提交 c79c53a2 编写于 作者: D dl

6981113: Add ConcurrentLinkedDeque

Summary: Extend techniques developed for ConcurrentLinkedQueue and LinkedTransferQueue to implement a non-blocking concurrent Deque with interior removes.
Reviewed-by: martin, dholmes, chegar
上级 bfeeb3b8
......@@ -272,6 +272,7 @@ JAVA_JAVA_java = \
java/util/concurrent/CancellationException.java \
java/util/concurrent/CompletionService.java \
java/util/concurrent/ConcurrentHashMap.java \
java/util/concurrent/ConcurrentLinkedDeque.java \
java/util/concurrent/ConcurrentLinkedQueue.java \
java/util/concurrent/ConcurrentMap.java \
java/util/concurrent/ConcurrentNavigableMap.java \
......
/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file:
*
* Written by Doug Lea and Martin Buchholz with assistance from members of
* JCP JSR-166 Expert Group and released to the public domain, as explained
* at http://creativecommons.org/licenses/publicdomain
*/
package java.util.concurrent;
import java.util.AbstractCollection;
import java.util.ArrayList;
import java.util.Collection;
import java.util.ConcurrentModificationException;
import java.util.Deque;
import java.util.Iterator;
import java.util.NoSuchElementException;
import java.util.Queue;
/**
* An unbounded concurrent {@linkplain Deque deque} based on linked nodes.
* Concurrent insertion, removal, and access operations execute safely
* across multiple threads.
* A {@code ConcurrentLinkedDeque} is an appropriate choice when
* many threads will share access to a common collection.
* Like most other concurrent collection implementations, this class
* does not permit the use of {@code null} elements.
*
* <p>Iterators are <i>weakly consistent</i>, returning elements
* reflecting the state of the deque at some point at or since the
* creation of the iterator. They do <em>not</em> throw {@link
* java.util.ConcurrentModificationException
* ConcurrentModificationException}, and may proceed concurrently with
* other operations.
*
* <p>Beware that, unlike in most collections, the {@code size}
* method is <em>NOT</em> a constant-time operation. Because of the
* asynchronous nature of these deques, determining the current number
* of elements requires a traversal of the elements.
*
* <p>This class and its iterator implement all of the <em>optional</em>
* methods of the {@link Deque} and {@link Iterator} interfaces.
*
* <p>Memory consistency effects: As with other concurrent collections,
* actions in a thread prior to placing an object into a
* {@code ConcurrentLinkedDeque}
* <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
* actions subsequent to the access or removal of that element from
* the {@code ConcurrentLinkedDeque} in another thread.
*
* <p>This class is a member of the
* <a href="{@docRoot}/../technotes/guides/collections/index.html">
* Java Collections Framework</a>.
*
* @since 1.7
* @author Doug Lea
* @author Martin Buchholz
* @param <E> the type of elements held in this collection
*/
public class ConcurrentLinkedDeque<E>
extends AbstractCollection<E>
implements Deque<E>, java.io.Serializable {
/*
* This is an implementation of a concurrent lock-free deque
* supporting interior removes but not interior insertions, as
* required to support the entire Deque interface.
*
* We extend the techniques developed for ConcurrentLinkedQueue and
* LinkedTransferQueue (see the internal docs for those classes).
* Understanding the ConcurrentLinkedQueue implementation is a
* prerequisite for understanding the implementation of this class.
*
* The data structure is a symmetrical doubly-linked "GC-robust"
* linked list of nodes. We minimize the number of volatile writes
* using two techniques: advancing multiple hops with a single CAS
* and mixing volatile and non-volatile writes of the same memory
* locations.
*
* A node contains the expected E ("item") and links to predecessor
* ("prev") and successor ("next") nodes:
*
* class Node<E> { volatile Node<E> prev, next; volatile E item; }
*
* A node p is considered "live" if it contains a non-null item
* (p.item != null). When an item is CASed to null, the item is
* atomically logically deleted from the collection.
*
* At any time, there is precisely one "first" node with a null
* prev reference that terminates any chain of prev references
* starting at a live node. Similarly there is precisely one
* "last" node terminating any chain of next references starting at
* a live node. The "first" and "last" nodes may or may not be live.
* The "first" and "last" nodes are always mutually reachable.
*
* A new element is added atomically by CASing the null prev or
* next reference in the first or last node to a fresh node
* containing the element. The element's node atomically becomes
* "live" at that point.
*
* A node is considered "active" if it is a live node, or the
* first or last node. Active nodes cannot be unlinked.
*
* A "self-link" is a next or prev reference that is the same node:
* p.prev == p or p.next == p
* Self-links are used in the node unlinking process. Active nodes
* never have self-links.
*
* A node p is active if and only if:
*
* p.item != null ||
* (p.prev == null && p.next != p) ||
* (p.next == null && p.prev != p)
*
* The deque object has two node references, "head" and "tail".
* The head and tail are only approximations to the first and last
* nodes of the deque. The first node can always be found by
* following prev pointers from head; likewise for tail. However,
* it is permissible for head and tail to be referring to deleted
* nodes that have been unlinked and so may not be reachable from
* any live node.
*
* There are 3 stages of node deletion;
* "logical deletion", "unlinking", and "gc-unlinking".
*
* 1. "logical deletion" by CASing item to null atomically removes
* the element from the collection, and makes the containing node
* eligible for unlinking.
*
* 2. "unlinking" makes a deleted node unreachable from active
* nodes, and thus eventually reclaimable by GC. Unlinked nodes
* may remain reachable indefinitely from an iterator.
*
* Physical node unlinking is merely an optimization (albeit a
* critical one), and so can be performed at our convenience. At
* any time, the set of live nodes maintained by prev and next
* links are identical, that is, the live nodes found via next
* links from the first node is equal to the elements found via
* prev links from the last node. However, this is not true for
* nodes that have already been logically deleted - such nodes may
* be reachable in one direction only.
*
* 3. "gc-unlinking" takes unlinking further by making active
* nodes unreachable from deleted nodes, making it easier for the
* GC to reclaim future deleted nodes. This step makes the data
* structure "gc-robust", as first described in detail by Boehm
* (http://portal.acm.org/citation.cfm?doid=503272.503282).
*
* GC-unlinked nodes may remain reachable indefinitely from an
* iterator, but unlike unlinked nodes, are never reachable from
* head or tail.
*
* Making the data structure GC-robust will eliminate the risk of
* unbounded memory retention with conservative GCs and is likely
* to improve performance with generational GCs.
*
* When a node is dequeued at either end, e.g. via poll(), we would
* like to break any references from the node to active nodes. We
* develop further the use of self-links that was very effective in
* other concurrent collection classes. The idea is to replace
* prev and next pointers with special values that are interpreted
* to mean off-the-list-at-one-end. These are approximations, but
* good enough to preserve the properties we want in our
* traversals, e.g. we guarantee that a traversal will never visit
* the same element twice, but we don't guarantee whether a
* traversal that runs out of elements will be able to see more
* elements later after enqueues at that end. Doing gc-unlinking
* safely is particularly tricky, since any node can be in use
* indefinitely (for example by an iterator). We must ensure that
* the nodes pointed at by head/tail never get gc-unlinked, since
* head/tail are needed to get "back on track" by other nodes that
* are gc-unlinked. gc-unlinking accounts for much of the
* implementation complexity.
*
* Since neither unlinking nor gc-unlinking are necessary for
* correctness, there are many implementation choices regarding
* frequency (eagerness) of these operations. Since volatile
* reads are likely to be much cheaper than CASes, saving CASes by
* unlinking multiple adjacent nodes at a time may be a win.
