提交 c08f212f 编写于 作者: D dl

8056248: Improve ForkJoin thread throttling

Reviewed-by: psandoz, martin, chegar
上级 0affdd8c
......@@ -49,6 +49,7 @@ import java.util.concurrent.RejectedExecutionException;
import java.util.concurrent.RunnableFuture;
import java.util.concurrent.ThreadLocalRandom;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicLong;
import java.security.AccessControlContext;
import java.security.ProtectionDomain;
import java.security.Permissions;
......@@ -80,9 +81,9 @@ import java.security.Permissions;
*
* <p>For applications that require separate or custom pools, a {@code
* ForkJoinPool} may be constructed with a given target parallelism
* level; by default, equal to the number of available processors. The
* pool attempts to maintain enough active (or available) threads by
* dynamically adding, suspending, or resuming internal worker
* level; by default, equal to the number of available processors.
* The pool attempts to maintain enough active (or available) threads
* by dynamically adding, suspending, or resuming internal worker
* threads, even if some tasks are stalled waiting to join others.
* However, no such adjustments are guaranteed in the face of blocked
* I/O or other unmanaged synchronization. The nested {@link
......@@ -178,7 +179,14 @@ public class ForkJoinPool extends AbstractExecutorService {
* that may be stolen by other workers. Preference rules give
* first priority to processing tasks from their own queues (LIFO
* or FIFO, depending on mode), then to randomized FIFO steals of
* tasks in other queues.
* tasks in other queues. This framework began as vehicle for
* supporting tree-structured parallelism using work-stealing.
* Over time, its scalability advantages led to extensions and
* changes to better support more diverse usage contexts. Because
* most internal methods and nested classes are interrelated,
* their main rationale and descriptions are presented here;
* individual methods and nested classes contain only brief
* comments about details.
*
* WorkQueues
* ==========
......@@ -198,201 +206,318 @@ public class ForkJoinPool extends AbstractExecutorService {
* (http://research.sun.com/scalable/pubs/index.html) and
* "Idempotent work stealing" by Michael, Saraswat, and Vechev,
* PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
* See also "Correct and Efficient Work-Stealing for Weak Memory
* Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
* (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
* analysis of memory ordering (atomic, volatile etc) issues. The
* main differences ultimately stem from GC requirements that we
* null out taken slots as soon as we can, to maintain as small a
* footprint as possible even in programs generating huge numbers
* of tasks. To accomplish this, we shift the CAS arbitrating pop
* vs poll (steal) from being on the indices ("base" and "top") to
* the slots themselves. So, both a successful pop and poll
* mainly entail a CAS of a slot from non-null to null. Because
* we rely on CASes of references, we do not need tag bits on base
* or top. They are simple ints as used in any circular
* The main differences ultimately stem from GC requirements that
* we null out taken slots as soon as we can, to maintain as small
* a footprint as possible even in programs generating huge
* numbers of tasks. To accomplish this, we shift the CAS
* arbitrating pop vs poll (steal) from being on the indices
* ("base" and "top") to the slots themselves.
*
* Adding tasks then takes the form of a classic array push(task):
* q.array[q.top] = task; ++q.top;
*
* (The actual code needs to null-check and size-check the array,
* properly fence the accesses, and possibly signal waiting
* workers to start scanning -- see below.) Both a successful pop
* and poll mainly entail a CAS of a slot from non-null to null.
*
* The pop operation (always performed by owner) is:
* if ((base != top) and
* (the task at top slot is not null) and
* (CAS slot to null))
* decrement top and return task;
*
* And the poll operation (usually by a stealer) is
* if ((base != top) and
* (the task at base slot is not null) and
* (base has not changed) and
* (CAS slot to null))
* increment base and return task;
*
* Because we rely on CASes of references, we do not need tag bits
* on base or top. They are simple ints as used in any circular
* array-based queue (see for example ArrayDeque). Updates to the
* indices must still be ordered in a way that guarantees that top
* == base means the queue is empty, but otherwise may err on the
* side of possibly making the queue appear nonempty when a push,
* pop, or poll have not fully committed. Note that this means
* that the poll operation, considered individually, is not
* wait-free. One thief cannot successfully continue until another
* in-progress one (or, if previously empty, a push) completes.
* However, in the aggregate, we ensure at least probabilistic
* indices guarantee that top == base means the queue is empty,
* but otherwise may err on the side of possibly making the queue
* appear nonempty when a push, pop, or poll have not fully
* committed. (Method isEmpty() checks the case of a partially
* completed removal of the last element.) Because of this, the
* poll operation, considered individually, is not wait-free. One
* thief cannot successfully continue until another in-progress
* one (or, if previously empty, a push) completes. However, in
* the aggregate, we ensure at least probabilistic
* non-blockingness. If an attempted steal fails, a thief always
* chooses a different random victim target to try next. So, in
* order for one thief to progress, it suffices for any
* in-progress poll or new push on any empty queue to
* complete. (This is why we normally use method pollAt and its
* variants that try once at the apparent base index, else
* consider alternative actions, rather than method poll.)
*
* This approach also enables support of a user mode in which local
* task processing is in FIFO, not LIFO order, simply by using
* poll rather than pop. This can be useful in message-passing
* frameworks in which tasks are never joined. However neither
* mode considers affinities, loads, cache localities, etc, so
* rarely provide the best possible performance on a given
* machine, but portably provide good throughput by averaging over
* these factors. (Further, even if we did try to use such
* information, we do not usually have a basis for exploiting it.
* For example, some sets of tasks profit from cache affinities,
* but others are harmed by cache pollution effects.)
* consider alternative actions, rather than method poll, which
* retries.)
*
* This approach also enables support of a user mode in which
* local task processing is in FIFO, not LIFO order, simply by
* using poll rather than pop. This can be useful in
* message-passing frameworks in which tasks are never joined.
* However neither mode considers affinities, loads, cache
* localities, etc, so rarely provide the best possible
* performance on a given machine, but portably provide good
* throughput by averaging over these factors. Further, even if
* we did try to use such information, we do not usually have a
* basis for exploiting it. For example, some sets of tasks
* profit from cache affinities, but others are harmed by cache
* pollution effects. Additionally, even though it requires
* scanning, long-term throughput is often best using random
* selection rather than directed selection policies, so cheap
* randomization of sufficient quality is used whenever
* applicable. Various Marsaglia XorShifts (some with different
* shift constants) are inlined at use points.
