivotQuicksort.sort(a, fromIndex, n - 1);
// Postprocessing phase: change 0.0d's to -0.0d's as required
if (numNegZeros != 0) {
int j = binarySearch0(a, fromIndex, n, 0.0d); // position of ANY zero
do {
j--;
}
while (j >= fromIndex && a[j] == 0.0d);
// j is now one less than the index of the FIRST zero
for (int k = 0; k < numNegZeros; k++) {
a[++j] = -0.0d;
}
}
public static void sort(float[] a, int fromIndex, int toIndex) {
DualPivotQuicksort.sort(a, fromIndex, toIndex);
}
/**
* Sorts the specified array into ascending numerical order.
*
* <p>The {@code <} relation does not provide a total order on
* all floating-point values; although they are distinct numbers
* {@code -0.0f == 0.0f} is {@code true} and a NaN value compares
* neither less than, greater than, nor equal to any floating-point
* value, even itself. To allow the sort to proceed, instead of using
* the {@code <} relation to determine ascending numerical order,
* this method uses the total order imposed by {@link Float#compareTo}.
* This ordering differs from the {@code <} relation in that {@code -0.0f}
* is treated as less than {@code 0.0f} and NaN is considered greater than
* any other floating-point value. For the purposes of sorting, all NaN
* values are considered equivalent and equal.
*
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort,
* <p>The {@code <} relation does not provide a total order on all double
* values: {@code -0.0d == 0.0d} is {@code true} and a {@code Double.NaN}
* value compares neither less than, greater than, nor equal to any value,
* even itself. This method uses the total order imposed by the method
* {@link Double#compareTo}: {@code -0.0d} is treated as less than value
* {@code 0.0d} and {@code Double.NaN} is considered greater than any
* other value and all {@code Double.NaN} values are considered equal.
*
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
* offers O(n log(n)) performance on many data sets that cause other
* quicksorts to degrade to quadratic performance, and is typically
......@@ -388,94 +330,47 @@ public class Arrays {
*
* @param a the array to be sorted
*/
public static void sort(float[] a) {
sort(a, 0, a.length);
public static void sort(double[] a) {
DualPivotQuicksort.sort(a);
}
/**
* Sorts the specified range of the specified array into ascending order. The
* range of to be sorted extends from the index {@code fromIndex}, inclusive,
* to the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
* Sorts the specified range of the array into ascending order. The range
* to be sorted extends from the index {@code fromIndex}, inclusive, to
* the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
* the range to be sorted is empty.
*
* <p>The {@code <} relation does not provide a total order on
* all floating-point values; although they are distinct numbers
* {@code -0.0f == 0.0f} is {@code true} and a NaN value compares
* neither less than, greater than, nor equal to any floating-point
* value, even itself. To allow the sort to proceed, instead of using
* the {@code <} relation to determine ascending numerical order,
* this method uses the total order imposed by {@link Float#compareTo}.
* This ordering differs from the {@code <} relation in that {@code -0.0f}
* is treated as less than {@code 0.0f} and NaN is considered greater than
* any other floating-point value. For the purposes of sorting, all NaN
* values are considered equivalent and equal.
*
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort,
* <p>The {@code <} relation does not provide a total order on all double
* values: {@code -0.0d == 0.0d} is {@code true} and a {@code Double.NaN}
* value compares neither less than, greater than, nor equal to any value,
* even itself. This method uses the total order imposed by the method
* {@link Double#compareTo}: {@code -0.0d} is treated as less than value
* {@code 0.0d} and {@code Double.NaN} is considered greater than any
* other value and all {@code Double.NaN} values are considered equal.
*
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
* offers O(n log(n)) performance on many data sets that cause other
* quicksorts to degrade to quadratic performance, and is typically
* faster than traditional (one-pivot) Quicksort implementations.
*
* @param a the array to be sorted
* @param fromIndex the index of the first element, inclusively, to be sorted
* @param toIndex the index of the last element, exclusively, to be sorted
* @param fromIndex the index of the first element, inclusive, to be sorted
* @param toIndex the index of the last element, exclusive, to be sorted
*
* @throws IllegalArgumentException if {@code fromIndex > toIndex}
* @throws ArrayIndexOutOfBoundsException
* if {@code fromIndex < 0} or {@code toIndex > a.length}
*/
public static void sort(float[] a, int fromIndex, int toIndex) {
rangeCheck(a.length, fromIndex, toIndex);
sortNegZeroAndNaN(a, fromIndex, toIndex);
}
private static void sortNegZeroAndNaN(float[] a, int fromIndex, int toIndex) {
final int NEG_ZERO_BITS = Float.floatToIntBits(-0.0f);
/*
* The sort is done in three phases to avoid the expense of using
* NaN and -0.0f aware comparisons during the main sort.
*
* Preprocessing phase: move any NaN's to end of array, count the
* number of -0.0f's, and turn them into 0.0f's.
*/
int numNegZeros = 0;
int i = fromIndex;
int n = toIndex;
float temp;
while (i < n) {
if (a[i] != a[i]) {
n--;
temp = a[i];
a[i] = a[n];
a[n] = temp;
}
else {
if (a[i] == 0 && Float.floatToIntBits(a[i]) == NEG_ZERO_BITS) {
a[i] = 0.0f;
numNegZeros++;
}
i++;
}
}
// Main sort phase: quicksort everything but the NaN's
DualPivotQuicksort.sort(a, fromIndex, n - 1);
// Postprocessing phase: change 0.0f's to -0.0f's as required
if (numNegZeros != 0) {
int j = binarySearch0(a, fromIndex, n, 0.0f); // position of ANY zero
do {
j--;
}
while (j >= fromIndex && a[j] == 0.0f);
// j is now one less than the index of the FIRST zero
for (int k = 0; k < numNegZeros; k++) {
a[++j] = -0.0f;
}
}
public static void sort(double[] a, int fromIndex, int toIndex) {
DualPivotQuicksort.sort(a, fromIndex, toIndex);
}
/*
* Sorting of complex type arrays.
*
*/
/**
* Old merge sort implementation can be selected (for
* compatibility with broken comparators) using a system property.
......
......@@ -36,11 +36,11 @@ package java.util;
* @author Jon Bentley
* @author Josh Bloch
*
* @version 2009.10.29 m765.827.v5
* @version 2009.11.09 m765.827.v8
*/
final class DualPivotQuicksort {
// Suppresses default constructor, ensuring non-instantiability.
// Suppresses default constructor
private DualPivotQuicksort() {}
/*
......@@ -70,13 +70,43 @@ final class DualPivotQuicksort {
*/
/**
* Sorts the specified range of the array into ascending order.
* Sorts the specified array into ascending numerical order.
*
* @param a the array to be sorted
* @param left the index of the first element, inclusively, to be sorted
* @param right the index of the last element, inclusively, to be sorted
*/
static void sort(int[] a, int left, int right) {
public static void sort(int[] a) {
doSort(a, 0, a.length - 1);
}
/**
* Sorts the specified range of the array into ascending order. The range
* to be sorted extends from the index {@code fromIndex}, inclusive, to
* the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
* the range to be sorted is empty.
*
* @param a the array to be sorted
* @param fromIndex the index of the first element, inclusive, to be sorted
* @param toIndex the index of the last element, exclusive, to be sorted
* @throws IllegalArgumentException if {@code fromIndex > toIndex}
* @throws ArrayIndexOutOfBoundsException
* if {@code fromIndex < 0} or {@code toIndex > a.length}
*/
public static void sort(int[] a, int fromIndex, int toIndex) {
rangeCheck(a.length, fromIndex, toIndex);
doSort(a, fromIndex, toIndex - 1);
}
/**
* Sorts the specified range of the array into ascending order. This
* method differs from the public {@code sort} method in that the
* {@code right} index is inclusive, and it does no range checking on
* {@code left} or {@code right}.
*
* @param a the array to be sorted
* @param left the index of the first element, inclusive, to be sorted
* @param right the index of the last element, inclusive, to be sorted
*/
private static void doSort(int[] a, int left, int right) {
// Use insertion sort on tiny arrays
if (right - left + 1 < INSERTION_SORT_THRESHOLD) {
for (int k = left + 1; k <= right; k++) {
......@@ -94,12 +124,12 @@ final class DualPivotQuicksort {
}
/**
* Sorts the specified range of the array into ascending order
* by Dual-Pivot Quicksort.
* Sorts the specified range of the array into ascending order by the
* Dual-Pivot Quicksort algorithm.
*
* @param a the array to be sorted
* @param left the index of the first element, inclusively, to be sorted
* @param right the index of the last element, inclusively, to be sorted
* @param left the index of the first element, inclusive, to be sorted
* @param right the index of the last element, inclusive, to be sorted
*/
private static void dualPivotQuicksort(int[] a, int left, int right) {
// Compute indices of five evenly spaced elements
......@@ -234,8 +264,8 @@ final class DualPivotQuicksort {
a[right] = a[great + 1]; a[great + 1] = pivot2;
// Sort left and right parts recursively, excluding known pivot values
sort(a, left, less - 2);
sort(a, great + 2, right);
doSort(a, left, less - 2);
doSort(a, great + 2, right);
/*
* If pivot1 == pivot2, all elements from center
......@@ -271,17 +301,47 @@ final class DualPivotQuicksort {
}
// Sort center part recursively, excluding known pivot values
sort(a, less, great);
doSort(a, less, great);
}
/**
* Sorts the specified array into ascending numerical order.
*
* @param a the array to be sorted
*/
public static void sort(long[] a) {
doSort(a, 0, a.length - 1);
}
/**
* Sorts the specified range of the array into ascending order.
* Sorts the specified range of the array into ascending order. The range
* to be sorted extends from the index {@code fromIndex}, inclusive, to
* the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
* the range to be sorted is empty.