* gc-unlinking can be performed rarely and still be effective,
* since it is most important that long chains of deleted nodes
* are occasionally broken.
*
* The actual representation we use is that p.next == p means to
* goto the first node (which in turn is reached by following prev
* pointers from head), and p.next == null && p.prev == p means
* that the iteration is at an end and that p is a (final static)
* dummy node, NEXT_TERMINATOR, and not the last active node.
* Finishing the iteration when encountering such a TERMINATOR is
* good enough for read-only traversals, so such traversals can use
* p.next == null as the termination condition. When we need to
* find the last (active) node, for enqueueing a new node, we need
* to check whether we have reached a TERMINATOR node; if so,
* restart traversal from tail.
*
* The implementation is completely directionally symmetrical,
* except that most public methods that iterate through the list
* follow next pointers ("forward" direction).
*
* We believe (without full proof) that all single-element deque
* operations (e.g., addFirst, peekLast, pollLast) are linearizable
* (see Herlihy and Shavit's book). However, some combinations of
* operations are known not to be linearizable. In particular,
* when an addFirst(A) is racing with pollFirst() removing B, it is
* possible for an observer iterating over the elements to observe
* A B C and subsequently observe A C, even though no interior
* removes are ever performed. Nevertheless, iterators behave
* reasonably, providing the "weakly consistent" guarantees.
*
* Empirically, microbenchmarks suggest that this class adds about
* 40% overhead relative to ConcurrentLinkedQueue, which feels as
* good as we can hope for.
*/
private static final long serialVersionUID = 876323262645176354L;
/**
* A node from which the first node on list (that is, the unique node p
* with p.prev == null && p.next != p) can be reached in O(1) time.
* Invariants:
* - the first node is always O(1) reachable from head via prev links
* - all live nodes are reachable from the first node via succ()
* - head != null
* - (tmp = head).next != tmp || tmp != head
* - head is never gc-unlinked (but may be unlinked)
* Non-invariants:
* - head.item may or may not be null
* - head may not be reachable from the first or last node, or from tail
*/
private transient volatile Node<E> head;
/**
* A node from which the last node on list (that is, the unique node p
* with p.next == null && p.prev != p) can be reached in O(1) time.
* Invariants:
* - the last node is always O(1) reachable from tail via next links
* - all live nodes are reachable from the last node via pred()
* - tail != null
* - tail is never gc-unlinked (but may be unlinked)
* Non-invariants:
* - tail.item may or may not be null
* - tail may not be reachable from the first or last node, or from head
*/
private transient volatile Node<E> tail;
private final static Node<Object> PREV_TERMINATOR, NEXT_TERMINATOR;
static {
PREV_TERMINATOR = new Node<Object>(null);
PREV_TERMINATOR.next = PREV_TERMINATOR;
NEXT_TERMINATOR = new Node<Object>(null);
NEXT_TERMINATOR.prev = NEXT_TERMINATOR;
}
@SuppressWarnings("unchecked")
Node<E> prevTerminator() {
return (Node<E>) PREV_TERMINATOR;
}
@SuppressWarnings("unchecked")
Node<E> nextTerminator() {
return (Node<E>) NEXT_TERMINATOR;
}
static final class Node<E> {
volatile Node<E> prev;
volatile E item;
volatile Node<E> next;
/**
* Constructs a new node. Uses relaxed write because item can
* only be seen after publication via casNext or casPrev.
*/
Node(E item) {
UNSAFE.putObject(this, itemOffset, item);
}
boolean casItem(E cmp, E val) {
return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
}
void lazySetNext(Node<E> val) {
UNSAFE.putOrderedObject(this, nextOffset, val);
}
boolean casNext(Node<E> cmp, Node<E> val) {
return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
}
void lazySetPrev(Node<E> val) {
UNSAFE.putOrderedObject(this, prevOffset, val);
}
boolean casPrev(Node<E> cmp, Node<E> val) {
return UNSAFE.compareAndSwapObject(this, prevOffset, cmp, val);
}
// Unsafe mechanics
private static final sun.misc.Unsafe UNSAFE =
sun.misc.Unsafe.getUnsafe();
private static final long prevOffset =
objectFieldOffset(UNSAFE, "prev", Node.class);
private static final long itemOffset =
objectFieldOffset(UNSAFE, "item", Node.class);
private static final long nextOffset =
objectFieldOffset(UNSAFE, "next", Node.class);
}
/**
* Links e as first element.
*/
private void linkFirst(E e) {
checkNotNull(e);
final Node<E> newNode = new Node<E>(e);
restartFromHead:
for (;;)
for (Node<E> h = head, p = h, q;;) {
if ((q = p.prev) != null &&
(q = (p = q).prev) != null)
// Check for head updates every other hop.
// If p == q, we are sure to follow head instead.
p = (h != (h = head)) ? h : q;
else if (p.next == p) // PREV_TERMINATOR
continue restartFromHead;
else {
// p is first node
newNode.lazySetNext(p); // CAS piggyback
if (p.casPrev(null, newNode)) {
// Successful CAS is the linearization point
// for e to become an element of this deque,
// and for newNode to become "live".
if (p != h) // hop two nodes at a time
casHead(h, newNode); // Failure is OK.
return;
}
// Lost CAS race to another thread; re-read prev
}
}
}
/**
* Links e as last element.
*/
private void linkLast(E e) {
checkNotNull(e);
final Node<E> newNode = new Node<E>(e);
restartFromTail:
for (;;)
for (Node<E> t = tail, p = t, q;;) {
if ((q = p.next) != null &&
(q = (p = q).next) != null)
// Check for tail updates every other hop.
// If p == q, we are sure to follow tail instead.
p = (t != (t = tail)) ? t : q;
else if (p.prev == p) // NEXT_TERMINATOR
continue restartFromTail;
else {
// p is last node
newNode.lazySetPrev(p); // CAS piggyback
if (p.casNext(null, newNode)) {
// Successful CAS is the linearization point
// for e to become an element of this deque,
// and for newNode to become "live".
if (p != t) // hop two nodes at a time
casTail(t, newNode); // Failure is OK.
return;
}
// Lost CAS race to another thread; re-read next
}
}
}
private final static int HOPS = 2;
/**
* Unlinks non-null node x.
*/
void unlink(Node<E> x) {
// assert x != null;
// assert x.item == null;
// assert x != PREV_TERMINATOR;
// assert x != NEXT_TERMINATOR;
final Node<E> prev = x.prev;
final Node<E> next = x.next;
if (prev == null) {
unlinkFirst(x, next);
} else if (next == null) {
unlinkLast(x, prev);
} else {
// Unlink interior node.
//
// This is the common case, since a series of polls at the
// same end will be "interior" removes, except perhaps for
// the first one, since end nodes cannot be unlinked.
//
// At any time, all active nodes are mutually reachable by
// following a sequence of either next or prev pointers.
//
// Our strategy is to find the unique active predecessor
// and successor of x. Try to fix up their links so that
// they point to each other, leaving x unreachable from
// active nodes. If successful, and if x has no live
// predecessor/successor, we additionally try to gc-unlink,
// leaving active nodes unreachable from x, by rechecking
// that the status of predecessor and successor are
// unchanged and ensuring that x is not reachable from
// tail/head, before setting x's prev/next links to their
// logical approximate replacements, self/TERMINATOR.