*
* WorkQueues are also used in a similar way for tasks submitted
* to the pool. We cannot mix these tasks in the same queues used
* for work-stealing (this would contaminate lifo/fifo
* processing). Instead, we randomly associate submission queues
* by workers. Instead, we randomly associate submission queues
* with submitting threads, using a form of hashing. The
* ThreadLocalRandom probe value serves as a hash code for
* choosing existing queues, and may be randomly repositioned upon
* contention with other submitters. In essence, submitters act
* like workers except that they are restricted to executing local
* tasks that they submitted (or in the case of CountedCompleters,
* others with the same root task). However, because most
* shared/external queue operations are more expensive than
* internal, and because, at steady state, external submitters
* will compete for CPU with workers, ForkJoinTask.join and
* related methods disable them from repeatedly helping to process
* tasks if all workers are active. Insertion of tasks in shared
* others with the same root task). Insertion of tasks in shared
* mode requires a lock (mainly to protect in the case of
* resizing) but we use only a simple spinlock (using bits in
* field qlock), because submitters encountering a busy queue move
* on to try or create other queues -- they block only when
* creating and registering new queues.
* resizing) but we use only a simple spinlock (using field
* qlock), because submitters encountering a busy queue move on to
* try or create other queues -- they block only when creating and
* registering new queues. Additionally, "qlock" saturates to an
* unlockable value (-1) at shutdown. Unlocking still can be and
* is performed by cheaper ordered writes of "qlock" in successful
* cases, but uses CAS in unsuccessful cases.
*
* Management
* ==========
*
* The main throughput advantages of work-stealing stem from
* decentralized control -- workers mostly take tasks from
* themselves or each other. We cannot negate this in the
* implementation of other management responsibilities. The main
* tactic for avoiding bottlenecks is packing nearly all
* essentially atomic control state into two volatile variables
* that are by far most often read (not written) as status and
* consistency checks.
*
* Field "ctl" contains 64 bits holding all the information needed
* to atomically decide to add, inactivate, enqueue (on an event
* themselves or each other, at rates that can exceed a billion
* per second. The pool itself creates, activates (enables
* scanning for and running tasks), deactivates, blocks, and
* terminates threads, all with minimal central information.
* There are only a few properties that we can globally track or
* maintain, so we pack them into a small number of variables,
* often maintaining atomicity without blocking or locking.
* Nearly all essentially atomic control state is held in two
* volatile variables that are by far most often read (not
* written) as status and consistency checks. (Also, field
* "config" holds unchanging configuration state.)
*
* Field "ctl" contains 64 bits holding information needed to
* atomically decide to add, inactivate, enqueue (on an event
* queue), dequeue, and/or re-activate workers. To enable this
* packing, we restrict maximum parallelism to (1<<15)-1 (which is
* far in excess of normal operating range) to allow ids, counts,
* and their negations (used for thresholding) to fit into 16bit
* fields.
*
* Field "plock" is a form of sequence lock with a saturating
* shutdown bit (similarly for per-queue "qlocks"), mainly
* protecting updates to the workQueues array, as well as to
* enable shutdown. When used as a lock, it is normally only very
* briefly held, so is nearly always available after at most a
* brief spin, but we use a monitor-based backup strategy to
* block when needed.
* subfields.
*
* Field "runState" holds lockable state bits (STARTED, STOP, etc)
* also protecting updates to the workQueues array. When used as
* a lock, it is normally held only for a few instructions (the
* only exceptions are one-time array initialization and uncommon
* resizing), so is nearly always available after at most a brief
* spin. But to be extra-cautious, after spinning, method
* awaitRunStateLock (called only if an initial CAS fails), uses a
* wait/notify mechanics on a builtin monitor to block when
* (rarely) needed. This would be a terrible idea for a highly
* contended lock, but most pools run without the lock ever
* contending after the spin limit, so this works fine as a more
* conservative alternative. Because we don't otherwise have an
* internal Object to use as a monitor, the "stealCounter" (an
* AtomicLong) is used when available (it too must be lazily
* initialized; see externalSubmit).
*
* Usages of "runState" vs "ctl" interact in only one case:
* deciding to add a worker thread (see tryAddWorker), in which
* case the ctl CAS is performed while the lock is held.
*
* Recording WorkQueues. WorkQueues are recorded in the
* "workQueues" array that is created upon first use and expanded
* if necessary. Updates to the array while recording new workers
* and unrecording terminated ones are protected from each other
* by a lock but the array is otherwise concurrently readable, and
* accessed directly. To simplify index-based operations, the
* array size is always a power of two, and all readers must
* tolerate null slots. Worker queues are at odd indices. Shared
* (submission) queues are at even indices, up to a maximum of 64
* slots, to limit growth even if array needs to expand to add
* more workers. Grouping them together in this way simplifies and
* speeds up task scanning.
* "workQueues" array. The array is created upon first use (see
* externalSubmit) and expanded if necessary. Updates to the
* array while recording new workers and unrecording terminated
* ones are protected from each other by the runState lock, but
* the array is otherwise concurrently readable, and accessed
* directly. We also ensure that reads of the array reference
* itself never become too stale. To simplify index-based
* operations, the array size is always a power of two, and all
* readers must tolerate null slots. Worker queues are at odd
* indices. Shared (submission) queues are at even indices, up to
* a maximum of 64 slots, to limit growth even if array needs to
* expand to add more workers. Grouping them together in this way
* simplifies and speeds up task scanning.
*
* All worker thread creation is on-demand, triggered by task
* submissions, replacement of terminated workers, and/or
* compensation for blocked workers. However, all other support
* code is set up to work with other policies. To ensure that we
* do not hold on to worker references that would prevent GC, ALL
* do not hold on to worker references that would prevent GC, All
* accesses to workQueues are via indices into the workQueues
* array (which is one source of some of the messy code
* constructions here). In essence, the workQueues array serves as
* a weak reference mechanism. Thus for example the wait queue
* field of ctl stores indices, not references. Access to the
* workQueues in associated methods (for example signalWork) must
* both index-check and null-check the IDs. All such accesses
* ignore bad IDs by returning out early from what they are doing,
* since this can only be associated with termination, in which
* case it is OK to give up. All uses of the workQueues array
* also check that it is non-null (even if previously
* non-null). This allows nulling during termination, which is
* currently not necessary, but remains an option for
* resource-revocation-based shutdown schemes. It also helps
* reduce JIT issuance of uncommon-trap code, which tends to
* unnecessarily complicate control flow in some methods.
*
* Event Queuing. Unlike HPC work-stealing frameworks, we cannot
* let workers spin indefinitely scanning for tasks when none can
* be found immediately, and we cannot start/resume workers unless
* there appear to be tasks available. On the other hand, we must
* quickly prod them into action when new tasks are submitted or
* generated. In many usages, ramp-up time to activate workers is
* the main limiting factor in overall performance (this is
* compounded at program start-up by JIT compilation and
* allocation). So we try to streamline this as much as possible.
