提交 d2ed0eea 编写于 作者: D dl

6865582: jsr166y - jsr166 maintenance update

6865571: Add a lightweight task framework known as ForkJoin
6445158: Phaser - an improved CyclicBarrier
6865579: Add TransferQueue/LinkedTransferQueue
Reviewed-by: martin, chegar, dice
上级 82dfac8e
...@@ -286,11 +286,18 @@ JAVA_JAVA_java = \ ...@@ -286,11 +286,18 @@ JAVA_JAVA_java = \
java/util/concurrent/ExecutorService.java \ java/util/concurrent/ExecutorService.java \
java/util/concurrent/ExecutorCompletionService.java \ java/util/concurrent/ExecutorCompletionService.java \
java/util/concurrent/Executors.java \ java/util/concurrent/Executors.java \
java/util/concurrent/ForkJoinPool.java \
java/util/concurrent/ForkJoinTask.java \
java/util/concurrent/ForkJoinWorkerThread.java \
java/util/concurrent/Future.java \ java/util/concurrent/Future.java \
java/util/concurrent/FutureTask.java \ java/util/concurrent/FutureTask.java \
java/util/concurrent/LinkedBlockingDeque.java \ java/util/concurrent/LinkedBlockingDeque.java \
java/util/concurrent/LinkedBlockingQueue.java \ java/util/concurrent/LinkedBlockingQueue.java \
java/util/concurrent/LinkedTransferQueue.java \
java/util/concurrent/Phaser.java \
java/util/concurrent/PriorityBlockingQueue.java \ java/util/concurrent/PriorityBlockingQueue.java \
java/util/concurrent/RecursiveAction.java \
java/util/concurrent/RecursiveTask.java \
java/util/concurrent/RejectedExecutionException.java \ java/util/concurrent/RejectedExecutionException.java \
java/util/concurrent/RejectedExecutionHandler.java \ java/util/concurrent/RejectedExecutionHandler.java \
java/util/concurrent/RunnableFuture.java \ java/util/concurrent/RunnableFuture.java \
...@@ -301,9 +308,11 @@ JAVA_JAVA_java = \ ...@@ -301,9 +308,11 @@ JAVA_JAVA_java = \
java/util/concurrent/Semaphore.java \ java/util/concurrent/Semaphore.java \
java/util/concurrent/SynchronousQueue.java \ java/util/concurrent/SynchronousQueue.java \
java/util/concurrent/ThreadFactory.java \ java/util/concurrent/ThreadFactory.java \
java/util/concurrent/ThreadLocalRandom.java \
java/util/concurrent/ThreadPoolExecutor.java \ java/util/concurrent/ThreadPoolExecutor.java \
java/util/concurrent/TimeUnit.java \ java/util/concurrent/TimeUnit.java \
java/util/concurrent/TimeoutException.java \ java/util/concurrent/TimeoutException.java \
java/util/concurrent/TransferQueue.java \
java/util/concurrent/atomic/AtomicBoolean.java \ java/util/concurrent/atomic/AtomicBoolean.java \
java/util/concurrent/atomic/AtomicInteger.java \ java/util/concurrent/atomic/AtomicInteger.java \
java/util/concurrent/atomic/AtomicIntegerArray.java \ java/util/concurrent/atomic/AtomicIntegerArray.java \
......
...@@ -256,9 +256,8 @@ public abstract class AbstractList<E> extends AbstractCollection<E> implements L ...@@ -256,9 +256,8 @@ public abstract class AbstractList<E> extends AbstractCollection<E> implements L
public boolean addAll(int index, Collection<? extends E> c) { public boolean addAll(int index, Collection<? extends E> c) {
rangeCheckForAdd(index); rangeCheckForAdd(index);
boolean modified = false; boolean modified = false;
Iterator<? extends E> e = c.iterator(); for (E e : c) {
while (e.hasNext()) { add(index++, e);
add(index++, e.next());
modified = true; modified = true;
} }
return modified; return modified;
......
...@@ -183,11 +183,9 @@ public abstract class AbstractQueue<E> ...@@ -183,11 +183,9 @@ public abstract class AbstractQueue<E>
if (c == this) if (c == this)
throw new IllegalArgumentException(); throw new IllegalArgumentException();
boolean modified = false; boolean modified = false;
Iterator<? extends E> e = c.iterator(); for (E e : c)
while (e.hasNext()) { if (add(e))
if (add(e.next()))
modified = true; modified = true;
}
return modified; return modified;
} }
......
...@@ -448,10 +448,8 @@ public class HashMap<K,V> ...@@ -448,10 +448,8 @@ public class HashMap<K,V>
} }
private void putAllForCreate(Map<? extends K, ? extends V> m) { private void putAllForCreate(Map<? extends K, ? extends V> m) {
for (Iterator<? extends Map.Entry<? extends K, ? extends V>> i = m.entrySet().iterator(); i.hasNext(); ) { for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
Map.Entry<? extends K, ? extends V> e = i.next();
putForCreate(e.getKey(), e.getValue()); putForCreate(e.getKey(), e.getValue());
}
} }
/** /**
...@@ -536,10 +534,8 @@ public class HashMap<K,V> ...@@ -536,10 +534,8 @@ public class HashMap<K,V>
resize(newCapacity); resize(newCapacity);
} }
for (Iterator<? extends Map.Entry<? extends K, ? extends V>> i = m.entrySet().iterator(); i.hasNext(); ) { for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
Map.Entry<? extends K, ? extends V> e = i.next();
put(e.getKey(), e.getValue()); put(e.getKey(), e.getValue());
}
} }
/** /**
......
...@@ -280,8 +280,8 @@ public class HashSet<E> ...@@ -280,8 +280,8 @@ public class HashSet<E>
s.writeInt(map.size()); s.writeInt(map.size());
// Write out all elements in the proper order. // Write out all elements in the proper order.
for (Iterator i=map.keySet().iterator(); i.hasNext(); ) for (E e : map.keySet())
s.writeObject(i.next()); s.writeObject(e);
} }
/** /**
......
...@@ -50,6 +50,18 @@ import sun.misc.Unsafe; ...@@ -50,6 +50,18 @@ import sun.misc.Unsafe;
* <p> * <p>
* Many applications will find the method {@link Math#random} simpler to use. * Many applications will find the method {@link Math#random} simpler to use.
* *
* <p>Instances of {@code java.util.Random} are threadsafe.
* However, the concurrent use of the same {@code java.util.Random}
* instance across threads may encounter contention and consequent
* poor performance. Consider instead using
* {@link java.util.concurrent.ThreadLocalRandom} in multithreaded
* designs.
*
* <p>Instances of {@code java.util.Random} are not cryptographically
* secure. Consider instead using {@link java.security.SecureRandom} to
* get a cryptographically secure pseudo-random number generator for use
* by security-sensitive applications.
*
* @author Frank Yellin * @author Frank Yellin
* @since 1.0 * @since 1.0
*/ */
......
...@@ -218,8 +218,8 @@ public class ArrayBlockingQueue<E> extends AbstractQueue<E> ...@@ -218,8 +218,8 @@ public class ArrayBlockingQueue<E> extends AbstractQueue<E>
if (capacity < c.size()) if (capacity < c.size())
throw new IllegalArgumentException(); throw new IllegalArgumentException();
for (Iterator<? extends E> it = c.iterator(); it.hasNext();) for (E e : c)
add(it.next()); add(e);
} }
/** /**
......
...@@ -250,8 +250,8 @@ public class ConcurrentLinkedQueue<E> extends AbstractQueue<E> ...@@ -250,8 +250,8 @@ public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
* of its elements are null * of its elements are null
*/ */
public ConcurrentLinkedQueue(Collection<? extends E> c) { public ConcurrentLinkedQueue(Collection<? extends E> c) {
for (Iterator<? extends E> it = c.iterator(); it.hasNext();) for (E e : c)
add(it.next()); add(e);
} }
// Have to override just to update the javadoc // Have to override just to update the javadoc
......
...@@ -895,7 +895,7 @@ public class ConcurrentSkipListMap<K,V> extends AbstractMap<K,V> ...@@ -895,7 +895,7 @@ public class ConcurrentSkipListMap<K,V> extends AbstractMap<K,V>
if (n != null) { if (n != null) {
Node<K,V> f = n.next; Node<K,V> f = n.next;
if (n != b.next) // inconsistent read if (n != b.next) // inconsistent read
break;; break;
Object v = n.value; Object v = n.value;
if (v == null) { // n is deleted if (v == null) { // n is deleted
n.helpDelete(b, f); n.helpDelete(b, f);
......
...@@ -148,7 +148,8 @@ import java.util.concurrent.atomic.*; ...@@ -148,7 +148,8 @@ import java.util.concurrent.atomic.*;
* *
* </pre> * </pre>
* *
* <p>Memory consistency effects: Actions in a thread prior to calling * <p>Memory consistency effects: Until the count reaches
* zero, actions in a thread prior to calling
* {@code countDown()} * {@code countDown()}
* <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a> * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
* actions following a successful return from a corresponding * actions following a successful return from a corresponding
......
...@@ -332,8 +332,8 @@ public interface ExecutorService extends Executor { ...@@ -332,8 +332,8 @@ public interface ExecutorService extends Executor {
* @param tasks the collection of tasks * @param tasks the collection of tasks
* @return the result returned by one of the tasks * @return the result returned by one of the tasks
* @throws InterruptedException if interrupted while waiting * @throws InterruptedException if interrupted while waiting
* @throws NullPointerException if tasks or any of its elements * @throws NullPointerException if tasks or any element task
* are <tt>null</tt> * subject to execution is <tt>null</tt>
* @throws IllegalArgumentException if tasks is empty * @throws IllegalArgumentException if tasks is empty
* @throws ExecutionException if no task successfully completes * @throws ExecutionException if no task successfully completes
* @throws RejectedExecutionException if tasks cannot be scheduled * @throws RejectedExecutionException if tasks cannot be scheduled
...@@ -356,8 +356,8 @@ public interface ExecutorService extends Executor { ...@@ -356,8 +356,8 @@ public interface ExecutorService extends Executor {
* @param unit the time unit of the timeout argument * @param unit the time unit of the timeout argument
* @return the result returned by one of the tasks. * @return the result returned by one of the tasks.
* @throws InterruptedException if interrupted while waiting * @throws InterruptedException if interrupted while waiting
* @throws NullPointerException if tasks, any of its elements, or * @throws NullPointerException if tasks, or unit, or any element
* unit are <tt>null</tt> * task subject to execution is <tt>null</tt>
* @throws TimeoutException if the given timeout elapses before * @throws TimeoutException if the given timeout elapses before
* any task successfully completes * any task successfully completes
* @throws ExecutionException if no task successfully completes * @throws ExecutionException if no task successfully completes
......
/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Sun designates this
* particular file as subject to the "Classpath" exception as provided
* by Sun in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*/
/*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file:
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/licenses/publicdomain
*/
package java.util.concurrent;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.LockSupport;
import java.util.concurrent.locks.ReentrantLock;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicLong;
/**
* An {@link ExecutorService} for running {@link ForkJoinTask}s.
* A {@code ForkJoinPool} provides the entry point for submissions
* from non-{@code ForkJoinTask}s, as well as management and
* monitoring operations.
*
* <p>A {@code ForkJoinPool} differs from other kinds of {@link
* ExecutorService} mainly by virtue of employing
* <em>work-stealing</em>: all threads in the pool attempt to find and
* execute subtasks created by other active tasks (eventually blocking
* waiting for work if none exist). This enables efficient processing
* when most tasks spawn other subtasks (as do most {@code
* ForkJoinTask}s). A {@code ForkJoinPool} may also be used for mixed
* execution of some plain {@code Runnable}- or {@code Callable}-
* based activities along with {@code ForkJoinTask}s. When setting
* {@linkplain #setAsyncMode async mode}, a {@code ForkJoinPool} may
* also be appropriate for use with fine-grained tasks of any form
* that are never joined. Otherwise, other {@code ExecutorService}
* implementations are typically more appropriate choices.
*
* <p>A {@code ForkJoinPool} is constructed with a given target
* parallelism level; by default, equal to the number of available
* processors. Unless configured otherwise via {@link
* #setMaintainsParallelism}, the pool attempts to maintain this
* number of active (or available) threads by dynamically adding,
* suspending, or resuming internal worker threads, even if some tasks
* are stalled waiting to join others. However, no such adjustments
* are performed in the face of blocked IO or other unmanaged
* synchronization. The nested {@link ManagedBlocker} interface
* enables extension of the kinds of synchronization accommodated.
* The target parallelism level may also be changed dynamically
* ({@link #setParallelism}). The total number of threads may be
* limited using method {@link #setMaximumPoolSize}, in which case it
* may become possible for the activities of a pool to stall due to
* the lack of available threads to process new tasks.
*
* <p>In addition to execution and lifecycle control methods, this
* class provides status check methods (for example
* {@link #getStealCount}) that are intended to aid in developing,
* tuning, and monitoring fork/join applications. Also, method
* {@link #toString} returns indications of pool state in a
* convenient form for informal monitoring.
*
* <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
* used for all parallel task execution in a program or subsystem.
* Otherwise, use would not usually outweigh the construction and
* bookkeeping overhead of creating a large set of threads. For
* example, a common pool could be used for the {@code SortTasks}
* illustrated in {@link RecursiveAction}. Because {@code
* ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
* daemon} mode, there is typically no need to explicitly {@link
* #shutdown} such a pool upon program exit.
*
* <pre>
* static final ForkJoinPool mainPool = new ForkJoinPool();
* ...
* public void sort(long[] array) {
* mainPool.invoke(new SortTask(array, 0, array.length));
* }
* </pre>
*
* <p><b>Implementation notes</b>: This implementation restricts the
* maximum number of running threads to 32767. Attempts to create
* pools with greater than the maximum number result in
* {@code IllegalArgumentException}.
*
* <p>This implementation rejects submitted tasks (that is, by throwing
* {@link RejectedExecutionException}) only when the pool is shut down.
*
* @since 1.7
* @author Doug Lea
*/
public class ForkJoinPool extends AbstractExecutorService {
/*
* See the extended comments interspersed below for design,
* rationale, and walkthroughs.
*/
/** Mask for packing and unpacking shorts */
private static final int shortMask = 0xffff;
/** Max pool size -- must be a power of two minus 1 */
private static final int MAX_THREADS = 0x7FFF;
/**
* Factory for creating new {@link ForkJoinWorkerThread}s.
* A {@code ForkJoinWorkerThreadFactory} must be defined and used
* for {@code ForkJoinWorkerThread} subclasses that extend base
* functionality or initialize threads with different contexts.
*/
public static interface ForkJoinWorkerThreadFactory {
/**
* Returns a new worker thread operating in the given pool.
*
* @param pool the pool this thread works in
* @throws NullPointerException if the pool is null
*/
public ForkJoinWorkerThread newThread(ForkJoinPool pool);
}
/**
* Default ForkJoinWorkerThreadFactory implementation; creates a
* new ForkJoinWorkerThread.
*/
static class DefaultForkJoinWorkerThreadFactory
implements ForkJoinWorkerThreadFactory {
public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
try {
return new ForkJoinWorkerThread(pool);
} catch (OutOfMemoryError oom) {
return null;
}
}
}
/**
* Creates a new ForkJoinWorkerThread. This factory is used unless
* overridden in ForkJoinPool constructors.
*/
public static final ForkJoinWorkerThreadFactory
defaultForkJoinWorkerThreadFactory =
new DefaultForkJoinWorkerThreadFactory();
/**
* Permission required for callers of methods that may start or
* kill threads.
*/
private static final RuntimePermission modifyThreadPermission =
new RuntimePermission("modifyThread");
/**
* If there is a security manager, makes sure caller has
* permission to modify threads.
*/
private static void checkPermission() {
SecurityManager security = System.getSecurityManager();
if (security != null)
security.checkPermission(modifyThreadPermission);
}
/**
* Generator for assigning sequence numbers as pool names.
*/
private static final AtomicInteger poolNumberGenerator =
new AtomicInteger();
/**
* Array holding all worker threads in the pool. Initialized upon
* first use. Array size must be a power of two. Updates and
* replacements are protected by workerLock, but it is always kept
* in a consistent enough state to be randomly accessed without
* locking by workers performing work-stealing.
*/
volatile ForkJoinWorkerThread[] workers;
/**
* Lock protecting access to workers.
*/
private final ReentrantLock workerLock;
/**
* Condition for awaitTermination.
*/
private final Condition termination;
/**
* The uncaught exception handler used when any worker
* abruptly terminates
*/
private Thread.UncaughtExceptionHandler ueh;
/**
* Creation factory for worker threads.
*/
private final ForkJoinWorkerThreadFactory factory;
/**
* Head of stack of threads that were created to maintain
* parallelism when other threads blocked, but have since
* suspended when the parallelism level rose.
*/
private volatile WaitQueueNode spareStack;
/**
* Sum of per-thread steal counts, updated only when threads are
* idle or terminating.
*/
private final AtomicLong stealCount;
/**
* Queue for external submissions.
*/
private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
/**
* Head of Treiber stack for barrier sync. See below for explanation.
*/
private volatile WaitQueueNode syncStack;
/**
* The count for event barrier
*/
private volatile long eventCount;
/**
* Pool number, just for assigning useful names to worker threads
*/
private final int poolNumber;
/**
* The maximum allowed pool size
*/
private volatile int maxPoolSize;
/**
* The desired parallelism level, updated only under workerLock.
*/
private volatile int parallelism;
/**
* True if use local fifo, not default lifo, for local polling
*/
private volatile boolean locallyFifo;
/**
* Holds number of total (i.e., created and not yet terminated)
* and running (i.e., not blocked on joins or other managed sync)
* threads, packed into one int to ensure consistent snapshot when
* making decisions about creating and suspending spare
* threads. Updated only by CAS. Note: CASes in
* updateRunningCount and preJoin assume that running active count
* is in low word, so need to be modified if this changes.
*/
private volatile int workerCounts;
private static int totalCountOf(int s) { return s >>> 16; }
private static int runningCountOf(int s) { return s & shortMask; }
private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
/**
* Adds delta (which may be negative) to running count. This must
* be called before (with negative arg) and after (with positive)
* any managed synchronization (i.e., mainly, joins).
*
* @param delta the number to add
*/
final void updateRunningCount(int delta) {
int s;
do {} while (!casWorkerCounts(s = workerCounts, s + delta));
}
/**
* Adds delta (which may be negative) to both total and running
* count. This must be called upon creation and termination of
* worker threads.
*
* @param delta the number to add
*/
private void updateWorkerCount(int delta) {
int d = delta + (delta << 16); // add to both lo and hi parts
int s;
do {} while (!casWorkerCounts(s = workerCounts, s + d));
}
/**
* Lifecycle control. High word contains runState, low word
* contains the number of workers that are (probably) executing
* tasks. This value is atomically incremented before a worker
* gets a task to run, and decremented when worker has no tasks
* and cannot find any. These two fields are bundled together to
* support correct termination triggering. Note: activeCount
* CAS'es cheat by assuming active count is in low word, so need
* to be modified if this changes
*/
private volatile int runControl;
// RunState values. Order among values matters
private static final int RUNNING = 0;
private static final int SHUTDOWN = 1;
private static final int TERMINATING = 2;
private static final int TERMINATED = 3;
private static int runStateOf(int c) { return c >>> 16; }
private static int activeCountOf(int c) { return c & shortMask; }
private static int runControlFor(int r, int a) { return (r << 16) + a; }
/**
* Tries incrementing active count; fails on contention.
* Called by workers before/during executing tasks.
*
* @return true on success
*/
final boolean tryIncrementActiveCount() {
int c = runControl;
return casRunControl(c, c+1);
}
/**
* Tries decrementing active count; fails on contention.
* Possibly triggers termination on success.
* Called by workers when they can't find tasks.
*
* @return true on success
*/
final boolean tryDecrementActiveCount() {
int c = runControl;
int nextc = c - 1;
if (!casRunControl(c, nextc))
return false;
if (canTerminateOnShutdown(nextc))
terminateOnShutdown();
return true;
}
/**
* Returns {@code true} if argument represents zero active count
* and nonzero runstate, which is the triggering condition for
* terminating on shutdown.
*/
private static boolean canTerminateOnShutdown(int c) {
// i.e. least bit is nonzero runState bit
return ((c & -c) >>> 16) != 0;
}
/**
* Transition run state to at least the given state. Return true
* if not already at least given state.
*/
private boolean transitionRunStateTo(int state) {
for (;;) {
int c = runControl;
if (runStateOf(c) >= state)
return false;
if (casRunControl(c, runControlFor(state, activeCountOf(c))))
return true;
}
}
/**
* Controls whether to add spares to maintain parallelism
*/
private volatile boolean maintainsParallelism;
// Constructors
/**
* Creates a {@code ForkJoinPool} with parallelism equal to {@link
* java.lang.Runtime#availableProcessors}, and using the {@linkplain
* #defaultForkJoinWorkerThreadFactory default thread factory}.
*
* @throws SecurityException if a security manager exists and
* the caller is not permitted to modify threads
* because it does not hold {@link
* java.lang.RuntimePermission}{@code ("modifyThread")}
*/
public ForkJoinPool() {
this(Runtime.getRuntime().availableProcessors(),
defaultForkJoinWorkerThreadFactory);
}
/**
* Creates a {@code ForkJoinPool} with the indicated parallelism
* level and using the {@linkplain
* #defaultForkJoinWorkerThreadFactory default thread factory}.
*
* @param parallelism the parallelism level
* @throws IllegalArgumentException if parallelism less than or
* equal to zero, or greater than implementation limit
* @throws SecurityException if a security manager exists and
* the caller is not permitted to modify threads
* because it does not hold {@link
* java.lang.RuntimePermission}{@code ("modifyThread")}
*/
public ForkJoinPool(int parallelism) {
this(parallelism, defaultForkJoinWorkerThreadFactory);
}
/**
* Creates a {@code ForkJoinPool} with parallelism equal to {@link
* java.lang.Runtime#availableProcessors}, and using the given
* thread factory.
*
* @param factory the factory for creating new threads
* @throws NullPointerException if the factory is null
* @throws SecurityException if a security manager exists and
* the caller is not permitted to modify threads
* because it does not hold {@link
* java.lang.RuntimePermission}{@code ("modifyThread")}
*/
public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
this(Runtime.getRuntime().availableProcessors(), factory);
}
/**
* Creates a {@code ForkJoinPool} with the given parallelism and
* thread factory.
*
* @param parallelism the parallelism level
* @param factory the factory for creating new threads
* @throws IllegalArgumentException if parallelism less than or
* equal to zero, or greater than implementation limit
* @throws NullPointerException if the factory is null
* @throws SecurityException if a security manager exists and
* the caller is not permitted to modify threads
* because it does not hold {@link
* java.lang.RuntimePermission}{@code ("modifyThread")}
*/
public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
if (parallelism <= 0 || parallelism > MAX_THREADS)
throw new IllegalArgumentException();
if (factory == null)
throw new NullPointerException();
checkPermission();
this.factory = factory;
this.parallelism = parallelism;
this.maxPoolSize = MAX_THREADS;
this.maintainsParallelism = true;
this.poolNumber = poolNumberGenerator.incrementAndGet();
this.workerLock = new ReentrantLock();
this.termination = workerLock.newCondition();
this.stealCount = new AtomicLong();
this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
// worker array and workers are lazily constructed
}
/**
* Creates a new worker thread using factory.
*
* @param index the index to assign worker
* @return new worker, or null if factory failed
*/
private ForkJoinWorkerThread createWorker(int index) {
Thread.UncaughtExceptionHandler h = ueh;
ForkJoinWorkerThread w = factory.newThread(this);
if (w != null) {
w.poolIndex = index;
w.setDaemon(true);
w.setAsyncMode(locallyFifo);
w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
if (h != null)
w.setUncaughtExceptionHandler(h);
}
return w;
}
/**
* Returns a good size for worker array given pool size.
* Currently requires size to be a power of two.
*/
private static int arraySizeFor(int poolSize) {
if (poolSize <= 1)
return 1;
// See Hackers Delight, sec 3.2
int c = poolSize >= MAX_THREADS ? MAX_THREADS : (poolSize - 1);
c |= c >>> 1;
c |= c >>> 2;
c |= c >>> 4;
c |= c >>> 8;
c |= c >>> 16;
return c + 1;
}
/**
* Creates or resizes array if necessary to hold newLength.
* Call only under exclusion.
*
* @return the array
*/
private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
ForkJoinWorkerThread[] ws = workers;
if (ws == null)
return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
else if (newLength > ws.length)
return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
else
return ws;
}
/**
* Tries to shrink workers into smaller array after one or more terminate.
*/
private void tryShrinkWorkerArray() {
ForkJoinWorkerThread[] ws = workers;
if (ws != null) {
int len = ws.length;
int last = len - 1;
while (last >= 0 && ws[last] == null)
--last;
int newLength = arraySizeFor(last+1);
if (newLength < len)
workers = Arrays.copyOf(ws, newLength);
}
}
/**
* Initializes workers if necessary.
*/
final void ensureWorkerInitialization() {
ForkJoinWorkerThread[] ws = workers;
if (ws == null) {
final ReentrantLock lock = this.workerLock;
lock.lock();
try {
ws = workers;
if (ws == null) {
int ps = parallelism;
ws = ensureWorkerArrayCapacity(ps);
for (int i = 0; i < ps; ++i) {
ForkJoinWorkerThread w = createWorker(i);
if (w != null) {
ws[i] = w;
w.start();
updateWorkerCount(1);
}
}
}
} finally {
lock.unlock();
}
}
}
/**
* Worker creation and startup for threads added via setParallelism.
*/
private void createAndStartAddedWorkers() {
resumeAllSpares(); // Allow spares to convert to nonspare
int ps = parallelism;
ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
int len = ws.length;
// Sweep through slots, to keep lowest indices most populated
int k = 0;
while (k < len) {
if (ws[k] != null) {
++k;
continue;
}
int s = workerCounts;
int tc = totalCountOf(s);
int rc = runningCountOf(s);
if (rc >= ps || tc >= ps)
break;
if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
ForkJoinWorkerThread w = createWorker(k);
if (w != null) {
ws[k++] = w;
w.start();
}
else {
updateWorkerCount(-1); // back out on failed creation
break;
}
}
}
}
// Execution methods
/**
* Common code for execute, invoke and submit
*/
private <T> void doSubmit(ForkJoinTask<T> task) {
if (task == null)
throw new NullPointerException();
if (isShutdown())
throw new RejectedExecutionException();
if (workers == null)
ensureWorkerInitialization();
submissionQueue.offer(task);
signalIdleWorkers();
}
/**
* Performs the given task, returning its result upon completion.
*
* @param task the task
* @return the task's result
* @throws NullPointerException if the task is null
* @throws RejectedExecutionException if the task cannot be
* scheduled for execution
*/
public <T> T invoke(ForkJoinTask<T> task) {
doSubmit(task);
return task.join();
}
/**
* Arranges for (asynchronous) execution of the given task.
*
* @param task the task
* @throws NullPointerException if the task is null
* @throws RejectedExecutionException if the task cannot be
* scheduled for execution
*/
public void execute(ForkJoinTask<?> task) {
doSubmit(task);
}
// AbstractExecutorService methods
/**
* @throws NullPointerException if the task is null
* @throws RejectedExecutionException if the task cannot be
* scheduled for execution
*/
public void execute(Runnable task) {
ForkJoinTask<?> job;
if (task instanceof ForkJoinTask<?>) // avoid re-wrap
job = (ForkJoinTask<?>) task;
else
job = ForkJoinTask.adapt(task, null);
doSubmit(job);
}
/**
* @throws NullPointerException if the task is null
* @throws RejectedExecutionException if the task cannot be
* scheduled for execution
*/
public <T> ForkJoinTask<T> submit(Callable<T> task) {
ForkJoinTask<T> job = ForkJoinTask.adapt(task);
doSubmit(job);
return job;
}
/**
* @throws NullPointerException if the task is null
* @throws RejectedExecutionException if the task cannot be
* scheduled for execution
*/
public <T> ForkJoinTask<T> submit(Runnable task, T result) {
ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
doSubmit(job);
return job;
}
/**
* @throws NullPointerException if the task is null
* @throws RejectedExecutionException if the task cannot be
* scheduled for execution
*/
public ForkJoinTask<?> submit(Runnable task) {
ForkJoinTask<?> job;
if (task instanceof ForkJoinTask<?>) // avoid re-wrap
job = (ForkJoinTask<?>) task;
else
job = ForkJoinTask.adapt(task, null);
doSubmit(job);
return job;
}
/**
* Submits a ForkJoinTask for execution.
*
* @param task the task to submit
* @return the task
* @throws NullPointerException if the task is null
* @throws RejectedExecutionException if the task cannot be
* scheduled for execution
*/
public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
doSubmit(task);
return task;
}
/**
* @throws NullPointerException {@inheritDoc}
* @throws RejectedExecutionException {@inheritDoc}
*/
public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
ArrayList<ForkJoinTask<T>> forkJoinTasks =
new ArrayList<ForkJoinTask<T>>(tasks.size());
for (Callable<T> task : tasks)
forkJoinTasks.add(ForkJoinTask.adapt(task));
invoke(new InvokeAll<T>(forkJoinTasks));
@SuppressWarnings({"unchecked", "rawtypes"})
List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
return futures;
}
static final class InvokeAll<T> extends RecursiveAction {
final ArrayList<ForkJoinTask<T>> tasks;
InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
public void compute() {
try { invokeAll(tasks); }
catch (Exception ignore) {}
}
private static final long serialVersionUID = -7914297376763021607L;
}
// Configuration and status settings and queries
/**
* Returns the factory used for constructing new workers.
*
* @return the factory used for constructing new workers
*/
public ForkJoinWorkerThreadFactory getFactory() {
return factory;
}
/**
* Returns the handler for internal worker threads that terminate
* due to unrecoverable errors encountered while executing tasks.
*
* @return the handler, or {@code null} if none
*/
public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
Thread.UncaughtExceptionHandler h;
final ReentrantLock lock = this.workerLock;
lock.lock();
try {
h = ueh;
} finally {
lock.unlock();
}
return h;
}
/**
* Sets the handler for internal worker threads that terminate due
* to unrecoverable errors encountered while executing tasks.
* Unless set, the current default or ThreadGroup handler is used
* as handler.
*
* @param h the new handler
* @return the old handler, or {@code null} if none
* @throws SecurityException if a security manager exists and
* the caller is not permitted to modify threads
* because it does not hold {@link
* java.lang.RuntimePermission}{@code ("modifyThread")}
*/
public Thread.UncaughtExceptionHandler
setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
checkPermission();
Thread.UncaughtExceptionHandler old = null;
final ReentrantLock lock = this.workerLock;
lock.lock();
try {
old = ueh;
ueh = h;
ForkJoinWorkerThread[] ws = workers;
if (ws != null) {
for (int i = 0; i < ws.length; ++i) {
ForkJoinWorkerThread w = ws[i];
if (w != null)
w.setUncaughtExceptionHandler(h);
}
}
} finally {
lock.unlock();
}
return old;
}
/**
* Sets the target parallelism level of this pool.
*
* @param parallelism the target parallelism
* @throws IllegalArgumentException if parallelism less than or
* equal to zero or greater than maximum size bounds
* @throws SecurityException if a security manager exists and
* the caller is not permitted to modify threads
* because it does not hold {@link
* java.lang.RuntimePermission}{@code ("modifyThread")}
*/
public void setParallelism(int parallelism) {
checkPermission();
if (parallelism <= 0 || parallelism > maxPoolSize)
throw new IllegalArgumentException();
final ReentrantLock lock = this.workerLock;
lock.lock();
try {
if (isProcessingTasks()) {
int p = this.parallelism;
this.parallelism = parallelism;
if (parallelism > p)
createAndStartAddedWorkers();
else
trimSpares();
}
} finally {
lock.unlock();
}
signalIdleWorkers();
}
/**
* Returns the targeted parallelism level of this pool.