Node<E> activePred, activeSucc;
boolean isFirst, isLast;
int hops = 1;
// Find active predecessor
for (Node<E> p = prev; ; ++hops) {
if (p.item != null) {
activePred = p;
isFirst = false;
break;
}
Node<E> q = p.prev;
if (q == null) {
if (p.next == p)
return;
activePred = p;
isFirst = true;
break;
}
else if (p == q)
return;
else
p = q;
}
// Find active successor
for (Node<E> p = next; ; ++hops) {
if (p.item != null) {
activeSucc = p;
isLast = false;
break;
}
Node<E> q = p.next;
if (q == null) {
if (p.prev == p)
return;
activeSucc = p;
isLast = true;
break;
}
else if (p == q)
return;
else
p = q;
}
// TODO: better HOP heuristics
if (hops < HOPS
// always squeeze out interior deleted nodes
&& (isFirst | isLast))
return;
// Squeeze out deleted nodes between activePred and
// activeSucc, including x.
skipDeletedSuccessors(activePred);
skipDeletedPredecessors(activeSucc);
// Try to gc-unlink, if possible
if ((isFirst | isLast) &&
// Recheck expected state of predecessor and successor
(activePred.next == activeSucc) &&
(activeSucc.prev == activePred) &&
(isFirst ? activePred.prev == null : activePred.item != null) &&
(isLast ? activeSucc.next == null : activeSucc.item != null)) {
updateHead(); // Ensure x is not reachable from head
updateTail(); // Ensure x is not reachable from tail
// Finally, actually gc-unlink
x.lazySetPrev(isFirst ? prevTerminator() : x);
x.lazySetNext(isLast ? nextTerminator() : x);
}
}
}
/**
* Unlinks non-null first node.
*/
private void unlinkFirst(Node<E> first, Node<E> next) {
// assert first != null;
// assert next != null;
// assert first.item == null;
for (Node<E> o = null, p = next, q;;) {
if (p.item != null || (q = p.next) == null) {
if (o != null && p.prev != p && first.casNext(next, p)) {
skipDeletedPredecessors(p);
if (first.prev == null &&
(p.next == null || p.item != null) &&
p.prev == first) {
updateHead(); // Ensure o is not reachable from head
updateTail(); // Ensure o is not reachable from tail
// Finally, actually gc-unlink
o.lazySetNext(o);
o.lazySetPrev(prevTerminator());
}
}
return;
}
else if (p == q)
return;
else {
o = p;
p = q;
}
}
}
/**
* Unlinks non-null last node.
*/
private void unlinkLast(Node<E> last, Node<E> prev) {
// assert last != null;
// assert prev != null;
// assert last.item == null;
for (Node<E> o = null, p = prev, q;;) {
if (p.item != null || (q = p.prev) == null) {
if (o != null && p.next != p && last.casPrev(prev, p)) {
skipDeletedSuccessors(p);
if (last.next == null &&
(p.prev == null || p.item != null) &&
p.next == last) {
updateHead(); // Ensure o is not reachable from head
updateTail(); // Ensure o is not reachable from tail
// Finally, actually gc-unlink
o.lazySetPrev(o);
o.lazySetNext(nextTerminator());
}
}
return;
}
else if (p == q)
return;
else {
o = p;
p = q;
}
}
}
/**
* Guarantees that any node which was unlinked before a call to
* this method will be unreachable from head after it returns.
* Does not guarantee to eliminate slack, only that head will
* point to a node that was active while this method was running.
*/
private final void updateHead() {
// Either head already points to an active node, or we keep
// trying to cas it to the first node until it does.
Node<E> h, p, q;
restartFromHead:
while ((h = head).item == null && (p = h.prev) != null) {
for (;;) {
if ((q = p.prev) == null ||
(q = (p = q).prev) == null) {
// It is possible that p is PREV_TERMINATOR,
// but if so, the CAS is guaranteed to fail.
if (casHead(h, p))
return;
else
continue restartFromHead;
}
else if (h != head)
continue restartFromHead;
else
p = q;
}
}
}
/**
* Guarantees that any node which was unlinked before a call to
* this method will be unreachable from tail after it returns.
* Does not guarantee to eliminate slack, only that tail will
* point to a node that was active while this method was running.
*/
private final void updateTail() {
// Either tail already points to an active node, or we keep
// trying to cas it to the last node until it does.
Node<E> t, p, q;
restartFromTail:
while ((t = tail).item == null && (p = t.next) != null) {
for (;;) {
if ((q = p.next) == null ||
(q = (p = q).next) == null) {
// It is possible that p is NEXT_TERMINATOR,
// but if so, the CAS is guaranteed to fail.
if (casTail(t, p))
return;
else
continue restartFromTail;
}
else if (t != tail)
continue restartFromTail;
else
p = q;
}
}
}
private void skipDeletedPredecessors(Node<E> x) {
whileActive:
do {
Node<E> prev = x.prev;
// assert prev != null;
// assert x != NEXT_TERMINATOR;
// assert x != PREV_TERMINATOR;
Node<E> p = prev;
findActive:
for (;;) {
if (p.item != null)
break findActive;
Node<E> q = p.prev;
if (q == null) {
if (p.next == p)
continue whileActive;
break findActive;
}
else if (p == q)
continue whileActive;
else
p = q;
}
// found active CAS target
if (prev == p || x.casPrev(prev, p))
return;
} while (x.item != null || x.next == null);
}
private void skipDeletedSuccessors(Node<E> x) {
whileActive:
do {
Node<E> next = x.next;
// assert next != null;
// assert x != NEXT_TERMINATOR;
// assert x != PREV_TERMINATOR;
Node<E> p = next;
findActive:
for (;;) {
if (p.item != null)
break findActive;
Node<E> q = p.next;
if (q == null) {
if (p.prev == p)
continue whileActive;
break findActive;
}
else if (p == q)
continue whileActive;
else
p = q;
}
// found active CAS target
if (next == p || x.casNext(next, p))
return;
} while (x.item != null || x.prev == null);
}
/**
* Returns the successor of p, or the first node if p.next has been
* linked to self, which will only be true if traversing with a
* stale pointer that is now off the list.
*/
final Node<E> succ(Node<E> p) {
// TODO: should we skip deleted nodes here?
Node<E> q = p.next;
return (p == q) ? first() : q;
}
/**
* Returns the predecessor of p, or the last node if p.prev has been
* linked to self, which will only be true if traversing with a
* stale pointer that is now off the list.
*/
final Node<E> pred(Node<E> p) {
Node<E> q = p.prev;
return (p == q) ? last() : q;
}
/**
* Returns the first node, the unique node p for which:
* p.prev == null && p.next != p
* The returned node may or may not be logically deleted.
* Guarantees that head is set to the returned node.
*/
Node<E> first() {
restartFromHead:
for (;;)
for (Node<E> h = head, p = h, q;;) {
if ((q = p.prev) != null &&
(q = (p = q).prev) != null)
// Check for head updates every other hop.
// If p == q, we are sure to follow head instead.
p = (h != (h = head)) ? h : q;
else if (p == h
// It is possible that p is PREV_TERMINATOR,
// but if so, the CAS is guaranteed to fail.
|| casHead(h, p))
return p;
else
continue restartFromHead;
}
}
/**
* Returns the last node, the unique node p for which:
* p.next == null && p.prev != p
* The returned node may or may not be logically deleted.
* Guarantees that tail is set to the returned node.
*/
Node<E> last() {
restartFromTail:
for (;;)
for (Node<E> t = tail, p = t, q;;) {
if ((q = p.next) != null &&
(q = (p = q).next) != null)
// Check for tail updates every other hop.
// If p == q, we are sure to follow tail instead.
p = (t != (t = tail)) ? t : q;
else if (p == t
// It is possible that p is NEXT_TERMINATOR,
// but if so, the CAS is guaranteed to fail.
|| casTail(t, p))
return p;
else
continue restartFromTail;
}
}
// Minor convenience utilities
/**
* Throws NullPointerException if argument is null.