* We park/unpark workers after placing in an event wait queue
* when they cannot find work. This "queue" is actually a simple
* Treiber stack, headed by the "id" field of ctl, plus a 15bit
* counter value (that reflects the number of times a worker has
* been inactivated) to avoid ABA effects (we need only as many
* version numbers as worker threads). Successors are held in
* field WorkQueue.nextWait. Queuing deals with several intrinsic
* races, mainly that a task-producing thread can miss seeing (and
* signalling) another thread that gave up looking for work but
* has not yet entered the wait queue. We solve this by requiring
* a full sweep of all workers (via repeated calls to method
* scan()) both before and after a newly waiting worker is added
* to the wait queue. Because enqueued workers may actually be
* rescanning rather than waiting, we set and clear the "parker"
* a weak reference mechanism. Thus for example the stack top
* subfield of ctl stores indices, not references.
*
* Queuing Idle Workers. Unlike HPC work-stealing frameworks, we
* cannot let workers spin indefinitely scanning for tasks when
* none can be found immediately, and we cannot start/resume
* workers unless there appear to be tasks available. On the
* other hand, we must quickly prod them into action when new
* tasks are submitted or generated. In many usages, ramp-up time
* to activate workers is the main limiting factor in overall
* performance, which is compounded at program start-up by JIT
* compilation and allocation. So we streamline this as much as
* possible.
*
* The "ctl" field atomically maintains active and total worker
* counts as well as a queue to place waiting threads so they can
* be located for signalling. Active counts also play the role of
* quiescence indicators, so are decremented when workers believe
* that there are no more tasks to execute. The "queue" is
* actually a form of Treiber stack. A stack is ideal for
* activating threads in most-recently used order. This improves
* performance and locality, outweighing the disadvantages of
* being prone to contention and inability to release a worker
* unless it is topmost on stack. We park/unpark workers after
* pushing on the idle worker stack (represented by the lower
* 32bit subfield of ctl) when they cannot find work. The top
* stack state holds the value of the "scanState" field of the
* worker: its index and status, plus a version counter that, in
* addition to the count subfields (also serving as version
* stamps) provide protection against Treiber stack ABA effects.
*
* Field scanState is used by both workers and the pool to manage
* and track whether a worker is INACTIVE (possibly blocked
* waiting for a signal), or SCANNING for tasks (when neither hold
* it is busy running tasks). When a worker is inactivated, its
* scanState field is set, and is prevented from executing tasks,
* even though it must scan once for them to avoid queuing
* races. Note that scanState updates lag queue CAS releases so
* usage requires care. When queued, the lower 16 bits of
* scanState must hold its pool index. So we place the index there
* upon initialization (see registerWorker) and otherwise keep it
* there or restore it when necessary.
*
* Memory ordering. See "Correct and Efficient Work-Stealing for
* Weak Memory Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
* (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
* analysis of memory ordering requirements in work-stealing
* algorithms similar to the one used here. We usually need
* stronger than minimal ordering because we must sometimes signal
* workers, requiring Dekker-like full-fences to avoid lost
* signals. Arranging for enough ordering without expensive
* over-fencing requires tradeoffs among the supported means of
* expressing access constraints. The most central operations,
* taking from queues and updating ctl state, require full-fence
* CAS. Array slots are read using the emulation of volatiles
* provided by Unsafe. Access from other threads to WorkQueue
* base, top, and array requires a volatile load of the first of
* any of these read. We use the convention of declaring the
* "base" index volatile, and always read it before other fields.
* The owner thread must ensure ordered updates, so writes use
* ordered intrinsics unless they can piggyback on those for other
* writes. Similar conventions and rationales hold for other
* WorkQueue fields (such as "currentSteal") that are only written
* by owners but observed by others.
*
* Creating workers. To create a worker, we pre-increment total
* count (serving as a reservation), and attempt to construct a
* ForkJoinWorkerThread via its factory. Upon construction, the
* new thread invokes registerWorker, where it constructs a
* WorkQueue and is assigned an index in the workQueues array
* (expanding the array if necessary). The thread is then
* started. Upon any exception across these steps, or null return
* from factory, deregisterWorker adjusts counts and records
* accordingly. If a null return, the pool continues running with
* fewer than the target number workers. If exceptional, the
* exception is propagated, generally to some external caller.
* Worker index assignment avoids the bias in scanning that would
* occur if entries were sequentially packed starting at the front
* of the workQueues array. We treat the array as a simple
* power-of-two hash table, expanding as needed. The seedIndex
* increment ensures no collisions until a resize is needed or a
* worker is deregistered and replaced, and thereafter keeps
* probability of collision low. We cannot use
* ThreadLocalRandom.getProbe() for similar purposes here because
* the thread has not started yet, but do so for creating
* submission queues for existing external threads.
*
* Deactivation and waiting. Queuing encounters several intrinsic
* races; most notably that a task-producing thread can miss
* seeing (and signalling) another thread that gave up looking for
* work but has not yet entered the wait queue. When a worker
* cannot find a task to steal, it deactivates and enqueues. Very
* often, the lack of tasks is transient due to GC or OS
* scheduling. To reduce false-alarm deactivation, scanners
* compute checksums of queue states during sweeps. (The
* stability checks used here and elsewhere are probabilistic
* variants of snapshot techniques -- see Herlihy & Shavit.)
* Workers give up and try to deactivate only after the sum is
* stable across scans. Further, to avoid missed signals, they
* repeat this scanning process after successful enqueuing until
* again stable. In this state, the worker cannot take/run a task
* it sees until it is released from the queue, so the worker
* itself eventually tries to release itself or any successor (see
* tryRelease). Otherwise, upon an empty scan, a deactivated
* worker uses an adaptive local spin construction (see awaitWork)
* before blocking (via park). Note the unusual conventions about
* Thread.interrupts surrounding parking and other blocking:
* Because interrupts are used solely to alert threads to check
* termination, which is checked anyway upon blocking, we clear
* status (using Thread.interrupted) before any call to park, so
* that park does not immediately return due to status being set
* via some other unrelated call to interrupt in user code.
*
* Signalling and activation. Workers are created or activated
* only when there appears to be at least one task they might be
* able to find and execute. Upon push (either by a worker or an
* external submission) to a previously (possibly) empty queue,
* workers are signalled if idle, or created if fewer exist than
* the given parallelism level. These primary signals are
* buttressed by others whenever other threads remove a task from
* a queue and notice that there are other tasks there as well.