*
* @return the targeted parallelism level of this pool
*/
public int getParallelism() {
return parallelism;
}
/**
* Returns the number of worker threads that have started but not
* yet terminated. This result returned by this method may differ
* from {@link #getParallelism} when threads are created to
* maintain parallelism when others are cooperatively blocked.
*
* @return the number of worker threads
*/
public int getPoolSize() {
return totalCountOf(workerCounts);
}
/**
* Returns the maximum number of threads allowed to exist in the
* pool. Unless set using {@link #setMaximumPoolSize}, the
* maximum is an implementation-defined value designed only to
* prevent runaway growth.
*
* @return the maximum
*/
public int getMaximumPoolSize() {
return maxPoolSize;
}
/**
* Sets the maximum number of threads allowed to exist in the
* pool. The given value should normally be greater than or equal
* to the {@link #getParallelism parallelism} level. Setting this
* value has no effect on current pool size. It controls
* construction of new threads.
*
* @throws IllegalArgumentException if negative or greater than
* internal implementation limit
*/
public void setMaximumPoolSize(int newMax) {
if (newMax < 0 || newMax > MAX_THREADS)
throw new IllegalArgumentException();
maxPoolSize = newMax;
}
/**
* Returns {@code true} if this pool dynamically maintains its
* target parallelism level. If false, new threads are added only
* to avoid possible starvation. This setting is by default true.
*
* @return {@code true} if maintains parallelism
*/
public boolean getMaintainsParallelism() {
return maintainsParallelism;
}
/**
* Sets whether this pool dynamically maintains its target
* parallelism level. If false, new threads are added only to
* avoid possible starvation.
*
* @param enable {@code true} to maintain parallelism
*/
public void setMaintainsParallelism(boolean enable) {
maintainsParallelism = enable;
}
/**
* Establishes local first-in-first-out scheduling mode for forked
* tasks that are never joined. This mode may be more appropriate
* than default locally stack-based mode in applications in which
* worker threads only process asynchronous tasks. This method is
* designed to be invoked only when the pool is quiescent, and
* typically only before any tasks are submitted. The effects of
* invocations at other times may be unpredictable.
*
* @param async if {@code true}, use locally FIFO scheduling
* @return the previous mode
* @see #getAsyncMode
*/
public boolean setAsyncMode(boolean async) {
boolean oldMode = locallyFifo;
locallyFifo = async;
ForkJoinWorkerThread[] ws = workers;
if (ws != null) {
for (int i = 0; i < ws.length; ++i) {
ForkJoinWorkerThread t = ws[i];
if (t != null)
t.setAsyncMode(async);
}
}
return oldMode;
}
/**
* Returns {@code true} if this pool uses local first-in-first-out
* scheduling mode for forked tasks that are never joined.
*
* @return {@code true} if this pool uses async mode
* @see #setAsyncMode
*/
public boolean getAsyncMode() {
return locallyFifo;
}
/**
* Returns an estimate of the number of worker threads that are
* not blocked waiting to join tasks or for other managed
* synchronization.
*
* @return the number of worker threads
*/
public int getRunningThreadCount() {
return runningCountOf(workerCounts);
}
/**
* Returns an estimate of the number of threads that are currently
* stealing or executing tasks. This method may overestimate the
* number of active threads.
*
* @return the number of active threads
*/
public int getActiveThreadCount() {
return activeCountOf(runControl);
}
/**
* Returns an estimate of the number of threads that are currently
* idle waiting for tasks. This method may underestimate the
* number of idle threads.
*
* @return the number of idle threads
*/
final int getIdleThreadCount() {
int c = runningCountOf(workerCounts) - activeCountOf(runControl);
return (c <= 0) ? 0 : c;
}
/**
* Returns {@code true} if all worker threads are currently idle.
* An idle worker is one that cannot obtain a task to execute
* because none are available to steal from other threads, and
* there are no pending submissions to the pool. This method is
* conservative; it might not return {@code true} immediately upon
* idleness of all threads, but will eventually become true if
* threads remain inactive.
*
* @return {@code true} if all threads are currently idle
*/
public boolean isQuiescent() {
return activeCountOf(runControl) == 0;
}
/**
* Returns an estimate of the total number of tasks stolen from
* one thread's work queue by another. The reported value
* underestimates the actual total number of steals when the pool
* is not quiescent. This value may be useful for monitoring and
* tuning fork/join programs: in general, steal counts should be
* high enough to keep threads busy, but low enough to avoid
* overhead and contention across threads.
*
* @return the number of steals
*/
public long getStealCount() {
return stealCount.get();
}
/**
* Accumulates steal count from a worker.
* Call only when worker known to be idle.
*/
private void updateStealCount(ForkJoinWorkerThread w) {
int sc = w.getAndClearStealCount();
if (sc != 0)
stealCount.addAndGet(sc);
}
/**
* Returns an estimate of the total number of tasks currently held
* in queues by worker threads (but not including tasks submitted
* to the pool that have not begun executing). This value is only
* an approximation, obtained by iterating across all threads in
* the pool. This method may be useful for tuning task
* granularities.
*
* @return the number of queued tasks
*/
public long getQueuedTaskCount() {
long count = 0;
ForkJoinWorkerThread[] ws = workers;
if (ws != null) {
for (int i = 0; i < ws.length; ++i) {
ForkJoinWorkerThread t = ws[i];
if (t != null)
count += t.getQueueSize();
}
}
return count;
}
/**
* Returns an estimate of the number of tasks submitted to this
* pool that have not yet begun executing. This method takes time
* proportional to the number of submissions.
*
* @return the number of queued submissions
*/
public int getQueuedSubmissionCount() {
return submissionQueue.size();
}
/**
* Returns {@code true} if there are any tasks submitted to this
* pool that have not yet begun executing.
*
* @return {@code true} if there are any queued submissions
*/
public boolean hasQueuedSubmissions() {
return !submissionQueue.isEmpty();
}
/**
* Removes and returns the next unexecuted submission if one is
* available. This method may be useful in extensions to this
* class that re-assign work in systems with multiple pools.
*
* @return the next submission, or {@code null} if none
*/
protected ForkJoinTask<?> pollSubmission() {
return submissionQueue.poll();
}
/**
* Removes all available unexecuted submitted and forked tasks
* from scheduling queues and adds them to the given collection,
* without altering their execution status. These may include
* artificially generated or wrapped tasks. This method is
* designed to be invoked only when the pool is known to be
* quiescent. Invocations at other times may not remove all
* tasks. A failure encountered while attempting to add elements
* to collection {@code c} may result in elements being in
* neither, either or both collections when the associated
* exception is thrown. The behavior of this operation is
* undefined if the specified collection is modified while the
* operation is in progress.
*
* @param c the collection to transfer elements into
* @return the number of elements transferred
*/
protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
int n = submissionQueue.drainTo(c);
ForkJoinWorkerThread[] ws = workers;
if (ws != null) {
for (int i = 0; i < ws.length; ++i) {
ForkJoinWorkerThread w = ws[i];
if (w != null)
n += w.drainTasksTo(c);
}
}
return n;
}
/**
* Returns a string identifying this pool, as well as its state,
* including indications of run state, parallelism level, and
* worker and task counts.
*
* @return a string identifying this pool, as well as its state
*/
public String toString() {
int ps = parallelism;
int wc = workerCounts;
int rc = runControl;
long st = getStealCount();
long qt = getQueuedTaskCount();
long qs = getQueuedSubmissionCount();
return super.toString() +
"[" + runStateToString(runStateOf(rc)) +
", parallelism = " + ps +
", size = " + totalCountOf(wc) +
", active = " + activeCountOf(rc) +
", running = " + runningCountOf(wc) +
", steals = " + st +
", tasks = " + qt +
", submissions = " + qs +
"]";
}
private static String runStateToString(int rs) {
switch(rs) {
case RUNNING: return "Running";
case SHUTDOWN: return "Shutting down";
case TERMINATING: return "Terminating";
case TERMINATED: return "Terminated";
default: throw new Error("Unknown run state");
}
}
// lifecycle control
/**
* Initiates an orderly shutdown in which previously submitted
* tasks are executed, but no new tasks will be accepted.
* Invocation has no additional effect if already shut down.
* Tasks that are in the process of being submitted concurrently
* during the course of this method may or may not be rejected.
*
* @throws SecurityException if a security manager exists and
* the caller is not permitted to modify threads
* because it does not hold {@link
* java.lang.RuntimePermission}{@code ("modifyThread")}
*/
public void shutdown() {
checkPermission();
transitionRunStateTo(SHUTDOWN);
if (canTerminateOnShutdown(runControl)) {
if (workers == null) { // shutting down before workers created
final ReentrantLock lock = this.workerLock;
lock.lock();
try {
if (workers == null) {
terminate();
transitionRunStateTo(TERMINATED);
termination.signalAll();
}
} finally {
lock.unlock();
}
}
terminateOnShutdown();
}
}
/**
* Attempts to cancel and/or stop all tasks, and reject all
* subsequently submitted tasks. Tasks that are in the process of
* being submitted or executed concurrently during the course of
* this method may or may not be rejected. This method cancels
* both existing and unexecuted tasks, in order to permit
* termination in the presence of task dependencies. So the method
* always returns an empty list (unlike the case for some other
* Executors).
*
* @return an empty list
* @throws SecurityException if a security manager exists and
* the caller is not permitted to modify threads
* because it does not hold {@link
* java.lang.RuntimePermission}{@code ("modifyThread")}
*/
public List<Runnable> shutdownNow() {
checkPermission();
terminate();
return Collections.emptyList();
}
/**
* Returns {@code true} if all tasks have completed following shut down.
*
* @return {@code true} if all tasks have completed following shut down
*/
public boolean isTerminated() {
return runStateOf(runControl) == TERMINATED;
}
/**
* Returns {@code true} if the process of termination has
* commenced but not yet completed. This method may be useful for
* debugging. A return of {@code true} reported a sufficient
* period after shutdown may indicate that submitted tasks have
* ignored or suppressed interruption, causing this executor not
* to properly terminate.
*
* @return {@code true} if terminating but not yet terminated
*/
public boolean isTerminating() {
return runStateOf(runControl) == TERMINATING;
}
/**
* Returns {@code true} if this pool has been shut down.
*
* @return {@code true} if this pool has been shut down
*/
public boolean isShutdown() {
return runStateOf(runControl) >= SHUTDOWN;
}
/**
* Returns true if pool is not terminating or terminated.
* Used internally to suppress execution when terminating.
*/
final boolean isProcessingTasks() {
return runStateOf(runControl) < TERMINATING;
}
/**
* Blocks until all tasks have completed execution after a shutdown
* request, or the timeout occurs, or the current thread is
* interrupted, whichever happens first.
*
* @param timeout the maximum time to wait
* @param unit the time unit of the timeout argument
* @return {@code true} if this executor terminated and
* {@code false} if the timeout elapsed before termination
* @throws InterruptedException if interrupted while waiting
*/
public boolean awaitTermination(long timeout, TimeUnit unit)
throws InterruptedException {
long nanos = unit.toNanos(timeout);
final ReentrantLock lock = this.workerLock;
lock.lock();
try {
for (;;) {
if (isTerminated())
return true;
if (nanos <= 0)
return false;
nanos = termination.awaitNanos(nanos);
}
} finally {
lock.unlock();
}
}
// Shutdown and termination support
/**
* Callback from terminating worker. Nulls out the corresponding
* workers slot, and if terminating, tries to terminate; else
* tries to shrink workers array.
*
* @param w the worker
*/
final void workerTerminated(ForkJoinWorkerThread w) {
updateStealCount(w);
updateWorkerCount(-1);
final ReentrantLock lock = this.workerLock;
lock.lock();
try {
ForkJoinWorkerThread[] ws = workers;
if (ws != null) {
int idx = w.poolIndex;
if (idx >= 0 && idx < ws.length && ws[idx] == w)
ws[idx] = null;
if (totalCountOf(workerCounts) == 0) {
terminate(); // no-op if already terminating
transitionRunStateTo(TERMINATED);
termination.signalAll();
}
else if (isProcessingTasks()) {
tryShrinkWorkerArray();
tryResumeSpare(true); // allow replacement
}
}
} finally {
lock.unlock();
}
signalIdleWorkers();
}
/**
* Initiates termination.
*/
private void terminate() {
if (transitionRunStateTo(TERMINATING)) {
stopAllWorkers();
resumeAllSpares();
signalIdleWorkers();
cancelQueuedSubmissions();
cancelQueuedWorkerTasks();
interruptUnterminatedWorkers();
signalIdleWorkers(); // resignal after interrupt
}
}
/**
* Possibly terminates when on shutdown state.
*/
private void terminateOnShutdown() {
if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
terminate();
}
/**
* Clears out and cancels submissions.
*/
private void cancelQueuedSubmissions() {
ForkJoinTask<?> task;
while ((task = pollSubmission()) != null)
task.cancel(false);
}
/**
* Cleans out worker queues.
*/
private void cancelQueuedWorkerTasks() {
final ReentrantLock lock = this.workerLock;
lock.lock();
try {
ForkJoinWorkerThread[] ws = workers;
if (ws != null) {
for (int i = 0; i < ws.length; ++i) {
ForkJoinWorkerThread t = ws[i];
if (t != null)
t.cancelTasks();
}
}
} finally {
lock.unlock();
}
}
/**
* Sets each worker's status to terminating. Requires lock to avoid
* conflicts with add/remove.
*/
private void stopAllWorkers() {
final ReentrantLock lock = this.workerLock;
lock.lock();
try {
ForkJoinWorkerThread[] ws = workers;
if (ws != null) {
for (int i = 0; i < ws.length; ++i) {
ForkJoinWorkerThread t = ws[i];
if (t != null)
t.shutdownNow();
}
}
} finally {
lock.unlock();
}
}
/**
* Interrupts all unterminated workers. This is not required for
* sake of internal control, but may help unstick user code during
* shutdown.
*/
private void interruptUnterminatedWorkers() {
final ReentrantLock lock = this.workerLock;
lock.lock();
try {
ForkJoinWorkerThread[] ws = workers;
if (ws != null) {
for (int i = 0; i < ws.length; ++i) {
ForkJoinWorkerThread t = ws[i];
if (t != null && !t.isTerminated()) {
try {
t.interrupt();
} catch (SecurityException ignore) {
}
}
}
}
} finally {
lock.unlock();
}
}
/*
* Nodes for event barrier to manage idle threads. Queue nodes
* are basic Treiber stack nodes, also used for spare stack.
*
* The event barrier has an event count and a wait queue (actually
* a Treiber stack). Workers are enabled to look for work when
* the eventCount is incremented. If they fail to find work, they
* may wait for next count. Upon release, threads help others wake
* up.
*
* Synchronization events occur only in enough contexts to
* maintain overall liveness:
*
* - Submission of a new task to the pool
* - Resizes or other changes to the workers array
* - pool termination
* - A worker pushing a task on an empty queue
*
* The case of pushing a task occurs often enough, and is heavy
* enough compared to simple stack pushes, to require special
* handling: Method signalWork returns without advancing count if
* the queue appears to be empty. This would ordinarily result in
* races causing some queued waiters not to be woken up. To avoid
* this, the first worker enqueued in method sync (see
* syncIsReleasable) rescans for tasks after being enqueued, and
* helps signal if any are found. This works well because the
* worker has nothing better to do, and so might as well help
* alleviate the overhead and contention on the threads actually
* doing work. Also, since event counts increments on task
* availability exist to maintain liveness (rather than to force
* refreshes etc), it is OK for callers to exit early if
* contending with another signaller.
*/
static final class WaitQueueNode {
WaitQueueNode next; // only written before enqueued
volatile ForkJoinWorkerThread thread; // nulled to cancel wait
final long count; // unused for spare stack
WaitQueueNode(long c, ForkJoinWorkerThread w) {
count = c;
thread = w;
}
/**
* Wakes up waiter, returning false if known to already
*/
boolean signal() {
ForkJoinWorkerThread t = thread;
if (t == null)
return false;
thread = null;
LockSupport.unpark(t);
return true;
}
/**
* Awaits release on sync.
*/
void awaitSyncRelease(ForkJoinPool p) {
while (thread != null && !p.syncIsReleasable(this))
LockSupport.park(this);
}
/**
* Awaits resumption as spare.
*/
void awaitSpareRelease() {
while (thread != null) {
if (!Thread.interrupted())
LockSupport.park(this);
}
}
}
/**
* Ensures that no thread is waiting for count to advance from the
* current value of eventCount read on entry to this method, by
* releasing waiting threads if necessary.
*
* @return the count
*/
final long ensureSync() {
long c = eventCount;
WaitQueueNode q;
while ((q = syncStack) != null && q.count < c) {
if (casBarrierStack(q, null)) {
do {
q.signal();
} while ((q = q.next) != null);
break;
}
}
return c;
}
/**
* Increments event count and releases waiting threads.
*/
private void signalIdleWorkers() {
long c;
do {} while (!casEventCount(c = eventCount, c+1));
ensureSync();
}
/**
* Signals threads waiting to poll a task. Because method sync
* rechecks availability, it is OK to only proceed if queue
* appears to be non-empty, and OK to skip under contention to
* increment count (since some other thread succeeded).
*/
final void signalWork() {
long c;
WaitQueueNode q;
if (syncStack != null &&
casEventCount(c = eventCount, c+1) &&
(((q = syncStack) != null && q.count <= c) &&
(!casBarrierStack(q, q.next) || !q.signal())))
ensureSync();
}
/**
* Waits until event count advances from last value held by
* caller, or if excess threads, caller is resumed as spare, or
* caller or pool is terminating. Updates caller's event on exit.
*
* @param w the calling worker thread
*/
final void sync(ForkJoinWorkerThread w) {
updateStealCount(w); // Transfer w's count while it is idle
while (!w.isShutdown() && isProcessingTasks() && !suspendIfSpare(w)) {
long prev = w.lastEventCount;
WaitQueueNode node = null;
WaitQueueNode h;
while (eventCount == prev &&
((h = syncStack) == null || h.count == prev)) {
if (node == null)
node = new WaitQueueNode(prev, w);
if (casBarrierStack(node.next = h, node)) {
node.awaitSyncRelease(this);
break;
}
}
long ec = ensureSync();
if (ec != prev) {
w.lastEventCount = ec;
break;
}
}
}
/**
* Returns {@code true} if worker waiting on sync can proceed:
* - on signal (thread == null)
* - on event count advance (winning race to notify vs signaller)
* - on interrupt
* - if the first queued node, we find work available
* If node was not signalled and event count not advanced on exit,
* then we also help advance event count.
*
* @return {@code true} if node can be released
*/
final boolean syncIsReleasable(WaitQueueNode node) {
long prev = node.count;
if (!Thread.interrupted() && node.thread != null &&
(node.next != null ||
!ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
eventCount == prev)
return false;
if (node.thread != null) {
node.thread = null;
long ec = eventCount;
if (prev <= ec) // help signal
casEventCount(ec, ec+1);
}
return true;
}
/**
* Returns {@code true} if a new sync event occurred since last
* call to sync or this method, if so, updating caller's count.
*/
final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
long lc = w.lastEventCount;
long ec = ensureSync();
if (ec == lc)
return false;
w.lastEventCount = ec;
return true;
}
// Parallelism maintenance
/**
* Decrements running count; if too low, adds spare.
*
* Conceptually, all we need to do here is add or resume a
* spare thread when one is about to block (and remove or
* suspend it later when unblocked -- see suspendIfSpare).
* However, implementing this idea requires coping with
* several problems: we have imperfect information about the
* states of threads. Some count updates can and usually do
* lag run state changes, despite arrangements to keep them
* accurate (for example, when possible, updating counts
* before signalling or resuming), especially when running on
* dynamic JVMs that don't optimize the infrequent paths that
* update counts. Generating too many threads can make these
* problems become worse, because excess threads are more
* likely to be context-switched with others, slowing them all
* down, especially if there is no work available, so all are
* busy scanning or idling. Also, excess spare threads can
* only be suspended or removed when they are idle, not
* immediately when they aren't needed. So adding threads will
* raise parallelism level for longer than necessary. Also,
* FJ applications often encounter highly transient peaks when
* many threads are blocked joining, but for less time than it
* takes to create or resume spares.
*
* @param joinMe if non-null, return early if done
* @param maintainParallelism if true, try to stay within
* target counts, else create only to avoid starvation
* @return true if joinMe known to be done
*/
final boolean preJoin(ForkJoinTask<?> joinMe,
boolean maintainParallelism) {
maintainParallelism &= maintainsParallelism; // overrride
boolean dec = false; // true when running count decremented
while (spareStack == null || !tryResumeSpare(dec)) {
int counts = workerCounts;
if (dec || (dec = casWorkerCounts(counts, --counts))) {
if (!needSpare(counts, maintainParallelism))
break;
if (joinMe.status < 0)
return true;
if (tryAddSpare(counts))
break;
}
}
return false;
}
/**
* Same idea as preJoin
*/
final boolean preBlock(ManagedBlocker blocker,
boolean maintainParallelism) {
maintainParallelism &= maintainsParallelism;
boolean dec = false;
while (spareStack == null || !tryResumeSpare(dec)) {
int counts = workerCounts;
if (dec || (dec = casWorkerCounts(counts, --counts))) {
if (!needSpare(counts, maintainParallelism))
break;
if (blocker.isReleasable())
return true;
if (tryAddSpare(counts))
break;
}
}
return false;
}
/**
* Returns {@code true} if a spare thread appears to be needed.
* If maintaining parallelism, returns true when the deficit in
* running threads is more than the surplus of total threads, and
* there is apparently some work to do. This self-limiting rule
* means that the more threads that have already been added, the
* less parallelism we will tolerate before adding another.
*
* @param counts current worker counts
* @param maintainParallelism try to maintain parallelism
*/
private boolean needSpare(int counts, boolean maintainParallelism) {
int ps = parallelism;
int rc = runningCountOf(counts);
int tc = totalCountOf(counts);
int runningDeficit = ps - rc;
int totalSurplus = tc - ps;
return (tc < maxPoolSize &&
(rc == 0 || totalSurplus < 0 ||
(maintainParallelism &&
runningDeficit > totalSurplus &&
ForkJoinWorkerThread.hasQueuedTasks(workers))));
}
/**
* Adds a spare worker if lock available and no more than the
* expected numbers of threads exist.
*
* @return true if successful
*/
private boolean tryAddSpare(int expectedCounts) {
final ReentrantLock lock = this.workerLock;
int expectedRunning = runningCountOf(expectedCounts);
int expectedTotal = totalCountOf(expectedCounts);
boolean success = false;
boolean locked = false;
// confirm counts while locking; CAS after obtaining lock
try {
for (;;) {
int s = workerCounts;
int tc = totalCountOf(s);
int rc = runningCountOf(s);
if (rc > expectedRunning || tc > expectedTotal)
break;
if (!locked && !(locked = lock.tryLock()))
break;
if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
createAndStartSpare(tc);
success = true;
break;
}
}
} finally {
if (locked)
lock.unlock();
}
return success;
}
/**
* Adds the kth spare worker. On entry, pool counts are already
* adjusted to reflect addition.
*/
private void createAndStartSpare(int k) {
ForkJoinWorkerThread w = null;
ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
int len = ws.length;
// Probably, we can place at slot k. If not, find empty slot
if (k < len && ws[k] != null) {
for (k = 0; k < len && ws[k] != null; ++k)
;
}
if (k < len && isProcessingTasks() && (w = createWorker(k)) != null) {
ws[k] = w;
w.start();
}
else
updateWorkerCount(-1); // adjust on failure
signalIdleWorkers();
}
/**
* Suspends calling thread w if there are excess threads. Called
* only from sync. Spares are enqueued in a Treiber stack using
* the same WaitQueueNodes as barriers. They are resumed mainly
* in preJoin, but are also woken on pool events that require all
* threads to check run state.
*
* @param w the caller
*/
private boolean suspendIfSpare(ForkJoinWorkerThread w) {
WaitQueueNode node = null;
int s;
while (parallelism < runningCountOf(s = workerCounts)) {
if (node == null)
node = new WaitQueueNode(0, w);
if (casWorkerCounts(s, s-1)) { // representation-dependent
// push onto stack
do {} while (!casSpareStack(node.next = spareStack, node));
// block until released by resumeSpare
node.awaitSpareRelease();
return true;
}
}
return false;
}
/**
* Tries to pop and resume a spare thread.
*
* @param updateCount if true, increment running count on success
* @return true if successful
*/
private boolean tryResumeSpare(boolean updateCount) {
WaitQueueNode q;
while ((q = spareStack) != null) {
if (casSpareStack(q, q.next)) {
if (updateCount)
updateRunningCount(1);
q.signal();
return true;
}
}
return false;
}
/**
* Pops and resumes all spare threads. Same idea as ensureSync.
*
* @return true if any spares released
*/
private boolean resumeAllSpares() {
WaitQueueNode q;
while ( (q = spareStack) != null) {
if (casSpareStack(q, null)) {
do {
updateRunningCount(1);
q.signal();
} while ((q = q.next) != null);
return true;
}
}
return false;
}
/**
* Pops and shuts down excessive spare threads. Call only while
* holding lock. This is not guaranteed to eliminate all excess
* threads, only those suspended as spares, which are the ones
* unlikely to be needed in the future.
*/
private void trimSpares() {
int surplus = totalCountOf(workerCounts) - parallelism;
WaitQueueNode q;
while (surplus > 0 && (q = spareStack) != null) {
if (casSpareStack(q, null)) {
do {
updateRunningCount(1);
ForkJoinWorkerThread w = q.thread;
if (w != null && surplus > 0 &&
runningCountOf(workerCounts) > 0 && w.shutdown())
--surplus;
q.signal();
} while ((q = q.next) != null);
}
}
}
/**
* Interface for extending managed parallelism for tasks running
* in {@link ForkJoinPool}s.
*
* <p>A {@code ManagedBlocker} provides two methods.
* Method {@code isReleasable} must return {@code true} if
* blocking is not necessary. Method {@code block} blocks the
* current thread if necessary (perhaps internally invoking
* {@code isReleasable} before actually blocking).
*
* <p>For example, here is a ManagedBlocker based on a
* ReentrantLock:
* <pre> {@code
* class ManagedLocker implements ManagedBlocker {
* final ReentrantLock lock;
* boolean hasLock = false;
* ManagedLocker(ReentrantLock lock) { this.lock = lock; }
* public boolean block() {
* if (!hasLock)
* lock.lock();
* return true;
* }
* public boolean isReleasable() {
* return hasLock || (hasLock = lock.tryLock());
* }
* }}</pre>
*/
public static interface ManagedBlocker {
/**
* Possibly blocks the current thread, for example waiting for
* a lock or condition.
*
* @return {@code true} if no additional blocking is necessary
* (i.e., if isReleasable would return true)
* @throws InterruptedException if interrupted while waiting
* (the method is not required to do so, but is allowed to)
*/
boolean block() throws InterruptedException;
/**
* Returns {@code true} if blocking is unnecessary.
*/
boolean isReleasable();
}
/**
* Blocks in accord with the given blocker. If the current thread
* is a {@link ForkJoinWorkerThread}, this method possibly
* arranges for a spare thread to be activated if necessary to
* ensure parallelism while the current thread is blocked.
*
* <p>If {@code maintainParallelism} is {@code true} and the pool
* supports it ({@link #getMaintainsParallelism}), this method
* attempts to maintain the pool's nominal parallelism. Otherwise
* it activates a thread only if necessary to avoid complete
* starvation. This option may be preferable when blockages use
* timeouts, or are almost always brief.
*
* <p>If the caller is not a {@link ForkJoinTask}, this method is
* behaviorally equivalent to
* <pre> {@code
* while (!blocker.isReleasable())
* if (blocker.block())
* return;
* }</pre>
*
* If the caller is a {@code ForkJoinTask}, then the pool may
* first be expanded to ensure parallelism, and later adjusted.
*
* @param blocker the blocker
* @param maintainParallelism if {@code true} and supported by
* this pool, attempt to maintain the pool's nominal parallelism;
* otherwise activate a thread only if necessary to avoid
* complete starvation.
* @throws InterruptedException if blocker.block did so
*/
public static void managedBlock(ManagedBlocker blocker,
boolean maintainParallelism)
throws InterruptedException {
Thread t = Thread.currentThread();
ForkJoinPool pool = ((t instanceof ForkJoinWorkerThread) ?
((ForkJoinWorkerThread) t).pool : null);
if (!blocker.isReleasable()) {
try {
if (pool == null ||
!pool.preBlock(blocker, maintainParallelism))
awaitBlocker(blocker);
} finally {
if (pool != null)
pool.updateRunningCount(1);
}
}
}
private static void awaitBlocker(ManagedBlocker blocker)
throws InterruptedException {
do {} while (!blocker.isReleasable() && !blocker.block());
}
// AbstractExecutorService overrides. These rely on undocumented
// fact that ForkJoinTask.adapt returns ForkJoinTasks that also
// implement RunnableFuture.
protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
}
protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
}
// Unsafe mechanics
private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
private static final long eventCountOffset =
objectFieldOffset("eventCount", ForkJoinPool.class);
private static final long workerCountsOffset =
objectFieldOffset("workerCounts", ForkJoinPool.class);
private static final long runControlOffset =
objectFieldOffset("runControl", ForkJoinPool.class);
private static final long syncStackOffset =
objectFieldOffset("syncStack",ForkJoinPool.class);
private static final long spareStackOffset =
objectFieldOffset("spareStack", ForkJoinPool.class);
private boolean casEventCount(long cmp, long val) {
return UNSAFE.compareAndSwapLong(this, eventCountOffset, cmp, val);
}
private boolean casWorkerCounts(int cmp, int val) {
return UNSAFE.compareAndSwapInt(this, workerCountsOffset, cmp, val);
}
private boolean casRunControl(int cmp, int val) {
return UNSAFE.compareAndSwapInt(this, runControlOffset, cmp, val);
}
private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
return UNSAFE.compareAndSwapObject(this, spareStackOffset, cmp, val);
}
private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
return UNSAFE.compareAndSwapObject(this, syncStackOffset, cmp, val);
}
private static long objectFieldOffset(String field, Class<?> klazz) {
try {
return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
} catch (NoSuchFieldException e) {
// Convert Exception to corresponding Error
NoSuchFieldError error = new NoSuchFieldError(field);
error.initCause(e);
throw error;
}
}
}
/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Sun designates this
* particular file as subject to the "Classpath" exception as provided
* by Sun in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*/
/*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file:
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/licenses/publicdomain
*/
package java.util.concurrent;
import java.io.Serializable;
import java.util.Collection;
import java.util.Collections;
import java.util.List;
import java.util.RandomAccess;
import java.util.Map;
import java.util.WeakHashMap;
/**
* Abstract base class for tasks that run within a {@link ForkJoinPool}.
* A {@code ForkJoinTask} is a thread-like entity that is much
* lighter weight than a normal thread. Huge numbers of tasks and
* subtasks may be hosted by a small number of actual threads in a
* ForkJoinPool, at the price of some usage limitations.
*
* <p>A "main" {@code ForkJoinTask} begins execution when submitted
* to a {@link ForkJoinPool}. Once started, it will usually in turn
* start other subtasks. As indicated by the name of this class,
* many programs using {@code ForkJoinTask} employ only methods
* {@link #fork} and {@link #join}, or derivatives such as {@link
* #invokeAll}. However, this class also provides a number of other
* methods that can come into play in advanced usages, as well as
* extension mechanics that allow support of new forms of fork/join
* processing.