*
* @param v the element
*/
private static void checkNotNull(Object v) {
if (v == null)
throw new NullPointerException();
}
/**
* Returns element unless it is null, in which case throws
* NoSuchElementException.
*
* @param v the element
* @return the element
*/
private E screenNullResult(E v) {
if (v == null)
throw new NoSuchElementException();
return v;
}
/**
* Creates an array list and fills it with elements of this list.
* Used by toArray.
*
* @return the arrayList
*/
private ArrayList<E> toArrayList() {
ArrayList<E> list = new ArrayList<E>();
for (Node<E> p = first(); p != null; p = succ(p)) {
E item = p.item;
if (item != null)
list.add(item);
}
return list;
}
/**
* Constructs an empty deque.
*/
public ConcurrentLinkedDeque() {
head = tail = new Node<E>(null);
}
/**
* Constructs a deque initially containing the elements of
* the given collection, added in traversal order of the
* collection's iterator.
*
* @param c the collection of elements to initially contain
* @throws NullPointerException if the specified collection or any
* of its elements are null
*/
public ConcurrentLinkedDeque(Collection<? extends E> c) {
// Copy c into a private chain of Nodes
Node<E> h = null, t = null;
for (E e : c) {
checkNotNull(e);
Node<E> newNode = new Node<E>(e);
if (h == null)
h = t = newNode;
else {
t.lazySetNext(newNode);
newNode.lazySetPrev(t);
t = newNode;
}
}
initHeadTail(h, t);
}
/**
* Initializes head and tail, ensuring invariants hold.
*/
private void initHeadTail(Node<E> h, Node<E> t) {
if (h == t) {
if (h == null)
h = t = new Node<E>(null);
else {
// Avoid edge case of a single Node with non-null item.
Node<E> newNode = new Node<E>(null);
t.lazySetNext(newNode);
newNode.lazySetPrev(t);
t = newNode;
}
}
head = h;
tail = t;
}
/**
* Inserts the specified element at the front of this deque.
*
* @throws NullPointerException {@inheritDoc}
*/
public void addFirst(E e) {
linkFirst(e);
}
/**
* Inserts the specified element at the end of this deque.
*
* <p>This method is equivalent to {@link #add}.
*
* @throws NullPointerException {@inheritDoc}
*/
public void addLast(E e) {
linkLast(e);
}
/**
* Inserts the specified element at the front of this deque.
*
* @return {@code true} always
* @throws NullPointerException {@inheritDoc}
*/
public boolean offerFirst(E e) {
linkFirst(e);
return true;
}
/**
* Inserts the specified element at the end of this deque.
*
* <p>This method is equivalent to {@link #add}.
*
* @return {@code true} always
* @throws NullPointerException {@inheritDoc}
*/
public boolean offerLast(E e) {
linkLast(e);
return true;
}
public E peekFirst() {
for (Node<E> p = first(); p != null; p = succ(p)) {
E item = p.item;
if (item != null)
return item;
}
return null;
}
public E peekLast() {
for (Node<E> p = last(); p != null; p = pred(p)) {
E item = p.item;
if (item != null)
return item;
}
return null;
}
/**
* @throws NoSuchElementException {@inheritDoc}
*/
public E getFirst() {
return screenNullResult(peekFirst());
}
/**
* @throws NoSuchElementException {@inheritDoc}
*/
public E getLast() {
return screenNullResult(peekLast());
}
public E pollFirst() {
for (Node<E> p = first(); p != null; p = succ(p)) {
E item = p.item;
if (item != null && p.casItem(item, null)) {
unlink(p);
return item;
}
}
return null;
}
public E pollLast() {
for (Node<E> p = last(); p != null; p = pred(p)) {
E item = p.item;
if (item != null && p.casItem(item, null)) {
unlink(p);
return item;
}
}
return null;
}
/**
* @throws NoSuchElementException {@inheritDoc}
*/
public E removeFirst() {
return screenNullResult(pollFirst());
}
/**
* @throws NoSuchElementException {@inheritDoc}
*/
public E removeLast() {
return screenNullResult(pollLast());
}
// *** Queue and stack methods ***
/**
* Inserts the specified element at the tail of this deque.
*
* @return {@code true} (as specified by {@link Queue#offer})
* @throws NullPointerException if the specified element is null
*/
public boolean offer(E e) {
return offerLast(e);
}
/**
* Inserts the specified element at the tail of this deque.
*
* @return {@code true} (as specified by {@link Collection#add})
* @throws NullPointerException if the specified element is null
*/
public boolean add(E e) {
return offerLast(e);
}
public E poll() { return pollFirst(); }
public E remove() { return removeFirst(); }
public E peek() { return peekFirst(); }
public E element() { return getFirst(); }
public void push(E e) { addFirst(e); }
public E pop() { return removeFirst(); }
/**
* Removes the first element {@code e} such that
* {@code o.equals(e)}, if such an element exists in this deque.
* If the deque does not contain the element, it is unchanged.
*
* @param o element to be removed from this deque, if present
* @return {@code true} if the deque contained the specified element
* @throws NullPointerException if the specified element is {@code null}
*/
public boolean removeFirstOccurrence(Object o) {
checkNotNull(o);
for (Node<E> p = first(); p != null; p = succ(p)) {
E item = p.item;
if (item != null && o.equals(item) && p.casItem(item, null)) {
unlink(p);
return true;
}
}
return false;
}
/**
* Removes the last element {@code e} such that
* {@code o.equals(e)}, if such an element exists in this deque.
* If the deque does not contain the element, it is unchanged.
*
* @param o element to be removed from this deque, if present
* @return {@code true} if the deque contained the specified element
* @throws NullPointerException if the specified element is {@code null}
*/
public boolean removeLastOccurrence(Object o) {
checkNotNull(o);
for (Node<E> p = last(); p != null; p = pred(p)) {
E item = p.item;
if (item != null && o.equals(item) && p.casItem(item, null)) {
unlink(p);
return true;
}
}
return false;
}
/**
* Returns {@code true} if this deque contains at least one
* element {@code e} such that {@code o.equals(e)}.
*
* @param o element whose presence in this deque is to be tested
* @return {@code true} if this deque contains the specified element
*/
public boolean contains(Object o) {
if (o == null) return false;
for (Node<E> p = first(); p != null; p = succ(p)) {
E item = p.item;
if (item != null && o.equals(item))
return true;
}
return false;
}
/**
* Returns {@code true} if this collection contains no elements.
*
* @return {@code true} if this collection contains no elements
*/
public boolean isEmpty() {
return peekFirst() == null;
}
/**
* Returns the number of elements in this deque. If this deque
* contains more than {@code Integer.MAX_VALUE} elements, it
* returns {@code Integer.MAX_VALUE}.
*
* <p>Beware that, unlike in most collections, this method is
* <em>NOT</em> a constant-time operation. Because of the
* asynchronous nature of these deques, determining the current
* number of elements requires traversing them all to count them.
* Additionally, it is possible for the size to change during
* execution of this method, in which case the returned result
* will be inaccurate. Thus, this method is typically not very
* useful in concurrent applications.
*
* @return the number of elements in this deque
*/
public int size() {
int count = 0;
for (Node<E> p = first(); p != null; p = succ(p))
if (p.item != null)
// Collection.size() spec says to max out
if (++count == Integer.MAX_VALUE)
break;
return count;
}
/**
* Removes the first element {@code e} such that
* {@code o.equals(e)}, if such an element exists in this deque.
* If the deque does not contain the element, it is unchanged.