* On most platforms, signalling (unpark) overhead time is
* noticeably long, and the time between signalling a thread and
* it actually making progress can be very noticeably long, so it
* is worth offloading these delays from critical paths as much as
* possible. Also, because inactive workers are often rescanning
* or spinning rather than blocking, we set and clear the "parker"
* field of WorkQueues to reduce unnecessary calls to unpark.
* (This requires a secondary recheck to avoid missed signals.)
* Note the unusual conventions about Thread.interrupts
* surrounding parking and other blocking: Because interrupts are
* used solely to alert threads to check termination, which is
* checked anyway upon blocking, we clear status (using
* Thread.interrupted) before any call to park, so that park does
* not immediately return due to status being set via some other
* unrelated call to interrupt in user code.
*
* Signalling. We create or wake up workers only when there
* appears to be at least one task they might be able to find and
* execute. When a submission is added or another worker adds a
* task to a queue that has fewer than two tasks, they signal
* waiting workers (or trigger creation of new ones if fewer than
* the given parallelism level -- signalWork). These primary
* signals are buttressed by others whenever other threads remove
* a task from a queue and notice that there are other tasks there
* as well. So in general, pools will be over-signalled. On most
* platforms, signalling (unpark) overhead time is noticeably
* long, and the time between signalling a thread and it actually
* making progress can be very noticeably long, so it is worth
* offloading these delays from critical paths as much as
* possible. Additionally, workers spin-down gradually, by staying
* alive so long as they see the ctl state changing. Similar
* stability-sensing techniques are also used before blocking in
* awaitJoin and helpComplete.
*
* Trimming workers. To release resources after periods of lack of
* use, a worker starting to wait when the pool is quiescent will
* time out and terminate if the pool has remained quiescent for a
* given period -- a short period if there are more threads than
* parallelism, longer as the number of threads decreases. This
* will slowly propagate, eventually terminating all workers after
* periods of non-use.
*
* Shutdown and Termination. A call to shutdownNow atomically sets
* a plock bit and then (non-atomically) sets each worker's
* qlock status, cancels all unprocessed tasks, and wakes up
* all waiting workers. Detecting whether termination should
* commence after a non-abrupt shutdown() call requires more work
* and bookkeeping. We need consensus about quiescence (i.e., that
* there is no more work). The active count provides a primary
* indication but non-abrupt shutdown still requires a rechecking
* scan for any workers that are inactive but not queued.
* time out and terminate (see awaitWork) if the pool has remained
* quiescent for period IDLE_TIMEOUT, increasing the period as the
* number of threads decreases, eventually removing all workers.
* Also, when more than two spare threads exist, excess threads
* are immediately terminated at the next quiescent point.
* (Padding by two avoids hysteresis.)
*
* Shutdown and Termination. A call to shutdownNow invokes
* tryTerminate to atomically set a runState bit. The calling
* thread, as well as every other worker thereafter terminating,
* helps terminate others by setting their (qlock) status,
* cancelling their unprocessed tasks, and waking them up, doing
* so repeatedly until stable (but with a loop bounded by the
* number of workers). Calls to non-abrupt shutdown() preface
* this by checking whether termination should commence. This
* relies primarily on the active count bits of "ctl" maintaining
* consensus -- tryTerminate is called from awaitWork whenever
* quiescent. However, external submitters do not take part in
* this consensus. So, tryTerminate sweeps through queues (until
* stable) to ensure lack of in-flight submissions and workers
* about to process them before triggering the "STOP" phase of
* termination. (Note: there is an intrinsic conflict if
* helpQuiescePool is called when shutdown is enabled. Both wait
* for quiescence, but tryTerminate is biased to not trigger until
* helpQuiescePool completes.)
*
*
* Joining Tasks
* =============
......@@ -403,9 +528,9 @@ public class ForkJoinPool extends AbstractExecutorService {
* just let them block (as in Thread.join). We also cannot just
* reassign the joiner's run-time stack with another and replace
* it later, which would be a form of "continuation", that even if
* possible is not necessarily a good idea since we sometimes need
* both an unblocked task and its continuation to progress.
* Instead we combine two tactics:
* possible is not necessarily a good idea since we may need both
* an unblocked task and its continuation to progress. Instead we
* combine two tactics:
*
* Helping: Arranging for the joiner to execute some task that it
* would be running if the steal had not occurred.
......@@ -425,16 +550,16 @@ public class ForkJoinPool extends AbstractExecutorService {
* The ManagedBlocker extension API can't use helping so relies
* only on compensation in method awaitBlocker.
*
* The algorithm in tryHelpStealer entails a form of "linear"
* helping: Each worker records (in field currentSteal) the most
* recent task it stole from some other worker. Plus, it records
* (in field currentJoin) the task it is currently actively
* joining. Method tryHelpStealer uses these markers to try to
* find a worker to help (i.e., steal back a task from and execute
* it) that could hasten completion of the actively joined task.
* In essence, the joiner executes a task that would be on its own
* local deque had the to-be-joined task not been stolen. This may
* be seen as a conservative variant of the approach in Wagner &
* The algorithm in helpStealer entails a form of "linear
* helping". Each worker records (in field currentSteal) the most
* recent task it stole from some other worker (or a submission).
* It also records (in field currentJoin) the task it is currently
* actively joining. Method helpStealer uses these markers to try
* to find a worker to help (i.e., steal back a task from and
* execute it) that could hasten completion of the actively joined
* task. Thus, the joiner executes a task that would be on its
* own local deque had the to-be-joined task not been stolen. This
* is a conservative variant of the approach described in Wagner &
* Calder "Leapfrogging: a portable technique for implementing
* efficient futures" SIGPLAN Notices, 1993
* (http://portal.acm.org/citation.cfm?id=155354). It differs in
......@@ -452,37 +577,40 @@ public class ForkJoinPool extends AbstractExecutorService {
* which means that we miss links in the chain during long-lived
* tasks, GC stalls etc (which is OK since blocking in such cases
* is usually a good idea). (4) We bound the number of attempts
* to find work (see MAX_HELP) and fall back to suspending the
* to find work using checksums and fall back to suspending the
* worker and if necessary replacing it with another.
*
* Helping actions for CountedCompleters are much simpler: Method
* helpComplete can take and execute any task with the same root
* as the task being waited on. However, this still entails some
* traversal of completer chains, so is less efficient than using
* CountedCompleters without explicit joins.
*
* It is impossible to keep exactly the target parallelism number
* of threads running at any given time. Determining the
* existence of conservatively safe helping targets, the
* availability of already-created spares, and the apparent need
* to create new spares are all racy, so we rely on multiple
* retries of each. Compensation in the apparent absence of
* helping opportunities is challenging to control on JVMs, where
* GC and other activities can stall progress of tasks that in
* turn stall out many other dependent tasks, without us being
* able to determine whether they will ever require compensation.