*
* <p>A {@code ForkJoinTask} is a lightweight form of {@link Future}.
* The efficiency of {@code ForkJoinTask}s stems from a set of
* restrictions (that are only partially statically enforceable)
* reflecting their intended use as computational tasks calculating
* pure functions or operating on purely isolated objects. The
* primary coordination mechanisms are {@link #fork}, that arranges
* asynchronous execution, and {@link #join}, that doesn't proceed
* until the task's result has been computed. Computations should
* avoid {@code synchronized} methods or blocks, and should minimize
* other blocking synchronization apart from joining other tasks or
* using synchronizers such as Phasers that are advertised to
* cooperate with fork/join scheduling. Tasks should also not perform
* blocking IO, and should ideally access variables that are
* completely independent of those accessed by other running
* tasks. Minor breaches of these restrictions, for example using
* shared output streams, may be tolerable in practice, but frequent
* use may result in poor performance, and the potential to
* indefinitely stall if the number of threads not waiting for IO or
* other external synchronization becomes exhausted. This usage
* restriction is in part enforced by not permitting checked
* exceptions such as {@code IOExceptions} to be thrown. However,
* computations may still encounter unchecked exceptions, that are
* rethrown to callers attempting to join them. These exceptions may
* additionally include {@link RejectedExecutionException} stemming
* from internal resource exhaustion, such as failure to allocate
* internal task queues.
*
* <p>The primary method for awaiting completion and extracting
* results of a task is {@link #join}, but there are several variants:
* The {@link Future#get} methods support interruptible and/or timed
* waits for completion and report results using {@code Future}
* conventions. Method {@link #helpJoin} enables callers to actively
* execute other tasks while awaiting joins, which is sometimes more
* efficient but only applies when all subtasks are known to be
* strictly tree-structured. Method {@link #invoke} is semantically
* equivalent to {@code fork(); join()} but always attempts to begin
* execution in the current thread. The "<em>quiet</em>" forms of
* these methods do not extract results or report exceptions. These
* may be useful when a set of tasks are being executed, and you need
* to delay processing of results or exceptions until all complete.
* Method {@code invokeAll} (available in multiple versions)
* performs the most common form of parallel invocation: forking a set
* of tasks and joining them all.
*
* <p>The execution status of tasks may be queried at several levels
* of detail: {@link #isDone} is true if a task completed in any way
* (including the case where a task was cancelled without executing);
* {@link #isCompletedNormally} is true if a task completed without
* cancellation or encountering an exception; {@link #isCancelled} is
* true if the task was cancelled (in which case {@link #getException}
* returns a {@link java.util.concurrent.CancellationException}); and
* {@link #isCompletedAbnormally} is true if a task was either
* cancelled or encountered an exception, in which case {@link
* #getException} will return either the encountered exception or
* {@link java.util.concurrent.CancellationException}.
*
* <p>The ForkJoinTask class is not usually directly subclassed.
* Instead, you subclass one of the abstract classes that support a
* particular style of fork/join processing, typically {@link
* RecursiveAction} for computations that do not return results, or
* {@link RecursiveTask} for those that do. Normally, a concrete
* ForkJoinTask subclass declares fields comprising its parameters,
* established in a constructor, and then defines a {@code compute}
* method that somehow uses the control methods supplied by this base
* class. While these methods have {@code public} access (to allow
* instances of different task subclasses to call each other's
* methods), some of them may only be called from within other
* ForkJoinTasks (as may be determined using method {@link
* #inForkJoinPool}). Attempts to invoke them in other contexts
* result in exceptions or errors, possibly including
* ClassCastException.
*
* <p>Most base support methods are {@code final}, to prevent
* overriding of implementations that are intrinsically tied to the
* underlying lightweight task scheduling framework. Developers
* creating new basic styles of fork/join processing should minimally
* implement {@code protected} methods {@link #exec}, {@link
* #setRawResult}, and {@link #getRawResult}, while also introducing
* an abstract computational method that can be implemented in its
* subclasses, possibly relying on other {@code protected} methods
* provided by this class.
*
* <p>ForkJoinTasks should perform relatively small amounts of
* computation. Large tasks should be split into smaller subtasks,
* usually via recursive decomposition. As a very rough rule of thumb,
* a task should perform more than 100 and less than 10000 basic
* computational steps. If tasks are too big, then parallelism cannot
* improve throughput. If too small, then memory and internal task
* maintenance overhead may overwhelm processing.
*
* <p>This class provides {@code adapt} methods for {@link Runnable}
* and {@link Callable}, that may be of use when mixing execution of
* {@code ForkJoinTasks} with other kinds of tasks. When all tasks
* are of this form, consider using a pool in
* {@linkplain ForkJoinPool#setAsyncMode async mode}.
*
* <p>ForkJoinTasks are {@code Serializable}, which enables them to be
* used in extensions such as remote execution frameworks. It is
* sensible to serialize tasks only before or after, but not during,
* execution. Serialization is not relied on during execution itself.
*
* @since 1.7
* @author Doug Lea
*/
public abstract class ForkJoinTask<V> implements Future<V>, Serializable {
/**
* Run control status bits packed into a single int to minimize
* footprint and to ensure atomicity (via CAS). Status is
* initially zero, and takes on nonnegative values until
* completed, upon which status holds COMPLETED. CANCELLED, or
* EXCEPTIONAL, which use the top 3 bits. Tasks undergoing
* blocking waits by other threads have SIGNAL_MASK bits set --
* bit 15 for external (nonFJ) waits, and the rest a count of
* waiting FJ threads. (This representation relies on
* ForkJoinPool max thread limits). Completion of a stolen task
* with SIGNAL_MASK bits set awakens waiter via notifyAll. Even
* though suboptimal for some purposes, we use basic builtin
* wait/notify to take advantage of "monitor inflation" in JVMs
* that we would otherwise need to emulate to avoid adding further
* per-task bookkeeping overhead. Note that bits 16-28 are
* currently unused. Also value 0x80000000 is available as spare
* completion value.
*/
volatile int status; // accessed directly by pool and workers
static final int COMPLETION_MASK = 0xe0000000;
static final int NORMAL = 0xe0000000; // == mask
static final int CANCELLED = 0xc0000000;
static final int EXCEPTIONAL = 0xa0000000;
static final int SIGNAL_MASK = 0x0000ffff;
static final int INTERNAL_SIGNAL_MASK = 0x00007fff;
static final int EXTERNAL_SIGNAL = 0x00008000; // top bit of low word
/**
* Table of exceptions thrown by tasks, to enable reporting by
* callers. Because exceptions are rare, we don't directly keep
* them with task objects, but instead use a weak ref table. Note
* that cancellation exceptions don't appear in the table, but are
* instead recorded as status values.
* TODO: Use ConcurrentReferenceHashMap
*/
static final Map<ForkJoinTask<?>, Throwable> exceptionMap =
Collections.synchronizedMap
(new WeakHashMap<ForkJoinTask<?>, Throwable>());
// within-package utilities
/**
* Gets current worker thread, or null if not a worker thread.
*/
static ForkJoinWorkerThread getWorker() {
Thread t = Thread.currentThread();
return ((t instanceof ForkJoinWorkerThread) ?
(ForkJoinWorkerThread) t : null);
}
final boolean casStatus(int cmp, int val) {
return UNSAFE.compareAndSwapInt(this, statusOffset, cmp, val);
}
/**
* Workaround for not being able to rethrow unchecked exceptions.
*/
static void rethrowException(Throwable ex) {
if (ex != null)
UNSAFE.throwException(ex);
}
// Setting completion status
/**
* Marks completion and wakes up threads waiting to join this task.
*
* @param completion one of NORMAL, CANCELLED, EXCEPTIONAL
*/
final void setCompletion(int completion) {
ForkJoinPool pool = getPool();
if (pool != null) {
int s; // Clear signal bits while setting completion status
do {} while ((s = status) >= 0 && !casStatus(s, completion));
if ((s & SIGNAL_MASK) != 0) {
if ((s &= INTERNAL_SIGNAL_MASK) != 0)
pool.updateRunningCount(s);
synchronized (this) { notifyAll(); }
}
}
else
externallySetCompletion(completion);
}
/**
* Version of setCompletion for non-FJ threads. Leaves signal
* bits for unblocked threads to adjust, and always notifies.
*/
private void externallySetCompletion(int completion) {
int s;
do {} while ((s = status) >= 0 &&
!casStatus(s, (s & SIGNAL_MASK) | completion));
synchronized (this) { notifyAll(); }
}
/**
* Sets status to indicate normal completion.
*/
final void setNormalCompletion() {
// Try typical fast case -- single CAS, no signal, not already done.
// Manually expand casStatus to improve chances of inlining it
if (!UNSAFE.compareAndSwapInt(this, statusOffset, 0, NORMAL))
setCompletion(NORMAL);
}
// internal waiting and notification
/**
* Performs the actual monitor wait for awaitDone.
*/
private void doAwaitDone() {
// Minimize lock bias and in/de-flation effects by maximizing
// chances of waiting inside sync
try {
while (status >= 0)
synchronized (this) { if (status >= 0) wait(); }
} catch (InterruptedException ie) {
onInterruptedWait();
}
}
/**
* Performs the actual timed monitor wait for awaitDone.
*/
private void doAwaitDone(long startTime, long nanos) {
synchronized (this) {
try {
while (status >= 0) {
long nt = nanos - (System.nanoTime() - startTime);
if (nt <= 0)
break;
wait(nt / 1000000, (int) (nt % 1000000));
}
} catch (InterruptedException ie) {
onInterruptedWait();
}
}
}
// Awaiting completion
/**
* Sets status to indicate there is joiner, then waits for join,
* surrounded with pool notifications.
*
* @return status upon exit
*/
private int awaitDone(ForkJoinWorkerThread w,
boolean maintainParallelism) {
ForkJoinPool pool = (w == null) ? null : w.pool;
int s;
while ((s = status) >= 0) {
if (casStatus(s, (pool == null) ? s|EXTERNAL_SIGNAL : s+1)) {
if (pool == null || !pool.preJoin(this, maintainParallelism))
doAwaitDone();
if (((s = status) & INTERNAL_SIGNAL_MASK) != 0)
adjustPoolCountsOnUnblock(pool);
break;
}
}
return s;
}
/**
* Timed version of awaitDone
*
* @return status upon exit
*/
private int awaitDone(ForkJoinWorkerThread w, long nanos) {
ForkJoinPool pool = (w == null) ? null : w.pool;
int s;
while ((s = status) >= 0) {
if (casStatus(s, (pool == null) ? s|EXTERNAL_SIGNAL : s+1)) {
long startTime = System.nanoTime();
if (pool == null || !pool.preJoin(this, false))
doAwaitDone(startTime, nanos);
if ((s = status) >= 0) {
adjustPoolCountsOnCancelledWait(pool);
s = status;
}
if (s < 0 && (s & INTERNAL_SIGNAL_MASK) != 0)
adjustPoolCountsOnUnblock(pool);
break;
}
}
return s;
}
/**
* Notifies pool that thread is unblocked. Called by signalled
* threads when woken by non-FJ threads (which is atypical).
*/
private void adjustPoolCountsOnUnblock(ForkJoinPool pool) {
int s;
do {} while ((s = status) < 0 && !casStatus(s, s & COMPLETION_MASK));
if (pool != null && (s &= INTERNAL_SIGNAL_MASK) != 0)
pool.updateRunningCount(s);
}
/**
* Notifies pool to adjust counts on cancelled or timed out wait.
*/
private void adjustPoolCountsOnCancelledWait(ForkJoinPool pool) {
if (pool != null) {
int s;
while ((s = status) >= 0 && (s & INTERNAL_SIGNAL_MASK) != 0) {
if (casStatus(s, s - 1)) {
pool.updateRunningCount(1);
break;
}
}
}
}
/**
* Handles interruptions during waits.
*/
private void onInterruptedWait() {
ForkJoinWorkerThread w = getWorker();
if (w == null)
Thread.currentThread().interrupt(); // re-interrupt
else if (w.isTerminating())
cancelIgnoringExceptions();
// else if FJworker, ignore interrupt
}
// Recording and reporting exceptions
private void setDoneExceptionally(Throwable rex) {
exceptionMap.put(this, rex);
setCompletion(EXCEPTIONAL);
}
/**
* Throws the exception associated with status s.
*
* @throws the exception
*/
private void reportException(int s) {
if ((s &= COMPLETION_MASK) < NORMAL) {
if (s == CANCELLED)
throw new CancellationException();
else
rethrowException(exceptionMap.get(this));
}
}
/**
* Returns result or throws exception using j.u.c.Future conventions.
* Only call when {@code isDone} known to be true or thread known
* to be interrupted.
*/
private V reportFutureResult()
throws InterruptedException, ExecutionException {
if (Thread.interrupted())
throw new InterruptedException();
int s = status & COMPLETION_MASK;
if (s < NORMAL) {
Throwable ex;
if (s == CANCELLED)
throw new CancellationException();
if (s == EXCEPTIONAL && (ex = exceptionMap.get(this)) != null)
throw new ExecutionException(ex);
}
return getRawResult();
}
/**
* Returns result or throws exception using j.u.c.Future conventions
* with timeouts.
*/
private V reportTimedFutureResult()
throws InterruptedException, ExecutionException, TimeoutException {
if (Thread.interrupted())
throw new InterruptedException();
Throwable ex;
int s = status & COMPLETION_MASK;
if (s == NORMAL)
return getRawResult();
else if (s == CANCELLED)
throw new CancellationException();
else if (s == EXCEPTIONAL && (ex = exceptionMap.get(this)) != null)
throw new ExecutionException(ex);
else
throw new TimeoutException();
}
// internal execution methods
/**
* Calls exec, recording completion, and rethrowing exception if
* encountered. Caller should normally check status before calling.
*
* @return true if completed normally
*/
private boolean tryExec() {
try { // try block must contain only call to exec
if (!exec())
return false;
} catch (Throwable rex) {
setDoneExceptionally(rex);
rethrowException(rex);
return false; // not reached
}
setNormalCompletion();
return true;
}
/**
* Main execution method used by worker threads. Invokes
* base computation unless already complete.
*/
final void quietlyExec() {
if (status >= 0) {
try {
if (!exec())
return;
} catch (Throwable rex) {
setDoneExceptionally(rex);
return;
}
setNormalCompletion();
}
}
/**
* Calls exec(), recording but not rethrowing exception.
* Caller should normally check status before calling.
*
* @return true if completed normally
*/
private boolean tryQuietlyInvoke() {
try {
if (!exec())
return false;
} catch (Throwable rex) {
setDoneExceptionally(rex);
return false;
}
setNormalCompletion();
return true;
}
/**
* Cancels, ignoring any exceptions it throws.
*/
final void cancelIgnoringExceptions() {
try {
cancel(false);
} catch (Throwable ignore) {
}
}
/**
* Main implementation of helpJoin
*/
private int busyJoin(ForkJoinWorkerThread w) {
int s;
ForkJoinTask<?> t;
while ((s = status) >= 0 && (t = w.scanWhileJoining(this)) != null)
t.quietlyExec();
return (s >= 0) ? awaitDone(w, false) : s; // block if no work
}
// public methods
/**
* Arranges to asynchronously execute this task. While it is not
* necessarily enforced, it is a usage error to fork a task more
* than once unless it has completed and been reinitialized.
* Subsequent modifications to the state of this task or any data
* it operates on are not necessarily consistently observable by
* any thread other than the one executing it unless preceded by a
* call to {@link #join} or related methods, or a call to {@link
* #isDone} returning {@code true}.
*
* <p>This method may be invoked only from within {@code
* ForkJoinTask} computations (as may be determined using method
* {@link #inForkJoinPool}). Attempts to invoke in other contexts
* result in exceptions or errors, possibly including {@code
* ClassCastException}.
*
* @return {@code this}, to simplify usage
*/
public final ForkJoinTask<V> fork() {
((ForkJoinWorkerThread) Thread.currentThread())
.pushTask(this);
return this;
}
/**
* Returns the result of the computation when it {@link #isDone is done}.
* This method differs from {@link #get()} in that
* abnormal completion results in {@code RuntimeException} or
* {@code Error}, not {@code ExecutionException}.
*
* @return the computed result
*/
public final V join() {
ForkJoinWorkerThread w = getWorker();
if (w == null || status < 0 || !w.unpushTask(this) || !tryExec())
reportException(awaitDone(w, true));
return getRawResult();
}
/**
* Commences performing this task, awaits its completion if
* necessary, and return its result, or throws an (unchecked)
* exception if the underlying computation did so.
*
* @return the computed result
*/
public final V invoke() {
if (status >= 0 && tryExec())
return getRawResult();
else
return join();
}
/**
* Forks the given tasks, returning when {@code isDone} holds for
* each task or an (unchecked) exception is encountered, in which
* case the exception is rethrown. If either task encounters an
* exception, the other one may be, but is not guaranteed to be,
* cancelled. If both tasks throw an exception, then this method
* throws one of them. The individual status of each task may be
* checked using {@link #getException()} and related methods.
*
* <p>This method may be invoked only from within {@code
* ForkJoinTask} computations (as may be determined using method
* {@link #inForkJoinPool}). Attempts to invoke in other contexts
* result in exceptions or errors, possibly including {@code
* ClassCastException}.
*
* @param t1 the first task
* @param t2 the second task
* @throws NullPointerException if any task is null
*/
public static void invokeAll(ForkJoinTask<?> t1, ForkJoinTask<?> t2) {
t2.fork();
t1.invoke();
t2.join();
}
/**
* Forks the given tasks, returning when {@code isDone} holds for
* each task or an (unchecked) exception is encountered, in which
* case the exception is rethrown. If any task encounters an
* exception, others may be, but are not guaranteed to be,
* cancelled. If more than one task encounters an exception, then
* this method throws any one of these exceptions. The individual
* status of each task may be checked using {@link #getException()}
* and related methods.
*
* <p>This method may be invoked only from within {@code
* ForkJoinTask} computations (as may be determined using method
* {@link #inForkJoinPool}). Attempts to invoke in other contexts
* result in exceptions or errors, possibly including {@code
* ClassCastException}.
*
* @param tasks the tasks
* @throws NullPointerException if any task is null
*/
public static void invokeAll(ForkJoinTask<?>... tasks) {
Throwable ex = null;
int last = tasks.length - 1;
for (int i = last; i >= 0; --i) {
ForkJoinTask<?> t = tasks[i];
if (t == null) {
if (ex == null)
ex = new NullPointerException();
}
else if (i != 0)
t.fork();
else {
t.quietlyInvoke();
if (ex == null)
ex = t.getException();
}
}
for (int i = 1; i <= last; ++i) {
ForkJoinTask<?> t = tasks[i];
if (t != null) {
if (ex != null)
t.cancel(false);
else {
t.quietlyJoin();
if (ex == null)
ex = t.getException();
}
}
}
if (ex != null)
rethrowException(ex);
}
/**
* Forks all tasks in the specified collection, returning when
* {@code isDone} holds for each task or an (unchecked) exception
* is encountered. If any task encounters an exception, others
* may be, but are not guaranteed to be, cancelled. If more than
* one task encounters an exception, then this method throws any
* one of these exceptions. The individual status of each task
* may be checked using {@link #getException()} and related
* methods. The behavior of this operation is undefined if the
* specified collection is modified while the operation is in
* progress.
*
* <p>This method may be invoked only from within {@code
* ForkJoinTask} computations (as may be determined using method
* {@link #inForkJoinPool}). Attempts to invoke in other contexts
* result in exceptions or errors, possibly including {@code
* ClassCastException}.
*
* @param tasks the collection of tasks
* @return the tasks argument, to simplify usage
* @throws NullPointerException if tasks or any element are null
*/
public static <T extends ForkJoinTask<?>> Collection<T> invokeAll(Collection<T> tasks) {
if (!(tasks instanceof RandomAccess) || !(tasks instanceof List<?>)) {
invokeAll(tasks.toArray(new ForkJoinTask<?>[tasks.size()]));
return tasks;
}
@SuppressWarnings("unchecked")
List<? extends ForkJoinTask<?>> ts =
(List<? extends ForkJoinTask<?>>) tasks;
Throwable ex = null;
int last = ts.size() - 1;
for (int i = last; i >= 0; --i) {
ForkJoinTask<?> t = ts.get(i);
if (t == null) {
if (ex == null)
ex = new NullPointerException();
}
else if (i != 0)
t.fork();
else {
t.quietlyInvoke();
if (ex == null)
ex = t.getException();
}
}
for (int i = 1; i <= last; ++i) {
ForkJoinTask<?> t = ts.get(i);
if (t != null) {
if (ex != null)
t.cancel(false);
else {
t.quietlyJoin();
if (ex == null)
ex = t.getException();
}
}
}
if (ex != null)
rethrowException(ex);
return tasks;
}
/**
* Attempts to cancel execution of this task. This attempt will
* fail if the task has already completed, has already been
* cancelled, or could not be cancelled for some other reason. If
* successful, and this task has not started when cancel is
* called, execution of this task is suppressed, {@link
* #isCancelled} will report true, and {@link #join} will result
* in a {@code CancellationException} being thrown.
*
* <p>This method may be overridden in subclasses, but if so, must
* still ensure that these minimal properties hold. In particular,
* the {@code cancel} method itself must not throw exceptions.
*
* <p>This method is designed to be invoked by <em>other</em>
* tasks. To terminate the current task, you can just return or
* throw an unchecked exception from its computation method, or
* invoke {@link #completeExceptionally}.
*
* @param mayInterruptIfRunning this value is ignored in the
* default implementation because tasks are not
* cancelled via interruption
*
* @return {@code true} if this task is now cancelled
*/
public boolean cancel(boolean mayInterruptIfRunning) {
setCompletion(CANCELLED);
return (status & COMPLETION_MASK) == CANCELLED;
}
public final boolean isDone() {
return status < 0;
}
public final boolean isCancelled() {
return (status & COMPLETION_MASK) == CANCELLED;
}
/**
* Returns {@code true} if this task threw an exception or was cancelled.
*
* @return {@code true} if this task threw an exception or was cancelled
*/
public final boolean isCompletedAbnormally() {
return (status & COMPLETION_MASK) < NORMAL;
}
/**
* Returns {@code true} if this task completed without throwing an
* exception and was not cancelled.
*
* @return {@code true} if this task completed without throwing an
* exception and was not cancelled
*/
public final boolean isCompletedNormally() {
return (status & COMPLETION_MASK) == NORMAL;
}
/**
* Returns the exception thrown by the base computation, or a
* {@code CancellationException} if cancelled, or {@code null} if
* none or if the method has not yet completed.
*
* @return the exception, or {@code null} if none
*/
public final Throwable getException() {
int s = status & COMPLETION_MASK;
return ((s >= NORMAL) ? null :
(s == CANCELLED) ? new CancellationException() :
exceptionMap.get(this));
}
/**
* Completes this task abnormally, and if not already aborted or
* cancelled, causes it to throw the given exception upon
* {@code join} and related operations. This method may be used
* to induce exceptions in asynchronous tasks, or to force
* completion of tasks that would not otherwise complete. Its use
* in other situations is discouraged. This method is
* overridable, but overridden versions must invoke {@code super}
* implementation to maintain guarantees.
*
* @param ex the exception to throw. If this exception is not a
* {@code RuntimeException} or {@code Error}, the actual exception
* thrown will be a {@code RuntimeException} with cause {@code ex}.
*/
public void completeExceptionally(Throwable ex) {
setDoneExceptionally((ex instanceof RuntimeException) ||
(ex instanceof Error) ? ex :
new RuntimeException(ex));
}
/**
* Completes this task, and if not already aborted or cancelled,
* returning a {@code null} result upon {@code join} and related
* operations. This method may be used to provide results for
* asynchronous tasks, or to provide alternative handling for
* tasks that would not otherwise complete normally. Its use in
* other situations is discouraged. This method is
* overridable, but overridden versions must invoke {@code super}
* implementation to maintain guarantees.
*
* @param value the result value for this task
*/
public void complete(V value) {
try {
setRawResult(value);
} catch (Throwable rex) {
setDoneExceptionally(rex);
return;
}
setNormalCompletion();
}
public final V get() throws InterruptedException, ExecutionException {
ForkJoinWorkerThread w = getWorker();
if (w == null || status < 0 || !w.unpushTask(this) || !tryQuietlyInvoke())
awaitDone(w, true);
return reportFutureResult();
}
public final V get(long timeout, TimeUnit unit)
throws InterruptedException, ExecutionException, TimeoutException {
long nanos = unit.toNanos(timeout);
ForkJoinWorkerThread w = getWorker();
if (w == null || status < 0 || !w.unpushTask(this) || !tryQuietlyInvoke())
awaitDone(w, nanos);
return reportTimedFutureResult();
}
/**
* Possibly executes other tasks until this task {@link #isDone is
* done}, then returns the result of the computation. This method
* may be more efficient than {@code join}, but is only applicable
* when there are no potential dependencies between continuation
* of the current task and that of any other task that might be
* executed while helping. (This usually holds for pure
* divide-and-conquer tasks).
*
* <p>This method may be invoked only from within {@code
* ForkJoinTask} computations (as may be determined using method
* {@link #inForkJoinPool}). Attempts to invoke in other contexts
* result in exceptions or errors, possibly including {@code
* ClassCastException}.
*
* @return the computed result
*/
public final V helpJoin() {
ForkJoinWorkerThread w = (ForkJoinWorkerThread) Thread.currentThread();
if (status < 0 || !w.unpushTask(this) || !tryExec())
reportException(busyJoin(w));
return getRawResult();
}
/**
* Possibly executes other tasks until this task {@link #isDone is
* done}. This method may be useful when processing collections
* of tasks when some have been cancelled or otherwise known to
* have aborted.
*
* <p>This method may be invoked only from within {@code
* ForkJoinTask} computations (as may be determined using method
* {@link #inForkJoinPool}). Attempts to invoke in other contexts
* result in exceptions or errors, possibly including {@code
* ClassCastException}.
*/
public final void quietlyHelpJoin() {
if (status >= 0) {
ForkJoinWorkerThread w =
(ForkJoinWorkerThread) Thread.currentThread();
if (!w.unpushTask(this) || !tryQuietlyInvoke())
busyJoin(w);
}
}
/**
* Joins this task, without returning its result or throwing an
* exception. This method may be useful when processing
* collections of tasks when some have been cancelled or otherwise
* known to have aborted.
*/
public final void quietlyJoin() {
if (status >= 0) {
ForkJoinWorkerThread w = getWorker();
if (w == null || !w.unpushTask(this) || !tryQuietlyInvoke())
awaitDone(w, true);
}
}
/**
* Commences performing this task and awaits its completion if
* necessary, without returning its result or throwing an
* exception. This method may be useful when processing
* collections of tasks when some have been cancelled or otherwise
* known to have aborted.
*/
public final void quietlyInvoke() {
if (status >= 0 && !tryQuietlyInvoke())
quietlyJoin();
}
/**
* Possibly executes tasks until the pool hosting the current task
* {@link ForkJoinPool#isQuiescent is quiescent}. This method may
* be of use in designs in which many tasks are forked, but none
* are explicitly joined, instead executing them until all are
* processed.
*
* <p>This method may be invoked only from within {@code
* ForkJoinTask} computations (as may be determined using method
* {@link #inForkJoinPool}). Attempts to invoke in other contexts
* result in exceptions or errors, possibly including {@code
* ClassCastException}.
*/
public static void helpQuiesce() {
((ForkJoinWorkerThread) Thread.currentThread())
.helpQuiescePool();
}
/**
* Resets the internal bookkeeping state of this task, allowing a
* subsequent {@code fork}. This method allows repeated reuse of
* this task, but only if reuse occurs when this task has either
* never been forked, or has been forked, then completed and all
* outstanding joins of this task have also completed. Effects
* under any other usage conditions are not guaranteed.
* This method may be useful when executing
* pre-constructed trees of subtasks in loops.
*/
public void reinitialize() {
if ((status & COMPLETION_MASK) == EXCEPTIONAL)
exceptionMap.remove(this);
status = 0;
}
/**
* Returns the pool hosting the current task execution, or null
* if this task is executing outside of any ForkJoinPool.
*
* @see #inForkJoinPool
* @return the pool, or {@code null} if none
*/
public static ForkJoinPool getPool() {
Thread t = Thread.currentThread();
return (t instanceof ForkJoinWorkerThread) ?
((ForkJoinWorkerThread) t).pool : null;
}
/**
* Returns {@code true} if the current thread is executing as a
* ForkJoinPool computation.
*
* @return {@code true} if the current thread is executing as a
* ForkJoinPool computation, or false otherwise
*/
public static boolean inForkJoinPool() {
return Thread.currentThread() instanceof ForkJoinWorkerThread;
}
/**
* Tries to unschedule this task for execution. This method will
* typically succeed if this task is the most recently forked task
* by the current thread, and has not commenced executing in
* another thread. This method may be useful when arranging
* alternative local processing of tasks that could have been, but
* were not, stolen.
*
* <p>This method may be invoked only from within {@code
* ForkJoinTask} computations (as may be determined using method
* {@link #inForkJoinPool}). Attempts to invoke in other contexts
* result in exceptions or errors, possibly including {@code
* ClassCastException}.
*
* @return {@code true} if unforked
*/
public boolean tryUnfork() {
return ((ForkJoinWorkerThread) Thread.currentThread())
.unpushTask(this);
}
/**
* Returns an estimate of the number of tasks that have been
* forked by the current worker thread but not yet executed. This
* value may be useful for heuristic decisions about whether to
* fork other tasks.
*
* <p>This method may be invoked only from within {@code
* ForkJoinTask} computations (as may be determined using method
* {@link #inForkJoinPool}). Attempts to invoke in other contexts
* result in exceptions or errors, possibly including {@code
* ClassCastException}.
*
* @return the number of tasks
*/
public static int getQueuedTaskCount() {
return ((ForkJoinWorkerThread) Thread.currentThread())
.getQueueSize();
}
/**
* Returns an estimate of how many more locally queued tasks are
* held by the current worker thread than there are other worker
* threads that might steal them. This value may be useful for
* heuristic decisions about whether to fork other tasks. In many
* usages of ForkJoinTasks, at steady state, each worker should
* aim to maintain a small constant surplus (for example, 3) of
* tasks, and to process computations locally if this threshold is
* exceeded.
*
* <p>This method may be invoked only from within {@code
* ForkJoinTask} computations (as may be determined using method
* {@link #inForkJoinPool}). Attempts to invoke in other contexts
* result in exceptions or errors, possibly including {@code
* ClassCastException}.
*
* @return the surplus number of tasks, which may be negative
*/
public static int getSurplusQueuedTaskCount() {
return ((ForkJoinWorkerThread) Thread.currentThread())
.getEstimatedSurplusTaskCount();
}
// Extension methods
/**
* Returns the result that would be returned by {@link #join}, even
* if this task completed abnormally, or {@code null} if this task
* is not known to have been completed. This method is designed
* to aid debugging, as well as to support extensions. Its use in
* any other context is discouraged.
*
* @return the result, or {@code null} if not completed
*/
public abstract V getRawResult();
/**
* Forces the given value to be returned as a result. This method
* is designed to support extensions, and should not in general be
* called otherwise.
*
* @param value the value
*/
protected abstract void setRawResult(V value);
/**
* Immediately performs the base action of this task. This method
* is designed to support extensions, and should not in general be
* called otherwise. The return value controls whether this task
* is considered to be done normally. It may return false in
* asynchronous actions that require explicit invocations of
* {@link #complete} to become joinable. It may also throw an
* (unchecked) exception to indicate abnormal exit.