*
* @param a the array to be sorted
* @param left the index of the first element, inclusively, to be sorted
* @param right the index of the last element, inclusively, to be sorted
* @param fromIndex the index of the first element, inclusive, to be sorted
* @param toIndex the index of the last element, exclusive, to be sorted
* @throws IllegalArgumentException if {@code fromIndex > toIndex}
* @throws ArrayIndexOutOfBoundsException
* if {@code fromIndex < 0} or {@code toIndex > a.length}
*/
static void sort(long[] a, int left, int right) {
public static void sort(long[] a, int fromIndex, int toIndex) {
rangeCheck(a.length, fromIndex, toIndex);
doSort(a, fromIndex, toIndex - 1);
}
/**
* Sorts the specified range of the array into ascending order. This
* method differs from the public {@code sort} method in that the
* {@code right} index is inclusive, and it does no range checking on
* {@code left} or {@code right}.
*
* @param a the array to be sorted
* @param left the index of the first element, inclusive, to be sorted
* @param right the index of the last element, inclusive, to be sorted
*/
private static void doSort(long[] a, int left, int right) {
// Use insertion sort on tiny arrays
if (right - left + 1 < INSERTION_SORT_THRESHOLD) {
for (int k = left + 1; k <= right; k++) {
......@@ -299,12 +359,12 @@ final class DualPivotQuicksort {
}
/**
* Sorts the specified range of the array into ascending order
* by Dual-Pivot Quicksort.
* Sorts the specified range of the array into ascending order by the
* Dual-Pivot Quicksort algorithm.
*
* @param a the array to be sorted
* @param left the index of the first element, inclusively, to be sorted
* @param right the index of the last element, inclusively, to be sorted
* @param left the index of the first element, inclusive, to be sorted
* @param right the index of the last element, inclusive, to be sorted
*/
private static void dualPivotQuicksort(long[] a, int left, int right) {
// Compute indices of five evenly spaced elements
......@@ -439,8 +499,8 @@ final class DualPivotQuicksort {
a[right] = a[great + 1]; a[great + 1] = pivot2;
// Sort left and right parts recursively, excluding known pivot values
sort(a, left, less - 2);
sort(a, great + 2, right);
doSort(a, left, less - 2);
doSort(a, great + 2, right);
/*
* If pivot1 == pivot2, all elements from center
......@@ -476,20 +536,50 @@ final class DualPivotQuicksort {
}
// Sort center part recursively, excluding known pivot values
sort(a, less, great);
doSort(a, less, great);
}
/**
* Sorts the specified array into ascending numerical order.
*
* @param a the array to be sorted
*/
public static void sort(short[] a) {
doSort(a, 0, a.length - 1);
}
/** The number of distinct short values */
/**
* Sorts the specified range of the array into ascending order. The range
* to be sorted extends from the index {@code fromIndex}, inclusive, to
* the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
* the range to be sorted is empty.
*
* @param a the array to be sorted
* @param fromIndex the index of the first element, inclusive, to be sorted
* @param toIndex the index of the last element, exclusive, to be sorted
* @throws IllegalArgumentException if {@code fromIndex > toIndex}
* @throws ArrayIndexOutOfBoundsException
* if {@code fromIndex < 0} or {@code toIndex > a.length}
*/
public static void sort(short[] a, int fromIndex, int toIndex) {
rangeCheck(a.length, fromIndex, toIndex);
doSort(a, fromIndex, toIndex - 1);
}
/** The number of distinct short values. */
private static final int NUM_SHORT_VALUES = 1 << 16;
/**
* Sorts the specified range of the array into ascending order.
* Sorts the specified range of the array into ascending order. This
* method differs from the public {@code sort} method in that the
* {@code right} index is inclusive, and it does no range checking on
* {@code left} or {@code right}.
*
* @param a the array to be sorted
* @param left the index of the first element, inclusively, to be sorted
* @param right the index of the last element, inclusively, to be sorted
* @param left the index of the first element, inclusive, to be sorted
* @param right the index of the last element, inclusive, to be sorted
*/
static void sort(short[] a, int left, int right) {
private static void doSort(short[] a, int left, int right) {
// Use insertion sort on tiny arrays
if (right - left + 1 < INSERTION_SORT_THRESHOLD) {
for (int k = left + 1; k <= right; k++) {
......@@ -501,7 +591,7 @@ final class DualPivotQuicksort {
}
a[j + 1] = ak;
}
} else if (right - left + 1 > COUNTING_SORT_THRESHOLD_FOR_SHORT_OR_CHAR) {
} else if (right-left+1 > COUNTING_SORT_THRESHOLD_FOR_SHORT_OR_CHAR) {
// Use counting sort on huge arrays
int[] count = new int[NUM_SHORT_VALUES];
......@@ -521,12 +611,12 @@ final class DualPivotQuicksort {
}
/**
* Sorts the specified range of the array into ascending order
* by Dual-Pivot Quicksort.
* Sorts the specified range of the array into ascending order by the
* Dual-Pivot Quicksort algorithm.
*
* @param a the array to be sorted
* @param left the index of the first element, inclusively, to be sorted
* @param right the index of the last element, inclusively, to be sorted
* @param left the index of the first element, inclusive, to be sorted
* @param right the index of the last element, inclusive, to be sorted
*/
private static void dualPivotQuicksort(short[] a, int left, int right) {
// Compute indices of five evenly spaced elements
......@@ -661,8 +751,8 @@ final class DualPivotQuicksort {
a[right] = a[great + 1]; a[great + 1] = pivot2;
// Sort left and right parts recursively, excluding known pivot values
sort(a, left, less - 2);
sort(a, great + 2, right);
doSort(a, left, less - 2);
doSort(a, great + 2, right);
/*
* If pivot1 == pivot2, all elements from center
......@@ -698,24 +788,54 @@ final class DualPivotQuicksort {
}
// Sort center part recursively, excluding known pivot values
sort(a, less, great);
doSort(a, less, great);
}
/** The number of distinct byte values */
private static final int NUM_BYTE_VALUES = 1 << 8;
/**
* Sorts the specified array into ascending numerical order.
*
* @param a the array to be sorted
*/
public static void sort(char[] a) {
doSort(a, 0, a.length - 1);
}
/**
* Sorts the specified range of the array into ascending order.
* Sorts the specified range of the array into ascending order. The range
* to be sorted extends from the index {@code fromIndex}, inclusive, to
* the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
* the range to be sorted is empty.
*
* @param a the array to be sorted
* @param left the index of the first element, inclusively, to be sorted
* @param right the index of the last element, inclusively, to be sorted
* @param fromIndex the index of the first element, inclusive, to be sorted
* @param toIndex the index of the last element, exclusive, to be sorted
* @throws IllegalArgumentException if {@code fromIndex > toIndex}
* @throws ArrayIndexOutOfBoundsException
* if {@code fromIndex < 0} or {@code toIndex > a.length}
*/
static void sort(byte[] a, int left, int right) {
public static void sort(char[] a, int fromIndex, int toIndex) {
rangeCheck(a.length, fromIndex, toIndex);
doSort(a, fromIndex, toIndex - 1);
}
/** The number of distinct char values. */
private static final int NUM_CHAR_VALUES = 1 << 16;
/**
* Sorts the specified range of the array into ascending order. This
* method differs from the public {@code sort} method in that the
* {@code right} index is inclusive, and it does no range checking on
* {@code left} or {@code right}.
*
* @param a the array to be sorted
* @param left the index of the first element, inclusive, to be sorted
* @param right the index of the last element, inclusive, to be sorted
*/
private static void doSort(char[] a, int left, int right) {
// Use insertion sort on tiny arrays
if (right - left + 1 < INSERTION_SORT_THRESHOLD) {
for (int k = left + 1; k <= right; k++) {
byte ak = a[k];
char ak = a[k];
int j;
for (j = k - 1; j >= left && ak < a[j]; j--) {
......@@ -723,18 +843,16 @@ final class DualPivotQuicksort {
}
a[j + 1] = ak;
}
} else if (right - left + 1 > COUNTING_SORT_THRESHOLD_FOR_BYTE) {
} else if (right-left+1 > COUNTING_SORT_THRESHOLD_FOR_SHORT_OR_CHAR) {
// Use counting sort on huge arrays
int[] count = new int[NUM_BYTE_VALUES];
int[] count = new int[NUM_CHAR_VALUES];
for (int i = left; i <= right; i++) {
count[a[i] - Byte.MIN_VALUE]++;
count[a[i]]++;
}
for (int i = 0, k = left; i < count.length && k <= right; i++) {
byte value = (byte) (i + Byte.MIN_VALUE);
for (int s = count[i]; s > 0; s--) {
a[k++] = value;
a[k++] = (char) i;
}
}
} else { // Use Dual-Pivot Quicksort on large arrays
......@@ -743,14 +861,14 @@ final class DualPivotQuicksort {
}
/**
* Sorts the specified range of the array into ascending order
* by Dual-Pivot Quicksort.
* Sorts the specified range of the array into ascending order by the
* Dual-Pivot Quicksort algorithm.