* Even though work-stealing otherwise encounters little
* degradation in the presence of more threads than cores,
* aggressively adding new threads in such cases entails risk of
* unwanted positive feedback control loops in which more threads
* cause more dependent stalls (as well as delayed progress of
* unblocked threads to the point that we know they are available)
* leading to more situations requiring more threads, and so
* on. This aspect of control can be seen as an (analytically
* intractable) game with an opponent that may choose the worst
* (for us) active thread to stall at any time. We take several
* precautions to bound losses (and thus bound gains), mainly in
* methods tryCompensate and awaitJoin.
* Helping actions for CountedCompleters do not require tracking
* currentJoins: Method helpComplete takes and executes any task
* with the same root as the task being waited on (preferring
* local pops to non-local polls). However, this still entails
* some traversal of completer chains, so is less efficient than
* using CountedCompleters without explicit joins.
*
* Compensation does not aim to keep exactly the target
* parallelism number of unblocked threads running at any given
* time. Some previous versions of this class employed immediate
* compensations for any blocked join. However, in practice, the
* vast majority of blockages are transient byproducts of GC and
* other JVM or OS activities that are made worse by replacement.
* Currently, compensation is attempted only after validating that
* all purportedly active threads are processing tasks by checking
* field WorkQueue.scanState, which eliminates most false
* positives. Also, compensation is bypassed (tolerating fewer
* threads) in the most common case in which it is rarely
* beneficial: when a worker with an empty queue (thus no
* continuation tasks) blocks on a join and there still remain
* enough threads to ensure liveness.
*
* The compensation mechanism may be bounded. Bounds for the
* commonPool (see commonMaxSpares) better enable JVMs to cope
* with programming errors and abuse before running out of
* resources to do so. In other cases, users may supply factories
* that limit thread construction. The effects of bounding in this
* pool (like all others) is imprecise. Total worker counts are
* decremented when threads deregister, not when they exit and
* resources are reclaimed by the JVM and OS. So the number of
* simultaneously live threads may transiently exceed bounds.
*
* Common Pool
* ===========
......@@ -492,34 +620,52 @@ public class ForkJoinPool extends AbstractExecutorService {
* never be used, we minimize initial construction overhead and
* footprint to the setup of about a dozen fields, with no nested
* allocation. Most bootstrapping occurs within method
* fullExternalPush during the first submission to the pool.
* externalSubmit during the first submission to the pool.
*
* When external threads submit to the common pool, they can
* perform subtask processing (see externalHelpJoin and related
* methods). This caller-helps policy makes it sensible to set
* common pool parallelism level to one (or more) less than the
* total number of available cores, or even zero for pure
* caller-runs. We do not need to record whether external
* submissions are to the common pool -- if not, externalHelpJoin
* returns quickly (at the most helping to signal some common pool
* workers). These submitters would otherwise be blocked waiting
* for completion, so the extra effort (with liberally sprinkled
* task status checks) in inapplicable cases amounts to an odd
* form of limited spin-wait before blocking in ForkJoinTask.join.
* perform subtask processing (see externalHelpComplete and
* related methods) upon joins. This caller-helps policy makes it
* sensible to set common pool parallelism level to one (or more)
* less than the total number of available cores, or even zero for
* pure caller-runs. We do not need to record whether external
* submissions are to the common pool -- if not, external help
* methods return quickly. These submitters would otherwise be
* blocked waiting for completion, so the extra effort (with
* liberally sprinkled task status checks) in inapplicable cases
* amounts to an odd form of limited spin-wait before blocking in
* ForkJoinTask.join.
*
* As a more appropriate default in managed environments, unless
* overridden by system properties, we use workers of subclass
* InnocuousForkJoinWorkerThread when there is a SecurityManager
* present. These workers have no permissions set, do not belong
* to any user-defined ThreadGroup, and erase all ThreadLocals
* after executing any top-level task (see WorkQueue.runTask). The
* associated mechanics (mainly in ForkJoinWorkerThread) may be
* JVM-dependent and must access particular Thread class fields to
* achieve this effect.
* after executing any top-level task (see WorkQueue.runTask).
* The associated mechanics (mainly in ForkJoinWorkerThread) may
* be JVM-dependent and must access particular Thread class fields
* to achieve this effect.
*
* Style notes
* ===========
*
* Memory ordering relies mainly on Unsafe intrinsics that carry
* the further responsibility of explicitly performing null- and
* bounds- checks otherwise carried out implicitly by JVMs. This
* can be awkward and ugly, but also reflects the need to control
* outcomes across the unusual cases that arise in very racy code
* with very few invariants. So these explicit checks would exist
* in some form anyway. All fields are read into locals before
* use, and null-checked if they are references. This is usually
* done in a "C"-like style of listing declarations at the heads
* of methods or blocks, and using inline assignments on first
* encounter. Array bounds-checks are usually performed by
* masking with array.length-1, which relies on the invariant that
* these arrays are created with positive lengths, which is itself
* paranoically checked. Nearly all explicit checks lead to
* bypass/return, not exception throws, because they may
* legitimately arise due to cancellation/revocation during
* shutdown.
*
* There is a lot of representation-level coupling among classes
* ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
* fields of WorkQueue maintain data structures managed by
......@@ -527,22 +673,13 @@ public class ForkJoinPool extends AbstractExecutorService {
* trying to reduce this, since any associated future changes in
* representations will need to be accompanied by algorithmic
* changes anyway. Several methods intrinsically sprawl because
* they must accumulate sets of consistent reads of volatiles held
* in local variables. Methods signalWork() and scan() are the
* main bottlenecks, so are especially heavily
* micro-optimized/mangled. There are lots of inline assignments
* (of form "while ((local = field) != 0)") which are usually the
* simplest way to ensure the required read orderings (which are
* sometimes critical). This leads to a "C"-like style of listing
* declarations of these locals at the heads of methods or blocks.
* There are several occurrences of the unusual "do {} while
* (!cas...)" which is the simplest way to force an update of a
* CAS'ed variable. There are also other coding oddities (including
* several unnecessary-looking hoisted null checks) that help
* some methods perform reasonably even when interpreted (not
* compiled).
*
* The order of declarations in this file is:
* they must accumulate sets of consistent reads of fields held in
* local variables. There are also other coding oddities
* (including several unnecessary-looking hoisted null checks)
* that help some methods perform reasonably even when interpreted
* (not compiled).