*
* @param o element to be removed from this deque, if present
* @return {@code true} if the deque contained the specified element
* @throws NullPointerException if the specified element is {@code null}
*/
public boolean remove(Object o) {
return removeFirstOccurrence(o);
}
/**
* Appends all of the elements in the specified collection to the end of
* this deque, in the order that they are returned by the specified
* collection's iterator. Attempts to {@code addAll} of a deque to
* itself result in {@code IllegalArgumentException}.
*
* @param c the elements to be inserted into this deque
* @return {@code true} if this deque changed as a result of the call
* @throws NullPointerException if the specified collection or any
* of its elements are null
* @throws IllegalArgumentException if the collection is this deque
*/
public boolean addAll(Collection<? extends E> c) {
if (c == this)
// As historically specified in AbstractQueue#addAll
throw new IllegalArgumentException();
// Copy c into a private chain of Nodes
Node<E> beginningOfTheEnd = null, last = null;
for (E e : c) {
checkNotNull(e);
Node<E> newNode = new Node<E>(e);
if (beginningOfTheEnd == null)
beginningOfTheEnd = last = newNode;
else {
last.lazySetNext(newNode);
newNode.lazySetPrev(last);
last = newNode;
}
}
if (beginningOfTheEnd == null)
return false;
// Atomically append the chain at the tail of this collection
restartFromTail:
for (;;)
for (Node<E> t = tail, p = t, q;;) {
if ((q = p.next) != null &&
(q = (p = q).next) != null)
// Check for tail updates every other hop.
// If p == q, we are sure to follow tail instead.
p = (t != (t = tail)) ? t : q;
else if (p.prev == p) // NEXT_TERMINATOR
continue restartFromTail;
else {
// p is last node
beginningOfTheEnd.lazySetPrev(p); // CAS piggyback
if (p.casNext(null, beginningOfTheEnd)) {
// Successful CAS is the linearization point
// for all elements to be added to this queue.
if (!casTail(t, last)) {
// Try a little harder to update tail,
// since we may be adding many elements.
t = tail;
if (last.next == null)
casTail(t, last);
}
return true;
}
// Lost CAS race to another thread; re-read next
}
}
}
/**
* Removes all of the elements from this deque.
*/
public void clear() {
while (pollFirst() != null)
;
}
/**
* Returns an array containing all of the elements in this deque, in
* proper sequence (from first to last element).
*
* <p>The returned array will be "safe" in that no references to it are
* maintained by this deque. (In other words, this method must allocate
* a new array). The caller is thus free to modify the returned array.
*
* <p>This method acts as bridge between array-based and collection-based
* APIs.
*
* @return an array containing all of the elements in this deque
*/
public Object[] toArray() {
return toArrayList().toArray();
}
/**
* Returns an array containing all of the elements in this deque,
* in proper sequence (from first to last element); the runtime
* type of the returned array is that of the specified array. If
* the deque fits in the specified array, it is returned therein.
* Otherwise, a new array is allocated with the runtime type of
* the specified array and the size of this deque.
*
* <p>If this deque fits in the specified array with room to spare
* (i.e., the array has more elements than this deque), the element in
* the array immediately following the end of the deque is set to
* {@code null}.
*
* <p>Like the {@link #toArray()} method, this method acts as
* bridge between array-based and collection-based APIs. Further,
* this method allows precise control over the runtime type of the
* output array, and may, under certain circumstances, be used to
* save allocation costs.
*
* <p>Suppose {@code x} is a deque known to contain only strings.
* The following code can be used to dump the deque into a newly
* allocated array of {@code String}:
*
* <pre>
* String[] y = x.toArray(new String[0]);</pre>
*
* Note that {@code toArray(new Object[0])} is identical in function to
* {@code toArray()}.
*
* @param a the array into which the elements of the deque are to
* be stored, if it is big enough; otherwise, a new array of the
* same runtime type is allocated for this purpose
* @return an array containing all of the elements in this deque
* @throws ArrayStoreException if the runtime type of the specified array
* is not a supertype of the runtime type of every element in
* this deque
* @throws NullPointerException if the specified array is null
*/
public <T> T[] toArray(T[] a) {
return toArrayList().toArray(a);
}
/**
* Returns an iterator over the elements in this deque in proper sequence.
* The elements will be returned in order from first (head) to last (tail).
*
* <p>The returned {@code Iterator} is a "weakly consistent" iterator that
* will never throw {@link java.util.ConcurrentModificationException
* ConcurrentModificationException},
* and guarantees to traverse elements as they existed upon
* construction of the iterator, and may (but is not guaranteed to)
* reflect any modifications subsequent to construction.
*
* @return an iterator over the elements in this deque in proper sequence
*/
public Iterator<E> iterator() {
return new Itr();
}
/**
* Returns an iterator over the elements in this deque in reverse
* sequential order. The elements will be returned in order from
* last (tail) to first (head).
*
* <p>The returned {@code Iterator} is a "weakly consistent" iterator that
* will never throw {@link java.util.ConcurrentModificationException
* ConcurrentModificationException},
* and guarantees to traverse elements as they existed upon
* construction of the iterator, and may (but is not guaranteed to)
* reflect any modifications subsequent to construction.
*
* @return an iterator over the elements in this deque in reverse order
*/
public Iterator<E> descendingIterator() {
return new DescendingItr();
}
private abstract class AbstractItr implements Iterator<E> {
/**
* Next node to return item for.
*/
private Node<E> nextNode;
/**
* nextItem holds on to item fields because once we claim
* that an element exists in hasNext(), we must return it in
* the following next() call even if it was in the process of
* being removed when hasNext() was called.
*/
private E nextItem;
/**
* Node returned by most recent call to next. Needed by remove.
* Reset to null if this element is deleted by a call to remove.
*/
private Node<E> lastRet;
abstract Node<E> startNode();
abstract Node<E> nextNode(Node<E> p);
AbstractItr() {
advance();
}
/**
* Sets nextNode and nextItem to next valid node, or to null
* if no such.
*/
private void advance() {
lastRet = nextNode;
Node<E> p = (nextNode == null) ? startNode() : nextNode(nextNode);
for (;; p = nextNode(p)) {
if (p == null) {
// p might be active end or TERMINATOR node; both are OK
nextNode = null;
nextItem = null;
break;
}
E item = p.item;
if (item != null) {
nextNode = p;
nextItem = item;
break;
}
}
}
public boolean hasNext() {
return nextItem != null;
}
public E next() {
E item = nextItem;
if (item == null) throw new NoSuchElementException();
advance();
return item;
}
public void remove() {
Node<E> l = lastRet;
if (l == null) throw new IllegalStateException();
l.item = null;
unlink(l);
lastRet = null;
}
}
/** Forward iterator */
private class Itr extends AbstractItr {
Node<E> startNode() { return first(); }
Node<E> nextNode(Node<E> p) { return succ(p); }
}
/** Descending iterator */
private class DescendingItr extends AbstractItr {
Node<E> startNode() { return last(); }
Node<E> nextNode(Node<E> p) { return pred(p); }
}
/**
* Saves the state to a stream (that is, serializes it).
*
* @serialData All of the elements (each an {@code E}) in
* the proper order, followed by a null
* @param s the stream
*/
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
// Write out any hidden stuff
s.defaultWriteObject();
// Write out all elements in the proper order.
for (Node<E> p = first(); p != null; p = succ(p)) {
E item = p.item;
if (item != null)
s.writeObject(item);
}
// Use trailing null as sentinel
s.writeObject(null);
}
/**
* Reconstitutes the instance from a stream (that is, deserializes it).