*
* @param a the array to be sorted
* @param left the index of the first element, inclusively, to be sorted
* @param right the index of the last element, inclusively, to be sorted
* @param left the index of the first element, inclusive, to be sorted
* @param right the index of the last element, inclusive, to be sorted
*/
private static void dualPivotQuicksort(byte[] a, int left, int right) {
private static void dualPivotQuicksort(char[] a, int left, int right) {
// Compute indices of five evenly spaced elements
int sixth = (right - left + 1) / 6;
int e1 = left + sixth;
......@@ -760,15 +878,15 @@ final class DualPivotQuicksort {
int e2 = e3 - sixth;
// Sort these elements in place using a 5-element sorting network
if (a[e1] > a[e2]) { byte t = a[e1]; a[e1] = a[e2]; a[e2] = t; }
if (a[e4] > a[e5]) { byte t = a[e4]; a[e4] = a[e5]; a[e5] = t; }
if (a[e1] > a[e3]) { byte t = a[e1]; a[e1] = a[e3]; a[e3] = t; }
if (a[e2] > a[e3]) { byte t = a[e2]; a[e2] = a[e3]; a[e3] = t; }
if (a[e1] > a[e4]) { byte t = a[e1]; a[e1] = a[e4]; a[e4] = t; }
if (a[e3] > a[e4]) { byte t = a[e3]; a[e3] = a[e4]; a[e4] = t; }
if (a[e2] > a[e5]) { byte t = a[e2]; a[e2] = a[e5]; a[e5] = t; }
if (a[e2] > a[e3]) { byte t = a[e2]; a[e2] = a[e3]; a[e3] = t; }
if (a[e4] > a[e5]) { byte t = a[e4]; a[e4] = a[e5]; a[e5] = t; }
if (a[e1] > a[e2]) { char t = a[e1]; a[e1] = a[e2]; a[e2] = t; }
if (a[e4] > a[e5]) { char t = a[e4]; a[e4] = a[e5]; a[e5] = t; }
if (a[e1] > a[e3]) { char t = a[e1]; a[e1] = a[e3]; a[e3] = t; }
if (a[e2] > a[e3]) { char t = a[e2]; a[e2] = a[e3]; a[e3] = t; }
if (a[e1] > a[e4]) { char t = a[e1]; a[e1] = a[e4]; a[e4] = t; }
if (a[e3] > a[e4]) { char t = a[e3]; a[e3] = a[e4]; a[e4] = t; }
if (a[e2] > a[e5]) { char t = a[e2]; a[e2] = a[e5]; a[e5] = t; }
if (a[e2] > a[e3]) { char t = a[e2]; a[e2] = a[e3]; a[e3] = t; }
if (a[e4] > a[e5]) { char t = a[e4]; a[e4] = a[e5]; a[e5] = t; }
/*
* Use the second and fourth of the five sorted elements as pivots.
......@@ -781,8 +899,8 @@ final class DualPivotQuicksort {
* the pivots are swapped back into their final positions, and
* excluded from subsequent sorting.
*/
byte pivot1 = a[e2]; a[e2] = a[left];
byte pivot2 = a[e4]; a[e4] = a[right];
char pivot1 = a[e2]; a[e2] = a[left];
char pivot2 = a[e4]; a[e4] = a[right];
/*
* Partitioning
......@@ -812,7 +930,7 @@ final class DualPivotQuicksort {
* Pointer k is the first index of ?-part
*/
for (int k = less; k <= great; k++) {
byte ak = a[k];
char ak = a[k];
if (ak < pivot1) {
a[k] = a[less];
......@@ -854,7 +972,7 @@ final class DualPivotQuicksort {
* Pointer k is the first index of ?-part
*/
for (int k = less; k <= great; k++) {
byte ak = a[k];
char ak = a[k];
if (ak == pivot1) {
continue;
......@@ -883,8 +1001,8 @@ final class DualPivotQuicksort {
a[right] = a[great + 1]; a[great + 1] = pivot2;
// Sort left and right parts recursively, excluding known pivot values
sort(a, left, less - 2);
sort(a, great + 2, right);
doSort(a, left, less - 2);
doSort(a, great + 2, right);
/*
* If pivot1 == pivot2, all elements from center
......@@ -920,24 +1038,54 @@ final class DualPivotQuicksort {
}
// Sort center part recursively, excluding known pivot values
sort(a, less, great);
doSort(a, less, great);
}
/** The number of distinct char values */
private static final int NUM_CHAR_VALUES = 1 << 16;
/**
* Sorts the specified array into ascending numerical order.
*
* @param a the array to be sorted
*/
public static void sort(byte[] a) {
doSort(a, 0, a.length - 1);
}
/**
* Sorts the specified range of the array into ascending order.
* Sorts the specified range of the array into ascending order. The range
* to be sorted extends from the index {@code fromIndex}, inclusive, to
* the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
* the range to be sorted is empty.
*
* @param a the array to be sorted
* @param left the index of the first element, inclusively, to be sorted
* @param right the index of the last element, inclusively, to be sorted
* @param fromIndex the index of the first element, inclusive, to be sorted
* @param toIndex the index of the last element, exclusive, to be sorted
* @throws IllegalArgumentException if {@code fromIndex > toIndex}
* @throws ArrayIndexOutOfBoundsException
* if {@code fromIndex < 0} or {@code toIndex > a.length}
*/
static void sort(char[] a, int left, int right) {
public static void sort(byte[] a, int fromIndex, int toIndex) {
rangeCheck(a.length, fromIndex, toIndex);
doSort(a, fromIndex, toIndex - 1);
}
/** The number of distinct byte values. */
private static final int NUM_BYTE_VALUES = 1 << 8;
/**
* Sorts the specified range of the array into ascending order. This
* method differs from the public {@code sort} method in that the
* {@code right} index is inclusive, and it does no range checking on
* {@code left} or {@code right}.
*
* @param a the array to be sorted
* @param left the index of the first element, inclusive, to be sorted
* @param right the index of the last element, inclusive, to be sorted
*/
private static void doSort(byte[] a, int left, int right) {
// Use insertion sort on tiny arrays
if (right - left + 1 < INSERTION_SORT_THRESHOLD) {
for (int k = left + 1; k <= right; k++) {
char ak = a[k];
byte ak = a[k];
int j;
for (j = k - 1; j >= left && ak < a[j]; j--) {
......@@ -945,16 +1093,18 @@ final class DualPivotQuicksort {
}
a[j + 1] = ak;
}
} else if (right - left + 1 > COUNTING_SORT_THRESHOLD_FOR_SHORT_OR_CHAR) {
} else if (right - left + 1 > COUNTING_SORT_THRESHOLD_FOR_BYTE) {
// Use counting sort on huge arrays
int[] count = new int[NUM_CHAR_VALUES];
int[] count = new int[NUM_BYTE_VALUES];
for (int i = left; i <= right; i++) {
count[a[i]]++;
count[a[i] - Byte.MIN_VALUE]++;
}
for (int i = 0, k = left; i < count.length && k <= right; i++) {
byte value = (byte) (i + Byte.MIN_VALUE);
for (int s = count[i]; s > 0; s--) {
a[k++] = (char) i;
a[k++] = value;
}
}
} else { // Use Dual-Pivot Quicksort on large arrays
......@@ -963,14 +1113,14 @@ final class DualPivotQuicksort {
}
/**
* Sorts the specified range of the array into ascending order
* by Dual-Pivot Quicksort.
* Sorts the specified range of the array into ascending order by the
* Dual-Pivot Quicksort algorithm.
*
* @param a the array to be sorted
* @param left the index of the first element, inclusively, to be sorted
* @param right the index of the last element, inclusively, to be sorted
* @param left the index of the first element, inclusive, to be sorted
* @param right the index of the last element, inclusive, to be sorted
*/
private static void dualPivotQuicksort(char[] a, int left, int right) {
private static void dualPivotQuicksort(byte[] a, int left, int right) {
// Compute indices of five evenly spaced elements
int sixth = (right - left + 1) / 6;
int e1 = left + sixth;
......@@ -980,15 +1130,15 @@ final class DualPivotQuicksort {
int e2 = e3 - sixth;
// Sort these elements in place using a 5-element sorting network
if (a[e1] > a[e2]) { char t = a[e1]; a[e1] = a[e2]; a[e2] = t; }
if (a[e4] > a[e5]) { char t = a[e4]; a[e4] = a[e5]; a[e5] = t; }
if (a[e1] > a[e3]) { char t = a[e1]; a[e1] = a[e3]; a[e3] = t; }
if (a[e2] > a[e3]) { char t = a[e2]; a[e2] = a[e3]; a[e3] = t; }
if (a[e1] > a[e4]) { char t = a[e1]; a[e1] = a[e4]; a[e4] = t; }
if (a[e3] > a[e4]) { char t = a[e3]; a[e3] = a[e4]; a[e4] = t; }
if (a[e2] > a[e5]) { char t = a[e2]; a[e2] = a[e5]; a[e5] = t; }
if (a[e2] > a[e3]) { char t = a[e2]; a[e2] = a[e3]; a[e3] = t; }
if (a[e4] > a[e5]) { char t = a[e4]; a[e4] = a[e5]; a[e5] = t; }
if (a[e1] > a[e2]) { byte t = a[e1]; a[e1] = a[e2]; a[e2] = t; }
if (a[e4] > a[e5]) { byte t = a[e4]; a[e4] = a[e5]; a[e5] = t; }
if (a[e1] > a[e3]) { byte t = a[e1]; a[e1] = a[e3]; a[e3] = t; }
if (a[e2] > a[e3]) { byte t = a[e2]; a[e2] = a[e3]; a[e3] = t; }
if (a[e1] > a[e4]) { byte t = a[e1]; a[e1] = a[e4]; a[e4] = t; }
if (a[e3] > a[e4]) { byte t = a[e3]; a[e3] = a[e4]; a[e4] = t; }
if (a[e2] > a[e5]) { byte t = a[e2]; a[e2] = a[e5]; a[e5] = t; }
if (a[e2] > a[e3]) { byte t = a[e2]; a[e2] = a[e3]; a[e3] = t; }
if (a[e4] > a[e5]) { byte t = a[e4]; a[e4] = a[e5]; a[e5] = t; }
/*
* Use the second and fourth of the five sorted elements as pivots.
......@@ -1001,8 +1151,8 @@ final class DualPivotQuicksort {
* the pivots are swapped back into their final positions, and
* excluded from subsequent sorting.