*
* @return {@code true} if completed normally
*/
protected abstract boolean exec();
/**
* Returns, but does not unschedule or execute, a task queued by
* the current thread but not yet executed, if one is immediately
* available. There is no guarantee that this task will actually
* be polled or executed next. Conversely, this method may return
* null even if a task exists but cannot be accessed without
* contention with other threads. This method is designed
* primarily to support extensions, and is unlikely to be useful
* otherwise.
*
* <p>This method may be invoked only from within {@code
* ForkJoinTask} computations (as may be determined using method
* {@link #inForkJoinPool}). Attempts to invoke in other contexts
* result in exceptions or errors, possibly including {@code
* ClassCastException}.
*
* @return the next task, or {@code null} if none are available
*/
protected static ForkJoinTask<?> peekNextLocalTask() {
return ((ForkJoinWorkerThread) Thread.currentThread())
.peekTask();
}
/**
* Unschedules and returns, without executing, the next task
* queued by the current thread but not yet executed. This method
* is designed primarily to support extensions, and is unlikely to
* be useful otherwise.
*
* <p>This method may be invoked only from within {@code
* ForkJoinTask} computations (as may be determined using method
* {@link #inForkJoinPool}). Attempts to invoke in other contexts
* result in exceptions or errors, possibly including {@code
* ClassCastException}.
*
* @return the next task, or {@code null} if none are available
*/
protected static ForkJoinTask<?> pollNextLocalTask() {
return ((ForkJoinWorkerThread) Thread.currentThread())
.pollLocalTask();
}
/**
* Unschedules and returns, without executing, the next task
* queued by the current thread but not yet executed, if one is
* available, or if not available, a task that was forked by some
* other thread, if available. Availability may be transient, so a
* {@code null} result does not necessarily imply quiescence
* of the pool this task is operating in. This method is designed
* primarily to support extensions, and is unlikely to be useful
* otherwise.
*
* <p>This method may be invoked only from within {@code
* ForkJoinTask} computations (as may be determined using method
* {@link #inForkJoinPool}). Attempts to invoke in other contexts
* result in exceptions or errors, possibly including {@code
* ClassCastException}.
*
* @return a task, or {@code null} if none are available
*/
protected static ForkJoinTask<?> pollTask() {
return ((ForkJoinWorkerThread) Thread.currentThread())
.pollTask();
}
/**
* Adaptor for Runnables. This implements RunnableFuture
* to be compliant with AbstractExecutorService constraints
* when used in ForkJoinPool.
*/
static final class AdaptedRunnable<T> extends ForkJoinTask<T>
implements RunnableFuture<T> {
final Runnable runnable;
final T resultOnCompletion;
T result;
AdaptedRunnable(Runnable runnable, T result) {
if (runnable == null) throw new NullPointerException();
this.runnable = runnable;
this.resultOnCompletion = result;
}
public T getRawResult() { return result; }
public void setRawResult(T v) { result = v; }
public boolean exec() {
runnable.run();
result = resultOnCompletion;
return true;
}
public void run() { invoke(); }
private static final long serialVersionUID = 5232453952276885070L;
}
/**
* Adaptor for Callables
*/
static final class AdaptedCallable<T> extends ForkJoinTask<T>
implements RunnableFuture<T> {
final Callable<? extends T> callable;
T result;
AdaptedCallable(Callable<? extends T> callable) {
if (callable == null) throw new NullPointerException();
this.callable = callable;
}
public T getRawResult() { return result; }
public void setRawResult(T v) { result = v; }
public boolean exec() {
try {
result = callable.call();
return true;
} catch (Error err) {
throw err;
} catch (RuntimeException rex) {
throw rex;
} catch (Exception ex) {
throw new RuntimeException(ex);
}
}
public void run() { invoke(); }
private static final long serialVersionUID = 2838392045355241008L;
}
/**
* Returns a new {@code ForkJoinTask} that performs the {@code run}
* method of the given {@code Runnable} as its action, and returns
* a null result upon {@link #join}.
*
* @param runnable the runnable action
* @return the task
*/
public static ForkJoinTask<?> adapt(Runnable runnable) {
return new AdaptedRunnable<Void>(runnable, null);
}
/**
* Returns a new {@code ForkJoinTask} that performs the {@code run}
* method of the given {@code Runnable} as its action, and returns
* the given result upon {@link #join}.
*
* @param runnable the runnable action
* @param result the result upon completion
* @return the task
*/
public static <T> ForkJoinTask<T> adapt(Runnable runnable, T result) {
return new AdaptedRunnable<T>(runnable, result);
}
/**
* Returns a new {@code ForkJoinTask} that performs the {@code call}
* method of the given {@code Callable} as its action, and returns
* its result upon {@link #join}, translating any checked exceptions
* encountered into {@code RuntimeException}.
*
* @param callable the callable action
* @return the task
*/
public static <T> ForkJoinTask<T> adapt(Callable<? extends T> callable) {
return new AdaptedCallable<T>(callable);
}
// Serialization support
private static final long serialVersionUID = -7721805057305804111L;
/**
* Saves the state to a stream.
*
* @serialData the current run status and the exception thrown
* during execution, or {@code null} if none
* @param s the stream
*/
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
s.defaultWriteObject();
s.writeObject(getException());
}
/**
* Reconstitutes the instance from a stream.
*
* @param s the stream
*/
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
status &= ~INTERNAL_SIGNAL_MASK; // clear internal signal counts
status |= EXTERNAL_SIGNAL; // conservatively set external signal
Object ex = s.readObject();
if (ex != null)
setDoneExceptionally((Throwable) ex);
}
// Unsafe mechanics
private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
private static final long statusOffset =
objectFieldOffset("status", ForkJoinTask.class);
private static long objectFieldOffset(String field, Class<?> klazz) {
try {
return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
} catch (NoSuchFieldException e) {
// Convert Exception to corresponding Error
NoSuchFieldError error = new NoSuchFieldError(field);
error.initCause(e);
throw error;
}
}
}
/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Sun designates this
* particular file as subject to the "Classpath" exception as provided
* by Sun in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*/
/*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file:
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/licenses/publicdomain
*/
package java.util.concurrent;
import java.util.Collection;
/**
* A thread managed by a {@link ForkJoinPool}. This class is
* subclassable solely for the sake of adding functionality -- there
* are no overridable methods dealing with scheduling or execution.
* However, you can override initialization and termination methods
* surrounding the main task processing loop. If you do create such a
* subclass, you will also need to supply a custom {@link
* ForkJoinPool.ForkJoinWorkerThreadFactory} to use it in a {@code
* ForkJoinPool}.
*
* @since 1.7
* @author Doug Lea
*/
public class ForkJoinWorkerThread extends Thread {
/*
* Algorithm overview:
*
* 1. Work-Stealing: Work-stealing queues are special forms of
* Deques that support only three of the four possible
* end-operations -- push, pop, and deq (aka steal), and only do
* so under the constraints that push and pop are called only from
* the owning thread, while deq may be called from other threads.
* (If you are unfamiliar with them, you probably want to read
* Herlihy and Shavit's book "The Art of Multiprocessor
* programming", chapter 16 describing these in more detail before
* proceeding.) The main work-stealing queue design is roughly
* similar to "Dynamic Circular Work-Stealing Deque" by David
* Chase and Yossi Lev, SPAA 2005
* (http://research.sun.com/scalable/pubs/index.html). The main
* difference ultimately stems from gc requirements that we null
* out taken slots as soon as we can, to maintain as small a
* footprint as possible even in programs generating huge numbers
* of tasks. To accomplish this, we shift the CAS arbitrating pop
* vs deq (steal) from being on the indices ("base" and "sp") to
* the slots themselves (mainly via method "casSlotNull()"). So,
* both a successful pop and deq mainly entail CAS'ing a non-null
* slot to null. Because we rely on CASes of references, we do
* not need tag bits on base or sp. They are simple ints as used
* in any circular array-based queue (see for example ArrayDeque).
* Updates to the indices must still be ordered in a way that
* guarantees that (sp - base) > 0 means the queue is empty, but
* otherwise may err on the side of possibly making the queue
* appear nonempty when a push, pop, or deq have not fully
* committed. Note that this means that the deq operation,
* considered individually, is not wait-free. One thief cannot
* successfully continue until another in-progress one (or, if
* previously empty, a push) completes. However, in the
* aggregate, we ensure at least probabilistic
* non-blockingness. If an attempted steal fails, a thief always
* chooses a different random victim target to try next. So, in
* order for one thief to progress, it suffices for any
* in-progress deq or new push on any empty queue to complete. One
* reason this works well here is that apparently-nonempty often
* means soon-to-be-stealable, which gives threads a chance to
* activate if necessary before stealing (see below).
*
* This approach also enables support for "async mode" where local
* task processing is in FIFO, not LIFO order; simply by using a
* version of deq rather than pop when locallyFifo is true (as set
* by the ForkJoinPool). This allows use in message-passing
* frameworks in which tasks are never joined.
*
* Efficient implementation of this approach currently relies on
* an uncomfortable amount of "Unsafe" mechanics. To maintain
* correct orderings, reads and writes of variable base require
* volatile ordering. Variable sp does not require volatile write
* but needs cheaper store-ordering on writes. Because they are
* protected by volatile base reads, reads of the queue array and
* its slots do not need volatile load semantics, but writes (in
* push) require store order and CASes (in pop and deq) require
* (volatile) CAS semantics. (See "Idempotent work stealing" by
* Michael, Saraswat, and Vechev, PPoPP 2009
* http://portal.acm.org/citation.cfm?id=1504186 for an algorithm
* with similar properties, but without support for nulling
* slots.) Since these combinations aren't supported using
* ordinary volatiles, the only way to accomplish these
* efficiently is to use direct Unsafe calls. (Using external
* AtomicIntegers and AtomicReferenceArrays for the indices and
* array is significantly slower because of memory locality and
* indirection effects.)
*
* Further, performance on most platforms is very sensitive to
* placement and sizing of the (resizable) queue array. Even
* though these queues don't usually become all that big, the
* initial size must be large enough to counteract cache
* contention effects across multiple queues (especially in the
* presence of GC cardmarking). Also, to improve thread-locality,
* queues are currently initialized immediately after the thread
* gets the initial signal to start processing tasks. However,
* all queue-related methods except pushTask are written in a way
* that allows them to instead be lazily allocated and/or disposed
* of when empty. All together, these low-level implementation
* choices produce as much as a factor of 4 performance
* improvement compared to naive implementations, and enable the
* processing of billions of tasks per second, sometimes at the
* expense of ugliness.
*
* 2. Run control: The primary run control is based on a global
* counter (activeCount) held by the pool. It uses an algorithm
* similar to that in Herlihy and Shavit section 17.6 to cause
* threads to eventually block when all threads declare they are
* inactive. For this to work, threads must be declared active
* when executing tasks, and before stealing a task. They must be
* inactive before blocking on the Pool Barrier (awaiting a new
* submission or other Pool event). In between, there is some free
* play which we take advantage of to avoid contention and rapid
* flickering of the global activeCount: If inactive, we activate
* only if a victim queue appears to be nonempty (see above).
* Similarly, a thread tries to inactivate only after a full scan
* of other threads. The net effect is that contention on
* activeCount is rarely a measurable performance issue. (There
* are also a few other cases where we scan for work rather than
* retry/block upon contention.)
*
* 3. Selection control. We maintain policy of always choosing to
* run local tasks rather than stealing, and always trying to
* steal tasks before trying to run a new submission. All steals
* are currently performed in randomly-chosen deq-order. It may be
* worthwhile to bias these with locality / anti-locality
* information, but doing this well probably requires more
* lower-level information from JVMs than currently provided.
*/
/**
* Capacity of work-stealing queue array upon initialization.
* Must be a power of two. Initial size must be at least 2, but is
* padded to minimize cache effects.
*/
private static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
/**
* Maximum work-stealing queue array size. Must be less than or
* equal to 1 << 28 to ensure lack of index wraparound. (This
* is less than usual bounds, because we need leftshift by 3
* to be in int range).
*/
private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 28;
/**
* The pool this thread works in. Accessed directly by ForkJoinTask.
*/
final ForkJoinPool pool;
/**
* The work-stealing queue array. Size must be a power of two.
* Initialized when thread starts, to improve memory locality.
*/
private ForkJoinTask<?>[] queue;
/**
* Index (mod queue.length) of next queue slot to push to or pop
* from. It is written only by owner thread, via ordered store.
* Both sp and base are allowed to wrap around on overflow, but
* (sp - base) still estimates size.
*/
private volatile int sp;
/**
* Index (mod queue.length) of least valid queue slot, which is
* always the next position to steal from if nonempty.
*/
private volatile int base;
/**
* Activity status. When true, this worker is considered active.
* Must be false upon construction. It must be true when executing
* tasks, and BEFORE stealing a task. It must be false before
* calling pool.sync.
*/
private boolean active;
/**
* Run state of this worker. Supports simple versions of the usual
* shutdown/shutdownNow control.
*/
private volatile int runState;
/**
* Seed for random number generator for choosing steal victims.
* Uses Marsaglia xorshift. Must be nonzero upon initialization.
*/
private int seed;
/**
* Number of steals, transferred to pool when idle
*/
private int stealCount;
/**
* Index of this worker in pool array. Set once by pool before
* running, and accessed directly by pool during cleanup etc.
*/
int poolIndex;
/**
* The last barrier event waited for. Accessed in pool callback
* methods, but only by current thread.
*/
long lastEventCount;
/**
* True if use local fifo, not default lifo, for local polling
*/
private boolean locallyFifo;
/**
* Creates a ForkJoinWorkerThread operating in the given pool.
*
* @param pool the pool this thread works in
* @throws NullPointerException if pool is null
*/
protected ForkJoinWorkerThread(ForkJoinPool pool) {
if (pool == null) throw new NullPointerException();
this.pool = pool;
// Note: poolIndex is set by pool during construction
// Remaining initialization is deferred to onStart
}
// Public access methods
/**
* Returns the pool hosting this thread.
*
* @return the pool
*/
public ForkJoinPool getPool() {
return pool;
}
/**
* Returns the index number of this thread in its pool. The
* returned value ranges from zero to the maximum number of
* threads (minus one) that have ever been created in the pool.
* This method may be useful for applications that track status or
* collect results per-worker rather than per-task.
*
* @return the index number
*/
public int getPoolIndex() {
return poolIndex;
}
/**
* Establishes local first-in-first-out scheduling mode for forked
* tasks that are never joined.
*
* @param async if true, use locally FIFO scheduling
*/
void setAsyncMode(boolean async) {
locallyFifo = async;
}
// Runstate management
// Runstate values. Order matters
private static final int RUNNING = 0;
private static final int SHUTDOWN = 1;
private static final int TERMINATING = 2;
private static final int TERMINATED = 3;
final boolean isShutdown() { return runState >= SHUTDOWN; }
final boolean isTerminating() { return runState >= TERMINATING; }
final boolean isTerminated() { return runState == TERMINATED; }
final boolean shutdown() { return transitionRunStateTo(SHUTDOWN); }
final boolean shutdownNow() { return transitionRunStateTo(TERMINATING); }
/**
* Transitions to at least the given state.
*
* @return {@code true} if not already at least at given state
*/
private boolean transitionRunStateTo(int state) {
for (;;) {
int s = runState;
if (s >= state)
return false;
if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, state))
return true;
}
}
/**
* Tries to set status to active; fails on contention.
*/
private boolean tryActivate() {
if (!active) {
if (!pool.tryIncrementActiveCount())
return false;
active = true;
}
return true;
}
/**
* Tries to set status to inactive; fails on contention.
*/
private boolean tryInactivate() {
if (active) {
if (!pool.tryDecrementActiveCount())
return false;
active = false;
}
return true;
}
/**
* Computes next value for random victim probe. Scans don't
* require a very high quality generator, but also not a crummy
* one. Marsaglia xor-shift is cheap and works well.
*/
private static int xorShift(int r) {
r ^= (r << 13);
r ^= (r >>> 17);
return r ^ (r << 5);
}
// Lifecycle methods
/**
* This method is required to be public, but should never be
* called explicitly. It performs the main run loop to execute
* ForkJoinTasks.
*/
public void run() {
Throwable exception = null;
try {
onStart();
pool.sync(this); // await first pool event
mainLoop();
} catch (Throwable ex) {
exception = ex;
} finally {
onTermination(exception);
}
}
/**
* Executes tasks until shut down.
*/
private void mainLoop() {
while (!isShutdown()) {
ForkJoinTask<?> t = pollTask();
if (t != null || (t = pollSubmission()) != null)
t.quietlyExec();
else if (tryInactivate())
pool.sync(this);
}
}
/**
* Initializes internal state after construction but before
* processing any tasks. If you override this method, you must
* invoke super.onStart() at the beginning of the method.
* Initialization requires care: Most fields must have legal
* default values, to ensure that attempted accesses from other
* threads work correctly even before this thread starts
* processing tasks.
*/
protected void onStart() {
// Allocate while starting to improve chances of thread-local
// isolation
queue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
// Initial value of seed need not be especially random but
// should differ across workers and must be nonzero
int p = poolIndex + 1;
seed = p + (p << 8) + (p << 16) + (p << 24); // spread bits
}
/**
* Performs cleanup associated with termination of this worker
* thread. If you override this method, you must invoke
* {@code super.onTermination} at the end of the overridden method.
*
* @param exception the exception causing this thread to abort due
* to an unrecoverable error, or {@code null} if completed normally
*/
protected void onTermination(Throwable exception) {
// Execute remaining local tasks unless aborting or terminating
while (exception == null && pool.isProcessingTasks() && base != sp) {
try {
ForkJoinTask<?> t = popTask();
if (t != null)
t.quietlyExec();
} catch (Throwable ex) {
exception = ex;
}
}
// Cancel other tasks, transition status, notify pool, and
// propagate exception to uncaught exception handler
try {
do {} while (!tryInactivate()); // ensure inactive
cancelTasks();
runState = TERMINATED;
pool.workerTerminated(this);
} catch (Throwable ex) { // Shouldn't ever happen
if (exception == null) // but if so, at least rethrown
exception = ex;
} finally {
if (exception != null)
ForkJoinTask.rethrowException(exception);
}
}
// Intrinsics-based support for queue operations.
private static long slotOffset(int i) {
return ((long) i << qShift) + qBase;
}
/**
* Adds in store-order the given task at given slot of q to null.
* Caller must ensure q is non-null and index is in range.
*/
private static void setSlot(ForkJoinTask<?>[] q, int i,
ForkJoinTask<?> t) {
UNSAFE.putOrderedObject(q, slotOffset(i), t);
}
/**
* CAS given slot of q to null. Caller must ensure q is non-null
* and index is in range.
*/
private static boolean casSlotNull(ForkJoinTask<?>[] q, int i,
ForkJoinTask<?> t) {
return UNSAFE.compareAndSwapObject(q, slotOffset(i), t, null);
}
/**
* Sets sp in store-order.
*/
private void storeSp(int s) {
UNSAFE.putOrderedInt(this, spOffset, s);
}
// Main queue methods
/**
* Pushes a task. Called only by current thread.
*
* @param t the task. Caller must ensure non-null.
*/
final void pushTask(ForkJoinTask<?> t) {
ForkJoinTask<?>[] q = queue;
int mask = q.length - 1;
int s = sp;
setSlot(q, s & mask, t);
storeSp(++s);
if ((s -= base) == 1)
pool.signalWork();
else if (s >= mask)
growQueue();
}
/**
* Tries to take a task from the base of the queue, failing if
* either empty or contended.
*
* @return a task, or null if none or contended
*/
final ForkJoinTask<?> deqTask() {
ForkJoinTask<?> t;
ForkJoinTask<?>[] q;
int i;
int b;
if (sp != (b = base) &&
(q = queue) != null && // must read q after b
(t = q[i = (q.length - 1) & b]) != null &&
casSlotNull(q, i, t)) {
base = b + 1;
return t;
}
return null;
}
/**
* Tries to take a task from the base of own queue, activating if
* necessary, failing only if empty. Called only by current thread.
*
* @return a task, or null if none
*/
final ForkJoinTask<?> locallyDeqTask() {
int b;
while (sp != (b = base)) {
if (tryActivate()) {
ForkJoinTask<?>[] q = queue;
int i = (q.length - 1) & b;
ForkJoinTask<?> t = q[i];
if (t != null && casSlotNull(q, i, t)) {
base = b + 1;
return t;
}
}
}
return null;
}
/**
* Returns a popped task, or null if empty. Ensures active status
* if non-null. Called only by current thread.
*/
final ForkJoinTask<?> popTask() {
int s = sp;
while (s != base) {
if (tryActivate()) {
ForkJoinTask<?>[] q = queue;
int mask = q.length - 1;
int i = (s - 1) & mask;
ForkJoinTask<?> t = q[i];
if (t == null || !casSlotNull(q, i, t))
break;
storeSp(s - 1);
return t;
}
}
return null;
}
/**
* Specialized version of popTask to pop only if
* topmost element is the given task. Called only
* by current thread while active.
*
* @param t the task. Caller must ensure non-null.
*/
final boolean unpushTask(ForkJoinTask<?> t) {
ForkJoinTask<?>[] q = queue;
int mask = q.length - 1;
int s = sp - 1;
if (casSlotNull(q, s & mask, t)) {
storeSp(s);
return true;
}
return false;
}
/**
* Returns next task or null if empty or contended
*/
final ForkJoinTask<?> peekTask() {
ForkJoinTask<?>[] q = queue;
if (q == null)
return null;
int mask = q.length - 1;
int i = locallyFifo ? base : (sp - 1);
return q[i & mask];
}
/**
* Doubles queue array size. Transfers elements by emulating
* steals (deqs) from old array and placing, oldest first, into
* new array.
*/
private void growQueue() {
ForkJoinTask<?>[] oldQ = queue;
int oldSize = oldQ.length;
int newSize = oldSize << 1;
if (newSize > MAXIMUM_QUEUE_CAPACITY)
throw new RejectedExecutionException("Queue capacity exceeded");
ForkJoinTask<?>[] newQ = queue = new ForkJoinTask<?>[newSize];
int b = base;
int bf = b + oldSize;
int oldMask = oldSize - 1;
int newMask = newSize - 1;
do {
int oldIndex = b & oldMask;
ForkJoinTask<?> t = oldQ[oldIndex];
if (t != null && !casSlotNull(oldQ, oldIndex, t))
t = null;
setSlot(newQ, b & newMask, t);
} while (++b != bf);
pool.signalWork();
}
/**
* Tries to steal a task from another worker. Starts at a random
* index of workers array, and probes workers until finding one
* with non-empty queue or finding that all are empty. It
* randomly selects the first n probes. If these are empty, it
* resorts to a full circular traversal, which is necessary to
* accurately set active status by caller. Also restarts if pool
* events occurred since last scan, which forces refresh of
* workers array, in case barrier was associated with resize.
*
* This method must be both fast and quiet -- usually avoiding
* memory accesses that could disrupt cache sharing etc other than
* those needed to check for and take tasks. This accounts for,
* among other things, updating random seed in place without
* storing it until exit.
*
* @return a task, or null if none found
*/
private ForkJoinTask<?> scan() {
ForkJoinTask<?> t = null;
int r = seed; // extract once to keep scan quiet
ForkJoinWorkerThread[] ws; // refreshed on outer loop
int mask; // must be power 2 minus 1 and > 0
outer:do {
if ((ws = pool.workers) != null && (mask = ws.length - 1) > 0) {
int idx = r;
int probes = ~mask; // use random index while negative
for (;;) {
r = xorShift(r); // update random seed
ForkJoinWorkerThread v = ws[mask & idx];
if (v == null || v.sp == v.base) {
if (probes <= mask)
idx = (probes++ < 0) ? r : (idx + 1);
else
break;
}
else if (!tryActivate() || (t = v.deqTask()) == null)
continue outer; // restart on contention
else
break outer;
}
}
} while (pool.hasNewSyncEvent(this)); // retry on pool events
seed = r;
return t;
}
/**
* Gets and removes a local or stolen task.
*
* @return a task, if available
*/
final ForkJoinTask<?> pollTask() {
ForkJoinTask<?> t = locallyFifo ? locallyDeqTask() : popTask();
if (t == null && (t = scan()) != null)
++stealCount;
return t;
}
/**
* Gets a local task.
*
* @return a task, if available
*/
final ForkJoinTask<?> pollLocalTask() {
return locallyFifo ? locallyDeqTask() : popTask();
}
/**
* Returns a pool submission, if one exists, activating first.
*
* @return a submission, if available
*/
private ForkJoinTask<?> pollSubmission() {
ForkJoinPool p = pool;
while (p.hasQueuedSubmissions()) {
ForkJoinTask<?> t;
if (tryActivate() && (t = p.pollSubmission()) != null)
return t;
}
return null;
}
// Methods accessed only by Pool
/**
* Removes and cancels all tasks in queue. Can be called from any
* thread.
*/
final void cancelTasks() {
ForkJoinTask<?> t;
while (base != sp && (t = deqTask()) != null)
t.cancelIgnoringExceptions();
}
/**
* Drains tasks to given collection c.
*
* @return the number of tasks drained
*/
final int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
int n = 0;
ForkJoinTask<?> t;
while (base != sp && (t = deqTask()) != null) {
c.add(t);
++n;
}
return n;
}
/**
* Gets and clears steal count for accumulation by pool. Called
* only when known to be idle (in pool.sync and termination).
*/
final int getAndClearStealCount() {
int sc = stealCount;
stealCount = 0;
return sc;
}
/**
* Returns {@code true} if at least one worker in the given array
* appears to have at least one queued task.
*
* @param ws array of workers
*/
static boolean hasQueuedTasks(ForkJoinWorkerThread[] ws) {
if (ws != null) {
int len = ws.length;
for (int j = 0; j < 2; ++j) { // need two passes for clean sweep
for (int i = 0; i < len; ++i) {
ForkJoinWorkerThread w = ws[i];
if (w != null && w.sp != w.base)
return true;
}
}
}
return false;
}
// Support methods for ForkJoinTask
/**
* Returns an estimate of the number of tasks in the queue.
*/
final int getQueueSize() {
// suppress momentarily negative values
return Math.max(0, sp - base);
}
/**
* Returns an estimate of the number of tasks, offset by a
* function of number of idle workers.
*/
final int getEstimatedSurplusTaskCount() {
// The halving approximates weighting idle vs non-idle workers
return (sp - base) - (pool.getIdleThreadCount() >>> 1);
}
/**
* Scans, returning early if joinMe done.
*/
final ForkJoinTask<?> scanWhileJoining(ForkJoinTask<?> joinMe) {
ForkJoinTask<?> t = pollTask();
if (t != null && joinMe.status < 0 && sp == base) {
pushTask(t); // unsteal if done and this task would be stealable
t = null;
}
return t;
}
/**
* Runs tasks until {@code pool.isQuiescent()}.
*/
final void helpQuiescePool() {
for (;;) {
ForkJoinTask<?> t = pollTask();
if (t != null)
t.quietlyExec();
else if (tryInactivate() && pool.isQuiescent())
break;
}
do {} while (!tryActivate()); // re-activate on exit
}
// Unsafe mechanics
private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
private static final long spOffset =
objectFieldOffset("sp", ForkJoinWorkerThread.class);
private static final long runStateOffset =
objectFieldOffset("runState", ForkJoinWorkerThread.class);
private static final long qBase;
private static final int qShift;
static {
qBase = UNSAFE.arrayBaseOffset(ForkJoinTask[].class);
int s = UNSAFE.arrayIndexScale(ForkJoinTask[].class);
if ((s & (s-1)) != 0)
throw new Error("data type scale not a power of two");
qShift = 31 - Integer.numberOfLeadingZeros(s);
}
private static long objectFieldOffset(String field, Class<?> klazz) {
try {
return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
} catch (NoSuchFieldException e) {
// Convert Exception to corresponding Error
NoSuchFieldError error = new NoSuchFieldError(field);
error.initCause(e);
throw error;
}
}
}
/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Sun designates this
* particular file as subject to the "Classpath" exception as provided
* by Sun in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*/
/*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file:
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/licenses/publicdomain
*/
package java.util.concurrent;
import java.util.AbstractQueue;
import java.util.Collection;
import java.util.ConcurrentModificationException;
import java.util.Iterator;
import java.util.NoSuchElementException;
import java.util.Queue;
import java.util.concurrent.locks.LockSupport;
/**
* An unbounded {@link TransferQueue} based on linked nodes.
* This queue orders elements FIFO (first-in-first-out) with respect
* to any given producer. The <em>head</em> of the queue is that
* element that has been on the queue the longest time for some
* producer. The <em>tail</em> of the queue is that element that has
* been on the queue the shortest time for some producer.
*
* <p>Beware that, unlike in most collections, the {@code size}
* method is <em>NOT</em> a constant-time operation. Because of the
* asynchronous nature of these queues, determining the current number
* of elements requires a traversal of the elements.
*
* <p>This class and its iterator implement all of the
* <em>optional</em> methods of the {@link Collection} and {@link
* Iterator} interfaces.
*
* <p>Memory consistency effects: As with other concurrent
* collections, actions in a thread prior to placing an object into a
* {@code LinkedTransferQueue}
* <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
* actions subsequent to the access or removal of that element from
* the {@code LinkedTransferQueue} in another thread.
*
* <p>This class is a member of the
* <a href="{@docRoot}/../technotes/guides/collections/index.html">
* Java Collections Framework</a>.
*
* @since 1.7
* @author Doug Lea
* @param <E> the type of elements held in this collection
*/
public class LinkedTransferQueue<E> extends AbstractQueue<E>
implements TransferQueue<E>, java.io.Serializable {
private static final long serialVersionUID = -3223113410248163686L;
/*
* *** Overview of Dual Queues with Slack ***
*
* Dual Queues, introduced by Scherer and Scott
* (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
* (linked) queues in which nodes may represent either data or
* requests. When a thread tries to enqueue a data node, but
* encounters a request node, it instead "matches" and removes it;
* and vice versa for enqueuing requests. Blocking Dual Queues
* arrange that threads enqueuing unmatched requests block until
* other threads provide the match. Dual Synchronous Queues (see
* Scherer, Lea, & Scott
* http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
* additionally arrange that threads enqueuing unmatched data also
* block. Dual Transfer Queues support all of these modes, as
* dictated by callers.
*
* A FIFO dual queue may be implemented using a variation of the
* Michael & Scott (M&S) lock-free queue algorithm
* (http://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.pdf).
* It maintains two pointer fields, "head", pointing to a
* (matched) node that in turn points to the first actual
* (unmatched) queue node (or null if empty); and "tail" that
* points to the last node on the queue (or again null if
* empty). For example, here is a possible queue with four data
* elements:
*
* head tail
* | |
* v v
* M -> U -> U -> U -> U
*
* The M&S queue algorithm is known to be prone to scalability and
* overhead limitations when maintaining (via CAS) these head and
* tail pointers. This has led to the development of
* contention-reducing variants such as elimination arrays (see
* Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
* optimistic back pointers (see Ladan-Mozes & Shavit
* http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
* However, the nature of dual queues enables a simpler tactic for
* improving M&S-style implementations when dual-ness is needed.
*
* In a dual queue, each node must atomically maintain its match
* status. While there are other possible variants, we implement
* this here as: for a data-mode node, matching entails CASing an
* "item" field from a non-null data value to null upon match, and
* vice-versa for request nodes, CASing from null to a data
* value. (Note that the linearization properties of this style of
* queue are easy to verify -- elements are made available by
* linking, and unavailable by matching.) Compared to plain M&S
* queues, this property of dual queues requires one additional
* successful atomic operation per enq/deq pair. But it also
* enables lower cost variants of queue maintenance mechanics. (A
* variation of this idea applies even for non-dual queues that
* support deletion of interior elements, such as
* j.u.c.ConcurrentLinkedQueue.)