* @param s the stream
*/
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
// Read in elements until trailing null sentinel found
Node<E> h = null, t = null;
Object item;
while ((item = s.readObject()) != null) {
@SuppressWarnings("unchecked")
Node<E> newNode = new Node<E>((E) item);
if (h == null)
h = t = newNode;
else {
t.lazySetNext(newNode);
newNode.lazySetPrev(t);
t = newNode;
}
}
initHeadTail(h, t);
}
// Unsafe mechanics
private static final sun.misc.Unsafe UNSAFE =
sun.misc.Unsafe.getUnsafe();
private static final long headOffset =
objectFieldOffset(UNSAFE, "head", ConcurrentLinkedDeque.class);
private static final long tailOffset =
objectFieldOffset(UNSAFE, "tail", ConcurrentLinkedDeque.class);
private boolean casHead(Node<E> cmp, Node<E> val) {
return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
}
private boolean casTail(Node<E> cmp, Node<E> val) {
return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
}
static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
String field, Class<?> klazz) {
try {
return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
} catch (NoSuchFieldException e) {
// Convert Exception to corresponding Error
NoSuchFieldError error = new NoSuchFieldError(field);
error.initCause(e);
throw error;
}
}
}
......@@ -28,9 +28,9 @@
* However, the following notice accompanied the original version of this
* file:
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/licenses/publicdomain
* Written by Doug Lea and Martin Buchholz with assistance from members of
* JCP JSR-166 Expert Group and released to the public domain, as explained
* at http://creativecommons.org/licenses/publicdomain
*/
package java.util.concurrent;
......@@ -53,7 +53,8 @@ import java.util.Queue;
* operations obtain elements at the head of the queue.
* A {@code ConcurrentLinkedQueue} is an appropriate choice when
* many threads will share access to a common collection.
* This queue does not permit {@code null} elements.
* Like most other concurrent collection implementations, this class
* does not permit the use of {@code null} elements.
*
* <p>This implementation employs an efficient &quot;wait-free&quot;
* algorithm based on one described in <a
......@@ -61,14 +62,20 @@ import java.util.Queue;
* Fast, and Practical Non-Blocking and Blocking Concurrent Queue
* Algorithms</a> by Maged M. Michael and Michael L. Scott.
*
* <p>Iterators are <i>weakly consistent</i>, returning elements
* reflecting the state of the queue at some point at or since the
* creation of the iterator. They do <em>not</em> throw {@link
* ConcurrentModificationException}, and may proceed concurrently with
* other operations. Elements contained in the queue since the creation
* of the iterator will be returned exactly once.
*
* <p>Beware that, unlike in most collections, the {@code size} method
* is <em>NOT</em> a constant-time operation. Because of the
* asynchronous nature of these queues, determining the current number
* of elements requires a traversal of the elements.
*
* <p>This class and its iterator implement all of the
* <em>optional</em> methods of the {@link Collection} and {@link
* Iterator} interfaces.
* <p>This class and its iterator implement all of the <em>optional</em>
* methods of the {@link Queue} and {@link Iterator} interfaces.
*
* <p>Memory consistency effects: As with other concurrent
* collections, actions in a thread prior to placing an object into a
......@@ -132,9 +139,10 @@ public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
*
* Both head and tail are permitted to lag. In fact, failing to
* update them every time one could is a significant optimization
* (fewer CASes). This is controlled by local "hops" variables
* that only trigger helping-CASes after experiencing multiple
* lags.
* (fewer CASes). As with LinkedTransferQueue (see the internal
* documentation for that class), we use a slack threshold of two;
* that is, we update head/tail when the current pointer appears
* to be two or more steps away from the first/last node.
*
* Since head and tail are updated concurrently and independently,
* it is possible for tail to lag behind head (why not)?
......@@ -148,8 +156,8 @@ public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
* this is merely an optimization.
*
* When constructing a Node (before enqueuing it) we avoid paying
* for a volatile write to item by using lazySet instead of a
* normal write. This allows the cost of enqueue to be
* for a volatile write to item by using Unsafe.putObject instead
* of a normal write. This allows the cost of enqueue to be
* "one-and-a-half" CASes.
*
* Both head and tail may or may not point to a Node with a
......@@ -161,38 +169,25 @@ public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
*/
private static class Node<E> {
private volatile E item;
private volatile Node<E> next;
volatile E item;
volatile Node<E> next;
/**
* Constructs a new node. Uses relaxed write because item can
* only be seen after publication via casNext.
*/
Node(E item) {
// Piggyback on imminent casNext()
lazySetItem(item);
}
E getItem() {
return item;
UNSAFE.putObject(this, itemOffset, item);
}
boolean casItem(E cmp, E val) {
return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
}
void setItem(E val) {
item = val;
}
void lazySetItem(E val) {
UNSAFE.putOrderedObject(this, itemOffset, val);
}
void lazySetNext(Node<E> val) {
UNSAFE.putOrderedObject(this, nextOffset, val);
}
Node<E> getNext() {
return next;
}
boolean casNext(Node<E> cmp, Node<E> val) {
return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
}
......@@ -219,7 +214,7 @@ public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
* - it is permitted for tail to lag behind head, that is, for tail
* to not be reachable from head!
*/
private transient volatile Node<E> head = new Node<E>(null);
private transient volatile Node<E> head;
/**
* A node from which the last node on list (that is, the unique
......@@ -233,25 +228,41 @@ public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
* to not be reachable from head!
* - tail.next may or may not be self-pointing to tail.
*/
private transient volatile Node<E> tail = head;
private transient volatile Node<E> tail;
/**
* Creates a {@code ConcurrentLinkedQueue} that is initially empty.
*/
public ConcurrentLinkedQueue() {}
public ConcurrentLinkedQueue() {
head = tail = new Node<E>(null);
}
/**
* Creates a {@code ConcurrentLinkedQueue}
* initially containing the elements of the given collection,
* added in traversal order of the collection's iterator.
*
* @param c the collection of elements to initially contain
* @throws NullPointerException if the specified collection or any
* of its elements are null
*/
public ConcurrentLinkedQueue(Collection<? extends E> c) {
for (E e : c)
add(e);
Node<E> h = null, t = null;
for (E e : c) {
checkNotNull(e);
Node<E> newNode = new Node<E>(e);
if (h == null)
h = t = newNode;
else {
t.lazySetNext(newNode);
t = newNode;
}
}
if (h == null)
h = t = new Node<E>(null);
head = h;
tail = t;
}
// Have to override just to update the javadoc
......@@ -266,13 +277,6 @@ public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
return offer(e);
}
/**
* We don't bother to update head or tail pointers if fewer than
* HOPS links from "true" location. We assume that volatile
* writes are significantly more expensive than volatile reads.
*/
private static final int HOPS = 1;
/**
* Try to CAS head to p. If successful, repoint old head to itself
* as sentinel for succ(), below.
......@@ -288,7 +292,7 @@ public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
* stale pointer that is now off the list.