*/
char pivot1 = a[e2]; a[e2] = a[left];
char pivot2 = a[e4]; a[e4] = a[right];
byte pivot1 = a[e2]; a[e2] = a[left];
byte pivot2 = a[e4]; a[e4] = a[right];
/*
* Partitioning
......@@ -1032,7 +1182,7 @@ final class DualPivotQuicksort {
* Pointer k is the first index of ?-part
*/
for (int k = less; k <= great; k++) {
char ak = a[k];
byte ak = a[k];
if (ak < pivot1) {
a[k] = a[less];
......@@ -1074,7 +1224,7 @@ final class DualPivotQuicksort {
* Pointer k is the first index of ?-part
*/
for (int k = less; k <= great; k++) {
char ak = a[k];
byte ak = a[k];
if (ak == pivot1) {
continue;
......@@ -1103,8 +1253,8 @@ final class DualPivotQuicksort {
a[right] = a[great + 1]; a[great + 1] = pivot2;
// Sort left and right parts recursively, excluding known pivot values
sort(a, left, less - 2);
sort(a, great + 2, right);
doSort(a, left, less - 2);
doSort(a, great + 2, right);
/*
* If pivot1 == pivot2, all elements from center
......@@ -1140,17 +1290,143 @@ final class DualPivotQuicksort {
}
// Sort center part recursively, excluding known pivot values
sort(a, less, great);
doSort(a, less, great);
}
/**
* Sorts the specified range of the array into ascending order.
* Sorts the specified array into ascending numerical order.
*
* <p>The {@code <} relation does not provide a total order on all float
* values: {@code -0.0f == 0.0f} is {@code true} and a {@code Float.NaN}
* value compares neither less than, greater than, nor equal to any value,
* even itself. This method uses the total order imposed by the method
* {@link Float#compareTo}: {@code -0.0f} is treated as less than value
* {@code 0.0f} and {@code Float.NaN} is considered greater than any
* other value and all {@code Float.NaN} values are considered equal.
*
* @param a the array to be sorted
* @param left the index of the first element, inclusively, to be sorted
* @param right the index of the last element, inclusively, to be sorted
*/
static void sort(float[] a, int left, int right) {
public static void sort(float[] a) {
sortNegZeroAndNaN(a, 0, a.length - 1);
}
/**
* Sorts the specified range of the array into ascending order. The range
* to be sorted extends from the index {@code fromIndex}, inclusive, to
* the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
* the range to be sorted is empty.
*
* <p>The {@code <} relation does not provide a total order on all float
* values: {@code -0.0f == 0.0f} is {@code true} and a {@code Float.NaN}
* value compares neither less than, greater than, nor equal to any value,
* even itself. This method uses the total order imposed by the method
* {@link Float#compareTo}: {@code -0.0f} is treated as less than value
* {@code 0.0f} and {@code Float.NaN} is considered greater than any
* other value and all {@code Float.NaN} values are considered equal.
*
* @param a the array to be sorted
* @param fromIndex the index of the first element, inclusive, to be sorted
* @param toIndex the index of the last element, exclusive, to be sorted
* @throws IllegalArgumentException if {@code fromIndex > toIndex}
* @throws ArrayIndexOutOfBoundsException
* if {@code fromIndex < 0} or {@code toIndex > a.length}
*/
public static void sort(float[] a, int fromIndex, int toIndex) {
rangeCheck(a.length, fromIndex, toIndex);
sortNegZeroAndNaN(a, fromIndex, toIndex - 1);
}
/**
* Sorts the specified range of the array into ascending order. The
* sort is done in three phases to avoid expensive comparisons in the
* inner loop. The comparisons would be expensive due to anomalies
* associated with negative zero {@code -0.0f} and {@code Float.NaN}.
*
* @param a the array to be sorted
* @param left the index of the first element, inclusive, to be sorted
* @param right the index of the last element, inclusive, to be sorted
*/
private static void sortNegZeroAndNaN(float[] a, int left, int right) {
/*
* Phase 1: Count negative zeros and move NaNs to end of array
*/
final int NEGATIVE_ZERO = Float.floatToIntBits(-0.0f);
int numNegativeZeros = 0;
int n = right;
for (int k = left; k <= n; k++) {
float ak = a[k];
if (ak == 0.0f && NEGATIVE_ZERO == Float.floatToIntBits(ak)) {
a[k] = 0.0f;
numNegativeZeros++;
} else if (ak != ak) { // i.e., ak is NaN
a[k--] = a[n];
a[n--] = Float.NaN;
}
}
/*
* Phase 2: Sort everything except NaNs (which are already in place)
*/
doSort(a, left, n);
/*
* Phase 3: Turn positive zeros back into negative zeros as appropriate
*/
if (numNegativeZeros == 0) {
return;
}
// Find first zero element
int zeroIndex = findAnyZero(a, left, n);
for (int i = zeroIndex - 1; i >= left && a[i] == 0.0f; i--) {
zeroIndex = i;
}
// Turn the right number of positive zeros back into negative zeros
for (int i = zeroIndex, m = zeroIndex + numNegativeZeros; i < m; i++) {
a[i] = -0.0f;
}
}
/**
* Returns the index of some zero element in the specified range via
* binary search. The range is assumed to be sorted, and must contain
* at least one zero.
*
* @param a the array to be searched
* @param low the index of the first element, inclusive, to be searched
* @param high the index of the last element, inclusive, to be searched
*/
private static int findAnyZero(float[] a, int low, int high) {
while (true) {
int middle = (low + high) >>> 1;
float middleValue = a[middle];
if (middleValue < 0.0f) {
low = middle + 1;
} else if (middleValue > 0.0f) {
high = middle - 1;
} else { // middleValue == 0.0f
return middle;
}
}
}
/**
* Sorts the specified range of the array into ascending order. This
* method differs from the public {@code sort} method in three ways:
* {@code right} index is inclusive, it does no range checking on
* {@code left} or {@code right}, and it does not handle negative
* zeros or NaNs in the array.
*
* @param a the array to be sorted, which must not contain -0.0f or NaN
* @param left the index of the first element, inclusive, to be sorted
* @param right the index of the last element, inclusive, to be sorted
*/
private static void doSort(float[] a, int left, int right) {
// Use insertion sort on tiny arrays
if (right - left + 1 < INSERTION_SORT_THRESHOLD) {
for (int k = left + 1; k <= right; k++) {
......@@ -1168,12 +1444,12 @@ final class DualPivotQuicksort {
}
/**
* Sorts the specified range of the array into ascending order
* by Dual-Pivot Quicksort.
* Sorts the specified range of the array into ascending order by the
* Dual-Pivot Quicksort algorithm.
*
* @param a the array to be sorted
* @param left the index of the first element, inclusively, to be sorted
* @param right the index of the last element, inclusively, to be sorted
* @param left the index of the first element, inclusive, to be sorted
* @param right the index of the last element, inclusive, to be sorted
*/
private static void dualPivotQuicksort(float[] a, int left, int right) {
// Compute indices of five evenly spaced elements
......@@ -1308,8 +1584,8 @@ final class DualPivotQuicksort {
a[right] = a[great + 1]; a[great + 1] = pivot2;
// Sort left and right parts recursively, excluding known pivot values
sort(a, left, less - 2);
sort(a, great + 2, right);
doSort(a, left, less - 2);
doSort(a, great + 2, right);
/*
* If pivot1 == pivot2, all elements from center
......@@ -1345,17 +1621,143 @@ final class DualPivotQuicksort {
}
// Sort center part recursively, excluding known pivot values
sort(a, less, great);
doSort(a, less, great);
}
/**
* Sorts the specified range of the array into ascending order.
* Sorts the specified array into ascending numerical order.
*
* <p>The {@code <} relation does not provide a total order on all double
* values: {@code -0.0d == 0.0d} is {@code true} and a {@code Double.NaN}
* value compares neither less than, greater than, nor equal to any value,
* even itself. This method uses the total order imposed by the method
* {@link Double#compareTo}: {@code -0.0d} is treated as less than value
* {@code 0.0d} and {@code Double.NaN} is considered greater than any
* other value and all {@code Double.NaN} values are considered equal.
*
* @param a the array to be sorted
* @param left the index of the first element, inclusively, to be sorted
* @param right the index of the last element, inclusively, to be sorted
*/
static void sort(double[] a, int left, int right) {
public static void sort(double[] a) {
sortNegZeroAndNaN(a, 0, a.length - 1);
}
/**
* Sorts the specified range of the array into ascending order. The range
* to be sorted extends from the index {@code fromIndex}, inclusive, to
* the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
* the range to be sorted is empty.
*
* <p>The {@code <} relation does not provide a total order on all double
* values: {@code -0.0d == 0.0d} is {@code true} and a {@code Double.NaN}
* value compares neither less than, greater than, nor equal to any value,
* even itself. This method uses the total order imposed by the method
* {@link Double#compareTo}: {@code -0.0d} is treated as less than value
* {@code 0.0d} and {@code Double.NaN} is considered greater than any
* other value and all {@code Double.NaN} values are considered equal.
*
* @param a the array to be sorted
* @param fromIndex the index of the first element, inclusive, to be sorted
* @param toIndex the index of the last element, exclusive, to be sorted
* @throws IllegalArgumentException if {@code fromIndex > toIndex}
* @throws ArrayIndexOutOfBoundsException
* if {@code fromIndex < 0} or {@code toIndex > a.length}
*/
public static void sort(double[] a, int fromIndex, int toIndex) {
rangeCheck(a.length, fromIndex, toIndex);
sortNegZeroAndNaN(a, fromIndex, toIndex - 1);
}
/**
* Sorts the specified range of the array into ascending order. The
* sort is done in three phases to avoid expensive comparisons in the
* inner loop. The comparisons would be expensive due to anomalies
* associated with negative zero {@code -0.0d} and {@code Double.NaN}.