*
* Once a node is matched, its match status can never again
* change. We may thus arrange that the linked list of them
* contain a prefix of zero or more matched nodes, followed by a
* suffix of zero or more unmatched nodes. (Note that we allow
* both the prefix and suffix to be zero length, which in turn
* means that we do not use a dummy header.) If we were not
* concerned with either time or space efficiency, we could
* correctly perform enqueue and dequeue operations by traversing
* from a pointer to the initial node; CASing the item of the
* first unmatched node on match and CASing the next field of the
* trailing node on appends. (Plus some special-casing when
* initially empty). While this would be a terrible idea in
* itself, it does have the benefit of not requiring ANY atomic
* updates on head/tail fields.
*
* We introduce here an approach that lies between the extremes of
* never versus always updating queue (head and tail) pointers.
* This offers a tradeoff between sometimes requiring extra
* traversal steps to locate the first and/or last unmatched
* nodes, versus the reduced overhead and contention of fewer
* updates to queue pointers. For example, a possible snapshot of
* a queue is:
*
* head tail
* | |
* v v
* M -> M -> U -> U -> U -> U
*
* The best value for this "slack" (the targeted maximum distance
* between the value of "head" and the first unmatched node, and
* similarly for "tail") is an empirical matter. We have found
* that using very small constants in the range of 1-3 work best
* over a range of platforms. Larger values introduce increasing
* costs of cache misses and risks of long traversal chains, while
* smaller values increase CAS contention and overhead.
*
* Dual queues with slack differ from plain M&S dual queues by
* virtue of only sometimes updating head or tail pointers when
* matching, appending, or even traversing nodes; in order to
* maintain a targeted slack. The idea of "sometimes" may be
* operationalized in several ways. The simplest is to use a
* per-operation counter incremented on each traversal step, and
* to try (via CAS) to update the associated queue pointer
* whenever the count exceeds a threshold. Another, that requires
* more overhead, is to use random number generators to update
* with a given probability per traversal step.
*
* In any strategy along these lines, because CASes updating
* fields may fail, the actual slack may exceed targeted
* slack. However, they may be retried at any time to maintain
* targets. Even when using very small slack values, this
* approach works well for dual queues because it allows all
* operations up to the point of matching or appending an item
* (hence potentially allowing progress by another thread) to be
* read-only, thus not introducing any further contention. As
* described below, we implement this by performing slack
* maintenance retries only after these points.
*
* As an accompaniment to such techniques, traversal overhead can
* be further reduced without increasing contention of head
* pointer updates: Threads may sometimes shortcut the "next" link
* path from the current "head" node to be closer to the currently
* known first unmatched node, and similarly for tail. Again, this
* may be triggered with using thresholds or randomization.
*
* These ideas must be further extended to avoid unbounded amounts
* of costly-to-reclaim garbage caused by the sequential "next"
* links of nodes starting at old forgotten head nodes: As first
* described in detail by Boehm
* (http://portal.acm.org/citation.cfm?doid=503272.503282) if a GC
* delays noticing that any arbitrarily old node has become
* garbage, all newer dead nodes will also be unreclaimed.
* (Similar issues arise in non-GC environments.) To cope with
* this in our implementation, upon CASing to advance the head
* pointer, we set the "next" link of the previous head to point
* only to itself; thus limiting the length of connected dead lists.
* (We also take similar care to wipe out possibly garbage
* retaining values held in other Node fields.) However, doing so
* adds some further complexity to traversal: If any "next"
* pointer links to itself, it indicates that the current thread
* has lagged behind a head-update, and so the traversal must
* continue from the "head". Traversals trying to find the
* current tail starting from "tail" may also encounter
* self-links, in which case they also continue at "head".
*
* It is tempting in slack-based scheme to not even use CAS for
* updates (similarly to Ladan-Mozes & Shavit). However, this
* cannot be done for head updates under the above link-forgetting
* mechanics because an update may leave head at a detached node.
* And while direct writes are possible for tail updates, they
* increase the risk of long retraversals, and hence long garbage
* chains, which can be much more costly than is worthwhile
* considering that the cost difference of performing a CAS vs
* write is smaller when they are not triggered on each operation
* (especially considering that writes and CASes equally require
* additional GC bookkeeping ("write barriers") that are sometimes
* more costly than the writes themselves because of contention).
*
* Removal of interior nodes (due to timed out or interrupted
* waits, or calls to remove(x) or Iterator.remove) can use a
* scheme roughly similar to that described in Scherer, Lea, and
* Scott's SynchronousQueue. Given a predecessor, we can unsplice
* any node except the (actual) tail of the queue. To avoid
* build-up of cancelled trailing nodes, upon a request to remove
* a trailing node, it is placed in field "cleanMe" to be
* unspliced upon the next call to unsplice any other node.
* Situations needing such mechanics are not common but do occur
* in practice; for example when an unbounded series of short
* timed calls to poll repeatedly time out but never otherwise
* fall off the list because of an untimed call to take at the
* front of the queue. Note that maintaining field cleanMe does
* not otherwise much impact garbage retention even if never
* cleared by some other call because the held node will
* eventually either directly or indirectly lead to a self-link
* once off the list.
*
* *** Overview of implementation ***
*
* We use a threshold-based approach to updates, with a slack
* threshold of two -- that is, we update head/tail when the
* current pointer appears to be two or more steps away from the
* first/last node. The slack value is hard-wired: a path greater
* than one is naturally implemented by checking equality of
* traversal pointers except when the list has only one element,
* in which case we keep slack threshold at one. Avoiding tracking
* explicit counts across method calls slightly simplifies an
* already-messy implementation. Using randomization would
* probably work better if there were a low-quality dirt-cheap
* per-thread one available, but even ThreadLocalRandom is too
* heavy for these purposes.
*
* With such a small slack threshold value, it is rarely
* worthwhile to augment this with path short-circuiting; i.e.,
* unsplicing nodes between head and the first unmatched node, or
* similarly for tail, rather than advancing head or tail
* proper. However, it is used (in awaitMatch) immediately before
* a waiting thread starts to block, as a final bit of helping at
* a point when contention with others is extremely unlikely
* (since if other threads that could release it are operating,
* then the current thread wouldn't be blocking).
*
* We allow both the head and tail fields to be null before any
* nodes are enqueued; initializing upon first append. This
* simplifies some other logic, as well as providing more
* efficient explicit control paths instead of letting JVMs insert
* implicit NullPointerExceptions when they are null. While not
* currently fully implemented, we also leave open the possibility
* of re-nulling these fields when empty (which is complicated to
* arrange, for little benefit.)
*
* All enqueue/dequeue operations are handled by the single method
* "xfer" with parameters indicating whether to act as some form
* of offer, put, poll, take, or transfer (each possibly with
* timeout). The relative complexity of using one monolithic
* method outweighs the code bulk and maintenance problems of
* using separate methods for each case.
*
* Operation consists of up to three phases. The first is
* implemented within method xfer, the second in tryAppend, and
* the third in method awaitMatch.
*
* 1. Try to match an existing node
*
* Starting at head, skip already-matched nodes until finding
* an unmatched node of opposite mode, if one exists, in which
* case matching it and returning, also if necessary updating
* head to one past the matched node (or the node itself if the
* list has no other unmatched nodes). If the CAS misses, then
* a loop retries advancing head by two steps until either
* success or the slack is at most two. By requiring that each
* attempt advances head by two (if applicable), we ensure that
* the slack does not grow without bound. Traversals also check
* if the initial head is now off-list, in which case they
* start at the new head.
*
* If no candidates are found and the call was untimed
* poll/offer, (argument "how" is NOW) return.
*
* 2. Try to append a new node (method tryAppend)
*
* Starting at current tail pointer, find the actual last node
* and try to append a new node (or if head was null, establish
* the first node). Nodes can be appended only if their
* predecessors are either already matched or are of the same
* mode. If we detect otherwise, then a new node with opposite
* mode must have been appended during traversal, so we must
* restart at phase 1. The traversal and update steps are
* otherwise similar to phase 1: Retrying upon CAS misses and
* checking for staleness. In particular, if a self-link is
* encountered, then we can safely jump to a node on the list
* by continuing the traversal at current head.
*
* On successful append, if the call was ASYNC, return.
*
* 3. Await match or cancellation (method awaitMatch)
*
* Wait for another thread to match node; instead cancelling if
* the current thread was interrupted or the wait timed out. On
* multiprocessors, we use front-of-queue spinning: If a node
* appears to be the first unmatched node in the queue, it
* spins a bit before blocking. In either case, before blocking
* it tries to unsplice any nodes between the current "head"
* and the first unmatched node.
*
* Front-of-queue spinning vastly improves performance of
* heavily contended queues. And so long as it is relatively
* brief and "quiet", spinning does not much impact performance
* of less-contended queues. During spins threads check their
* interrupt status and generate a thread-local random number
* to decide to occasionally perform a Thread.yield. While
* yield has underdefined specs, we assume that might it help,
* and will not hurt in limiting impact of spinning on busy
* systems. We also use smaller (1/2) spins for nodes that are
* not known to be front but whose predecessors have not
* blocked -- these "chained" spins avoid artifacts of
* front-of-queue rules which otherwise lead to alternating
* nodes spinning vs blocking. Further, front threads that
* represent phase changes (from data to request node or vice
* versa) compared to their predecessors receive additional
* chained spins, reflecting longer paths typically required to
* unblock threads during phase changes.
*/
/** True if on multiprocessor */
private static final boolean MP =
Runtime.getRuntime().availableProcessors() > 1;
/**
* The number of times to spin (with randomly interspersed calls
* to Thread.yield) on multiprocessor before blocking when a node
* is apparently the first waiter in the queue. See above for
* explanation. Must be a power of two. The value is empirically
* derived -- it works pretty well across a variety of processors,
* numbers of CPUs, and OSes.
*/
private static final int FRONT_SPINS = 1 << 7;
/**
* The number of times to spin before blocking when a node is
* preceded by another node that is apparently spinning. Also
* serves as an increment to FRONT_SPINS on phase changes, and as
* base average frequency for yielding during spins. Must be a
* power of two.
*/
private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
/**
* Queue nodes. Uses Object, not E, for items to allow forgetting
* them after use. Relies heavily on Unsafe mechanics to minimize
* unnecessary ordering constraints: Writes that intrinsically
* precede or follow CASes use simple relaxed forms. Other
* cleanups use releasing/lazy writes.
*/
static final class Node {
final boolean isData; // false if this is a request node
volatile Object item; // initially non-null if isData; CASed to match
volatile Node next;
volatile Thread waiter; // null until waiting
// CAS methods for fields
final boolean casNext(Node cmp, Node val) {
return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
}
final boolean casItem(Object cmp, Object val) {
// assert cmp == null || cmp.getClass() != Node.class;
return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
}
/**
* Creates a new node. Uses relaxed write because item can only
* be seen if followed by CAS.
*/
Node(Object item, boolean isData) {
UNSAFE.putObject(this, itemOffset, item); // relaxed write
this.isData = isData;
}
/**
* Links node to itself to avoid garbage retention. Called
* only after CASing head field, so uses relaxed write.
*/
final void forgetNext() {
UNSAFE.putObject(this, nextOffset, this);
}
/**
* Sets item to self (using a releasing/lazy write) and waiter
* to null, to avoid garbage retention after extracting or
* cancelling.
*/
final void forgetContents() {
UNSAFE.putOrderedObject(this, itemOffset, this);
UNSAFE.putOrderedObject(this, waiterOffset, null);
}
/**
* Returns true if this node has been matched, including the
* case of artificial matches due to cancellation.
*/
final boolean isMatched() {
Object x = item;
return (x == this) || ((x == null) == isData);
}
/**
* Returns true if this is an unmatched request node.
*/
final boolean isUnmatchedRequest() {
return !isData && item == null;
}
/**
* Returns true if a node with the given mode cannot be
* appended to this node because this node is unmatched and
* has opposite data mode.
*/
final boolean cannotPrecede(boolean haveData) {
boolean d = isData;
Object x;
return d != haveData && (x = item) != this && (x != null) == d;
}
/**
* Tries to artificially match a data node -- used by remove.
*/
final boolean tryMatchData() {
// assert isData;
Object x = item;
if (x != null && x != this && casItem(x, null)) {
LockSupport.unpark(waiter);
return true;
}
return false;
}
// Unsafe mechanics
private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
private static final long nextOffset =
objectFieldOffset(UNSAFE, "next", Node.class);
private static final long itemOffset =
objectFieldOffset(UNSAFE, "item", Node.class);
private static final long waiterOffset =
objectFieldOffset(UNSAFE, "waiter", Node.class);
private static final long serialVersionUID = -3375979862319811754L;
}
/** head of the queue; null until first enqueue */
transient volatile Node head;
/** predecessor of dangling unspliceable node */
private transient volatile Node cleanMe; // decl here reduces contention
/** tail of the queue; null until first append */
private transient volatile Node tail;
// CAS methods for fields
private boolean casTail(Node cmp, Node val) {
return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
}
private boolean casHead(Node cmp, Node val) {
return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
}
private boolean casCleanMe(Node cmp, Node val) {
return UNSAFE.compareAndSwapObject(this, cleanMeOffset, cmp, val);
}
/*
* Possible values for "how" argument in xfer method.
*/
private static final int NOW = 0; // for untimed poll, tryTransfer
private static final int ASYNC = 1; // for offer, put, add
private static final int SYNC = 2; // for transfer, take
private static final int TIMED = 3; // for timed poll, tryTransfer
@SuppressWarnings("unchecked")
static <E> E cast(Object item) {
// assert item == null || item.getClass() != Node.class;
return (E) item;
}
/**
* Implements all queuing methods. See above for explanation.
*
* @param e the item or null for take
* @param haveData true if this is a put, else a take
* @param how NOW, ASYNC, SYNC, or TIMED
* @param nanos timeout in nanosecs, used only if mode is TIMED
* @return an item if matched, else e
* @throws NullPointerException if haveData mode but e is null
*/
private E xfer(E e, boolean haveData, int how, long nanos) {
if (haveData && (e == null))
throw new NullPointerException();
Node s = null; // the node to append, if needed
retry: for (;;) { // restart on append race
for (Node h = head, p = h; p != null;) { // find & match first node
boolean isData = p.isData;
Object item = p.item;
if (item != p && (item != null) == isData) { // unmatched
if (isData == haveData) // can't match
break;
if (p.casItem(item, e)) { // match
for (Node q = p; q != h;) {
Node n = q.next; // update head by 2
if (n != null) // unless singleton
q = n;
if (head == h && casHead(h, q)) {
h.forgetNext();
break;
} // advance and retry
if ((h = head) == null ||
(q = h.next) == null || !q.isMatched())
break; // unless slack < 2
}
LockSupport.unpark(p.waiter);
return this.<E>cast(item);
}
}
Node n = p.next;
p = (p != n) ? n : (h = head); // Use head if p offlist
}
if (how != NOW) { // No matches available
if (s == null)
s = new Node(e, haveData);
Node pred = tryAppend(s, haveData);
if (pred == null)
continue retry; // lost race vs opposite mode
if (how != ASYNC)
return awaitMatch(s, pred, e, (how == TIMED), nanos);
}
return e; // not waiting
}
}
/**
* Tries to append node s as tail.
*
* @param s the node to append
* @param haveData true if appending in data mode
* @return null on failure due to losing race with append in
* different mode, else s's predecessor, or s itself if no
* predecessor
*/
private Node tryAppend(Node s, boolean haveData) {
for (Node t = tail, p = t;;) { // move p to last node and append
Node n, u; // temps for reads of next & tail
if (p == null && (p = head) == null) {
if (casHead(null, s))
return s; // initialize
}
else if (p.cannotPrecede(haveData))
return null; // lost race vs opposite mode
else if ((n = p.next) != null) // not last; keep traversing
p = p != t && t != (u = tail) ? (t = u) : // stale tail
(p != n) ? n : null; // restart if off list
else if (!p.casNext(null, s))
p = p.next; // re-read on CAS failure
else {
if (p != t) { // update if slack now >= 2
while ((tail != t || !casTail(t, s)) &&
(t = tail) != null &&
(s = t.next) != null && // advance and retry
(s = s.next) != null && s != t);
}
return p;
}
}
}
/**
* Spins/yields/blocks until node s is matched or caller gives up.
*
* @param s the waiting node
* @param pred the predecessor of s, or s itself if it has no
* predecessor, or null if unknown (the null case does not occur
* in any current calls but may in possible future extensions)
* @param e the comparison value for checking match
* @param timed if true, wait only until timeout elapses
* @param nanos timeout in nanosecs, used only if timed is true
* @return matched item, or e if unmatched on interrupt or timeout
*/
private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
long lastTime = timed ? System.nanoTime() : 0L;
Thread w = Thread.currentThread();
int spins = -1; // initialized after first item and cancel checks
ThreadLocalRandom randomYields = null; // bound if needed
for (;;) {
Object item = s.item;
if (item != e) { // matched
// assert item != s;
s.forgetContents(); // avoid garbage
return this.<E>cast(item);
}
if ((w.isInterrupted() || (timed && nanos <= 0)) &&
s.casItem(e, s)) { // cancel
unsplice(pred, s);
return e;
}
if (spins < 0) { // establish spins at/near front
if ((spins = spinsFor(pred, s.isData)) > 0)
randomYields = ThreadLocalRandom.current();
}
else if (spins > 0) { // spin
if (--spins == 0)
shortenHeadPath(); // reduce slack before blocking
else if (randomYields.nextInt(CHAINED_SPINS) == 0)
Thread.yield(); // occasionally yield
}
else if (s.waiter == null) {
s.waiter = w; // request unpark then recheck
}
else if (timed) {
long now = System.nanoTime();
if ((nanos -= now - lastTime) > 0)
LockSupport.parkNanos(this, nanos);
lastTime = now;
}
else {
LockSupport.park(this);
s.waiter = null;
spins = -1; // spin if front upon wakeup
}
}
}
/**
* Returns spin/yield value for a node with given predecessor and
* data mode. See above for explanation.
*/
private static int spinsFor(Node pred, boolean haveData) {
if (MP && pred != null) {
if (pred.isData != haveData) // phase change
return FRONT_SPINS + CHAINED_SPINS;
if (pred.isMatched()) // probably at front
return FRONT_SPINS;
if (pred.waiter == null) // pred apparently spinning
return CHAINED_SPINS;
}
return 0;
}
/**
* Tries (once) to unsplice nodes between head and first unmatched
* or trailing node; failing on contention.
*/
private void shortenHeadPath() {
Node h, hn, p, q;
if ((p = h = head) != null && h.isMatched() &&
(q = hn = h.next) != null) {
Node n;
while ((n = q.next) != q) {
if (n == null || !q.isMatched()) {
if (hn != q && h.next == hn)
h.casNext(hn, q);
break;
}
p = q;
q = n;
}
}
}
/* -------------- Traversal methods -------------- */
/**
* Returns the successor of p, or the head node if p.next has been
* linked to self, which will only be true if traversing with a
* stale pointer that is now off the list.
*/
final Node succ(Node p) {
Node next = p.next;
return (p == next) ? head : next;
}
/**
* Returns the first unmatched node of the given mode, or null if
* none. Used by methods isEmpty, hasWaitingConsumer.
*/
private Node firstOfMode(boolean isData) {
for (Node p = head; p != null; p = succ(p)) {
if (!p.isMatched())
return (p.isData == isData) ? p : null;
}
return null;
}
/**
* Returns the item in the first unmatched node with isData; or
* null if none. Used by peek.
*/
private E firstDataItem() {
for (Node p = head; p != null; p = succ(p)) {
Object item = p.item;
if (p.isData) {
if (item != null && item != p)
return this.<E>cast(item);
}
else if (item == null)
return null;
}
return null;
}
/**
* Traverses and counts unmatched nodes of the given mode.
* Used by methods size and getWaitingConsumerCount.
*/
private int countOfMode(boolean data) {
int count = 0;
for (Node p = head; p != null; ) {
if (!p.isMatched()) {
if (p.isData != data)
return 0;
if (++count == Integer.MAX_VALUE) // saturated
break;
}
Node n = p.next;
if (n != p)
p = n;
else {
count = 0;
p = head;
}
}
return count;
}
final class Itr implements Iterator<E> {
private Node nextNode; // next node to return item for
private E nextItem; // the corresponding item
private Node lastRet; // last returned node, to support remove
private Node lastPred; // predecessor to unlink lastRet
/**
* Moves to next node after prev, or first node if prev null.
*/
private void advance(Node prev) {
lastPred = lastRet;
lastRet = prev;
for (Node p = (prev == null) ? head : succ(prev);
p != null; p = succ(p)) {
Object item = p.item;
if (p.isData) {
if (item != null && item != p) {
nextItem = LinkedTransferQueue.this.<E>cast(item);
nextNode = p;
return;
}
}
else if (item == null)
break;
}
nextNode = null;
}
Itr() {
advance(null);
}
public final boolean hasNext() {
return nextNode != null;
}
public final E next() {
Node p = nextNode;
if (p == null) throw new NoSuchElementException();
E e = nextItem;
advance(p);
return e;
}
public final void remove() {
Node p = lastRet;
if (p == null) throw new IllegalStateException();
findAndRemoveDataNode(lastPred, p);
}
}
/* -------------- Removal methods -------------- */
/**
* Unsplices (now or later) the given deleted/cancelled node with
* the given predecessor.
*
* @param pred predecessor of node to be unspliced
* @param s the node to be unspliced
*/
private void unsplice(Node pred, Node s) {
s.forgetContents(); // clear unneeded fields
/*
* At any given time, exactly one node on list cannot be
* unlinked -- the last inserted node. To accommodate this, if
* we cannot unlink s, we save its predecessor as "cleanMe",
* processing the previously saved version first. Because only
* one node in the list can have a null next, at least one of
* node s or the node previously saved can always be
* processed, so this always terminates.
*/
if (pred != null && pred != s) {
while (pred.next == s) {
Node oldpred = (cleanMe == null) ? null : reclean();
Node n = s.next;
if (n != null) {
if (n != s)
pred.casNext(s, n);
break;
}
if (oldpred == pred || // Already saved
((oldpred == null || oldpred.next == s) &&
casCleanMe(oldpred, pred))) {
break;
}
}
}
}
/**
* Tries to unsplice the deleted/cancelled node held in cleanMe
* that was previously uncleanable because it was at tail.
*
* @return current cleanMe node (or null)
*/
private Node reclean() {
/*
* cleanMe is, or at one time was, predecessor of a cancelled
* node s that was the tail so could not be unspliced. If it
* is no longer the tail, try to unsplice if necessary and
* make cleanMe slot available. This differs from similar
* code in unsplice() because we must check that pred still
* points to a matched node that can be unspliced -- if not,
* we can (must) clear cleanMe without unsplicing. This can
* loop only due to contention.
*/
Node pred;
while ((pred = cleanMe) != null) {
Node s = pred.next;
Node n;
if (s == null || s == pred || !s.isMatched())
casCleanMe(pred, null); // already gone
else if ((n = s.next) != null) {
if (n != s)
pred.casNext(s, n);
casCleanMe(pred, null);
}
else
break;
}
return pred;
}
/**
* Main implementation of Iterator.remove(). Finds
* and unsplices the given data node.
*
* @param possiblePred possible predecessor of s
* @param s the node to remove
*/
final void findAndRemoveDataNode(Node possiblePred, Node s) {
// assert s.isData;
if (s.tryMatchData()) {
if (possiblePred != null && possiblePred.next == s)
unsplice(possiblePred, s); // was actual predecessor
else {
for (Node pred = null, p = head; p != null; ) {
if (p == s) {
unsplice(pred, p);
break;
}
if (p.isUnmatchedRequest())
break;
pred = p;
if ((p = p.next) == pred) { // stale
pred = null;
p = head;
}
}
}
}
}
/**
* Main implementation of remove(Object)
*/
private boolean findAndRemove(Object e) {
if (e != null) {
for (Node pred = null, p = head; p != null; ) {
Object item = p.item;
if (p.isData) {
if (item != null && item != p && e.equals(item) &&
p.tryMatchData()) {
unsplice(pred, p);
return true;
}
}
else if (item == null)
break;
pred = p;
if ((p = p.next) == pred) { // stale
pred = null;
p = head;
}
}
}
return false;
}
/**
* Creates an initially empty {@code LinkedTransferQueue}.
*/
public LinkedTransferQueue() {
}
/**
* Creates a {@code LinkedTransferQueue}
* initially containing the elements of the given collection,
* added in traversal order of the collection's iterator.
*
* @param c the collection of elements to initially contain
* @throws NullPointerException if the specified collection or any
* of its elements are null
*/
public LinkedTransferQueue(Collection<? extends E> c) {
this();
addAll(c);
}
/**
* Inserts the specified element at the tail of this queue.
* As the queue is unbounded, this method will never block.
*
* @throws NullPointerException if the specified element is null
*/
public void put(E e) {
xfer(e, true, ASYNC, 0);
}
/**
* Inserts the specified element at the tail of this queue.
* As the queue is unbounded, this method will never block or
* return {@code false}.
*
* @return {@code true} (as specified by
* {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
* @throws NullPointerException if the specified element is null
*/
public boolean offer(E e, long timeout, TimeUnit unit) {
xfer(e, true, ASYNC, 0);
return true;
}
/**
* Inserts the specified element at the tail of this queue.
* As the queue is unbounded, this method will never return {@code false}.
*
* @return {@code true} (as specified by
* {@link BlockingQueue#offer(Object) BlockingQueue.offer})
* @throws NullPointerException if the specified element is null
*/
public boolean offer(E e) {
xfer(e, true, ASYNC, 0);
return true;
}
/**
* Inserts the specified element at the tail of this queue.
* As the queue is unbounded, this method will never throw
* {@link IllegalStateException} or return {@code false}.
*
* @return {@code true} (as specified by {@link Collection#add})
* @throws NullPointerException if the specified element is null
*/
public boolean add(E e) {
xfer(e, true, ASYNC, 0);
return true;
}
/**
* Transfers the element to a waiting consumer immediately, if possible.
*
* <p>More precisely, transfers the specified element immediately
* if there exists a consumer already waiting to receive it (in
* {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
* otherwise returning {@code false} without enqueuing the element.
*
* @throws NullPointerException if the specified element is null
*/
public boolean tryTransfer(E e) {
return xfer(e, true, NOW, 0) == null;
}
/**
* Transfers the element to a consumer, waiting if necessary to do so.
*
* <p>More precisely, transfers the specified element immediately
* if there exists a consumer already waiting to receive it (in
* {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
* else inserts the specified element at the tail of this queue
* and waits until the element is received by a consumer.
*
* @throws NullPointerException if the specified element is null
*/
public void transfer(E e) throws InterruptedException {
if (xfer(e, true, SYNC, 0) != null) {
Thread.interrupted(); // failure possible only due to interrupt
throw new InterruptedException();
}
}
/**
* Transfers the element to a consumer if it is possible to do so
* before the timeout elapses.
*
* <p>More precisely, transfers the specified element immediately
* if there exists a consumer already waiting to receive it (in
* {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
* else inserts the specified element at the tail of this queue
* and waits until the element is received by a consumer,
* returning {@code false} if the specified wait time elapses
* before the element can be transferred.
*
* @throws NullPointerException if the specified element is null
*/
public boolean tryTransfer(E e, long timeout, TimeUnit unit)
throws InterruptedException {
if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
return true;
if (!Thread.interrupted())
return false;
throw new InterruptedException();
}
public E take() throws InterruptedException {
E e = xfer(null, false, SYNC, 0);
if (e != null)
return e;
Thread.interrupted();
throw new InterruptedException();
}
public E poll(long timeout, TimeUnit unit) throws InterruptedException {
E e = xfer(null, false, TIMED, unit.toNanos(timeout));
if (e != null || !Thread.interrupted())
return e;
throw new InterruptedException();
}
public E poll() {
return xfer(null, false, NOW, 0);
}
/**
* @throws NullPointerException {@inheritDoc}
* @throws IllegalArgumentException {@inheritDoc}
*/
public int drainTo(Collection<? super E> c) {
if (c == null)
throw new NullPointerException();
if (c == this)
throw new IllegalArgumentException();
int n = 0;
E e;
while ( (e = poll()) != null) {
c.add(e);
++n;
}
return n;
}
/**
* @throws NullPointerException {@inheritDoc}
* @throws IllegalArgumentException {@inheritDoc}
*/
public int drainTo(Collection<? super E> c, int maxElements) {
if (c == null)
throw new NullPointerException();
if (c == this)
throw new IllegalArgumentException();
int n = 0;
E e;
while (n < maxElements && (e = poll()) != null) {
c.add(e);
++n;
}
return n;
}
/**
* Returns an iterator over the elements in this queue in proper
* sequence, from head to tail.
*
* <p>The returned iterator is a "weakly consistent" iterator that
* will never throw
* {@link ConcurrentModificationException ConcurrentModificationException},
* and guarantees to traverse elements as they existed upon
* construction of the iterator, and may (but is not guaranteed
* to) reflect any modifications subsequent to construction.
*
* @return an iterator over the elements in this queue in proper sequence
*/
public Iterator<E> iterator() {
return new Itr();
}
public E peek() {
return firstDataItem();
}
/**
* Returns {@code true} if this queue contains no elements.
*
* @return {@code true} if this queue contains no elements
*/
public boolean isEmpty() {
return firstOfMode(true) == null;
}
public boolean hasWaitingConsumer() {
return firstOfMode(false) != null;
}
/**
* Returns the number of elements in this queue. If this queue
* contains more than {@code Integer.MAX_VALUE} elements, returns
* {@code Integer.MAX_VALUE}.
*
* <p>Beware that, unlike in most collections, this method is
* <em>NOT</em> a constant-time operation. Because of the
* asynchronous nature of these queues, determining the current
* number of elements requires an O(n) traversal.
*
* @return the number of elements in this queue
*/
public int size() {
return countOfMode(true);
}
public int getWaitingConsumerCount() {
return countOfMode(false);
}
/**
* Removes a single instance of the specified element from this queue,
* if it is present. More formally, removes an element {@code e} such
* that {@code o.equals(e)}, if this queue contains one or more such
* elements.
* Returns {@code true} if this queue contained the specified element
* (or equivalently, if this queue changed as a result of the call).
*
* @param o element to be removed from this queue, if present
* @return {@code true} if this queue changed as a result of the call
*/
public boolean remove(Object o) {
return findAndRemove(o);
}
/**
* Always returns {@code Integer.MAX_VALUE} because a
* {@code LinkedTransferQueue} is not capacity constrained.
*
* @return {@code Integer.MAX_VALUE} (as specified by
* {@link BlockingQueue#remainingCapacity()})
*/
public int remainingCapacity() {
return Integer.MAX_VALUE;
}
/**
* Saves the state to a stream (that is, serializes it).
*
* @serialData All of the elements (each an {@code E}) in
* the proper order, followed by a null
* @param s the stream
*/
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
s.defaultWriteObject();
for (E e : this)
s.writeObject(e);
// Use trailing null as sentinel
s.writeObject(null);
}
/**
* Reconstitutes the Queue instance from a stream (that is,
* deserializes it).
*
* @param s the stream
*/
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
for (;;) {
@SuppressWarnings("unchecked") E item = (E) s.readObject();
if (item == null)
break;
else
offer(item);
}
}
// Unsafe mechanics
private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
private static final long headOffset =
objectFieldOffset(UNSAFE, "head", LinkedTransferQueue.class);
private static final long tailOffset =
objectFieldOffset(UNSAFE, "tail", LinkedTransferQueue.class);
private static final long cleanMeOffset =
objectFieldOffset(UNSAFE, "cleanMe", LinkedTransferQueue.class);
static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
String field, Class<?> klazz) {
try {
return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
} catch (NoSuchFieldException e) {
// Convert Exception to corresponding Error
NoSuchFieldError error = new NoSuchFieldError(field);
error.initCause(e);
throw error;
}
}
}
/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Sun designates this
* particular file as subject to the "Classpath" exception as provided
* by Sun in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*/
/*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file:
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/licenses/publicdomain
*/
package java.util.concurrent;
import java.util.concurrent.atomic.AtomicReference;
import java.util.concurrent.locks.LockSupport;
/**
* A reusable synchronization barrier, similar in functionality to
* {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
* {@link java.util.concurrent.CountDownLatch CountDownLatch}
* but supporting more flexible usage.