*/
final Node<E> succ(Node<E> p) {
Node<E> next = p.getNext();
Node<E> next = p.next;
return (p == next) ? head : next;
}
......@@ -299,69 +303,76 @@ public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
* @throws NullPointerException if the specified element is null
*/
public boolean offer(E e) {
if (e == null) throw new NullPointerException();
Node<E> n = new Node<E>(e);
retry:
for (;;) {
Node<E> t = tail;
Node<E> p = t;
for (int hops = 0; ; hops++) {
Node<E> next = succ(p);
if (next != null) {
if (hops > HOPS && t != tail)
continue retry;
p = next;
} else if (p.casNext(null, n)) {
if (hops >= HOPS)
casTail(t, n); // Failure is OK.
checkNotNull(e);
final Node<E> newNode = new Node<E>(e);
for (Node<E> t = tail, p = t;;) {
Node<E> q = p.next;
if (q == null) {
// p is last node
if (p.casNext(null, newNode)) {
// Successful CAS is the linearization point
// for e to become an element of this queue,
// and for newNode to become "live".
if (p != t) // hop two nodes at a time
casTail(t, newNode); // Failure is OK.
return true;
} else {
p = succ(p);
}
// Lost CAS race to another thread; re-read next
}
else if (p == q)
// We have fallen off list. If tail is unchanged, it
// will also be off-list, in which case we need to
// jump to head, from which all live nodes are always
// reachable. Else the new tail is a better bet.
p = (t != (t = tail)) ? t : head;
else
// Check for tail updates after two hops.
p = (p != t && t != (t = tail)) ? t : q;
}
}
public E poll() {
Node<E> h = head;
Node<E> p = h;
for (int hops = 0; ; hops++) {
E item = p.getItem();
restartFromHead:
for (;;) {
for (Node<E> h = head, p = h, q;;) {
E item = p.item;
if (item != null && p.casItem(item, null)) {
if (hops >= HOPS) {
Node<E> q = p.getNext();
updateHead(h, (q != null) ? q : p);
}
// Successful CAS is the linearization point
// for item to be removed from this queue.
if (p != h) // hop two nodes at a time
updateHead(h, ((q = p.next) != null) ? q : p);
return item;
}
Node<E> next = succ(p);
if (next == null) {
else if ((q = p.next) == null) {
updateHead(h, p);
break;
return null;
}
else if (p == q)
continue restartFromHead;
else
p = q;
}
p = next;
}
return null;
}
public E peek() {
Node<E> h = head;
Node<E> p = h;
E item;
restartFromHead:
for (;;) {
item = p.getItem();
if (item != null)
break;
Node<E> next = succ(p);
if (next == null) {
break;
}
p = next;
}
for (Node<E> h = head, p = h, q;;) {
E item = p.item;
if (item != null || (q = p.next) == null) {
updateHead(h, p);
return item;
}
else if (p == q)
continue restartFromHead;
else
p = q;
}
}
}
/**
* Returns the first live (non-deleted) node on list, or null if none.
......@@ -372,24 +383,20 @@ public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
* of losing a race to a concurrent poll().
*/
Node<E> first() {
Node<E> h = head;
Node<E> p = h;
Node<E> result;
restartFromHead:
for (;;) {
E item = p.getItem();
if (item != null) {
result = p;
break;
for (Node<E> h = head, p = h, q;;) {
boolean hasItem = (p.item != null);
if (hasItem || (q = p.next) == null) {
updateHead(h, p);
return hasItem ? p : null;
}
Node<E> next = succ(p);
if (next == null) {
result = null;
break;
else if (p == q)
continue restartFromHead;
else
p = q;
}
p = next;
}
updateHead(h, p);
return result;
}
/**
......@@ -410,18 +417,20 @@ public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
* <em>NOT</em> a constant-time operation. Because of the
* asynchronous nature of these queues, determining the current
* number of elements requires an O(n) traversal.
* Additionally, if elements are added or removed during execution
* of this method, the returned result may be inaccurate. Thus,
* this method is typically not very useful in concurrent
* applications.
*
* @return the number of elements in this queue
*/
public int size() {
int count = 0;
for (Node<E> p = first(); p != null; p = succ(p)) {
if (p.getItem() != null) {
// Collections.size() spec says to max out
for (Node<E> p = first(); p != null; p = succ(p))
if (p.item != null)
// Collection.size() spec says to max out
if (++count == Integer.MAX_VALUE)
break;
}
}
return count;
}
......@@ -436,9 +445,8 @@ public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
public boolean contains(Object o) {
if (o == null) return false;
for (Node<E> p = first(); p != null; p = succ(p)) {
E item = p.getItem();
if (item != null &&
o.equals(item))
E item = p.item;
if (item != null && o.equals(item))
return true;
}
return false;
......@@ -459,7 +467,7 @@ public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
if (o == null) return false;
Node<E> pred = null;
for (Node<E> p = first(); p != null; p = succ(p)) {
E item = p.getItem();
E item = p.item;
if (item != null &&
o.equals(item) &&
p.casItem(item, null)) {
......@@ -473,6 +481,69 @@ public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
return false;
}
/**
* Appends all of the elements in the specified collection to the end of
* this queue, in the order that they are returned by the specified
* collection's iterator. Attempts to {@code addAll} of a queue to
* itself result in {@code IllegalArgumentException}.
*
* @param c the elements to be inserted into this queue
* @return {@code true} if this queue changed as a result of the call
* @throws NullPointerException if the specified collection or any
* of its elements are null
* @throws IllegalArgumentException if the collection is this queue
*/
public boolean addAll(Collection<? extends E> c) {
if (c == this)
// As historically specified in AbstractQueue#addAll
throw new IllegalArgumentException();
// Copy c into a private chain of Nodes
Node<E> beginningOfTheEnd = null, last = null;
for (E e : c) {
checkNotNull(e);
Node<E> newNode = new Node<E>(e);
if (beginningOfTheEnd == null)
beginningOfTheEnd = last = newNode;
else {
last.lazySetNext(newNode);
last = newNode;
}
}
if (beginningOfTheEnd == null)
return false;
// Atomically append the chain at the tail of this collection
for (Node<E> t = tail, p = t;;) {
Node<E> q = p.next;
if (q == null) {
// p is last node
if (p.casNext(null, beginningOfTheEnd)) {
// Successful CAS is the linearization point
// for all elements to be added to this queue.
if (!casTail(t, last)) {
// Try a little harder to update tail,
// since we may be adding many elements.
t = tail;
if (last.next == null)
casTail(t, last);
}
return true;
}
// Lost CAS race to another thread; re-read next
}
else if (p == q)
// We have fallen off list. If tail is unchanged, it
// will also be off-list, in which case we need to
// jump to head, from which all live nodes are always
// reachable. Else the new tail is a better bet.
p = (t != (t = tail)) ? t : head;
else
// Check for tail updates after two hops.
p = (p != t && t != (t = tail)) ? t : q;
}
}
/**
* Returns an array containing all of the elements in this queue, in
* proper sequence.
......@@ -490,7 +561,7 @@ public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
// Use ArrayList to deal with resizing.
ArrayList<E> al = new ArrayList<E>();
for (Node<E> p = first(); p != null; p = succ(p)) {
E item = p.getItem();
E item = p.item;
if (item != null)
al.add(item);
}
......@@ -539,7 +610,7 @@ public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
int k = 0;
Node<E> p;
for (p = first(); p != null && k < a.length; p = succ(p)) {
E item = p.getItem();
E item = p.item;
if (item != null)
a[k++] = (T)item;
}
......@@ -552,7 +623,7 @@ public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
// If won't fit, use ArrayList version
ArrayList<E> al = new ArrayList<E>();
for (Node<E> q = first(); q != null; q = succ(q)) {
E item = q.getItem();
E item = q.item;
if (item != null)
al.add(item);
}
......@@ -561,7 +632,9 @@ public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
/**
* Returns an iterator over the elements in this queue in proper sequence.
* The returned iterator is a "weakly consistent" iterator that
* The elements will be returned in order from first (head) to last (tail).
*
* <p>The returned {@code Iterator} is a "weakly consistent" iterator that
* will never throw {@link java.util.ConcurrentModificationException
* ConcurrentModificationException},
* and guarantees to traverse elements as they existed upon
......@@ -620,7 +693,7 @@ public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
nextItem = null;
return x;
}
E item = p.getItem();
E item = p.item;
if (item != null) {
nextNode = p;
nextItem = item;
......@@ -648,13 +721,13 @@ public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
Node<E> l = lastRet;
if (l == null) throw new IllegalStateException();
// rely on a future traversal to relink.
l.setItem(null);
l.item = null;
lastRet = null;
}
}
/**
* Save the state to a stream (that is, serialize it).