*
* @param a the array to be sorted
* @param left the index of the first element, inclusive, to be sorted
* @param right the index of the last element, inclusive, to be sorted
*/
private static void sortNegZeroAndNaN(double[] a, int left, int right) {
/*
* Phase 1: Count negative zeros and move NaNs to end of array
*/
final long NEGATIVE_ZERO = Double.doubleToLongBits(-0.0d);
int numNegativeZeros = 0;
int n = right;
for (int k = left; k <= n; k++) {
double ak = a[k];
if (ak == 0.0d && NEGATIVE_ZERO == Double.doubleToLongBits(ak)) {
a[k] = 0.0d;
numNegativeZeros++;
} else if (ak != ak) { // i.e., ak is NaN
a[k--] = a[n];
a[n--] = Double.NaN;
}
}
/*
* Phase 2: Sort everything except NaNs (which are already in place)
*/
doSort(a, left, n);
/*
* Phase 3: Turn positive zeros back into negative zeros as appropriate
*/
if (numNegativeZeros == 0) {
return;
}
// Find first zero element
int zeroIndex = findAnyZero(a, left, n);
for (int i = zeroIndex - 1; i >= left && a[i] == 0.0d; i--) {
zeroIndex = i;
}
// Turn the right number of positive zeros back into negative zeros
for (int i = zeroIndex, m = zeroIndex + numNegativeZeros; i < m; i++) {
a[i] = -0.0d;
}
}
/**
* Returns the index of some zero element in the specified range via
* binary search. The range is assumed to be sorted, and must contain
* at least one zero.
*
* @param a the array to be searched
* @param low the index of the first element, inclusive, to be searched
* @param high the index of the last element, inclusive, to be searched
*/
private static int findAnyZero(double[] a, int low, int high) {
while (true) {
int middle = (low + high) >>> 1;
double middleValue = a[middle];
if (middleValue < 0.0d) {
low = middle + 1;
} else if (middleValue > 0.0d) {
high = middle - 1;
} else { // middleValue == 0.0d
return middle;
}
}
}
/**
* Sorts the specified range of the array into ascending order. This
* method differs from the public {@code sort} method in three ways:
* {@code right} index is inclusive, it does no range checking on
* {@code left} or {@code right}, and it does not handle negative
* zeros or NaNs in the array.
*
* @param a the array to be sorted, which must not contain -0.0d and NaN
* @param left the index of the first element, inclusive, to be sorted
* @param right the index of the last element, inclusive, to be sorted
*/
private static void doSort(double[] a, int left, int right) {
// Use insertion sort on tiny arrays
if (right - left + 1 < INSERTION_SORT_THRESHOLD) {
for (int k = left + 1; k <= right; k++) {
......@@ -1373,12 +1775,12 @@ final class DualPivotQuicksort {
}
/**
* Sorts the specified range of the array into ascending order
* by Dual-Pivot Quicksort.
* Sorts the specified range of the array into ascending order by the
* Dual-Pivot Quicksort algorithm.
*
* @param a the array to be sorted
* @param left the index of the first element, inclusively, to be sorted
* @param right the index of the last element, inclusively, to be sorted
* @param left the index of the first element, inclusive, to be sorted
* @param right the index of the last element, inclusive, to be sorted
*/
private static void dualPivotQuicksort(double[] a, int left, int right) {
// Compute indices of five evenly spaced elements
......@@ -1513,8 +1915,8 @@ final class DualPivotQuicksort {
a[right] = a[great + 1]; a[great + 1] = pivot2;
// Sort left and right parts recursively, excluding known pivot values
sort(a, left, less - 2);
sort(a, great + 2, right);
doSort(a, left, less - 2);
doSort(a, great + 2, right);
/*
* If pivot1 == pivot2, all elements from center
......@@ -1550,6 +1952,23 @@ final class DualPivotQuicksort {
}
// Sort center part recursively, excluding known pivot values
sort(a, less, great);
doSort(a, less, great);
}
/**
* Checks that {@code fromIndex} and {@code toIndex} are in
* the range and throws an appropriate exception, if they aren't.
*/
private static void rangeCheck(int length, int fromIndex, int toIndex) {
if (fromIndex > toIndex) {
throw new IllegalArgumentException(
"fromIndex(" + fromIndex + ") > toIndex(" + toIndex + ")");
}
if (fromIndex < 0) {
throw new ArrayIndexOutOfBoundsException(fromIndex);
}
if (toIndex > length) {
throw new ArrayIndexOutOfBoundsException(toIndex);
}
}
}
......@@ -23,11 +23,14 @@
/*
* @test
* @bug 6880672 6896573
* @bug 6880672 6896573 6899694
* @summary Exercise Arrays.sort
* @build Sorting
* @run main Sorting -shortrun
* @author Vladimir Yaroslavskiy, Josh Bloch, Jon Bentley
*
* @author Vladimir Yaroslavskiy
* @author Jon Bentley
* @author Josh Bloch
*/
import java.util.Arrays;
......@@ -35,59 +38,300 @@ import java.util.Random;
import java.io.PrintStream;
public class Sorting {
static final PrintStream out = System.out;
static final PrintStream err = System.err;
private static final PrintStream out = System.out;
private static final PrintStream err = System.err;
// Array lengths used in a long run (default)
private static final int[] LONG_RUN_LENGTHS = {
1, 2, 3, 5, 8, 13, 21, 34, 55, 100, 1000, 10000, 100000, 1000000};
// array lengths used in a long run (default)
static final int[] LONG_RUN = {
0, 1, 2, 3, 5, 8, 13, 21, 34, 55, 100, 1000, 10000, 100000, 1000000};
// Array lengths used in a short run
private static final int[] SHORT_RUN_LENGTHS = { 1, 2, 3, 21, 55, 1000, 10000 };
// array lengths used in a short run
static final int[] SHORT_RUN = {0, 1, 2, 3, 21, 55, 1000, 10000, 500000};
// Random initial values used in a long run (default)
private static final long[] LONG_RUN_RANDOMS = {666, 0xC0FFEE, 999};
// Random initial values used in a short run
private static final long[] SHORT_RUN_RANDOMS = {666};
public static void main(String[] args) {
boolean shortRun = false;
if (args.length > 0 && args[0].equals("-shortrun"))
shortRun = true;
boolean shortRun = args.length > 0 && args[0].equals("-shortrun");
long start = System.currentTimeMillis();
if (shortRun) {
testAndCheck(SHORT_RUN_LENGTHS, SHORT_RUN_RANDOMS);
} else {
testAndCheck(LONG_RUN_LENGTHS, LONG_RUN_RANDOMS);
}
long end = System.currentTimeMillis();
out.format("PASS in %d sec.\n", Math.round((end - start) / 1E3));
}
private static void testAndCheck(int[] lengths, long[] randoms) {
for (long random : randoms) {
reset(random);
for (int len : lengths) {
testAndCheckWithCheckSum(len, random);
}
reset(random);
for (int len : lengths) {
testAndCheckWithScrambling(len, random);
}
reset(random);
for (int len : lengths) {
testAndCheckFloat(len, random);
}
reset(random);
for (int len : lengths) {
testAndCheckDouble(len, random);
}
reset(random);
for (int len : lengths) {
testAndCheckRange(len, random);
}
reset(random);
for (int len : lengths) {
testAndCheckSubArray(len, random);
}
}
}
long start = System.nanoTime();
private static void testAndCheckSubArray(int len, long random) {
int[] golden = new int[len];
testAndCheck((shortRun) ? SHORT_RUN : LONG_RUN);
for (int m = 1; m < len / 2; m *= 2) {
int fromIndex = m;
int toIndex = len - m;
long end = System.nanoTime();
prepareSubArray(golden, fromIndex, toIndex, m);
int[] test = golden.clone();
for (TypeConverter converter : TypeConverter.values()) {
out.println("Test #6: " + converter +
" len = " + len + ", m = " + m);
Object convertedGolden = converter.convert(golden);
Object convertedTest = converter.convert(test);
// outArr(test);
sortSubArray(convertedTest, fromIndex, toIndex);
// outArr(test);
checkSubArray(convertedTest, fromIndex, toIndex, m);
}
}
out.println();
out.format("PASS in %ds%n", Math.round((end - start) / 1e9));
}
static void testAndCheck(int[] lengths) {
for (int len : lengths) {
private static void testAndCheckRange(int len, long random) {
int[] golden = new int[len];
for (int m = 1; m < 2 * len; m *= 2) {
for (int i = 1; i <= len; i++) {
golden[i - 1] = i % m + m % i;
}
for (TypeConverter converter : TypeConverter.values()) {
out.println("Test #5: " + converter +
", len = " + len + ", m = " + m);
Object convertedGolden = converter.convert(golden);
sortRange(convertedGolden, m);
sortEmpty(convertedGolden);
}
}
out.println();
}
private static void testAndCheckWithCheckSum(int len, long random) {
int[] golden = new int[len];
for (int m = 1; m < 2 * len; m *= 2) {
for (UnsortedBuilder builder : UnsortedBuilder.values()) {
builder.build(golden, m);
int[] test = golden.clone();
for (TypeConverter converter : TypeConverter.values()) {
out.println("Test #1: " + converter + " " + builder +
"random = " + random + ", len = " + len +
", m = " + m);
Object convertedGolden = converter.convert(golden);
Object convertedTest = converter.convert(test);
sort(convertedTest);
checkWithCheckSum(convertedTest, convertedGolden);
}
}
}
out.println();
}
private static void testAndCheckWithScrambling(int len, long random) {
int[] golden = new int[len];
for (int m = 1; m <= 7; m++) {