*
* <p> <b>Registration.</b> Unlike the case for other barriers, the
* number of parties <em>registered</em> to synchronize on a phaser
* may vary over time. Tasks may be registered at any time (using
* methods {@link #register}, {@link #bulkRegister}, or forms of
* constructors establishing initial numbers of parties), and
* optionally deregistered upon any arrival (using {@link
* #arriveAndDeregister}). As is the case with most basic
* synchronization constructs, registration and deregistration affect
* only internal counts; they do not establish any further internal
* bookkeeping, so tasks cannot query whether they are registered.
* (However, you can introduce such bookkeeping by subclassing this
* class.)
*
* <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
* Phaser} may be repeatedly awaited. Method {@link
* #arriveAndAwaitAdvance} has effect analogous to {@link
* java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
* generation of a {@code Phaser} has an associated phase number. The
* phase number starts at zero, and advances when all parties arrive
* at the barrier, wrapping around to zero after reaching {@code
* Integer.MAX_VALUE}. The use of phase numbers enables independent
* control of actions upon arrival at a barrier and upon awaiting
* others, via two kinds of methods that may be invoked by any
* registered party:
*
* <ul>
*
* <li> <b>Arrival.</b> Methods {@link #arrive} and
* {@link #arriveAndDeregister} record arrival at a
* barrier. These methods do not block, but return an associated
* <em>arrival phase number</em>; that is, the phase number of
* the barrier to which the arrival applied. When the final
* party for a given phase arrives, an optional barrier action
* is performed and the phase advances. Barrier actions,
* performed by the party triggering a phase advance, are
* arranged by overriding method {@link #onAdvance(int, int)},
* which also controls termination. Overriding this method is
* similar to, but more flexible than, providing a barrier
* action to a {@code CyclicBarrier}.
*
* <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
* argument indicating an arrival phase number, and returns when
* the barrier advances to (or is already at) a different phase.
* Unlike similar constructions using {@code CyclicBarrier},
* method {@code awaitAdvance} continues to wait even if the
* waiting thread is interrupted. Interruptible and timeout
* versions are also available, but exceptions encountered while
* tasks wait interruptibly or with timeout do not change the
* state of the barrier. If necessary, you can perform any
* associated recovery within handlers of those exceptions,
* often after invoking {@code forceTermination}. Phasers may
* also be used by tasks executing in a {@link ForkJoinPool},
* which will ensure sufficient parallelism to execute tasks
* when others are blocked waiting for a phase to advance.
*
* </ul>
*
* <p> <b>Termination.</b> A {@code Phaser} may enter a
* <em>termination</em> state in which all synchronization methods
* immediately return without updating phaser state or waiting for
* advance, and indicating (via a negative phase value) that execution
* is complete. Termination is triggered when an invocation of {@code
* onAdvance} returns {@code true}. As illustrated below, when
* phasers control actions with a fixed number of iterations, it is
* often convenient to override this method to cause termination when
* the current phase number reaches a threshold. Method {@link
* #forceTermination} is also available to abruptly release waiting
* threads and allow them to terminate.
*
* <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
* in tree structures) to reduce contention. Phasers with large
* numbers of parties that would otherwise experience heavy
* synchronization contention costs may instead be set up so that
* groups of sub-phasers share a common parent. This may greatly
* increase throughput even though it incurs greater per-operation
* overhead.
*
* <p><b>Monitoring.</b> While synchronization methods may be invoked
* only by registered parties, the current state of a phaser may be
* monitored by any caller. At any given moment there are {@link
* #getRegisteredParties} parties in total, of which {@link
* #getArrivedParties} have arrived at the current phase ({@link
* #getPhase}). When the remaining ({@link #getUnarrivedParties})
* parties arrive, the phase advances. The values returned by these
* methods may reflect transient states and so are not in general
* useful for synchronization control. Method {@link #toString}
* returns snapshots of these state queries in a form convenient for
* informal monitoring.
*
* <p><b>Sample usages:</b>
*
* <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
* to control a one-shot action serving a variable number of
* parties. The typical idiom is for the method setting this up to
* first register, then start the actions, then deregister, as in:
*
* <pre> {@code
* void runTasks(List<Runnable> tasks) {
* final Phaser phaser = new Phaser(1); // "1" to register self
* // create and start threads
* for (Runnable task : tasks) {
* phaser.register();
* new Thread() {
* public void run() {
* phaser.arriveAndAwaitAdvance(); // await all creation
* task.run();
* }
* }.start();
* }
*
* // allow threads to start and deregister self
* phaser.arriveAndDeregister();
* }}</pre>
*
* <p>One way to cause a set of threads to repeatedly perform actions
* for a given number of iterations is to override {@code onAdvance}:
*
* <pre> {@code
* void startTasks(List<Runnable> tasks, final int iterations) {
* final Phaser phaser = new Phaser() {
* protected boolean onAdvance(int phase, int registeredParties) {
* return phase >= iterations || registeredParties == 0;
* }
* };
* phaser.register();
* for (final Runnable task : tasks) {
* phaser.register();
* new Thread() {
* public void run() {
* do {
* task.run();
* phaser.arriveAndAwaitAdvance();
* } while (!phaser.isTerminated());
* }
* }.start();
* }
* phaser.arriveAndDeregister(); // deregister self, don't wait
* }}</pre>
*
* If the main task must later await termination, it
* may re-register and then execute a similar loop:
* <pre> {@code
* // ...
* phaser.register();
* while (!phaser.isTerminated())
* phaser.arriveAndAwaitAdvance();}</pre>
*
* <p>Related constructions may be used to await particular phase numbers
* in contexts where you are sure that the phase will never wrap around
* {@code Integer.MAX_VALUE}. For example:
*
* <pre> {@code
* void awaitPhase(Phaser phaser, int phase) {
* int p = phaser.register(); // assumes caller not already registered
* while (p < phase) {
* if (phaser.isTerminated())
* // ... deal with unexpected termination
* else
* p = phaser.arriveAndAwaitAdvance();
* }
* phaser.arriveAndDeregister();
* }}</pre>
*
*
* <p>To create a set of tasks using a tree of phasers,
* you could use code of the following form, assuming a
* Task class with a constructor accepting a phaser that
* it registers for upon construction:
*
* <pre> {@code
* void build(Task[] actions, int lo, int hi, Phaser ph) {
* if (hi - lo > TASKS_PER_PHASER) {
* for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
* int j = Math.min(i + TASKS_PER_PHASER, hi);
* build(actions, i, j, new Phaser(ph));
* }
* } else {
* for (int i = lo; i < hi; ++i)
* actions[i] = new Task(ph);
* // assumes new Task(ph) performs ph.register()
* }
* }
* // .. initially called, for n tasks via
* build(new Task[n], 0, n, new Phaser());}</pre>
*
* The best value of {@code TASKS_PER_PHASER} depends mainly on
* expected barrier synchronization rates. A value as low as four may
* be appropriate for extremely small per-barrier task bodies (thus
* high rates), or up to hundreds for extremely large ones.
*
* </pre>
*
* <p><b>Implementation notes</b>: This implementation restricts the
* maximum number of parties to 65535. Attempts to register additional
* parties result in {@code IllegalStateException}. However, you can and
* should create tiered phasers to accommodate arbitrarily large sets
* of participants.
*
* @since 1.7
* @author Doug Lea
*/
public class Phaser {
/*
* This class implements an extension of X10 "clocks". Thanks to
* Vijay Saraswat for the idea, and to Vivek Sarkar for
* enhancements to extend functionality.
*/
/**
* Barrier state representation. Conceptually, a barrier contains
* four values:
*
* * parties -- the number of parties to wait (16 bits)
* * unarrived -- the number of parties yet to hit barrier (16 bits)
* * phase -- the generation of the barrier (31 bits)
* * terminated -- set if barrier is terminated (1 bit)
*
* However, to efficiently maintain atomicity, these values are
* packed into a single (atomic) long. Termination uses the sign
* bit of 32 bit representation of phase, so phase is set to -1 on
* termination. Good performance relies on keeping state decoding
* and encoding simple, and keeping race windows short.
*
* Note: there are some cheats in arrive() that rely on unarrived
* count being lowest 16 bits.
*/
private volatile long state;
private static final int ushortMask = 0xffff;
private static final int phaseMask = 0x7fffffff;
private static int unarrivedOf(long s) {
return (int) (s & ushortMask);
}
private static int partiesOf(long s) {
return ((int) s) >>> 16;
}
private static int phaseOf(long s) {
return (int) (s >>> 32);
}
private static int arrivedOf(long s) {
return partiesOf(s) - unarrivedOf(s);
}
private static long stateFor(int phase, int parties, int unarrived) {
return ((((long) phase) << 32) | (((long) parties) << 16) |
(long) unarrived);
}
private static long trippedStateFor(int phase, int parties) {
long lp = (long) parties;
return (((long) phase) << 32) | (lp << 16) | lp;
}
/**
* Returns message string for bad bounds exceptions.
*/
private static String badBounds(int parties, int unarrived) {
return ("Attempt to set " + unarrived +
" unarrived of " + parties + " parties");
}
/**
* The parent of this phaser, or null if none
*/
private final Phaser parent;
/**
* The root of phaser tree. Equals this if not in a tree. Used to
* support faster state push-down.
*/
private final Phaser root;
// Wait queues
/**
* Heads of Treiber stacks for waiting threads. To eliminate
* contention while releasing some threads while adding others, we
* use two of them, alternating across even and odd phases.
*/
private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
private final AtomicReference<QNode> oddQ = new AtomicReference<QNode>();
private AtomicReference<QNode> queueFor(int phase) {
return ((phase & 1) == 0) ? evenQ : oddQ;
}
/**
* Returns current state, first resolving lagged propagation from
* root if necessary.
*/
private long getReconciledState() {
return (parent == null) ? state : reconcileState();
}
/**
* Recursively resolves state.
*/
private long reconcileState() {
Phaser p = parent;
long s = state;
if (p != null) {
while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
long parentState = p.getReconciledState();
int parentPhase = phaseOf(parentState);
int phase = phaseOf(s = state);
if (phase != parentPhase) {
long next = trippedStateFor(parentPhase, partiesOf(s));
if (casState(s, next)) {
releaseWaiters(phase);
s = next;
}
}
}
}
return s;
}
/**
* Creates a new phaser without any initially registered parties,
* initial phase number 0, and no parent. Any thread using this
* phaser will need to first register for it.
*/
public Phaser() {
this(null);
}
/**
* Creates a new phaser with the given numbers of registered
* unarrived parties, initial phase number 0, and no parent.
*
* @param parties the number of parties required to trip barrier
* @throws IllegalArgumentException if parties less than zero
* or greater than the maximum number of parties supported
*/
public Phaser(int parties) {
this(null, parties);
}
/**
* Creates a new phaser with the given parent, without any
* initially registered parties. If parent is non-null this phaser
* is registered with the parent and its initial phase number is
* the same as that of parent phaser.
*
* @param parent the parent phaser
*/
public Phaser(Phaser parent) {
int phase = 0;
this.parent = parent;
if (parent != null) {
this.root = parent.root;
phase = parent.register();
}
else
this.root = this;
this.state = trippedStateFor(phase, 0);
}
/**
* Creates a new phaser with the given parent and numbers of
* registered unarrived parties. If parent is non-null, this phaser
* is registered with the parent and its initial phase number is
* the same as that of parent phaser.
*
* @param parent the parent phaser
* @param parties the number of parties required to trip barrier
* @throws IllegalArgumentException if parties less than zero
* or greater than the maximum number of parties supported
*/
public Phaser(Phaser parent, int parties) {
if (parties < 0 || parties > ushortMask)
throw new IllegalArgumentException("Illegal number of parties");
int phase = 0;
this.parent = parent;
if (parent != null) {
this.root = parent.root;
phase = parent.register();
}
else
this.root = this;
this.state = trippedStateFor(phase, parties);
}
/**
* Adds a new unarrived party to this phaser.
*
* @return the arrival phase number to which this registration applied
* @throws IllegalStateException if attempting to register more
* than the maximum supported number of parties
*/
public int register() {
return doRegister(1);
}
/**
* Adds the given number of new unarrived parties to this phaser.
*
* @param parties the number of parties required to trip barrier
* @return the arrival phase number to which this registration applied
* @throws IllegalStateException if attempting to register more
* than the maximum supported number of parties
*/
public int bulkRegister(int parties) {
if (parties < 0)
throw new IllegalArgumentException();
if (parties == 0)
return getPhase();
return doRegister(parties);
}
/**
* Shared code for register, bulkRegister
*/
private int doRegister(int registrations) {
int phase;
for (;;) {
long s = getReconciledState();
phase = phaseOf(s);
int unarrived = unarrivedOf(s) + registrations;
int parties = partiesOf(s) + registrations;
if (phase < 0)
break;
if (parties > ushortMask || unarrived > ushortMask)
throw new IllegalStateException(badBounds(parties, unarrived));
if (phase == phaseOf(root.state) &&
casState(s, stateFor(phase, parties, unarrived)))
break;
}
return phase;
}
/**
* Arrives at the barrier, but does not wait for others. (You can
* in turn wait for others via {@link #awaitAdvance}). It is an
* unenforced usage error for an unregistered party to invoke this
* method.
*
* @return the arrival phase number, or a negative value if terminated
* @throws IllegalStateException if not terminated and the number
* of unarrived parties would become negative
*/
public int arrive() {
int phase;
for (;;) {
long s = state;
phase = phaseOf(s);
if (phase < 0)
break;
int parties = partiesOf(s);
int unarrived = unarrivedOf(s) - 1;
if (unarrived > 0) { // Not the last arrival
if (casState(s, s - 1)) // s-1 adds one arrival
break;
}
else if (unarrived == 0) { // the last arrival
Phaser par = parent;
if (par == null) { // directly trip
if (casState
(s,
trippedStateFor(onAdvance(phase, parties) ? -1 :
((phase + 1) & phaseMask), parties))) {
releaseWaiters(phase);
break;
}
}
else { // cascade to parent
if (casState(s, s - 1)) { // zeroes unarrived
par.arrive();
reconcileState();
break;
}
}
}
else if (phase != phaseOf(root.state)) // or if unreconciled
reconcileState();
else
throw new IllegalStateException(badBounds(parties, unarrived));
}
return phase;
}
/**
* Arrives at the barrier and deregisters from it without waiting
* for others. Deregistration reduces the number of parties
* required to trip the barrier in future phases. If this phaser
* has a parent, and deregistration causes this phaser to have
* zero parties, this phaser also arrives at and is deregistered
* from its parent. It is an unenforced usage error for an
* unregistered party to invoke this method.
*
* @return the arrival phase number, or a negative value if terminated
* @throws IllegalStateException if not terminated and the number
* of registered or unarrived parties would become negative
*/
public int arriveAndDeregister() {
// similar code to arrive, but too different to merge
Phaser par = parent;
int phase;
for (;;) {
long s = state;
phase = phaseOf(s);
if (phase < 0)
break;
int parties = partiesOf(s) - 1;
int unarrived = unarrivedOf(s) - 1;
if (parties >= 0) {
if (unarrived > 0 || (unarrived == 0 && par != null)) {
if (casState
(s,
stateFor(phase, parties, unarrived))) {
if (unarrived == 0) {
par.arriveAndDeregister();
reconcileState();
}
break;
}
continue;
}
if (unarrived == 0) {
if (casState
(s,
trippedStateFor(onAdvance(phase, parties) ? -1 :
((phase + 1) & phaseMask), parties))) {
releaseWaiters(phase);
break;
}
continue;
}
if (par != null && phase != phaseOf(root.state)) {
reconcileState();
continue;
}
}
throw new IllegalStateException(badBounds(parties, unarrived));
}
return phase;
}
/**
* Arrives at the barrier and awaits others. Equivalent in effect
* to {@code awaitAdvance(arrive())}. If you need to await with
* interruption or timeout, you can arrange this with an analogous
* construction using one of the other forms of the awaitAdvance
* method. If instead you need to deregister upon arrival use
* {@code arriveAndDeregister}. It is an unenforced usage error
* for an unregistered party to invoke this method.
*
* @return the arrival phase number, or a negative number if terminated
* @throws IllegalStateException if not terminated and the number
* of unarrived parties would become negative
*/
public int arriveAndAwaitAdvance() {
return awaitAdvance(arrive());
}
/**
* Awaits the phase of the barrier to advance from the given phase
* value, returning immediately if the current phase of the
* barrier is not equal to the given phase value or this barrier
* is terminated. It is an unenforced usage error for an
* unregistered party to invoke this method.
*
* @param phase an arrival phase number, or negative value if
* terminated; this argument is normally the value returned by a
* previous call to {@code arrive} or its variants
* @return the next arrival phase number, or a negative value
* if terminated or argument is negative
*/
public int awaitAdvance(int phase) {
if (phase < 0)
return phase;
long s = getReconciledState();
int p = phaseOf(s);
if (p != phase)
return p;
if (unarrivedOf(s) == 0 && parent != null)
parent.awaitAdvance(phase);
// Fall here even if parent waited, to reconcile and help release
return untimedWait(phase);
}
/**
* Awaits the phase of the barrier to advance from the given phase
* value, throwing {@code InterruptedException} if interrupted
* while waiting, or returning immediately if the current phase of
* the barrier is not equal to the given phase value or this
* barrier is terminated. It is an unenforced usage error for an
* unregistered party to invoke this method.
*
* @param phase an arrival phase number, or negative value if
* terminated; this argument is normally the value returned by a
* previous call to {@code arrive} or its variants
* @return the next arrival phase number, or a negative value
* if terminated or argument is negative
* @throws InterruptedException if thread interrupted while waiting
*/
public int awaitAdvanceInterruptibly(int phase)
throws InterruptedException {
if (phase < 0)
return phase;
long s = getReconciledState();
int p = phaseOf(s);
if (p != phase)
return p;
if (unarrivedOf(s) == 0 && parent != null)
parent.awaitAdvanceInterruptibly(phase);
return interruptibleWait(phase);
}
/**
* Awaits the phase of the barrier to advance from the given phase
* value or the given timeout to elapse, throwing {@code
* InterruptedException} if interrupted while waiting, or
* returning immediately if the current phase of the barrier is
* not equal to the given phase value or this barrier is
* terminated. It is an unenforced usage error for an
* unregistered party to invoke this method.
*
* @param phase an arrival phase number, or negative value if
* terminated; this argument is normally the value returned by a
* previous call to {@code arrive} or its variants
* @param timeout how long to wait before giving up, in units of
* {@code unit}
* @param unit a {@code TimeUnit} determining how to interpret the
* {@code timeout} parameter
* @return the next arrival phase number, or a negative value
* if terminated or argument is negative
* @throws InterruptedException if thread interrupted while waiting
* @throws TimeoutException if timed out while waiting
*/
public int awaitAdvanceInterruptibly(int phase,
long timeout, TimeUnit unit)
throws InterruptedException, TimeoutException {
if (phase < 0)
return phase;
long s = getReconciledState();
int p = phaseOf(s);
if (p != phase)
return p;
if (unarrivedOf(s) == 0 && parent != null)
parent.awaitAdvanceInterruptibly(phase, timeout, unit);
return timedWait(phase, unit.toNanos(timeout));
}
/**
* Forces this barrier to enter termination state. Counts of
* arrived and registered parties are unaffected. If this phaser
* has a parent, it too is terminated. This method may be useful
* for coordinating recovery after one or more tasks encounter
* unexpected exceptions.
*/
public void forceTermination() {
for (;;) {
long s = getReconciledState();
int phase = phaseOf(s);
int parties = partiesOf(s);
int unarrived = unarrivedOf(s);
if (phase < 0 ||
casState(s, stateFor(-1, parties, unarrived))) {
releaseWaiters(0);
releaseWaiters(1);
if (parent != null)
parent.forceTermination();
return;
}
}
}
/**
* Returns the current phase number. The maximum phase number is
* {@code Integer.MAX_VALUE}, after which it restarts at
* zero. Upon termination, the phase number is negative.
*
* @return the phase number, or a negative value if terminated
*/
public final int getPhase() {
return phaseOf(getReconciledState());
}
/**
* Returns the number of parties registered at this barrier.
*
* @return the number of parties
*/
public int getRegisteredParties() {
return partiesOf(state);
}
/**
* Returns the number of registered parties that have arrived at
* the current phase of this barrier.
*
* @return the number of arrived parties
*/
public int getArrivedParties() {
return arrivedOf(state);
}
/**
* Returns the number of registered parties that have not yet
* arrived at the current phase of this barrier.
*
* @return the number of unarrived parties
*/
public int getUnarrivedParties() {
return unarrivedOf(state);
}
/**
* Returns the parent of this phaser, or {@code null} if none.
*
* @return the parent of this phaser, or {@code null} if none
*/
public Phaser getParent() {
return parent;
}
/**
* Returns the root ancestor of this phaser, which is the same as
* this phaser if it has no parent.
*
* @return the root ancestor of this phaser
*/
public Phaser getRoot() {
return root;
}
/**
* Returns {@code true} if this barrier has been terminated.
*
* @return {@code true} if this barrier has been terminated
*/
public boolean isTerminated() {
return getPhase() < 0;
}
/**
* Overridable method to perform an action upon impending phase
* advance, and to control termination. This method is invoked
* upon arrival of the party tripping the barrier (when all other
* waiting parties are dormant). If this method returns {@code
* true}, then, rather than advance the phase number, this barrier
* will be set to a final termination state, and subsequent calls
* to {@link #isTerminated} will return true. Any (unchecked)
* Exception or Error thrown by an invocation of this method is
* propagated to the party attempting to trip the barrier, in
* which case no advance occurs.
*
* <p>The arguments to this method provide the state of the phaser
* prevailing for the current transition. (When called from within
* an implementation of {@code onAdvance} the values returned by
* methods such as {@code getPhase} may or may not reliably
* indicate the state to which this transition applies.)
*
* <p>The default version returns {@code true} when the number of
* registered parties is zero. Normally, overrides that arrange
* termination for other reasons should also preserve this
* property.
*
* <p>You may override this method to perform an action with side
* effects visible to participating tasks, but it is only sensible
* to do so in designs where all parties register before any
* arrive, and all {@link #awaitAdvance} at each phase.
* Otherwise, you cannot ensure lack of interference from other
* parties during the invocation of this method. Additionally,
* method {@code onAdvance} may be invoked more than once per
* transition if registrations are intermixed with arrivals.
*
* @param phase the phase number on entering the barrier
* @param registeredParties the current number of registered parties
* @return {@code true} if this barrier should terminate
*/
protected boolean onAdvance(int phase, int registeredParties) {
return registeredParties <= 0;
}
/**
* Returns a string identifying this phaser, as well as its
* state. The state, in brackets, includes the String {@code
* "phase = "} followed by the phase number, {@code "parties = "}
* followed by the number of registered parties, and {@code
* "arrived = "} followed by the number of arrived parties.
*
* @return a string identifying this barrier, as well as its state
*/
public String toString() {
long s = getReconciledState();
return super.toString() +
"[phase = " + phaseOf(s) +
" parties = " + partiesOf(s) +
" arrived = " + arrivedOf(s) + "]";
}
// methods for waiting
/**
* Wait nodes for Treiber stack representing wait queue
*/
static final class QNode implements ForkJoinPool.ManagedBlocker {
final Phaser phaser;
final int phase;
final long startTime;
final long nanos;
final boolean timed;
final boolean interruptible;
volatile boolean wasInterrupted = false;
volatile Thread thread; // nulled to cancel wait
QNode next;
QNode(Phaser phaser, int phase, boolean interruptible,
boolean timed, long startTime, long nanos) {
this.phaser = phaser;
this.phase = phase;
this.timed = timed;
this.interruptible = interruptible;
this.startTime = startTime;
this.nanos = nanos;
thread = Thread.currentThread();
}
public boolean isReleasable() {
return (thread == null ||
phaser.getPhase() != phase ||
(interruptible && wasInterrupted) ||
(timed && (nanos - (System.nanoTime() - startTime)) <= 0));
}
public boolean block() {
if (Thread.interrupted()) {
wasInterrupted = true;
if (interruptible)
return true;
}
if (!timed)
LockSupport.park(this);
else {
long waitTime = nanos - (System.nanoTime() - startTime);
if (waitTime <= 0)
return true;
LockSupport.parkNanos(this, waitTime);
}
return isReleasable();
}
void signal() {
Thread t = thread;
if (t != null) {
thread = null;
LockSupport.unpark(t);
}
}
boolean doWait() {
if (thread != null) {
try {
ForkJoinPool.managedBlock(this, false);
} catch (InterruptedException ie) {
}
}
return wasInterrupted;
}
}
/**
* Removes and signals waiting threads from wait queue.
*/
private void releaseWaiters(int phase) {
AtomicReference<QNode> head = queueFor(phase);
QNode q;
while ((q = head.get()) != null) {
if (head.compareAndSet(q, q.next))
q.signal();
}
}
/**
* Tries to enqueue given node in the appropriate wait queue.
*
* @return true if successful
*/
private boolean tryEnqueue(QNode node) {
AtomicReference<QNode> head = queueFor(node.phase);
return head.compareAndSet(node.next = head.get(), node);
}
/**
* Enqueues node and waits unless aborted or signalled.
*
* @return current phase
*/
private int untimedWait(int phase) {
QNode node = null;
boolean queued = false;
boolean interrupted = false;
int p;
while ((p = getPhase()) == phase) {
if (Thread.interrupted())
interrupted = true;
else if (node == null)
node = new QNode(this, phase, false, false, 0, 0);
else if (!queued)
queued = tryEnqueue(node);
else
interrupted = node.doWait();
}
if (node != null)
node.thread = null;
releaseWaiters(phase);
if (interrupted)
Thread.currentThread().interrupt();
return p;
}
/**
* Interruptible version
* @return current phase
*/
private int interruptibleWait(int phase) throws InterruptedException {
QNode node = null;
boolean queued = false;
boolean interrupted = false;
int p;
while ((p = getPhase()) == phase && !interrupted) {
if (Thread.interrupted())
interrupted = true;
else if (node == null)
node = new QNode(this, phase, true, false, 0, 0);
else if (!queued)
queued = tryEnqueue(node);
else
interrupted = node.doWait();
}
if (node != null)
node.thread = null;
if (p != phase || (p = getPhase()) != phase)
releaseWaiters(phase);
if (interrupted)
throw new InterruptedException();
return p;
}
/**
* Timeout version.
* @return current phase
*/
private int timedWait(int phase, long nanos)
throws InterruptedException, TimeoutException {
long startTime = System.nanoTime();
QNode node = null;
boolean queued = false;
boolean interrupted = false;
int p;
while ((p = getPhase()) == phase && !interrupted) {
if (Thread.interrupted())
interrupted = true;
else if (nanos - (System.nanoTime() - startTime) <= 0)
break;
else if (node == null)
node = new QNode(this, phase, true, true, startTime, nanos);
else if (!queued)
queued = tryEnqueue(node);
else
interrupted = node.doWait();
}
if (node != null)
node.thread = null;
if (p != phase || (p = getPhase()) != phase)
releaseWaiters(phase);
if (interrupted)
throw new InterruptedException();
if (p == phase)
throw new TimeoutException();
return p;
}
// Unsafe mechanics
private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
private static final long stateOffset =
objectFieldOffset("state", Phaser.class);
private final boolean casState(long cmp, long val) {
return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
}
private static long objectFieldOffset(String field, Class<?> klazz) {
try {
return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
} catch (NoSuchFieldException e) {
// Convert Exception to corresponding Error
NoSuchFieldError error = new NoSuchFieldError(field);
error.initCause(e);
throw error;
}
}
}
/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Sun designates this
* particular file as subject to the "Classpath" exception as provided
* by Sun in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*/
/*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file:
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/licenses/publicdomain
*/
package java.util.concurrent;
/**
* A recursive resultless {@link ForkJoinTask}. This class
* establishes conventions to parameterize resultless actions as
* {@code Void} {@code ForkJoinTask}s. Because {@code null} is the
* only valid value of type {@code Void}, methods such as join always
* return {@code null} upon completion.
*
* <p><b>Sample Usages.</b> Here is a sketch of a ForkJoin sort that
* sorts a given {@code long[]} array:
*
* <pre> {@code
* class SortTask extends RecursiveAction {
* final long[] array; final int lo; final int hi;
* SortTask(long[] array, int lo, int hi) {
* this.array = array; this.lo = lo; this.hi = hi;
* }
* protected void compute() {
* if (hi - lo < THRESHOLD)
* sequentiallySort(array, lo, hi);
* else {
* int mid = (lo + hi) >>> 1;
* invokeAll(new SortTask(array, lo, mid),
* new SortTask(array, mid, hi));
* merge(array, lo, hi);
* }
* }
* }}</pre>
*
* You could then sort {@code anArray} by creating {@code new
* SortTask(anArray, 0, anArray.length-1) } and invoking it in a
* ForkJoinPool. As a more concrete simple example, the following
* task increments each element of an array:
* <pre> {@code
* class IncrementTask extends RecursiveAction {
* final long[] array; final int lo; final int hi;
* IncrementTask(long[] array, int lo, int hi) {
* this.array = array; this.lo = lo; this.hi = hi;
* }
* protected void compute() {
* if (hi - lo < THRESHOLD) {
* for (int i = lo; i < hi; ++i)
* array[i]++;
* }
* else {
* int mid = (lo + hi) >>> 1;
* invokeAll(new IncrementTask(array, lo, mid),
* new IncrementTask(array, mid, hi));
* }
* }
* }}</pre>
*
* <p>The following example illustrates some refinements and idioms
* that may lead to better performance: RecursiveActions need not be
* fully recursive, so long as they maintain the basic
* divide-and-conquer approach. Here is a class that sums the squares
* of each element of a double array, by subdividing out only the
* right-hand-sides of repeated divisions by two, and keeping track of
* them with a chain of {@code next} references. It uses a dynamic
* threshold based on method {@code getSurplusQueuedTaskCount}, but
* counterbalances potential excess partitioning by directly
* performing leaf actions on unstolen tasks rather than further
* subdividing.
*
* <pre> {@code
* double sumOfSquares(ForkJoinPool pool, double[] array) {
* int n = array.length;
* Applyer a = new Applyer(array, 0, n, null);
* pool.invoke(a);
* return a.result;
* }
*
* class Applyer extends RecursiveAction {
* final double[] array;
* final int lo, hi;
* double result;
* Applyer next; // keeps track of right-hand-side tasks
* Applyer(double[] array, int lo, int hi, Applyer next) {
* this.array = array; this.lo = lo; this.hi = hi;
* this.next = next;
* }
*
* double atLeaf(int l, int h) {
* double sum = 0;
* for (int i = l; i < h; ++i) // perform leftmost base step
* sum += array[i] * array[i];
* return sum;
* }
*
* protected void compute() {
* int l = lo;
* int h = hi;
* Applyer right = null;
* while (h - l > 1 && getSurplusQueuedTaskCount() <= 3) {
* int mid = (l + h) >>> 1;
* right = new Applyer(array, mid, h, right);
* right.fork();
* h = mid;
* }
* double sum = atLeaf(l, h);
* while (right != null) {
* if (right.tryUnfork()) // directly calculate if not stolen
* sum += right.atLeaf(right.lo, right.hi);
* else {
* right.helpJoin();
* sum += right.result;
* }
* right = right.next;
* }
* result = sum;
* }
* }}</pre>
*
* @since 1.7
* @author Doug Lea
*/
public abstract class RecursiveAction extends ForkJoinTask<Void> {
private static final long serialVersionUID = 5232453952276485070L;
/**
* The main computation performed by this task.