*
* The order of declarations in this file is (with a few exceptions):
* (1) Static utility functions
* (2) Nested (static) classes
* (3) Static fields
......@@ -609,56 +746,37 @@ public class ForkJoinPool extends AbstractExecutorService {
public final boolean exec() { return true; }
}
// Constants shared across ForkJoinPool and WorkQueue
// Bounds
static final int SMASK = 0xffff; // short bits == max index
static final int MAX_CAP = 0x7fff; // max #workers - 1
static final int EVENMASK = 0xfffe; // even short bits
static final int SQMASK = 0x007e; // max 64 (even) slots
// Masks and units for WorkQueue.scanState and ctl sp subfield
static final int SCANNING = 1; // false when running tasks
static final int INACTIVE = 1 << 31; // must be negative
static final int SS_SEQ = 1 << 16; // version count
// Mode bits for ForkJoinPool.config and WorkQueue.config
static final int MODE_MASK = 0xffff << 16; // top half of int
static final int LIFO_QUEUE = 0;
static final int FIFO_QUEUE = 1 << 16;
static final int SHARED_QUEUE = 1 << 31; // must be negative
/**
* Queues supporting work-stealing as well as external task
* submission. See above for main rationale and algorithms.
* Implementation relies heavily on "Unsafe" intrinsics
* and selective use of "volatile":
*
* Field "base" is the index (mod array.length) of the least valid
* queue slot, which is always the next position to steal (poll)
* from if nonempty. Reads and writes require volatile orderings
* but not CAS, because updates are only performed after slot
* CASes.
*
* Field "top" is the index (mod array.length) of the next queue
* slot to push to or pop from. It is written only by owner thread
* for push, or under lock for external/shared push, and accessed
* by other threads only after reading (volatile) base. Both top
* and base are allowed to wrap around on overflow, but (top -
* base) (or more commonly -(base - top) to force volatile read of
* base before top) still estimates size. The lock ("qlock") is
* forced to -1 on termination, causing all further lock attempts
* to fail. (Note: we don't need CAS for termination state because
* upon pool shutdown, all shared-queues will stop being used
* anyway.) Nearly all lock bodies are set up so that exceptions
* within lock bodies are "impossible" (modulo JVM errors that
* would cause failure anyway.)
*
* The array slots are read and written using the emulation of
* volatiles/atomics provided by Unsafe. Insertions must in
* general use putOrderedObject as a form of releasing store to
* ensure that all writes to the task object are ordered before
* its publication in the queue. All removals entail a CAS to
* null. The array is always a power of two. To ensure safety of
* Unsafe array operations, all accesses perform explicit null
* checks and implicit bounds checks via power-of-two masking.
*
* In addition to basic queuing support, this class contains
* fields described elsewhere to control execution. It turns out
* to work better memory-layout-wise to include them in this class
* rather than a separate class.
*
* submission. See above for descriptions and algorithms.
* Performance on most platforms is very sensitive to placement of
* instances of both WorkQueues and their arrays -- we absolutely
* do not want multiple WorkQueue instances or multiple queue
* arrays sharing cache lines. (It would be best for queue objects
* and their arrays to share, but there is nothing available to
* help arrange that). The @Contended annotation alerts JVMs to
* try to keep instances apart.
* arrays sharing cache lines. The @Contended annotation alerts
* JVMs to try to keep instances apart.
*/
@sun.misc.Contended
static final class WorkQueue {
/**
* Capacity of work-stealing queue array upon initialization.
* Must be a power of two; at least 4, but should be larger to
......@@ -679,13 +797,13 @@ public class ForkJoinPool extends AbstractExecutorService {
*/
static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
volatile int eventCount; // encoded inactivation count; < 0 if inactive
int nextWait; // encoded record of next event waiter
// Instance fields
volatile int scanState; // versioned, <0: inactive; odd:scanning
int stackPred; // pool stack (ctl) predecessor
int nsteals; // number of steals
int hint; // steal index hint
short poolIndex; // index of this queue in pool
final short mode; // 0: lifo, > 0: fifo, < 0: shared
volatile int qlock; // 1: locked, -1: terminate; else 0
int hint; // randomization and stealer index hint
int config; // pool index and mode
volatile int qlock; // 1: locked, < 0: terminate; else 0
volatile int base; // index of next slot for poll
int top; // index of next slot for push
ForkJoinTask<?>[] array; // the elements (initially unallocated)
......@@ -693,18 +811,22 @@ public class ForkJoinPool extends AbstractExecutorService {
final ForkJoinWorkerThread owner; // owning thread or null if shared
volatile Thread parker; // == owner during call to park; else null
volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
ForkJoinTask<?> currentSteal; // current non-local task being executed
volatile ForkJoinTask<?> currentSteal; // mainly used by helpStealer
WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
int seed) {
WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner) {
this.pool = pool;
this.owner = owner;
this.mode = (short)mode;
this.hint = seed; // store initial seed for runWorker
// Place indices in the center of array (that is not yet allocated)
base = top = INITIAL_QUEUE_CAPACITY >>> 1;
}
/**
* Returns an exportable index (used by ForkJoinWorkerThread).
*/
final int getPoolIndex() {
return (config & 0xffff) >>> 1; // ignore odd/even tag bit
}
/**
* Returns the approximate number of tasks in the queue.
*/
......@@ -719,12 +841,10 @@ public class ForkJoinPool extends AbstractExecutorService {
* near-empty queue has at least one unclaimed task.
*/
final boolean isEmpty() {
ForkJoinTask<?>[] a; int m, s;
int n = base - (s = top);
return (n >= 0 ||
(n == -1 &&
((a = array) == null ||
(m = a.length - 1) < 0 ||
ForkJoinTask<?>[] a; int n, m, s;
return ((n = base - (s = top)) >= 0 ||
(n == -1 && // possibly one task
((a = array) == null || (m = a.length - 1) < 0 ||
U.getObject
(a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
}
......@@ -738,12 +858,15 @@ public class ForkJoinPool extends AbstractExecutorService {
*/
final void push(ForkJoinTask<?> task) {
ForkJoinTask<?>[] a; ForkJoinPool p;
int s = top, n;
int b = base, s = top, n;
if ((a = array) != null) { // ignore if queue removed
int m = a.length - 1;
int m = a.length - 1; // fenced write for task visibility
U.putOrderedObject(a, ((m & s) << ASHIFT) + ABASE, task);
if ((n = (top = s + 1) - base) <= 2)
(p = pool).signalWork(p.workQueues, this);
U.putOrderedInt(this, QTOP, s + 1);
if ((n = s - b) <= 1) {
if ((p = pool) != null)
p.signalWork(p.workQueues, this);
}
else if (n >= m)
growArray();
}
......@@ -764,7 +887,7 @@ public class ForkJoinPool extends AbstractExecutorService {
if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
(t = top) - (b = base) > 0) {
int mask = size - 1;
do {
do { // emulate poll from old array, push to new array
ForkJoinTask<?> x;
int oldj = ((b & oldMask) << ASHIFT) + ABASE;
int j = ((b & mask) << ASHIFT) + ABASE;
......@@ -789,7 +912,7 @@ public class ForkJoinPool extends AbstractExecutorService {
if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
break;
if (U.compareAndSwapObject(a, j, t, null)) {
top = s;
U.putOrderedInt(this, QTOP, s);
return t;
}
}
......@@ -800,7 +923,7 @@ public class ForkJoinPool extends AbstractExecutorService {
/**
* Takes a task in FIFO order if b is base of queue and a task
* can be claimed without contention. Specialized versions
* appear in ForkJoinPool methods scan and tryHelpStealer.