if (m > len) {
break;
}
for (SortedBuilder builder : SortedBuilder.values()) {
builder.build(golden, m);
int[] test = golden.clone();
scramble(test);
for (TypeConverter converter : TypeConverter.values()) {
out.println("Test #2: " + converter + " " + builder +
"random = " + random + ", len = " + len +
", m = " + m);
Object convertedGolden = converter.convert(golden);
Object convertedTest = converter.convert(test);
sort(convertedTest);
compare(convertedTest, convertedGolden);
}
}
}
out.println();
}
private static void testAndCheckFloat(int len, long random) {
float[] golden = new float[len];
final int MAX = 10;
boolean newLine = false;
for (int a = 0; a <= MAX; a++) {
for (int g = 0; g <= MAX; g++) {
for (int z = 0; z <= MAX; z++) {
for (int n = 0; n <= MAX; n++) {
for (int p = 0; p <= MAX; p++) {
if (a + g + z + n + p > len) {
continue;
}
if (a + g + z + n + p < len) {
continue;
}
for (FloatBuilder builder : FloatBuilder.values()) {
out.println("Test #3: random = " + random +
", len = " + len + ", a = " + a + ", g = " + g +
", z = " + z + ", n = " + n + ", p = " + p);
builder.build(golden, a, g, z, n, p);
float[] test = golden.clone();
scramble(test);
// outArr(test);
sort(test);
// outArr(test);
compare(test, golden, a, n, g);
}
newLine = true;
}
}
}
}
}
if (newLine) {
out.println();
ArrayBuilder.reset();
int[] golden = new int[len];
for (int m = 1; m < 2 * len; m *= 2) {
for (ArrayBuilder builder : ArrayBuilder.values()) {
builder.build(golden, m);
int[] test = golden.clone();
for (Converter converter : Converter.values()) {
out.println("Test: " + converter + " " + builder +
"len = " + len + ", m = " + m);
Object convertedGolden = converter.convert(golden);
Object convertedTest = converter.convert(test);
sort(convertedTest);
checkWithCheckSum(convertedTest, convertedGolden);
}
}
private static void testAndCheckDouble(int len, long random) {
double[] golden = new double[len];
final int MAX = 10;
boolean newLine = false;
for (int a = 0; a <= MAX; a++) {
for (int g = 0; g <= MAX; g++) {
for (int z = 0; z <= MAX; z++) {
for (int n = 0; n <= MAX; n++) {
for (int p = 0; p <= MAX; p++) {
if (a + g + z + n + p > len) {
continue;
}
if (a + g + z + n + p < len) {
continue;
}
for (DoubleBuilder builder : DoubleBuilder.values()) {
out.println("Test #4: random = " + random +
", len = " + len + ", a = " + a + ", g = " + g +
", z = " + z + ", n = " + n + ", p = " + p);
builder.build(golden, a, g, z, n, p);
double[] test = golden.clone();
scramble(test);
// outArr(test);
sort(test);
// outArr(test);
compare(test, golden, a, n, g);
}
newLine = true;
}
}
}
}
}
if (newLine) {
out.println();
}
}
private static void prepareSubArray(int[] a, int fromIndex, int toIndex, int m) {
for (int i = 0; i < fromIndex; i++) {
a[i] = 0xBABA;
}
for (int i = fromIndex; i < toIndex; i++) {
a[i] = -i + m;
}
for (int i = toIndex; i < a.length; i++) {
a[i] = 0xDEDA;
}
}
private static void scramble(int[] a) {
int length = a.length;
for (int i = 0; i < length * 7; i++) {
swap(a, ourRandom.nextInt(length), ourRandom.nextInt(length));
}
}
private static void scramble(float[] a) {
int length = a.length;
for (int i = 0; i < length * 7; i++) {
swap(a, ourRandom.nextInt(length), ourRandom.nextInt(length));
}
}
static enum Converter {
private static void scramble(double[] a) {
int length = a.length;
for (int i = 0; i < length * 7; i++) {
swap(a, ourRandom.nextInt(length), ourRandom.nextInt(length));
}
}
private static void swap(int[] a, int i, int j) {
int t = a[i];
a[i] = a[j];
a[j] = t;
}
private static void swap(float[] a, int i, int j) {
float t = a[i];
a[i] = a[j];
a[j] = t;
}
private static void swap(double[] a, int i, int j) {
double t = a[i];
a[i] = a[j];
a[j] = t;
}
private static enum TypeConverter {
INT {
Object convert(int[] a) {
return a;
return a.clone();
}
},
LONG {
......@@ -95,7 +339,7 @@ public class Sorting {
long[] b = new long[a.length];
for (int i = 0; i < a.length; i++) {
b[i] = (int) a[i];
b[i] = (long) a[i];
}
return b;
}
......@@ -163,7 +407,161 @@ public class Sorting {
}
}
static enum ArrayBuilder {
private static enum FloatBuilder {
SIMPLE {
void build(float[] x, int a, int g, int z, int n, int p) {
int fromIndex = 0;
float negativeValue = -ourRandom.nextFloat();
float positiveValue = ourRandom.nextFloat();
writeValue(x, negativeValue, fromIndex, n);
fromIndex += n;
writeValue(x, -0.0f, fromIndex, g);
fromIndex += g;
writeValue(x, 0.0f, fromIndex, z);
fromIndex += z;
writeValue(x, positiveValue, fromIndex, p);
fromIndex += p;
writeValue(x, Float.NaN, fromIndex, a);
}
};
abstract void build(float[] x, int a, int g, int z, int n, int p);
}
private static enum DoubleBuilder {
SIMPLE {
void build(double[] x, int a, int g, int z, int n, int p) {
int fromIndex = 0;
double negativeValue = -ourRandom.nextFloat();
double positiveValue = ourRandom.nextFloat();
writeValue(x, negativeValue, fromIndex, n);
fromIndex += n;
writeValue(x, -0.0d, fromIndex, g);
fromIndex += g;
writeValue(x, 0.0d, fromIndex, z);
fromIndex += z;
writeValue(x, positiveValue, fromIndex, p);
fromIndex += p;
writeValue(x, Double.NaN, fromIndex, a);
}
};
abstract void build(double[] x, int a, int g, int z, int n, int p);
}
private static void writeValue(float[] a, float value, int fromIndex, int count) {
for (int i = fromIndex; i < fromIndex + count; i++) {
a[i] = value;
}
}
private static void compare(float[] a, float[] b, int numNaN, int numNeg, int numNegZero) {
for (int i = a.length - numNaN; i < a.length; i++) {
if (a[i] == a[i]) {
failed("On position " + i + " must be NaN instead of " + a[i]);
}
}
final int NEGATIVE_ZERO = Float.floatToIntBits(-0.0f);
for (int i = numNeg; i < numNeg + numNegZero; i++) {
if (NEGATIVE_ZERO != Float.floatToIntBits(a[i])) {
failed("On position " + i + " must be -0.0f instead of " + a[i]);
}
}
for (int i = 0; i < a.length - numNaN; i++) {
if (a[i] != b[i]) {
failed(i, "" + a[i], "" + b[i]);
}
}
}
private static void writeValue(double[] a, double value, int fromIndex, int count) {
for (int i = fromIndex; i < fromIndex + count; i++) {
a[i] = value;
}
}
private static void compare(double[] a, double[] b, int numNaN, int numNeg, int numNegZero) {
for (int i = a.length - numNaN; i < a.length; i++) {
if (a[i] == a[i]) {
failed("On position " + i + " must be NaN instead of " + a[i]);
}
}
final long NEGATIVE_ZERO = Double.doubleToLongBits(-0.0d);
for (int i = numNeg; i < numNeg + numNegZero; i++) {
if (NEGATIVE_ZERO != Double.doubleToLongBits(a[i])) {
failed("On position " + i + " must be -0.0d instead of " + a[i]);
}
}
for (int i = 0; i < a.length - numNaN; i++) {
if (a[i] != b[i]) {
failed(i, "" + a[i], "" + b[i]);
}
}
}
private static enum SortedBuilder {
REPEATED {
void build(int[] a, int m) {
int period = a.length / m;
int i = 0;
int k = 0;
while (true) {
for (int t = 1; t <= period; t++) {
if (i >= a.length) {
return;
}
a[i++] = k;
}
if (i >= a.length) {
return;
}
k++;
}
}
},
ORGAN_PIPES {
void build(int[] a, int m) {
int i = 0;
int k = m;
while (true) {
for (int t = 1; t <= m; t++) {
if (i >= a.length) {
return;
}
a[i++] = k;
}
}
}
};
abstract void build(int[] a, int m);
@Override public String toString() {
String name = name();
for (int i = name.length(); i < 12; i++) {
name += " ";
}
return name;
}
}
private static enum UnsortedBuilder {
RANDOM {
void build(int[] a, int m) {
for (int i = 0; i < a.length; i++) {
......@@ -268,41 +666,53 @@ public class Sorting {
abstract void build(int[] a, int m);
static void reset() {
ourRandom = new Random(666);
ourFirst = 0;
ourSecond = 0;
}
@Override public String toString() {
String name = name();
for (int i = name.length(); i < 12; i++) {
name += " ";
}
return name;
}
}
private static int ourFirst;
private static int ourSecond;
private static Random ourRandom = new Random(666);
private static void compare(Object test, Object golden) {
if (test instanceof int[]) {
compare((int[]) test, (int[]) golden);
} else if (test instanceof long[]) {
compare((long[]) test, (long[]) golden);
} else if (test instanceof short[]) {
compare((short[]) test, (short[]) golden);
} else if (test instanceof byte[]) {
compare((byte[]) test, (byte[]) golden);
} else if (test instanceof char[]) {
compare((char[]) test, (char[]) golden);
} else if (test instanceof float[]) {
compare((float[]) test, (float[]) golden);
} else if (test instanceof double[]) {
compare((double[]) test, (double[]) golden);
} else {
failed("Unknow type of array: " + test + " of class " +
test.getClass().getName());
}
}
static void checkWithCheckSum(Object test, Object golden) {
private static void checkWithCheckSum(Object test, Object golden) {
checkSorted(test);
checkCheckSum(test, golden);
}
static void failed(String message) {
err.format("***FAILED: %s%%n", message);
private static void failed(String message) {