*/
protected abstract void compute();
/**
* Always returns null.
*/
public final Void getRawResult() { return null; }
/**
* Requires null completion value.
*/
protected final void setRawResult(Void mustBeNull) { }
/**
* Implements execution conventions for RecursiveActions.
*/
protected final boolean exec() {
compute();
return true;
}
}
/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Sun designates this
* particular file as subject to the "Classpath" exception as provided
* by Sun in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*/
/*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file:
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/licenses/publicdomain
*/
package java.util.concurrent;
/**
* A recursive result-bearing {@link ForkJoinTask}.
*
* <p>For a classic example, here is a task computing Fibonacci numbers:
*
* <pre> {@code
* class Fibonacci extends RecursiveTask<Integer> {
* final int n;
* Fibonacci(int n) { this.n = n; }
* Integer compute() {
* if (n <= 1)
* return n;
* Fibonacci f1 = new Fibonacci(n - 1);
* f1.fork();
* Fibonacci f2 = new Fibonacci(n - 2);
* return f2.compute() + f1.join();
* }
* }}</pre>
*
* However, besides being a dumb way to compute Fibonacci functions
* (there is a simple fast linear algorithm that you'd use in
* practice), this is likely to perform poorly because the smallest
* subtasks are too small to be worthwhile splitting up. Instead, as
* is the case for nearly all fork/join applications, you'd pick some
* minimum granularity size (for example 10 here) for which you always
* sequentially solve rather than subdividing.
*
* @since 1.7
* @author Doug Lea
*/
public abstract class RecursiveTask<V> extends ForkJoinTask<V> {
private static final long serialVersionUID = 5232453952276485270L;
/**
* The result of the computation.
*/
V result;
/**
* The main computation performed by this task.
*/
protected abstract V compute();
public final V getRawResult() {
return result;
}
protected final void setRawResult(V value) {
result = value;
}
/**
* Implements execution conventions for RecursiveTask.
*/
protected final boolean exec() {
result = compute();
return true;
}
}
...@@ -61,6 +61,14 @@ import java.util.*; ...@@ -61,6 +61,14 @@ import java.util.*;
* causes tasks to be immediately removed from the work queue at * causes tasks to be immediately removed from the work queue at
* time of cancellation. * time of cancellation.
* *
* <p>Successive executions of a task scheduled via
* <code>scheduleAtFixedRate</code> or
* <code>scheduleWithFixedDelay</code> do not overlap. While different
* executions may be performed by different threads, the effects of
* prior executions <a
* href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
* those of subsequent ones.
*
* <p>While this class inherits from {@link ThreadPoolExecutor}, a few * <p>While this class inherits from {@link ThreadPoolExecutor}, a few
* of the inherited tuning methods are not useful for it. In * of the inherited tuning methods are not useful for it. In
* particular, because it acts as a fixed-sized pool using * particular, because it acts as a fixed-sized pool using
......
/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Sun designates this
* particular file as subject to the "Classpath" exception as provided
* by Sun in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*/
/*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file:
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/licenses/publicdomain
*/
package java.util.concurrent;
import java.util.Random;
/**
* A random number generator isolated to the current thread. Like the
* global {@link java.util.Random} generator used by the {@link
* java.lang.Math} class, a {@code ThreadLocalRandom} is initialized
* with an internally generated seed that may not otherwise be
* modified. When applicable, use of {@code ThreadLocalRandom} rather
* than shared {@code Random} objects in concurrent programs will
* typically encounter much less overhead and contention. Use of
* {@code ThreadLocalRandom} is particularly appropriate when multiple
* tasks (for example, each a {@link ForkJoinTask}) use random numbers
* in parallel in thread pools.
*
* <p>Usages of this class should typically be of the form:
* {@code ThreadLocalRandom.current().nextX(...)} (where
* {@code X} is {@code Int}, {@code Long}, etc).
* When all usages are of this form, it is never possible to
* accidently share a {@code ThreadLocalRandom} across multiple threads.
*
* <p>This class also provides additional commonly used bounded random
* generation methods.
*
* @since 1.7
* @author Doug Lea
*/
public class ThreadLocalRandom extends Random {
// same constants as Random, but must be redeclared because private
private final static long multiplier = 0x5DEECE66DL;
private final static long addend = 0xBL;
private final static long mask = (1L << 48) - 1;
/**
* The random seed. We can't use super.seed.
*/
private long rnd;
/**
* Initialization flag to permit the first and only allowed call
* to setSeed (inside Random constructor) to succeed. We can't
* allow others since it would cause setting seed in one part of a
* program to unintentionally impact other usages by the thread.
*/
boolean initialized;
// Padding to help avoid memory contention among seed updates in
// different TLRs in the common case that they are located near
// each other.
private long pad0, pad1, pad2, pad3, pad4, pad5, pad6, pad7;
/**
* The actual ThreadLocal
*/
private static final ThreadLocal<ThreadLocalRandom> localRandom =
new ThreadLocal<ThreadLocalRandom>() {
protected ThreadLocalRandom initialValue() {
return new ThreadLocalRandom();
}
};
/**
* Constructor called only by localRandom.initialValue.
* We rely on the fact that the superclass no-arg constructor
* invokes setSeed exactly once to initialize.
*/
ThreadLocalRandom() {
super();
}
/**
* Returns the current thread's {@code ThreadLocalRandom}.
*
* @return the current thread's {@code ThreadLocalRandom}
*/
public static ThreadLocalRandom current() {
return localRandom.get();
}
/**
* Throws {@code UnsupportedOperationException}. Setting seeds in
* this generator is not supported.
*
* @throws UnsupportedOperationException always
*/
public void setSeed(long seed) {
if (initialized)
throw new UnsupportedOperationException();
initialized = true;
rnd = (seed ^ multiplier) & mask;
}
protected int next(int bits) {
rnd = (rnd * multiplier + addend) & mask;
return (int) (rnd >>> (48-bits));
}
/**
* Returns a pseudorandom, uniformly distributed value between the
* given least value (inclusive) and bound (exclusive).
*
* @param least the least value returned
* @param bound the upper bound (exclusive)
* @throws IllegalArgumentException if least greater than or equal
* to bound
* @return the next value
*/
public int nextInt(int least, int bound) {
if (least >= bound)
throw new IllegalArgumentException();
return nextInt(bound - least) + least;
}
/**
* Returns a pseudorandom, uniformly distributed value
* between 0 (inclusive) and the specified value (exclusive).
*
* @param n the bound on the random number to be returned. Must be
* positive.
* @return the next value
* @throws IllegalArgumentException if n is not positive
*/
public long nextLong(long n) {
if (n <= 0)
throw new IllegalArgumentException("n must be positive");
// Divide n by two until small enough for nextInt. On each
// iteration (at most 31 of them but usually much less),
// randomly choose both whether to include high bit in result
// (offset) and whether to continue with the lower vs upper
// half (which makes a difference only if odd).
long offset = 0;
while (n >= Integer.MAX_VALUE) {
int bits = next(2);
long half = n >>> 1;
long nextn = ((bits & 2) == 0) ? half : n - half;
if ((bits & 1) == 0)
offset += n - nextn;
n = nextn;
}
return offset + nextInt((int) n);
}
/**
* Returns a pseudorandom, uniformly distributed value between the
* given least value (inclusive) and bound (exclusive).
*
* @param least the least value returned
* @param bound the upper bound (exclusive)
* @return the next value
* @throws IllegalArgumentException if least greater than or equal
* to bound
*/
public long nextLong(long least, long bound) {
if (least >= bound)
throw new IllegalArgumentException();
return nextLong(bound - least) + least;
}
/**
* Returns a pseudorandom, uniformly distributed {@code double} value
* between 0 (inclusive) and the specified value (exclusive).
*
* @param n the bound on the random number to be returned. Must be
* positive.
* @return the next value
* @throws IllegalArgumentException if n is not positive
*/
public double nextDouble(double n) {
if (n <= 0)
throw new IllegalArgumentException("n must be positive");
return nextDouble() * n;
}
/**
* Returns a pseudorandom, uniformly distributed value between the
* given least value (inclusive) and bound (exclusive).
*
* @param least the least value returned
* @param bound the upper bound (exclusive)
* @return the next value
* @throws IllegalArgumentException if least greater than or equal
* to bound
*/
public double nextDouble(double least, double bound) {
if (least >= bound)
throw new IllegalArgumentException();
return nextDouble() * (bound - least) + least;
}
private static final long serialVersionUID = -5851777807851030925L;
}
/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Sun designates this
* particular file as subject to the "Classpath" exception as provided
* by Sun in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*/
/*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file:
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/licenses/publicdomain
*/
package java.util.concurrent;
/**
* A {@link BlockingQueue} in which producers may wait for consumers
* to receive elements. A {@code TransferQueue} may be useful for
* example in message passing applications in which producers
* sometimes (using method {@link #transfer}) await receipt of
* elements by consumers invoking {@code take} or {@code poll}, while
* at other times enqueue elements (via method {@code put}) without
* waiting for receipt.
* {@linkplain #tryTransfer(Object) Non-blocking} and
* {@linkplain #tryTransfer(Object,long,TimeUnit) time-out} versions of
* {@code tryTransfer} are also available.
* A {@code TransferQueue} may also be queried, via {@link
* #hasWaitingConsumer}, whether there are any threads waiting for
* items, which is a converse analogy to a {@code peek} operation.
*
* <p>Like other blocking queues, a {@code TransferQueue} may be
* capacity bounded. If so, an attempted transfer operation may
* initially block waiting for available space, and/or subsequently
* block waiting for reception by a consumer. Note that in a queue
* with zero capacity, such as {@link SynchronousQueue}, {@code put}
* and {@code transfer} are effectively synonymous.
*
* <p>This interface is a member of the
* <a href="{@docRoot}/../technotes/guides/collections/index.html">
* Java Collections Framework</a>.
*
* @since 1.7
* @author Doug Lea
* @param <E> the type of elements held in this collection
*/
public interface TransferQueue<E> extends BlockingQueue<E> {
/**
* Transfers the element to a waiting consumer immediately, if possible.
*
* <p>More precisely, transfers the specified element immediately
* if there exists a consumer already waiting to receive it (in
* {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
* otherwise returning {@code false} without enqueuing the element.
*
* @param e the element to transfer
* @return {@code true} if the element was transferred, else
* {@code false}
* @throws ClassCastException if the class of the specified element
* prevents it from being added to this queue
* @throws NullPointerException if the specified element is null
* @throws IllegalArgumentException if some property of the specified
* element prevents it from being added to this queue
*/
boolean tryTransfer(E e);
/**
* Transfers the element to a consumer, waiting if necessary to do so.
*
* <p>More precisely, transfers the specified element immediately
* if there exists a consumer already waiting to receive it (in
* {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
* else waits until the element is received by a consumer.
*
* @param e the element to transfer
* @throws InterruptedException if interrupted while waiting,
* in which case the element is not left enqueued
* @throws ClassCastException if the class of the specified element
* prevents it from being added to this queue
* @throws NullPointerException if the specified element is null
* @throws IllegalArgumentException if some property of the specified
* element prevents it from being added to this queue
*/
void transfer(E e) throws InterruptedException;
/**
* Transfers the element to a consumer if it is possible to do so
* before the timeout elapses.
*
* <p>More precisely, transfers the specified element immediately
* if there exists a consumer already waiting to receive it (in
* {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
* else waits until the element is received by a consumer,
* returning {@code false} if the specified wait time elapses
* before the element can be transferred.
*
* @param e the element to transfer
* @param timeout how long to wait before giving up, in units of
* {@code unit}
* @param unit a {@code TimeUnit} determining how to interpret the
* {@code timeout} parameter
* @return {@code true} if successful, or {@code false} if
* the specified waiting time elapses before completion,
* in which case the element is not left enqueued
* @throws InterruptedException if interrupted while waiting,
* in which case the element is not left enqueued
* @throws ClassCastException if the class of the specified element
* prevents it from being added to this queue
* @throws NullPointerException if the specified element is null
* @throws IllegalArgumentException if some property of the specified
* element prevents it from being added to this queue
*/
boolean tryTransfer(E e, long timeout, TimeUnit unit)
throws InterruptedException;
/**
* Returns {@code true} if there is at least one consumer waiting
* to receive an element via {@link #take} or
* timed {@link #poll(long,TimeUnit) poll}.
* The return value represents a momentary state of affairs.
*
* @return {@code true} if there is at least one waiting consumer
*/
boolean hasWaitingConsumer();
/**
* Returns an estimate of the number of consumers waiting to
* receive elements via {@link #take} or timed
* {@link #poll(long,TimeUnit) poll}. The return value is an
* approximation of a momentary state of affairs, that may be
* inaccurate if consumers have completed or given up waiting.
* The value may be useful for monitoring and heuristics, but
* not for synchronization control. Implementations of this
* method are likely to be noticeably slower than those for
* {@link #hasWaitingConsumer}.
*
* @return the number of consumers waiting to receive elements
*/
int getWaitingConsumerCount();
}
...@@ -170,8 +170,8 @@ import java.util.Date; ...@@ -170,8 +170,8 @@ import java.util.Date;
* <p>As interruption generally implies cancellation, and checks for * <p>As interruption generally implies cancellation, and checks for
* interruption are often infrequent, an implementation can favor responding * interruption are often infrequent, an implementation can favor responding
* to an interrupt over normal method return. This is true even if it can be * to an interrupt over normal method return. This is true even if it can be
* shown that the interrupt occurred after another action may have unblocked * shown that the interrupt occurred after another action that may have
* the thread. An implementation should document this behavior. * unblocked the thread. An implementation should document this behavior.
* *
* @since 1.5 * @since 1.5
* @author Doug Lea * @author Doug Lea
......
...@@ -92,6 +92,13 @@ ...@@ -92,6 +92,13 @@
* assists in coordinating the processing of groups of * assists in coordinating the processing of groups of
* asynchronous tasks. * asynchronous tasks.
* *
* <p>Class {@link java.util.concurrent.ForkJoinPool} provides an
* Executor primarily designed for processing instances of {@link
* java.util.concurrent.ForkJoinTask} and its subclasses. These
* classes employ a work-stealing scheduler that attains high
* throughput for tasks conforming to restrictions that often hold in
* computation-intensive parallel processing.
*
* <h2>Queues</h2> * <h2>Queues</h2>
* *
* The {@link java.util.concurrent.ConcurrentLinkedQueue} class * The {@link java.util.concurrent.ConcurrentLinkedQueue} class
...@@ -110,6 +117,12 @@ ...@@ -110,6 +117,12 @@
* for producer-consumer, messaging, parallel tasking, and * for producer-consumer, messaging, parallel tasking, and
* related concurrent designs. * related concurrent designs.
* *
* <p> Extended interface {@link java.util.concurrent.TransferQueue},
* and implementation {@link java.util.concurrent.LinkedTransferQueue}
* introduce a synchronous {@code transfer} method (along with related
* features) in which a producer may optionally block awaiting its
* consumer.
*
* <p>The {@link java.util.concurrent.BlockingDeque} interface * <p>The {@link java.util.concurrent.BlockingDeque} interface
* extends {@code BlockingQueue} to support both FIFO and LIFO * extends {@code BlockingQueue} to support both FIFO and LIFO
* (stack-based) operations. * (stack-based) operations.
...@@ -136,15 +149,28 @@ ...@@ -136,15 +149,28 @@
* *
* <h2>Synchronizers</h2> * <h2>Synchronizers</h2>
* *
* Four classes aid common special-purpose synchronization idioms. * Five classes aid common special-purpose synchronization idioms.
* {@link java.util.concurrent.Semaphore} is a classic concurrency tool. * <ul>
* {@link java.util.concurrent.CountDownLatch} is a very simple yet very *
* common utility for blocking until a given number of signals, events, * <li>{@link java.util.concurrent.Semaphore} is a classic concurrency tool.
* or conditions hold. A {@link java.util.concurrent.CyclicBarrier} is a *
* resettable multiway synchronization point useful in some styles of * <li>{@link java.util.concurrent.CountDownLatch} is a very simple yet
* parallel programming. An {@link java.util.concurrent.Exchanger} allows * very common utility for blocking until a given number of signals,
* two threads to exchange objects at a rendezvous point, and is useful * events, or conditions hold.
* in several pipeline designs. *
* <li>A {@link java.util.concurrent.CyclicBarrier} is a resettable
* multiway synchronization point useful in some styles of parallel
* programming.
*
* <li>A {@link java.util.concurrent.Phaser} provides
* a more flexible form of barrier that may be used to control phased
* computation among multiple threads.
*
* <li>An {@link java.util.concurrent.Exchanger} allows two threads to
* exchange objects at a rendezvous point, and is useful in several
* pipeline designs.
*
* </ul>
* *
* <h2>Concurrent Collections</h2> * <h2>Concurrent Collections</h2>
* *
...@@ -259,7 +285,8 @@ ...@@ -259,7 +285,8 @@
* in each thread <i>happen-before</i> those subsequent to the * in each thread <i>happen-before</i> those subsequent to the
* corresponding {@code exchange()} in another thread. * corresponding {@code exchange()} in another thread.
* *
* <li>Actions prior to calling {@code CyclicBarrier.await} * <li>Actions prior to calling {@code CyclicBarrier.await} and
* {@code Phaser.awaitAdvance} (as well as its variants)
* <i>happen-before</i> actions performed by the barrier action, and * <i>happen-before</i> actions performed by the barrier action, and
* actions performed by the barrier action <i>happen-before</i> actions * actions performed by the barrier action <i>happen-before</i> actions
* subsequent to a successful return from the corresponding {@code await} * subsequent to a successful return from the corresponding {@code await}
......
...@@ -178,10 +178,10 @@ public class BiggernYours { ...@@ -178,10 +178,10 @@ public class BiggernYours {
new ConcurrentLinkedQueue() { new ConcurrentLinkedQueue() {
public int size() {return randomize(super.size());}}); public int size() {return randomize(super.size());}});
// testCollections( testCollections(
// new LinkedTransferQueue(), new LinkedTransferQueue(),
// new LinkedTransferQueue() { new LinkedTransferQueue() {
// public int size() {return randomize(super.size());}}); public int size() {return randomize(super.size());}});
testCollections( testCollections(
new LinkedBlockingQueue(), new LinkedBlockingQueue(),
......
...@@ -49,7 +49,7 @@ public class IteratorAtEnd { ...@@ -49,7 +49,7 @@ public class IteratorAtEnd {
testCollection(new LinkedBlockingQueue()); testCollection(new LinkedBlockingQueue());
testCollection(new ArrayBlockingQueue(100)); testCollection(new ArrayBlockingQueue(100));
testCollection(new ConcurrentLinkedQueue()); testCollection(new ConcurrentLinkedQueue());
// testCollection(new LinkedTransferQueue()); testCollection(new LinkedTransferQueue());
testMap(new HashMap()); testMap(new HashMap());
testMap(new Hashtable()); testMap(new Hashtable());
......
...@@ -76,7 +76,7 @@ public class MOAT { ...@@ -76,7 +76,7 @@ public class MOAT {
testCollection(new LinkedBlockingQueue<Integer>(20)); testCollection(new LinkedBlockingQueue<Integer>(20));
testCollection(new LinkedBlockingDeque<Integer>(20)); testCollection(new LinkedBlockingDeque<Integer>(20));
testCollection(new ConcurrentLinkedQueue<Integer>()); testCollection(new ConcurrentLinkedQueue<Integer>());
// testCollection(new LinkedTransferQueue<Integer>()); testCollection(new LinkedTransferQueue<Integer>());
testCollection(new ConcurrentSkipListSet<Integer>()); testCollection(new ConcurrentSkipListSet<Integer>());
testCollection(Arrays.asList(new Integer(42))); testCollection(Arrays.asList(new Integer(42)));
testCollection(Arrays.asList(1,2,3)); testCollection(Arrays.asList(1,2,3));
......
...@@ -52,7 +52,7 @@ public class CheckedNull { ...@@ -52,7 +52,7 @@ public class CheckedNull {
testMap(Collections.checkedMap( testMap(Collections.checkedMap(
new HashMap<String, String>(), new HashMap<String, String>(),
String.class, String.class));; String.class, String.class));
} }
ClassCastException cce(F f) { ClassCastException cce(F f) {
......
...@@ -234,7 +234,7 @@ public class RacingCollections { ...@@ -234,7 +234,7 @@ public class RacingCollections {
List<Queue<Integer>> list = List<Queue<Integer>> list =
new ArrayList<Queue<Integer>>(newConcurrentDeques()); new ArrayList<Queue<Integer>>(newConcurrentDeques());
list.add(new LinkedBlockingQueue<Integer>(10)); list.add(new LinkedBlockingQueue<Integer>(10));
// list.add(new LinkedTransferQueue<Integer>()); list.add(new LinkedTransferQueue<Integer>());
return list; return list;
} }
......
...@@ -69,7 +69,7 @@ public class RemoveContains { ...@@ -69,7 +69,7 @@ public class RemoveContains {
test(new ArrayBlockingQueue<String>(10)); test(new ArrayBlockingQueue<String>(10));
test(new LinkedBlockingQueue<String>(10)); test(new LinkedBlockingQueue<String>(10));
test(new LinkedBlockingDeque<String>(10)); test(new LinkedBlockingDeque<String>(10));
// test(new LinkedTransferQueue<String>()); test(new LinkedTransferQueue<String>());
test(new ArrayDeque<String>(10)); test(new ArrayDeque<String>(10));
System.out.printf("%nPassed = %d, failed = %d%n%n", passed, failed); System.out.printf("%nPassed = %d, failed = %d%n%n", passed, failed);
......
...@@ -119,12 +119,36 @@ public class CancelledProducerConsumerLoops { ...@@ -119,12 +119,36 @@ public class CancelledProducerConsumerLoops {
} }
} }
static final class LTQasSQ<T> extends LinkedTransferQueue<T> {
LTQasSQ() { super(); }
public void put(T x) {
try { super.transfer(x); }
catch (InterruptedException ex) { throw new Error(); }
}
private final static long serialVersionUID = 42;
}
static final class HalfSyncLTQ<T> extends LinkedTransferQueue<T> {
HalfSyncLTQ() { super(); }
public void put(T x) {
if (ThreadLocalRandom.current().nextBoolean())
super.put(x);
else {
try { super.transfer(x); }
catch (InterruptedException ex) { throw new Error(); }
}
}
private final static long serialVersionUID = 42;
}
static void oneTest(int pairs, int iters) throws Exception { static void oneTest(int pairs, int iters) throws Exception {
oneRun(new ArrayBlockingQueue<Integer>(CAPACITY), pairs, iters); oneRun(new ArrayBlockingQueue<Integer>(CAPACITY), pairs, iters);
oneRun(new LinkedBlockingQueue<Integer>(CAPACITY), pairs, iters); oneRun(new LinkedBlockingQueue<Integer>(CAPACITY), pairs, iters);
oneRun(new LinkedBlockingDeque<Integer>(CAPACITY), pairs, iters); oneRun(new LinkedBlockingDeque<Integer>(CAPACITY), pairs, iters);
// oneRun(new LinkedTransferQueue<Integer>(), pairs, iters); oneRun(new LinkedTransferQueue<Integer>(), pairs, iters);
oneRun(new LTQasSQ<Integer>(), pairs, iters);
oneRun(new HalfSyncLTQ<Integer>(), pairs, iters);
oneRun(new SynchronousQueue<Integer>(), pairs, iters / 8); oneRun(new SynchronousQueue<Integer>(), pairs, iters / 8);
/* PriorityBlockingQueue is unbounded /* PriorityBlockingQueue is unbounded
......
...@@ -37,7 +37,7 @@ public class LastElement { ...@@ -37,7 +37,7 @@ public class LastElement {
testQueue(new LinkedBlockingDeque<Integer>()); testQueue(new LinkedBlockingDeque<Integer>());
testQueue(new ArrayBlockingQueue<Integer>(10, true)); testQueue(new ArrayBlockingQueue<Integer>(10, true));
testQueue(new ArrayBlockingQueue<Integer>(10, false)); testQueue(new ArrayBlockingQueue<Integer>(10, false));
// testQueue(new LinkedTransferQueue<Integer>()); testQueue(new LinkedTransferQueue<Integer>());
System.out.printf("%nPassed = %d, failed = %d%n%n", passed, failed); System.out.printf("%nPassed = %d, failed = %d%n%n", passed, failed);
if (failed > 0) throw new Exception("Some tests failed"); if (failed > 0) throw new Exception("Some tests failed");
......
...@@ -87,11 +87,35 @@ public class MultipleProducersSingleConsumerLoops { ...@@ -87,11 +87,35 @@ public class MultipleProducersSingleConsumerLoops {
throw new Error(); throw new Error();
} }
static final class LTQasSQ<T> extends LinkedTransferQueue<T> {
LTQasSQ() { super(); }
public void put(T x) {
try { super.transfer(x); }
catch (InterruptedException ex) { throw new Error(); }
}
private final static long serialVersionUID = 42;
}
static final class HalfSyncLTQ<T> extends LinkedTransferQueue<T> {
HalfSyncLTQ() { super(); }
public void put(T x) {
if (ThreadLocalRandom.current().nextBoolean())
super.put(x);
else {
try { super.transfer(x); }
catch (InterruptedException ex) { throw new Error(); }
}
}
private final static long serialVersionUID = 42;
}
static void oneTest(int producers, int iters) throws Exception { static void oneTest(int producers, int iters) throws Exception {
oneRun(new ArrayBlockingQueue<Integer>(CAPACITY), producers, iters); oneRun(new ArrayBlockingQueue<Integer>(CAPACITY), producers, iters);
oneRun(new LinkedBlockingQueue<Integer>(CAPACITY), producers, iters); oneRun(new LinkedBlockingQueue<Integer>(CAPACITY), producers, iters);
oneRun(new LinkedBlockingDeque<Integer>(CAPACITY), producers, iters); oneRun(new LinkedBlockingDeque<Integer>(CAPACITY), producers, iters);
// oneRun(new LinkedTransferQueue<Integer>(), producers, iters); oneRun(new LinkedTransferQueue<Integer>(), producers, iters);
oneRun(new LTQasSQ<Integer>(), producers, iters);
oneRun(new HalfSyncLTQ<Integer>(), producers, iters);
// Don't run PBQ since can legitimately run out of memory // Don't run PBQ since can legitimately run out of memory
// if (print) // if (print)
......
...@@ -63,12 +63,11 @@ public class OfferDrainToLoops { ...@@ -63,12 +63,11 @@ public class OfferDrainToLoops {
test(new LinkedBlockingDeque()); test(new LinkedBlockingDeque());
test(new LinkedBlockingDeque(2000)); test(new LinkedBlockingDeque(2000));
test(new ArrayBlockingQueue(2000)); test(new ArrayBlockingQueue(2000));
// test(new LinkedTransferQueue()); test(new LinkedTransferQueue());
} }
Random getRandom() { Random getRandom() {
return new Random(); return ThreadLocalRandom.current();
// return ThreadLocalRandom.current();
} }
void test(final BlockingQueue q) throws Throwable { void test(final BlockingQueue q) throws Throwable {
......
...@@ -46,7 +46,7 @@ public class PollMemoryLeak { ...@@ -46,7 +46,7 @@ public class PollMemoryLeak {
public static void main(String[] args) throws InterruptedException { public static void main(String[] args) throws InterruptedException {
final BlockingQueue[] qs = { final BlockingQueue[] qs = {
new LinkedBlockingQueue(10), new LinkedBlockingQueue(10),
// new LinkedTransferQueue(), new LinkedTransferQueue(),
new ArrayBlockingQueue(10), new ArrayBlockingQueue(10),
new SynchronousQueue(), new SynchronousQueue(),
new SynchronousQueue(true), new SynchronousQueue(true),
......
...@@ -87,11 +87,35 @@ public class ProducerConsumerLoops { ...@@ -87,11 +87,35 @@ public class ProducerConsumerLoops {
throw new Error(); throw new Error();
} }
static final class LTQasSQ<T> extends LinkedTransferQueue<T> {
LTQasSQ() { super(); }
public void put(T x) {
try { super.transfer(x); }
catch (InterruptedException ex) { throw new Error(); }
}
private final static long serialVersionUID = 42;
}
static final class HalfSyncLTQ<T> extends LinkedTransferQueue<T> {
HalfSyncLTQ() { super(); }
public void put(T x) {
if (ThreadLocalRandom.current().nextBoolean())
super.put(x);
else {
try { super.transfer(x); }
catch (InterruptedException ex) { throw new Error(); }
}
}
private final static long serialVersionUID = 42;
}
static void oneTest(int pairs, int iters) throws Exception { static void oneTest(int pairs, int iters) throws Exception {
oneRun(new ArrayBlockingQueue<Integer>(CAPACITY), pairs, iters); oneRun(new ArrayBlockingQueue<Integer>(CAPACITY), pairs, iters);
oneRun(new LinkedBlockingQueue<Integer>(CAPACITY), pairs, iters); oneRun(new LinkedBlockingQueue<Integer>(CAPACITY), pairs, iters);
oneRun(new LinkedBlockingDeque<Integer>(CAPACITY), pairs, iters); oneRun(new LinkedBlockingDeque<Integer>(CAPACITY), pairs, iters);
// oneRun(new LinkedTransferQueue<Integer>(), pairs, iters); oneRun(new LinkedTransferQueue<Integer>(), pairs, iters);
oneRun(new LTQasSQ<Integer>(), pairs, iters);
oneRun(new HalfSyncLTQ<Integer>(), pairs, iters);
oneRun(new PriorityBlockingQueue<Integer>(), pairs, iters); oneRun(new PriorityBlockingQueue<Integer>(), pairs, iters);
oneRun(new SynchronousQueue<Integer>(), pairs, iters); oneRun(new SynchronousQueue<Integer>(), pairs, iters);
......
...@@ -73,11 +73,35 @@ public class SingleProducerMultipleConsumerLoops { ...@@ -73,11 +73,35 @@ public class SingleProducerMultipleConsumerLoops {
throw new Error(); throw new Error();
} }
static final class LTQasSQ<T> extends LinkedTransferQueue<T> {
LTQasSQ() { super(); }
public void put(T x) {
try { super.transfer(x); }
catch (InterruptedException ex) { throw new Error(); }
}
private final static long serialVersionUID = 42;
}
static final class HalfSyncLTQ<T> extends LinkedTransferQueue<T> {
HalfSyncLTQ() { super(); }
public void put(T x) {
if (ThreadLocalRandom.current().nextBoolean())
super.put(x);
else {
try { super.transfer(x); }
catch (InterruptedException ex) { throw new Error(); }
}
}
private final static long serialVersionUID = 42;
}
static void oneTest(int consumers, int iters) throws Exception { static void oneTest(int consumers, int iters) throws Exception {
oneRun(new ArrayBlockingQueue<Integer>(CAPACITY), consumers, iters); oneRun(new ArrayBlockingQueue<Integer>(CAPACITY), consumers, iters);
oneRun(new LinkedBlockingQueue<Integer>(CAPACITY), consumers, iters); oneRun(new LinkedBlockingQueue<Integer>(CAPACITY), consumers, iters);
oneRun(new LinkedBlockingDeque<Integer>(CAPACITY), consumers, iters); oneRun(new LinkedBlockingDeque<Integer>(CAPACITY), consumers, iters);
// oneRun(new LinkedTransferQueue<Integer>(), consumers, iters); oneRun(new LinkedTransferQueue<Integer>(), consumers, iters);
oneRun(new LTQasSQ<Integer>(), consumers, iters);
oneRun(new HalfSyncLTQ<Integer>(), consumers, iters);
oneRun(new PriorityBlockingQueue<Integer>(), consumers, iters); oneRun(new PriorityBlockingQueue<Integer>(), consumers, iters);
oneRun(new SynchronousQueue<Integer>(), consumers, iters); oneRun(new SynchronousQueue<Integer>(), consumers, iters);
if (print) if (print)
......