* appear in ForkJoinPool methods scan and helpStealer.
*/
final ForkJoinTask<?> pollAt(int b) {
ForkJoinTask<?> t; ForkJoinTask<?>[] a;
......@@ -808,7 +931,7 @@ public class ForkJoinPool extends AbstractExecutorService {
int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
base == b && U.compareAndSwapObject(a, j, t, null)) {
U.putOrderedInt(this, QBASE, b + 1);
base = b + 1;
return t;
}
}
......@@ -823,16 +946,15 @@ public class ForkJoinPool extends AbstractExecutorService {
while ((b = base) - top < 0 && (a = array) != null) {
int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
if (base == b) {
if (t != null) {
if (U.compareAndSwapObject(a, j, t, null)) {
U.putOrderedInt(this, QBASE, b + 1);
base = b + 1;
return t;
}
}
else if (base == b) {
if (b + 1 == top)
else if (b + 1 == top) // now empty
break;
Thread.yield(); // wait for lagging update (very rare)
}
}
return null;
......@@ -842,7 +964,7 @@ public class ForkJoinPool extends AbstractExecutorService {
* Takes next task, if one exists, in order specified by mode.
*/
final ForkJoinTask<?> nextLocalTask() {
return mode == 0 ? pop() : poll();
return (config & FIFO_QUEUE) == 0 ? pop() : poll();
}
/**
......@@ -852,7 +974,7 @@ public class ForkJoinPool extends AbstractExecutorService {
ForkJoinTask<?>[] a = array; int m;
if (a == null || (m = a.length - 1) < 0)
return null;
int i = mode == 0 ? top - 1 : base;
int i = (config & FIFO_QUEUE) == 0 ? top - 1 : base;
int j = ((i & m) << ASHIFT) + ABASE;
return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
}
......@@ -866,7 +988,7 @@ public class ForkJoinPool extends AbstractExecutorService {
if ((a = array) != null && (s = top) != base &&
U.compareAndSwapObject
(a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
top = s;
U.putOrderedInt(this, QTOP, s);
return true;
}
return false;
......@@ -876,9 +998,16 @@ public class ForkJoinPool extends AbstractExecutorService {
* Removes and cancels all known tasks, ignoring any exceptions.
*/
final void cancelAll() {
ForkJoinTask.cancelIgnoringExceptions(currentJoin);
ForkJoinTask.cancelIgnoringExceptions(currentSteal);
for (ForkJoinTask<?> t; (t = poll()) != null; )
ForkJoinTask<?> t;
if ((t = currentJoin) != null) {
currentJoin = null;
ForkJoinTask.cancelIgnoringExceptions(t);
}
if ((t = currentSteal) != null) {
currentSteal = null;
ForkJoinTask.cancelIgnoringExceptions(t);
}
while ((t = poll()) != null)
ForkJoinTask.cancelIgnoringExceptions(t);
}
......@@ -893,167 +1022,186 @@ public class ForkJoinPool extends AbstractExecutorService {
}
/**
* Executes a top-level task and any local tasks remaining
* after execution.
* Removes and executes all local tasks. If LIFO, invokes
* pollAndExecAll. Otherwise implements a specialized pop loop
* to exec until empty.
*/
final void runTask(ForkJoinTask<?> task) {
if ((currentSteal = task) != null) {
ForkJoinWorkerThread thread;
task.doExec();
final void execLocalTasks() {
int b = base, m, s;
ForkJoinTask<?>[] a = array;
int md = mode;
++nsteals;
currentSteal = null;
if (md != 0)
pollAndExecAll();
else if (a != null) {
int s, m = a.length - 1;
ForkJoinTask<?> t;
while ((s = top - 1) - base >= 0 &&
(t = (ForkJoinTask<?>)U.getAndSetObject
(a, ((m & s) << ASHIFT) + ABASE, null)) != null) {
top = s;
if (b - (s = top - 1) <= 0 && a != null &&
(m = a.length - 1) >= 0) {
if ((config & FIFO_QUEUE) == 0) {
for (ForkJoinTask<?> t;;) {
if ((t = (ForkJoinTask<?>)U.getAndSetObject
(a, ((m & s) << ASHIFT) + ABASE, null)) == null)
break;
U.putOrderedInt(this, QTOP, s);
t.doExec();
if (base - (s = top - 1) > 0)
break;
}
}
else
pollAndExecAll();
}
}
if ((thread = owner) != null) // no need to do in finally clause
/**
* Executes the given task and any remaining local tasks.
*/
final void runTask(ForkJoinTask<?> task) {
if (task != null) {
scanState &= ~SCANNING; // mark as busy
(currentSteal = task).doExec();
U.putOrderedObject(this, QCURRENTSTEAL, null); // release for GC
execLocalTasks();
ForkJoinWorkerThread thread = owner;
if (++nsteals < 0) // collect on overflow
transferStealCount(pool);
scanState |= SCANNING;
if (thread != null)
thread.afterTopLevelExec();
}
}
/**
* Adds steal count to pool stealCounter if it exists, and resets.
*/
final void transferStealCount(ForkJoinPool p) {
AtomicLong sc;
if (p != null && (sc = p.stealCounter) != null) {
int s = nsteals;
nsteals = 0; // if negative, correct for overflow
sc.getAndAdd((long)(s < 0 ? Integer.MAX_VALUE : s));
}
}
/**
* If present, removes from queue and executes the given task,
* or any other cancelled task. Returns (true) on any CAS
* or consistency check failure so caller can retry.
* or any other cancelled task. Used only by awaitJoin.