err.format("\n*** FAILED: %s\n\n", message);
throw new RuntimeException("Test failed - see log file for details");
}
static void failed(int index, String value1, String value2) {
private static void failed(int index, String value1, String value2) {
failed("Array is not sorted at " + index + "-th position: " + value1 +
" and " + value2);
}
static void checkSorted(Object object) {
private static void checkSorted(Object object) {
if (object instanceof int[]) {
checkSorted((int[]) object);
} else if (object instanceof long[]) {
......@@ -323,7 +733,63 @@ public class Sorting {
}
}
static void checkSorted(int[] a) {
private static void compare(int[] a, int[] b) {
for (int i = 0; i < a.length; i++) {
if (a[i] != b[i]) {
failed(i, "" + a[i], "" + b[i]);
}
}
}
private static void compare(long[] a, long[] b) {
for (int i = 0; i < a.length; i++) {
if (a[i] != b[i]) {
failed(i, "" + a[i], "" + b[i]);
}
}
}
private static void compare(short[] a, short[] b) {
for (int i = 0; i < a.length; i++) {
if (a[i] != b[i]) {
failed(i, "" + a[i], "" + b[i]);
}
}
}
private static void compare(byte[] a, byte[] b) {
for (int i = 0; i < a.length; i++) {
if (a[i] != b[i]) {
failed(i, "" + a[i], "" + b[i]);
}
}
}
private static void compare(char[] a, char[] b) {
for (int i = 0; i < a.length; i++) {
if (a[i] != b[i]) {
failed(i, "" + a[i], "" + b[i]);
}
}
}
private static void compare(float[] a, float[] b) {
for (int i = 0; i < a.length; i++) {
if (a[i] != b[i]) {
failed(i, "" + a[i], "" + b[i]);
}
}
}
private static void compare(double[] a, double[] b) {
for (int i = 0; i < a.length; i++) {
if (a[i] != b[i]) {
failed(i, "" + a[i], "" + b[i]);
}
}
}
private static void checkSorted(int[] a) {
for (int i = 0; i < a.length - 1; i++) {
if (a[i] > a[i + 1]) {
failed(i, "" + a[i], "" + a[i + 1]);
......@@ -331,7 +797,7 @@ public class Sorting {
}
}
static void checkSorted(long[] a) {
private static void checkSorted(long[] a) {
for (int i = 0; i < a.length - 1; i++) {
if (a[i] > a[i + 1]) {
failed(i, "" + a[i], "" + a[i + 1]);
......@@ -339,7 +805,7 @@ public class Sorting {
}
}
static void checkSorted(short[] a) {
private static void checkSorted(short[] a) {
for (int i = 0; i < a.length - 1; i++) {
if (a[i] > a[i + 1]) {
failed(i, "" + a[i], "" + a[i + 1]);
......@@ -347,7 +813,7 @@ public class Sorting {
}
}
static void checkSorted(byte[] a) {
private static void checkSorted(byte[] a) {
for (int i = 0; i < a.length - 1; i++) {
if (a[i] > a[i + 1]) {
failed(i, "" + a[i], "" + a[i + 1]);
......@@ -355,7 +821,7 @@ public class Sorting {
}
}
static void checkSorted(char[] a) {
private static void checkSorted(char[] a) {
for (int i = 0; i < a.length - 1; i++) {
if (a[i] > a[i + 1]) {
failed(i, "" + a[i], "" + a[i + 1]);
......@@ -363,7 +829,7 @@ public class Sorting {
}
}
static void checkSorted(float[] a) {
private static void checkSorted(float[] a) {
for (int i = 0; i < a.length - 1; i++) {
if (a[i] > a[i + 1]) {
failed(i, "" + a[i], "" + a[i + 1]);
......@@ -371,7 +837,7 @@ public class Sorting {
}
}
static void checkSorted(double[] a) {
private static void checkSorted(double[] a) {
for (int i = 0; i < a.length - 1; i++) {
if (a[i] > a[i + 1]) {
failed(i, "" + a[i], "" + a[i + 1]);
......@@ -379,13 +845,13 @@ public class Sorting {
}
}
static void checkCheckSum(Object test, Object golden) {
private static void checkCheckSum(Object test, Object golden) {
if (checkSum(test) != checkSum(golden)) {
failed("Original and sorted arrays seems not identical");
}
}
static int checkSum(Object object) {
private static int checkSum(Object object) {
if (object instanceof int[]) {
return checkSum((int[]) object);
} else if (object instanceof long[]) {
......@@ -407,70 +873,70 @@ public class Sorting {
}
}
static int checkSum(int[] a) {
int checkSum = 0;
private static int checkSum(int[] a) {
int checkXorSum = 0;
for (int e : a) {
checkSum ^= e; // xor
checkXorSum ^= e;
}
return checkSum;
return checkXorSum;
}
static int checkSum(long[] a) {
long checkSum = 0;
private static int checkSum(long[] a) {
long checkXorSum = 0;
for (long e : a) {
checkSum ^= e; // xor
checkXorSum ^= e;
}
return (int) checkSum;
return (int) checkXorSum;
}
static int checkSum(short[] a) {
short checkSum = 0;
private static int checkSum(short[] a) {
short checkXorSum = 0;
for (short e : a) {
checkSum ^= e; // xor
checkXorSum ^= e;
}
return (int) checkSum;
return (int) checkXorSum;
}
static int checkSum(byte[] a) {
byte checkSum = 0;
private static int checkSum(byte[] a) {
byte checkXorSum = 0;
for (byte e : a) {
checkSum ^= e; // xor
checkXorSum ^= e;
}
return (int) checkSum;
return (int) checkXorSum;
}
static int checkSum(char[] a) {
char checkSum = 0;
private static int checkSum(char[] a) {
char checkXorSum = 0;
for (char e : a) {
checkSum ^= e; // xor
checkXorSum ^= e;
}
return (int) checkSum;
return (int) checkXorSum;
}
static int checkSum(float[] a) {
int checkSum = 0;
private static int checkSum(float[] a) {
int checkXorSum = 0;
for (float e : a) {
checkSum ^= (int) e; // xor
checkXorSum ^= (int) e;
}
return checkSum;
return checkXorSum;
}
static int checkSum(double[] a) {
int checkSum = 0;
private static int checkSum(double[] a) {
int checkXorSum = 0;
for (double e : a) {
checkSum ^= (int) e; // xor
checkXorSum ^= (int) e;
}
return checkSum;
return checkXorSum;
}
static void sort(Object object) {
private static void sort(Object object) {
if (object instanceof int[]) {
Arrays.sort((int[]) object);
} else if (object instanceof long[]) {
......@@ -490,4 +956,485 @@ public class Sorting {
object.getClass().getName());
}
}
private static void sortSubArray(Object object, int fromIndex, int toIndex) {
if (object instanceof int[]) {
Arrays.sort((int[]) object, fromIndex, toIndex);
} else if (object instanceof long[]) {
Arrays.sort((long[]) object, fromIndex, toIndex);
} else if (object instanceof short[]) {
Arrays.sort((short[]) object, fromIndex, toIndex);
} else if (object instanceof byte[]) {
Arrays.sort((byte[]) object, fromIndex, toIndex);
} else if (object instanceof char[]) {
Arrays.sort((char[]) object, fromIndex, toIndex);
} else if (object instanceof float[]) {
Arrays.sort((float[]) object, fromIndex, toIndex);
} else if (object instanceof double[]) {
Arrays.sort((double[]) object, fromIndex, toIndex);
} else {
failed("Unknow type of array: " + object + " of class " +
object.getClass().getName());
}
}
private static void checkSubArray(Object object, int fromIndex, int toIndex, int m) {
if (object instanceof int[]) {
checkSubArray((int[]) object, fromIndex, toIndex, m);
} else if (object instanceof long[]) {
checkSubArray((long[]) object, fromIndex, toIndex, m);
} else if (object instanceof short[]) {
checkSubArray((short[]) object, fromIndex, toIndex, m);
} else if (object instanceof byte[]) {
checkSubArray((byte[]) object, fromIndex, toIndex, m);
} else if (object instanceof char[]) {
checkSubArray((char[]) object, fromIndex, toIndex, m);
} else if (object instanceof float[]) {
checkSubArray((float[]) object, fromIndex, toIndex, m);
} else if (object instanceof double[]) {
checkSubArray((double[]) object, fromIndex, toIndex, m);
} else {
failed("Unknow type of array: " + object + " of class " +
object.getClass().getName());
}
}
private static void checkSubArray(int[] a, int fromIndex, int toIndex, int m) {
for (int i = 0; i < fromIndex; i++) {
if (a[i] != 0xBABA) {
failed("Range sort changes left element on position " + i +
": " + a[i] + ", must be " + 0xBABA);
}
}
for (int i = fromIndex; i < toIndex - 1; i++) {
if (a[i] > a[i + 1]) {
failed(i, "" + a[i], "" + a[i + 1]);
}
}
for (int i = toIndex; i < a.length; i++) {
if (a[i] != 0xDEDA) {
failed("Range sort changes right element on position " + i +
": " + a[i] + ", must be " + 0xDEDA);
}
}
}
private static void checkSubArray(byte[] a, int fromIndex, int toIndex, int m) {
for (int i = 0; i < fromIndex; i++) {
if (a[i] != (byte) 0xBABA) {
failed("Range sort changes left element on position " + i +
": " + a[i] + ", must be " + 0xBABA);
}
}
for (int i = fromIndex; i < toIndex - 1; i++) {
if (a[i] > a[i + 1]) {
failed(i, "" + a[i], "" + a[i + 1]);
}
}
for (int i = toIndex; i < a.length; i++) {
if (a[i] != (byte) 0xDEDA) {
failed("Range sort changes right element on position " + i +
": " + a[i] + ", must be " + 0xDEDA);
}
}
}
private static void checkSubArray(long[] a, int fromIndex, int toIndex, int m) {
for (int i = 0; i < fromIndex; i++) {
if (a[i] != (long) 0xBABA) {
failed("Range sort changes left element on position " + i +
": " + a[i] + ", must be " + 0xBABA);
}
}
for (int i = fromIndex; i < toIndex - 1; i++) {
if (a[i] > a[i + 1]) {
failed(i, "" + a[i], "" + a[i + 1]);
}
}
for (int i = toIndex; i < a.length; i++) {
if (a[i] != (long) 0xDEDA) {