* Saves the state to a stream (that is, serializes it).
*
* @serialData All of the elements (each an {@code E}) in
* the proper order, followed by a null
......@@ -668,7 +741,7 @@ public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
// Write out all elements in the proper order.
for (Node<E> p = first(); p != null; p = succ(p)) {
Object item = p.getItem();
Object item = p.item;
if (item != null)
s.writeObject(item);
}
......@@ -678,25 +751,40 @@ public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
}
/**
* Reconstitute the Queue instance from a stream (that is,
* deserialize it).
* Reconstitutes the instance from a stream (that is, deserializes it).
* @param s the stream
*/
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
// Read in capacity, and any hidden stuff
s.defaultReadObject();
head = new Node<E>(null);
tail = head;
// Read in all elements and place in queue
for (;;) {
// Read in elements until trailing null sentinel found
Node<E> h = null, t = null;
Object item;
while ((item = s.readObject()) != null) {
@SuppressWarnings("unchecked")
E item = (E)s.readObject();
if (item == null)
break;
else
offer(item);
Node<E> newNode = new Node<E>((E) item);
if (h == null)
h = t = newNode;
else {
t.lazySetNext(newNode);
t = newNode;
}
}
if (h == null)
h = t = new Node<E>(null);
head = h;
tail = t;
}
/**
* Throws NullPointerException if argument is null.
*
* @param v the element
*/
private static void checkNotNull(Object v) {
if (v == null)
throw new NullPointerException();
}
// Unsafe mechanics
......@@ -715,10 +803,6 @@ public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
}
private void lazySetHead(Node<E> val) {
UNSAFE.putOrderedObject(this, headOffset, val);
}
static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
String field, Class<?> klazz) {
try {
......
......@@ -173,6 +173,11 @@ public class BiggernYours {
new ConcurrentHashMap() {
public int size() {return randomize(super.size());}});
testCollections(
new ConcurrentLinkedDeque(),
new ConcurrentLinkedDeque() {
public int size() {return randomize(super.size());}});
testCollections(
new ConcurrentLinkedQueue(),
new ConcurrentLinkedQueue() {
......
......@@ -48,6 +48,7 @@ public class IteratorAtEnd {
testCollection(new PriorityQueue());
testCollection(new LinkedBlockingQueue());
testCollection(new ArrayBlockingQueue(100));
testCollection(new ConcurrentLinkedDeque());
testCollection(new ConcurrentLinkedQueue());
testCollection(new LinkedTransferQueue());
......
......@@ -75,6 +75,7 @@ public class MOAT {
testCollection(new ArrayBlockingQueue<Integer>(20));
testCollection(new LinkedBlockingQueue<Integer>(20));
testCollection(new LinkedBlockingDeque<Integer>(20));
testCollection(new ConcurrentLinkedDeque<Integer>());
testCollection(new ConcurrentLinkedQueue<Integer>());
testCollection(new LinkedTransferQueue<Integer>());
testCollection(new ConcurrentSkipListSet<Integer>());
......@@ -433,6 +434,7 @@ public class MOAT {
checkFunctionalInvariants(q);
if ((q instanceof LinkedBlockingQueue) ||
(q instanceof LinkedBlockingDeque) ||
(q instanceof ConcurrentLinkedDeque) ||
(q instanceof ConcurrentLinkedQueue)) {
testQueueIteratorRemove(q);
}
......
......@@ -235,6 +235,7 @@ public class RacingCollections {
new ArrayList<Queue<Integer>>(newConcurrentDeques());
list.add(new LinkedBlockingQueue<Integer>(10));
list.add(new LinkedTransferQueue<Integer>());
list.add(new ConcurrentLinkedQueue<Integer>());
return list;
}
......@@ -248,6 +249,7 @@ public class RacingCollections {
private static List<Deque<Integer>> newConcurrentDeques() {
List<Deque<Integer>> list = new ArrayList<Deque<Integer>>();
list.add(new LinkedBlockingDeque<Integer>(10));
list.add(new ConcurrentLinkedDeque<Integer>());
return list;
}
......
......@@ -129,6 +129,7 @@ public class ChorusLine {
deqs.add(new ArrayDeque<Integer>());
deqs.add(new LinkedList<Integer>());
deqs.add(new LinkedBlockingDeque<Integer>());
deqs.add(new ConcurrentLinkedDeque<Integer>());
equal(deqs);
......
......@@ -55,6 +55,7 @@ public class ConcurrentQueueLoops {
Collection<Queue<Integer>> concurrentQueues() {
List<Queue<Integer>> queues = new ArrayList<Queue<Integer>>();
queues.add(new ConcurrentLinkedDeque<Integer>());
queues.add(new ConcurrentLinkedQueue<Integer>());
queues.add(new ArrayBlockingQueue<Integer>(items, false));
//queues.add(new ArrayBlockingQueue<Integer>(count, true));
......@@ -105,7 +106,7 @@ public class ConcurrentQueueLoops {
final Queue<Integer> queue;
final CyclicBarrier barrier;
int items;
Stage (Queue<Integer> q, CyclicBarrier b, int items) {
Stage(Queue<Integer> q, CyclicBarrier b, int items) {
queue = q;
barrier = b;
this.items = items;
......
......@@ -40,6 +40,7 @@
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentLinkedDeque;
import java.util.concurrent.ConcurrentLinkedQueue;
import java.util.concurrent.LinkedBlockingDeque;
import java.util.concurrent.LinkedBlockingQueue;
......@@ -62,6 +63,7 @@ public class GCRetention {
Collection<Queue<Boolean>> queues() {
List<Queue<Boolean>> queues = new ArrayList<Queue<Boolean>>();
queues.add(new ConcurrentLinkedDeque<Boolean>());
queues.add(new ConcurrentLinkedQueue<Boolean>());
queues.add(new ArrayBlockingQueue<Boolean>(count, false));
queues.add(new ArrayBlockingQueue<Boolean>(count, true));
......
......@@ -48,6 +48,7 @@ public class IteratorWeakConsistency {
test(new LinkedBlockingQueue(20));
test(new LinkedBlockingDeque());
test(new LinkedBlockingDeque(20));
test(new ConcurrentLinkedDeque());
test(new ConcurrentLinkedQueue());
test(new LinkedTransferQueue());
// Other concurrent queues (e.g. ArrayBlockingQueue) do not
......
......@@ -55,6 +55,7 @@ public class OfferRemoveLoops {
testQueue(new LinkedBlockingDeque());
testQueue(new ArrayBlockingQueue(10));
testQueue(new PriorityBlockingQueue(10));
testQueue(new ConcurrentLinkedDeque());
testQueue(new ConcurrentLinkedQueue());
testQueue(new LinkedTransferQueue());
}
......
......@@ -41,6 +41,7 @@
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentLinkedDeque;
import java.util.concurrent.ConcurrentLinkedQueue;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.LinkedBlockingDeque;
......@@ -62,6 +63,7 @@ public class RemovePollRace {
Collection<Queue<Boolean>> concurrentQueues() {
List<Queue<Boolean>> queues = new ArrayList<Queue<Boolean>>();
queues.add(new ConcurrentLinkedDeque<Boolean>());
queues.add(new ConcurrentLinkedQueue<Boolean>());
queues.add(new ArrayBlockingQueue<Boolean>(count, false));
queues.add(new ArrayBlockingQueue<Boolean>(count, true));
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册