...@@ -60,7 +60,7 @@ public class ConcurrentQueueLoops { ...@@ -60,7 +60,7 @@ public class ConcurrentQueueLoops {
//queues.add(new ArrayBlockingQueue<Integer>(count, true)); //queues.add(new ArrayBlockingQueue<Integer>(count, true));
queues.add(new LinkedBlockingQueue<Integer>()); queues.add(new LinkedBlockingQueue<Integer>());
queues.add(new LinkedBlockingDeque<Integer>()); queues.add(new LinkedBlockingDeque<Integer>());
// queues.add(new LinkedTransferQueue<Integer>()); queues.add(new LinkedTransferQueue<Integer>());
// Following additional implementations are available from: // Following additional implementations are available from:
// http://gee.cs.oswego.edu/dl/concurrency-interest/index.html // http://gee.cs.oswego.edu/dl/concurrency-interest/index.html
......
...@@ -43,7 +43,7 @@ import java.util.concurrent.ConcurrentHashMap; ...@@ -43,7 +43,7 @@ import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentLinkedQueue; import java.util.concurrent.ConcurrentLinkedQueue;
import java.util.concurrent.LinkedBlockingDeque; import java.util.concurrent.LinkedBlockingDeque;
import java.util.concurrent.LinkedBlockingQueue; import java.util.concurrent.LinkedBlockingQueue;
// import java.util.concurrent.LinkedTransferQueue; import java.util.concurrent.LinkedTransferQueue;
import java.util.concurrent.PriorityBlockingQueue; import java.util.concurrent.PriorityBlockingQueue;
import java.util.LinkedList; import java.util.LinkedList;
import java.util.PriorityQueue; import java.util.PriorityQueue;
...@@ -70,7 +70,7 @@ public class GCRetention { ...@@ -70,7 +70,7 @@ public class GCRetention {
queues.add(new PriorityBlockingQueue<Boolean>()); queues.add(new PriorityBlockingQueue<Boolean>());
queues.add(new PriorityQueue<Boolean>()); queues.add(new PriorityQueue<Boolean>());
queues.add(new LinkedList<Boolean>()); queues.add(new LinkedList<Boolean>());
// queues.add(new LinkedTransferQueue<Boolean>()); queues.add(new LinkedTransferQueue<Boolean>());
// Following additional implementations are available from: // Following additional implementations are available from:
// http://gee.cs.oswego.edu/dl/concurrency-interest/index.html // http://gee.cs.oswego.edu/dl/concurrency-interest/index.html
......
...@@ -49,7 +49,7 @@ public class IteratorWeakConsistency { ...@@ -49,7 +49,7 @@ public class IteratorWeakConsistency {
test(new LinkedBlockingDeque()); test(new LinkedBlockingDeque());
test(new LinkedBlockingDeque(20)); test(new LinkedBlockingDeque(20));
test(new ConcurrentLinkedQueue()); test(new ConcurrentLinkedQueue());
// test(new LinkedTransferQueue()); test(new LinkedTransferQueue());
// Other concurrent queues (e.g. ArrayBlockingQueue) do not // Other concurrent queues (e.g. ArrayBlockingQueue) do not
// currently have weakly consistent iterators. // currently have weakly consistent iterators.
// test(new ArrayBlockingQueue(20)); // test(new ArrayBlockingQueue(20));
......
...@@ -56,12 +56,11 @@ public class OfferRemoveLoops { ...@@ -56,12 +56,11 @@ public class OfferRemoveLoops {
testQueue(new ArrayBlockingQueue(10)); testQueue(new ArrayBlockingQueue(10));
testQueue(new PriorityBlockingQueue(10)); testQueue(new PriorityBlockingQueue(10));
testQueue(new ConcurrentLinkedQueue()); testQueue(new ConcurrentLinkedQueue());
// testQueue(new LinkedTransferQueue()); testQueue(new LinkedTransferQueue());
} }
Random getRandom() { Random getRandom() {
return new Random(); return ThreadLocalRandom.current();
// return ThreadLocalRandom.current();
} }
void testQueue(final Queue q) throws Throwable { void testQueue(final Queue q) throws Throwable {
......
...@@ -45,7 +45,7 @@ import java.util.concurrent.ConcurrentLinkedQueue; ...@@ -45,7 +45,7 @@ import java.util.concurrent.ConcurrentLinkedQueue;
import java.util.concurrent.CountDownLatch; import java.util.concurrent.CountDownLatch;
import java.util.concurrent.LinkedBlockingDeque; import java.util.concurrent.LinkedBlockingDeque;
import java.util.concurrent.LinkedBlockingQueue; import java.util.concurrent.LinkedBlockingQueue;
// import java.util.concurrent.LinkedTransferQueue; import java.util.concurrent.LinkedTransferQueue;
import java.util.concurrent.atomic.AtomicLong; import java.util.concurrent.atomic.AtomicLong;
import java.util.ArrayList; import java.util.ArrayList;
import java.util.Collection; import java.util.Collection;
...@@ -67,7 +67,7 @@ public class RemovePollRace { ...@@ -67,7 +67,7 @@ public class RemovePollRace {
queues.add(new ArrayBlockingQueue<Boolean>(count, true)); queues.add(new ArrayBlockingQueue<Boolean>(count, true));
queues.add(new LinkedBlockingQueue<Boolean>()); queues.add(new LinkedBlockingQueue<Boolean>());
queues.add(new LinkedBlockingDeque<Boolean>()); queues.add(new LinkedBlockingDeque<Boolean>());
// queues.add(new LinkedTransferQueue<Boolean>()); queues.add(new LinkedTransferQueue<Boolean>());
// Following additional implementations are available from: // Following additional implementations are available from:
// http://gee.cs.oswego.edu/dl/concurrency-interest/index.html // http://gee.cs.oswego.edu/dl/concurrency-interest/index.html
......
/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*/
/*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file:
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/licenses/publicdomain
*/
/*
* @test
* @bug 6445158
* @summary tests for Phaser.arrive()
*/
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.Phaser;
import java.util.concurrent.ThreadLocalRandom;
import java.util.concurrent.atomic.AtomicInteger;
public class Arrive {
void test(String[] args) throws Throwable {
final int n = ThreadLocalRandom.current().nextInt(1, 10);
final int nthreads = n*3/2;
final Phaser startingGate = new Phaser(nthreads);
final Phaser phaser = new Phaser(n);
final List<Thread> threads = new ArrayList<Thread>();
final AtomicInteger count0 = new AtomicInteger(0);
final AtomicInteger count1 = new AtomicInteger(0);
final Runnable task = new Runnable() { public void run() {
equal(startingGate.getPhase(), 0);
startingGate.arriveAndAwaitAdvance();
equal(startingGate.getPhase(), 1);
int phase = phaser.arrive();
if (phase == 0)
count0.getAndIncrement();
else if (phase == 1)
count1.getAndIncrement();
else
fail();
}};
for (int i = 0; i < nthreads; i++)
threads.add(new Thread(task));
for (Thread thread : threads)
thread.start();
for (Thread thread : threads)
thread.join();
equal(count0.get(), n);
equal(count1.get(), nthreads-n);
equal(phaser.getPhase(), 1);
}
//--------------------- Infrastructure ---------------------------
volatile int passed = 0, failed = 0;
void pass() {passed++;}
void fail() {failed++; Thread.dumpStack();}
void fail(String msg) {System.err.println(msg); fail();}
void unexpected(Throwable t) {failed++; t.printStackTrace();}
void check(boolean cond) {if (cond) pass(); else fail();}
void equal(Object x, Object y) {
if (x == null ? y == null : x.equals(y)) pass();
else fail(x + " not equal to " + y);}
public static void main(String[] args) throws Throwable {
new Arrive().instanceMain(args);}
public void instanceMain(String[] args) throws Throwable {
try {test(args);} catch (Throwable t) {unexpected(t);}
System.out.printf("%nPassed = %d, failed = %d%n%n", passed, failed);
if (failed > 0) throw new AssertionError("Some tests failed");}
}
/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*/
/*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file:
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/licenses/publicdomain
*/
/*
* @test
* @bug 6445158
* @summary Basic tests for Phaser
* @author Chris Hegarty
*/
import java.util.Iterator;
import java.util.LinkedList;
import java.util.concurrent.Phaser;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;
import java.util.concurrent.atomic.AtomicInteger;
import static java.util.concurrent.TimeUnit.*;
public class Basic {
private static void checkTerminated(final Phaser phaser) {
check(phaser.isTerminated());
int unarriverParties = phaser.getUnarrivedParties();
int registeredParties = phaser.getRegisteredParties();
equal(phaser.arrive(), -1);
equal(phaser.arriveAndDeregister(), -1);
equal(phaser.arriveAndAwaitAdvance(), -1);
equal(phaser.bulkRegister(10), -1);
equal(phaser.getPhase(), -1);
equal(phaser.register(), -1);
try {
equal(phaser.awaitAdvanceInterruptibly(0), -1);
equal(phaser.awaitAdvanceInterruptibly(0, 10, SECONDS), -1);
} catch (Exception ie) {
unexpected(ie);
}
equal(phaser.getUnarrivedParties(), unarriverParties);
equal(phaser.getRegisteredParties(), registeredParties);
}
private static void checkResult(Arriver a, Class<? extends Throwable> c) {
Throwable t = a.result();
if (! ((t == null && c == null) || (c != null && c.isInstance(t)))) {
// t.printStackTrace();
fail("Mismatch in thread " +
a.getName() + ": " +
t + ", " +
(c == null ? "<null>" : c.getName()));
} else {
pass();
}
}
//----------------------------------------------------------------
// Mechanism to get all test threads into "running" mode.
//----------------------------------------------------------------
private static Phaser atTheStartingGate = new Phaser(3);
private static void toTheStartingGate() {
try {
boolean expectNextPhase = false;
if (atTheStartingGate.getUnarrivedParties() == 1) {
expectNextPhase = true;
}
int phase = atTheStartingGate.getPhase();
equal(phase, atTheStartingGate.arrive());
int AwaitPhase = atTheStartingGate.awaitAdvanceInterruptibly(phase,
10,
SECONDS);
if (expectNextPhase) check(AwaitPhase == (phase + 1));
pass();
} catch (Throwable t) {
unexpected(t);
// reset(atTheStartingGate);
throw new Error(t);
}
}
//----------------------------------------------------------------
// Convenience methods for creating threads that call arrive,
// awaitAdvance, arriveAndAwaitAdvance, awaitAdvanceInterruptibly
//----------------------------------------------------------------
private static abstract class Arriver extends Thread {
static AtomicInteger count = new AtomicInteger(1);
Arriver() {
this("Arriver");
}
Arriver(String name) {
this.setName(name + ":" + count.getAndIncrement());
this.setDaemon(true);
}
private volatile Throwable result;
private volatile int phase;
protected void result(Throwable result) { this.result = result; }
public Throwable result() { return this.result; }
protected void phase(int phase) { this.phase = phase; }
public int phase() { return this.phase; }
}
private static abstract class Awaiter extends Arriver {
Awaiter() { super("Awaiter"); }
Awaiter(String name) { super(name); }
}
private static Arriver arriver(final Phaser phaser) {
return new Arriver() { public void run() {
toTheStartingGate();
try { phase(phaser.arrive()); }
catch (Throwable result) { result(result); }}};
}
private static AtomicInteger cycleArriveAwaitAdvance = new AtomicInteger(1);
private static Awaiter awaiter(final Phaser phaser) {
return new Awaiter() { public void run() {
toTheStartingGate();
try {
if (cycleArriveAwaitAdvance.getAndIncrement() % 2 == 0)
phase(phaser.awaitAdvance(phaser.arrive()));
else
phase(phaser.arriveAndAwaitAdvance());
} catch (Throwable result) { result(result); }}};
}
private static Awaiter awaiter(final Phaser phaser,
final long timeout,
final TimeUnit unit) {
return new Awaiter("InterruptibleWaiter") { public void run() {
toTheStartingGate();
try {
if (timeout < 0)
phase(phaser.awaitAdvanceInterruptibly(phaser.arrive()));
else
phase(phaser.awaitAdvanceInterruptibly(phaser.arrive(),
timeout,
unit));
} catch (Throwable result) { result(result); }}};
}
// Returns an infinite lazy list of all possible arriver/awaiter combinations.
private static Iterator<Arriver> arriverIterator(final Phaser phaser) {
return new Iterator<Arriver>() {
int i = 0;
public boolean hasNext() { return true; }
public Arriver next() {
switch ((i++)&7) {
case 0: case 4:
return arriver(phaser);
case 1: case 5:
return awaiter(phaser);
case 2: case 6: case 7:
return awaiter(phaser, -1, SECONDS);
default:
return awaiter(phaser, 10, SECONDS); }}
public void remove() {throw new UnsupportedOperationException();}};
}
// Returns an infinite lazy list of all possible awaiter only combinations.
private static Iterator<Awaiter> awaiterIterator(final Phaser phaser) {
return new Iterator<Awaiter>() {
int i = 0;
public boolean hasNext() { return true; }
public Awaiter next() {
switch ((i++)&7) {
case 1: case 4: case 7:
return awaiter(phaser);
case 2: case 5:
return awaiter(phaser, -1, SECONDS);
default:
return awaiter(phaser, 10, SECONDS); }}
public void remove() {throw new UnsupportedOperationException();}};
}
private static void realMain(String[] args) throws Throwable {
Thread.currentThread().setName("mainThread");
//----------------------------------------------------------------
// Normal use
//----------------------------------------------------------------
try {
Phaser phaser = new Phaser(3);
equal(phaser.getRegisteredParties(), 3);
equal(phaser.getArrivedParties(), 0);
equal(phaser.getPhase(), 0);
check(phaser.getRoot().equals(phaser));
equal(phaser.getParent(), null);
check(!phaser.isTerminated());
Iterator<Arriver> arrivers = arriverIterator(phaser);
int phase = 0;
for (int i = 0; i < 10; i++) {
equal(phaser.getPhase(), phase++);
Arriver a1 = arrivers.next(); a1.start();
Arriver a2 = arrivers.next(); a2.start();
toTheStartingGate();
phaser.arriveAndAwaitAdvance();
a1.join();
a2.join();
checkResult(a1, null);
checkResult(a2, null);
check(!phaser.isTerminated());
equal(phaser.getRegisteredParties(), 3);
equal(phaser.getArrivedParties(), 0);
}
} catch (Throwable t) { unexpected(t); }
//----------------------------------------------------------------
// One thread interrupted
//----------------------------------------------------------------
try {
Phaser phaser = new Phaser(3);
Iterator<Arriver> arrivers = arriverIterator(phaser);
int phase = phaser.getPhase();
for (int i = 0; i < 4; i++) {
check(phaser.getPhase() == phase);
Awaiter a1 = awaiter(phaser, 10, SECONDS); a1.start();
Arriver a2 = arrivers.next(); a2.start();
toTheStartingGate();
a1.interrupt();
a1.join();
phaser.arriveAndAwaitAdvance();
a2.join();
checkResult(a1, InterruptedException.class);
checkResult(a2, null);
check(!phaser.isTerminated());
equal(phaser.getRegisteredParties(), 3);
equal(phaser.getArrivedParties(), 0);
phase++;
}
} catch (Throwable t) { unexpected(t); }
//----------------------------------------------------------------
// Phaser is terminated while threads are waiting
//----------------------------------------------------------------
try {
Phaser phaser = new Phaser(3);
Iterator<Awaiter> awaiters = awaiterIterator(phaser);
for (int i = 0; i < 4; i++) {
Arriver a1 = awaiters.next(); a1.start();
Arriver a2 = awaiters.next(); a2.start();
toTheStartingGate();
while (phaser.getArrivedParties() < 2) Thread.yield();
phaser.forceTermination();
a1.join();
a2.join();
check(a1.phase == -1);
check(a2.phase == -1);
int arrivedParties = phaser.getArrivedParties();
checkTerminated(phaser);
equal(phaser.getArrivedParties(), arrivedParties);
}
} catch (Throwable t) { unexpected(t); }
//----------------------------------------------------------------
// Adds new unarrived parties to this phaser
//----------------------------------------------------------------
try {
Phaser phaser = new Phaser(1);
Iterator<Arriver> arrivers = arriverIterator(phaser);
LinkedList<Arriver> arriverList = new LinkedList<Arriver>();
int phase = phaser.getPhase();
for (int i = 1; i < 5; i++) {
atTheStartingGate = new Phaser(1+(3*i));
check(phaser.getPhase() == phase);
// register 3 more
phaser.register(); phaser.register(); phaser.register();
for (int z=0; z<(3*i); z++) {
arriverList.add(arrivers.next());
}
for (Arriver arriver : arriverList)
arriver.start();
toTheStartingGate();
phaser.arriveAndAwaitAdvance();
for (Arriver arriver : arriverList) {
arriver.join();
checkResult(arriver, null);
}
equal(phaser.getRegisteredParties(), 1 + (3*i));
equal(phaser.getArrivedParties(), 0);
arriverList.clear();
phase++;
}
atTheStartingGate = new Phaser(3);
} catch (Throwable t) { unexpected(t); }
//----------------------------------------------------------------
// One thread timed out
//----------------------------------------------------------------
try {
Phaser phaser = new Phaser(3);
Iterator<Arriver> arrivers = arriverIterator(phaser);
for (long timeout : new long[] { 0L, 5L }) {
for (int i = 0; i < 2; i++) {
Awaiter a1 = awaiter(phaser, timeout, SECONDS); a1.start();
Arriver a2 = arrivers.next(); a2.start();
toTheStartingGate();
a1.join();
checkResult(a1, TimeoutException.class);
phaser.arrive();
a2.join();
checkResult(a2, null);
check(!phaser.isTerminated());
}
}
} catch (Throwable t) { unexpected(t); }
//----------------------------------------------------------------
// Barrier action completed normally
//----------------------------------------------------------------
try {
final AtomicInteger count = new AtomicInteger(0);
final Phaser[] kludge = new Phaser[1];
Phaser phaser = new Phaser(3) {
@Override
protected boolean onAdvance(int phase, int registeredParties) {
int countPhase = count.getAndIncrement();
equal(countPhase, phase);
equal(kludge[0].getPhase(), phase);
equal(kludge[0].getRegisteredParties(), registeredParties);
if (phase >= 3)
return true; // terminate
return false;
}
};
kludge[0] = phaser;
equal(phaser.getRegisteredParties(), 3);
Iterator<Awaiter> awaiters = awaiterIterator(phaser);
for (int i = 0; i < 4; i++) {
Awaiter a1 = awaiters.next(); a1.start();
Awaiter a2 = awaiters.next(); a2.start();
toTheStartingGate();
while (phaser.getArrivedParties() < 2) Thread.yield();
phaser.arrive();
a1.join();
a2.join();
checkResult(a1, null);
checkResult(a2, null);
equal(count.get(), i+1);
if (i < 3) {
check(!phaser.isTerminated());
equal(phaser.getRegisteredParties(), 3);
equal(phaser.getArrivedParties(), 0);
equal(phaser.getUnarrivedParties(), 3);
equal(phaser.getPhase(), count.get());
} else
checkTerminated(phaser);
}
} catch (Throwable t) { unexpected(t); }
}
//--------------------- Infrastructure ---------------------------
static volatile int passed = 0, failed = 0;
static void pass() {passed++;}
static void fail() {failed++; Thread.dumpStack();}
static void fail(String msg) {System.out.println(msg); fail();}
static void unexpected(Throwable t) {failed++; t.printStackTrace();}
static void check(boolean cond) {if (cond) pass(); else fail();}
static void equal(Object x, Object y) {
if (x == null ? y == null : x.equals(y)) pass();
else fail(x + " not equal to " + y);}
public static void main(String[] args) throws Throwable {
try {realMain(args);} catch (Throwable t) {unexpected(t);}
System.out.printf("%nPassed = %d, failed = %d%n%n", passed, failed);
if (failed > 0) throw new AssertionError("Some tests failed");}
}
...@@ -20,6 +20,17 @@ ...@@ -20,6 +20,17 @@
* have any questions. * have any questions.
*/ */
/*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file:
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/licenses/publicdomain
*/
/* /*
* @test * @test
* @bug 6725789 * @bug 6725789
......
/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*/
/*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file:
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/licenses/publicdomain
*/
/*
* @test
* @bug 6865571
* @summary Numerical Integration using fork/join
* @run main Integrate reps=1 forkPolicy=dynamic
* @run main Integrate reps=1 forkPolicy=serial
* @run main Integrate reps=1 forkPolicy=fork
*/
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.RecursiveAction;
/**
* Sample program using Gaussian Quadrature for numerical integration.
* This version uses a simplified hardwired function. Inspired by a
* <A href="http://www.cs.uga.edu/~dkl/filaments/dist.html">
* Filaments</A> demo program.
*/
public final class Integrate {
static final double errorTolerance = 1.0e-11;
/** for time conversion */
static final long NPS = (1000L * 1000 * 1000);
static final int SERIAL = -1;
static final int DYNAMIC = 0;
static final int FORK = 1;
// the function to integrate
static double computeFunction(double x) {
return (x * x + 1.0) * x;
}
static final double start = 0.0;
static final double end = 1536.0;
/*
* The number of recursive calls for
* integrate from start to end.
* (Empirically determined)
*/
static final int calls = 263479047;
static String keywordValue(String[] args, String keyword) {
for (String arg : args)
if (arg.startsWith(keyword))
return arg.substring(keyword.length() + 1);
return null;
}
static int intArg(String[] args, String keyword, int defaultValue) {
String val = keywordValue(args, keyword);
return (val == null) ? defaultValue : Integer.parseInt(val);
}
static int policyArg(String[] args, String keyword, int defaultPolicy) {
String val = keywordValue(args, keyword);
if (val == null) return defaultPolicy;
if (val.equals("dynamic")) return DYNAMIC;
if (val.equals("serial")) return SERIAL;
if (val.equals("fork")) return FORK;
throw new Error();
}
/**
* Usage: Integrate [procs=N] [reps=N] forkPolicy=serial|dynamic|fork
*/
public static void main(String[] args) throws Exception {
final int procs = intArg(args, "procs",
Runtime.getRuntime().availableProcessors());
final int forkPolicy = policyArg(args, "forkPolicy", DYNAMIC);
ForkJoinPool g = new ForkJoinPool(procs);
System.out.println("Integrating from " + start + " to " + end +
" forkPolicy = " + forkPolicy);
long lastTime = System.nanoTime();
for (int reps = intArg(args, "reps", 10); reps > 0; reps--) {
double a;
if (forkPolicy == SERIAL)
a = SQuad.computeArea(g, start, end);
else if (forkPolicy == FORK)
a = FQuad.computeArea(g, start, end);
else
a = DQuad.computeArea(g, start, end);
long now = System.nanoTime();
double s = (double) (now - lastTime) / NPS;
lastTime = now;
System.out.printf("Calls/sec: %12d", (long) (calls / s));
System.out.printf(" Time: %7.3f", s);
System.out.printf(" Area: %12.1f", a);
System.out.println();
}
System.out.println(g);
g.shutdown();
}
// Sequential version
static final class SQuad extends RecursiveAction {
static double computeArea(ForkJoinPool pool, double l, double r) {
SQuad q = new SQuad(l, r, 0);
pool.invoke(q);
return q.area;
}
final double left; // lower bound
final double right; // upper bound
double area;
SQuad(double l, double r, double a) {
this.left = l; this.right = r; this.area = a;
}
public final void compute() {
double l = left;
double r = right;
area = recEval(l, r, (l * l + 1.0) * l, (r * r + 1.0) * r, area);
}
static final double recEval(double l, double r, double fl,
double fr, double a) {
double h = (r - l) * 0.5;
double c = l + h;
double fc = (c * c + 1.0) * c;
double hh = h * 0.5;
double al = (fl + fc) * hh;
double ar = (fr + fc) * hh;
double alr = al + ar;
if (Math.abs(alr - a) <= errorTolerance)
return alr;
else
return recEval(c, r, fc, fr, ar) + recEval(l, c, fl, fc, al);
}
}
//....................................
// ForkJoin version
static final class FQuad extends RecursiveAction {
static double computeArea(ForkJoinPool pool, double l, double r) {
FQuad q = new FQuad(l, r, 0);
pool.invoke(q);
return q.area;
}
final double left; // lower bound
final double right; // upper bound
double area;
FQuad(double l, double r, double a) {
this.left = l; this.right = r; this.area = a;
}
public final void compute() {
double l = left;
double r = right;
area = recEval(l, r, (l * l + 1.0) * l, (r * r + 1.0) * r, area);
}
static final double recEval(double l, double r, double fl,
double fr, double a) {
double h = (r - l) * 0.5;
double c = l + h;
double fc = (c * c + 1.0) * c;
double hh = h * 0.5;
double al = (fl + fc) * hh;
double ar = (fr + fc) * hh;
double alr = al + ar;
if (Math.abs(alr - a) <= errorTolerance)
return alr;
FQuad q = new FQuad(l, c, al);
q.fork();
ar = recEval(c, r, fc, fr, ar);
if (!q.tryUnfork()) {
q.quietlyHelpJoin();
return ar + q.area;
}
return ar + recEval(l, c, fl, fc, al);
}
}
// ...........................
// Version using on-demand Fork
static final class DQuad extends RecursiveAction {
static double computeArea(ForkJoinPool pool, double l, double r) {
DQuad q = new DQuad(l, r, 0);
pool.invoke(q);
return q.area;
}
final double left; // lower bound
final double right; // upper bound
double area;
DQuad(double l, double r, double a) {
this.left = l; this.right = r; this.area = a;
}
public final void compute() {
double l = left;
double r = right;
area = recEval(l, r, (l * l + 1.0) * l, (r * r + 1.0) * r, area);
}
static final double recEval(double l, double r, double fl,
double fr, double a) {
double h = (r - l) * 0.5;
double c = l + h;
double fc = (c * c + 1.0) * c;
double hh = h * 0.5;
double al = (fl + fc) * hh;
double ar = (fr + fc) * hh;
double alr = al + ar;
if (Math.abs(alr - a) <= errorTolerance)
return alr;
DQuad q = null;
if (getSurplusQueuedTaskCount() <= 3)
(q = new DQuad(l, c, al)).fork();
ar = recEval(c, r, fc, fr, ar);
if (q != null && !q.tryUnfork()) {
q.quietlyHelpJoin();
return ar + q.area;
}
return ar + recEval(l, c, fl, fc, al);
}
}
}
/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*/
/*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file:
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/licenses/publicdomain
*/
/*
* @test
* @bug 6865571
* @summary Solve NQueens using fork/join
* @run main NQueensCS maxBoardSize=11 reps=1
* @run main NQueensCS maxBoardSize=11 reps=1 procs=8
*/
import java.util.Arrays;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.RecursiveAction;
public class NQueensCS extends RecursiveAction {
static long lastStealCount;
static int boardSize;
static final int[] expectedSolutions = new int[] {
0, 1, 0, 0, 2, 10, 4, 40, 92, 352, 724, 2680, 14200,
73712, 365596, 2279184, 14772512, 95815104, 666090624
}; // see http://www.durangobill.com/N_Queens.html
static String keywordValue(String[] args, String keyword) {
for (String arg : args)
if (arg.startsWith(keyword))
return arg.substring(keyword.length() + 1);
return null;
}
static int intArg(String[] args, String keyword, int defaultValue) {
String val = keywordValue(args, keyword);
return (val == null) ? defaultValue : Integer.parseInt(val);
}
/** for time conversion */
static final long NPS = (1000L * 1000L * 1000L);
/**
* Usage: NQueensCS [minBoardSize=N] [maxBoardSize=N] [procs=N] [reps=N]
*/
public static void main(String[] args) throws Exception {
// Board sizes too small: hard to measure well.
// Board sizes too large: take too long to run.
final int minBoardSize = intArg(args, "minBoardSize", 8);
final int maxBoardSize = intArg(args, "maxBoardSize", 15);
final int procs = intArg(args, "procs", 0);
for (int reps = intArg(args, "reps", 10); reps > 0; reps--) {
ForkJoinPool g = (procs == 0) ?
new ForkJoinPool() :
new ForkJoinPool(procs);
lastStealCount = g.getStealCount();
for (int i = minBoardSize; i <= maxBoardSize; i++)
test(g, i);
System.out.println(g);
g.shutdown();
}
}
static void test(ForkJoinPool g, int i) throws Exception {
boardSize = i;
int ps = g.getParallelism();
long start = System.nanoTime();
NQueensCS task = new NQueensCS(new int[0]);
g.invoke(task);
int solutions = task.solutions;
long time = System.nanoTime() - start;
double secs = (double) time / NPS;
if (solutions != expectedSolutions[i])
throw new Error();
System.out.printf("NQueensCS %3d", i);
System.out.printf(" Time: %7.3f", secs);
long sc = g.getStealCount();
long ns = sc - lastStealCount;
lastStealCount = sc;
System.out.printf(" Steals/t: %5d", ns/ps);
System.out.println();
}
// Boards are represented as arrays where each cell
// holds the column number of the queen in that row
final int[] sofar;
NQueensCS nextSubtask; // to link subtasks
int solutions;
NQueensCS(int[] a) {
this.sofar = a;
}
public final void compute() {
NQueensCS subtasks;
int bs = boardSize;
if (sofar.length >= bs)
solutions = 1;
else if ((subtasks = explore(sofar, bs)) != null)
solutions = processSubtasks(subtasks);
}
private static NQueensCS explore(int[] array, int bs) {
int row = array.length;
NQueensCS s = null; // subtask list
outer:
for (int q = 0; q < bs; ++q) {
for (int i = 0; i < row; i++) {
int p = array[i];
if (q == p || q == p - (row - i) || q == p + (row - i))
continue outer; // attacked
}
NQueensCS first = s; // lag forks to ensure 1 kept
if (first != null)
first.fork();
int[] next = Arrays.copyOf(array, row+1);
next[row] = q;
NQueensCS subtask = new NQueensCS(next);
subtask.nextSubtask = first;
s = subtask;
}
return s;
}
private static int processSubtasks(NQueensCS s) {
// Always run first the task held instead of forked
s.compute();
int ns = s.solutions;
s = s.nextSubtask;
// Then the unstolen ones
while (s != null && s.tryUnfork()) {
s.compute();
ns += s.solutions;
s = s.nextSubtask;
}
// Then wait for the stolen ones
while (s != null) {
s.join();
ns += s.solutions;
s = s.nextSubtask;
}
return ns;
}
}
...@@ -115,7 +115,7 @@ public final class CancelledLockLoops { ...@@ -115,7 +115,7 @@ public final class CancelledLockLoops {
finally { finally {
lock.unlock(); lock.unlock();
} }
if (completed != 2) if (c != 2)
throw new Error("Completed != 2"); throw new Error("Completed != 2");
int r = result; int r = result;
if (r == 0) // avoid overoptimization if (r == 0) // avoid overoptimization
......
...@@ -30,6 +30,7 @@ ...@@ -30,6 +30,7 @@
* Expert Group and released to the public domain, as explained at * Expert Group and released to the public domain, as explained at
* http://creativecommons.org/licenses/publicdomain * http://creativecommons.org/licenses/publicdomain
*/ */
import java.util.*; import java.util.*;
import java.util.concurrent.*; import java.util.concurrent.*;
import java.util.concurrent.locks.*; import java.util.concurrent.locks.*;
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册