failed("Range sort changes right element on position " + i +
": " + a[i] + ", must be " + 0xDEDA);
}
}
}
private static void checkSubArray(char[] a, int fromIndex, int toIndex, int m) {
for (int i = 0; i < fromIndex; i++) {
if (a[i] != (char) 0xBABA) {
failed("Range sort changes left element on position " + i +
": " + a[i] + ", must be " + 0xBABA);
}
}
for (int i = fromIndex; i < toIndex - 1; i++) {
if (a[i] > a[i + 1]) {
failed(i, "" + a[i], "" + a[i + 1]);
}
}
for (int i = toIndex; i < a.length; i++) {
if (a[i] != (char) 0xDEDA) {
failed("Range sort changes right element on position " + i +
": " + a[i] + ", must be " + 0xDEDA);
}
}
}
private static void checkSubArray(short[] a, int fromIndex, int toIndex, int m) {
for (int i = 0; i < fromIndex; i++) {
if (a[i] != (short) 0xBABA) {
failed("Range sort changes left element on position " + i +
": " + a[i] + ", must be " + 0xBABA);
}
}
for (int i = fromIndex; i < toIndex - 1; i++) {
if (a[i] > a[i + 1]) {
failed(i, "" + a[i], "" + a[i + 1]);
}
}
for (int i = toIndex; i < a.length; i++) {
if (a[i] != (short) 0xDEDA) {
failed("Range sort changes right element on position " + i +
": " + a[i] + ", must be " + 0xDEDA);
}
}
}
private static void checkSubArray(float[] a, int fromIndex, int toIndex, int m) {
for (int i = 0; i < fromIndex; i++) {
if (a[i] != (float) 0xBABA) {
failed("Range sort changes left element on position " + i +
": " + a[i] + ", must be " + 0xBABA);
}
}
for (int i = fromIndex; i < toIndex - 1; i++) {
if (a[i] > a[i + 1]) {
failed(i, "" + a[i], "" + a[i + 1]);
}
}
for (int i = toIndex; i < a.length; i++) {
if (a[i] != (float) 0xDEDA) {
failed("Range sort changes right element on position " + i +
": " + a[i] + ", must be " + 0xDEDA);
}
}
}
private static void checkSubArray(double[] a, int fromIndex, int toIndex, int m) {
for (int i = 0; i < fromIndex; i++) {
if (a[i] != (double) 0xBABA) {
failed("Range sort changes left element on position " + i +
": " + a[i] + ", must be " + 0xBABA);
}
}
for (int i = fromIndex; i < toIndex - 1; i++) {
if (a[i] > a[i + 1]) {
failed(i, "" + a[i], "" + a[i + 1]);
}
}
for (int i = toIndex; i < a.length; i++) {
if (a[i] != (double) 0xDEDA) {
failed("Range sort changes right element on position " + i +
": " + a[i] + ", must be " + 0xDEDA);
}
}
}
private static void sortRange(Object object, int m) {
if (object instanceof int[]) {
sortRange((int[]) object, m);
} else if (object instanceof long[]) {
sortRange((long[]) object, m);
} else if (object instanceof short[]) {
sortRange((short[]) object, m);
} else if (object instanceof byte[]) {
sortRange((byte[]) object, m);
} else if (object instanceof char[]) {
sortRange((char[]) object, m);
} else if (object instanceof float[]) {
sortRange((float[]) object, m);
} else if (object instanceof double[]) {
sortRange((double[]) object, m);
} else {
failed("Unknow type of array: " + object + " of class " +
object.getClass().getName());
}
}
private static void sortEmpty(Object object) {
if (object instanceof int[]) {
Arrays.sort(new int [] {});
} else if (object instanceof long[]) {
Arrays.sort(new long [] {});
} else if (object instanceof short[]) {
Arrays.sort(new short [] {});
} else if (object instanceof byte[]) {
Arrays.sort(new byte [] {});
} else if (object instanceof char[]) {
Arrays.sort(new char [] {});
} else if (object instanceof float[]) {
Arrays.sort(new float [] {});
} else if (object instanceof double[]) {
Arrays.sort(new double [] {});
} else {
failed("Unknow type of array: " + object + " of class " +
object.getClass().getName());
}
}
private static void sortRange(int[] a, int m) {
try {
Arrays.sort(a, m + 1, m);
failed("Sort does not throw IllegalArgumentException " +
" as expected: fromIndex = " + (m + 1) +
" toIndex = " + m);
}
catch (IllegalArgumentException iae) {
try {
Arrays.sort(a, -m, a.length);
failed("Sort does not throw ArrayIndexOutOfBoundsException " +
" as expected: fromIndex = " + (-m));
}
catch (ArrayIndexOutOfBoundsException aoe) {
try {
Arrays.sort(a, 0, a.length + m);
failed("Sort does not throw ArrayIndexOutOfBoundsException " +
" as expected: toIndex = " + (a.length + m));
}
catch (ArrayIndexOutOfBoundsException aie) {
return;
}
}
}
}
private static void sortRange(long[] a, int m) {
try {
Arrays.sort(a, m + 1, m);
failed("Sort does not throw IllegalArgumentException " +
" as expected: fromIndex = " + (m + 1) +
" toIndex = " + m);
}
catch (IllegalArgumentException iae) {
try {
Arrays.sort(a, -m, a.length);
failed("Sort does not throw ArrayIndexOutOfBoundsException " +
" as expected: fromIndex = " + (-m));
}
catch (ArrayIndexOutOfBoundsException aoe) {
try {
Arrays.sort(a, 0, a.length + m);
failed("Sort does not throw ArrayIndexOutOfBoundsException " +
" as expected: toIndex = " + (a.length + m));
}
catch (ArrayIndexOutOfBoundsException aie) {
return;
}
}
}
}
private static void sortRange(byte[] a, int m) {
try {
Arrays.sort(a, m + 1, m);
failed("Sort does not throw IllegalArgumentException " +
" as expected: fromIndex = " + (m + 1) +
" toIndex = " + m);
}
catch (IllegalArgumentException iae) {
try {
Arrays.sort(a, -m, a.length);
failed("Sort does not throw ArrayIndexOutOfBoundsException " +
" as expected: fromIndex = " + (-m));
}
catch (ArrayIndexOutOfBoundsException aoe) {
try {
Arrays.sort(a, 0, a.length + m);
failed("Sort does not throw ArrayIndexOutOfBoundsException " +
" as expected: toIndex = " + (a.length + m));
}
catch (ArrayIndexOutOfBoundsException aie) {
return;
}
}
}
}
private static void sortRange(short[] a, int m) {
try {
Arrays.sort(a, m + 1, m);
failed("Sort does not throw IllegalArgumentException " +
" as expected: fromIndex = " + (m + 1) +
" toIndex = " + m);
}
catch (IllegalArgumentException iae) {
try {
Arrays.sort(a, -m, a.length);
failed("Sort does not throw ArrayIndexOutOfBoundsException " +
" as expected: fromIndex = " + (-m));
}
catch (ArrayIndexOutOfBoundsException aoe) {
try {
Arrays.sort(a, 0, a.length + m);
failed("Sort does not throw ArrayIndexOutOfBoundsException " +
" as expected: toIndex = " + (a.length + m));
}
catch (ArrayIndexOutOfBoundsException aie) {
return;
}
}
}
}
private static void sortRange(char[] a, int m) {
try {
Arrays.sort(a, m + 1, m);
failed("Sort does not throw IllegalArgumentException " +
" as expected: fromIndex = " + (m + 1) +
" toIndex = " + m);
}
catch (IllegalArgumentException iae) {
try {
Arrays.sort(a, -m, a.length);
failed("Sort does not throw ArrayIndexOutOfBoundsException " +
" as expected: fromIndex = " + (-m));
}
catch (ArrayIndexOutOfBoundsException aoe) {
try {
Arrays.sort(a, 0, a.length + m);
failed("Sort does not throw ArrayIndexOutOfBoundsException " +
" as expected: toIndex = " + (a.length + m));
}
catch (ArrayIndexOutOfBoundsException aie) {
return;
}
}
}
}
private static void sortRange(float[] a, int m) {
try {
Arrays.sort(a, m + 1, m);
failed("Sort does not throw IllegalArgumentException " +
" as expected: fromIndex = " + (m + 1) +
" toIndex = " + m);
}
catch (IllegalArgumentException iae) {
try {
Arrays.sort(a, -m, a.length);
failed("Sort does not throw ArrayIndexOutOfBoundsException " +
" as expected: fromIndex = " + (-m));
}
catch (ArrayIndexOutOfBoundsException aoe) {
try {
Arrays.sort(a, 0, a.length + m);
failed("Sort does not throw ArrayIndexOutOfBoundsException " +
" as expected: toIndex = " + (a.length + m));
}
catch (ArrayIndexOutOfBoundsException aie) {
return;
}
}
}
}
private static void sortRange(double[] a, int m) {
try {
Arrays.sort(a, m + 1, m);
failed("Sort does not throw IllegalArgumentException " +
" as expected: fromIndex = " + (m + 1) +
" toIndex = " + m);
}
catch (IllegalArgumentException iae) {
try {
Arrays.sort(a, -m, a.length);
failed("Sort does not throw ArrayIndexOutOfBoundsException " +
" as expected: fromIndex = " + (-m));
}
catch (ArrayIndexOutOfBoundsException aoe) {
try {
Arrays.sort(a, 0, a.length + m);
failed("Sort does not throw ArrayIndexOutOfBoundsException " +
" as expected: toIndex = " + (a.length + m));
}
catch (ArrayIndexOutOfBoundsException aie) {
return;
}
}
}
}
private static void prepareRandom(int[] a) {
for (int i = 0; i < a.length; i++) {
a[i] = ourRandom.nextInt();
}
}
private static void reset(long seed) {
ourRandom = new Random(seed);
ourFirst = 0;
ourSecond = 0;
}
private static void outArr(int[] a) {
for (int i = 0; i < a.length; i++) {
out.print(a[i] + " ");
}
out.println();
out.println();
}
private static void outArr(float[] a) {
for (int i = 0; i < a.length; i++) {
out.print(a[i] + " ");
}
out.println();
out.println();
}
private static void outArr(double[] a) {
for (int i = 0; i < a.length; i++) {
out.print(a[i] + " ");
}
out.println();
out.println();
}
private static int ourFirst;
private static int ourSecond;
private static Random ourRandom;
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册