*
* @return false if no progress can be made, else true
* @return true if queue empty and task not known to be done
*/
final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
boolean stat;
ForkJoinTask<?>[] a; int m, s, b, n;
if (task != null && (a = array) != null && (m = a.length - 1) >= 0 &&
(n = (s = top) - (b = base)) > 0) {
boolean removed = false, empty = true;
stat = true;
if ((a = array) != null && (m = a.length - 1) >= 0 &&
task != null) {
while ((n = (s = top) - (b = base)) > 0) {
for (ForkJoinTask<?> t;;) { // traverse from s to b
long j = ((--s & m) << ASHIFT) + ABASE;
t = (ForkJoinTask<?>)U.getObject(a, j);
if (t == null) // inconsistent length
break;
if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
return s + 1 == top; // shorter than expected
else if (t == task) {
boolean removed = false;
if (s + 1 == top) { // pop
if (!U.compareAndSwapObject(a, j, task, null))
break;
top = s;
if (U.compareAndSwapObject(a, j, task, null)) {
U.putOrderedInt(this, QTOP, s);
removed = true;
}
}
else if (base == b) // replace with proxy
removed = U.compareAndSwapObject(a, j, task,
new EmptyTask());
removed = U.compareAndSwapObject(
a, j, task, new EmptyTask());
if (removed)
task.doExec();
break;
}
else if (t.status >= 0)
empty = false;
else if (s + 1 == top) { // pop and throw away
else if (t.status < 0 && s + 1 == top) {
if (U.compareAndSwapObject(a, j, t, null))
top = s;
break;
}
if (--n == 0) {
if (!empty && base == b)
stat = false;
break;
U.putOrderedInt(this, QTOP, s);
break; // was cancelled
}
if (--n == 0)
return false;
}
if (removed)
task.doExec();
if (task.status < 0)
return false;
}
else
stat = false;
return stat;
}
/**
* Tries to poll for and execute the given task or any other
* task in its CountedCompleter computation.
*/
final boolean pollAndExecCC(CountedCompleter<?> root) {
ForkJoinTask<?>[] a; int b; Object o; CountedCompleter<?> t, r;
if ((b = base) - top < 0 && (a = array) != null) {
long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
if ((o = U.getObjectVolatile(a, j)) == null)
return true; // retry
if (o instanceof CountedCompleter) {
for (t = (CountedCompleter<?>)o, r = t;;) {
if (r == root) {
if (base == b &&
U.compareAndSwapObject(a, j, t, null)) {
U.putOrderedInt(this, QBASE, b + 1);
t.doExec();
}
return true;
}
else if ((r = r.completer) == null)
break; // not part of root computation
}
}
}
return false;
}
/**
* Tries to pop and execute the given task or any other task
* in its CountedCompleter computation.
* Pops task if in the same CC computation as the given task,
* in either shared or owned mode. Used only by helpComplete.
*/
final boolean externalPopAndExecCC(CountedCompleter<?> root) {
ForkJoinTask<?>[] a; int s; Object o; CountedCompleter<?> t, r;
final CountedCompleter<?> popCC(CountedCompleter<?> task, int mode) {
int s; ForkJoinTask<?>[] a; Object o;
if (base - (s = top) < 0 && (a = array) != null) {
long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
if ((o = U.getObject(a, j)) instanceof CountedCompleter) {
for (t = (CountedCompleter<?>)o, r = t;;) {
if (r == root) {
if ((o = U.getObjectVolatile(a, j)) != null &&
(o instanceof CountedCompleter)) {
CountedCompleter<?> t = (CountedCompleter<?>)o;
for (CountedCompleter<?> r = t;;) {
if (r == task) {
if (mode < 0) { // must lock
if (U.compareAndSwapInt(this, QLOCK, 0, 1)) {
if (top == s && array == a &&
U.compareAndSwapObject(a, j, t, null)) {
top = s - 1;
qlock = 0;
t.doExec();
U.putOrderedInt(this, QTOP, s - 1);
U.putOrderedInt(this, QLOCK, 0);
return t;
}
else
qlock = 0;
U.compareAndSwapInt(this, QLOCK, 1, 0);
}
return true;
}
else if ((r = r.completer) == null)
else if (U.compareAndSwapObject(a, j, t, null)) {
U.putOrderedInt(this, QTOP, s - 1);
return t;
}
break;
}
else if ((r = r.completer) == null) // try parent
break;
}
}
return false;
}
return null;
}
/**
* Internal version
* Steals and runs a task in the same CC computation as the
* given task if one exists and can be taken without
* contention. Otherwise returns a checksum/control value for
* use by method helpComplete.
*
* @return 1 if successful, 2 if retryable (lost to another
* stealer), -1 if non-empty but no matching task found, else
* the base index, forced negative.
*/
final boolean internalPopAndExecCC(CountedCompleter<?> root) {
ForkJoinTask<?>[] a; int s; Object o; CountedCompleter<?> t, r;
if (base - (s = top) < 0 && (a = array) != null) {
long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
if ((o = U.getObject(a, j)) instanceof CountedCompleter) {
for (t = (CountedCompleter<?>)o, r = t;;) {
if (r == root) {
if (U.compareAndSwapObject(a, j, t, null)) {
top = s - 1;
final int pollAndExecCC(CountedCompleter<?> task) {
int b, h; ForkJoinTask<?>[] a; Object o;
if ((b = base) - top >= 0 || (a = array) == null)
h = b | Integer.MIN_VALUE; // to sense movement on re-poll
else {
long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
if ((o = U.getObjectVolatile(a, j)) == null)
h = 2; // retryable
else if (!(o instanceof CountedCompleter))
h = -1; // unmatchable
else {
CountedCompleter<?> t = (CountedCompleter<?>)o;
for (CountedCompleter<?> r = t;;) {
if (r == task) {
if (base == b &&
U.compareAndSwapObject(a, j, t, null)) {
base = b + 1;
t.doExec();
h = 1; // success
}
return true;
else
h = 2; // lost CAS
break;
}
else if ((r = r.completer) == null)
else if ((r = r.completer) == null) {
h = -1; // unmatched
break;
}
}
}
return false;
}
return h;
}
/**
......@@ -1061,28 +1209,31 @@ public class ForkJoinPool extends AbstractExecutorService {
*/
final boolean isApparentlyUnblocked() {
Thread wt; Thread.State s;
return (eventCount >= 0 &&
return (scanState >= 0 &&
(wt = owner) != null &&
(s = wt.getState()) != Thread.State.BLOCKED &&
s != Thread.State.WAITING &&
s != Thread.State.TIMED_WAITING);
}
// Unsafe mechanics
// Unsafe mechanics. Note that some are (and must be) the same as in FJP
private static final sun.misc.Unsafe U;
private static final long QBASE;
private static final long QLOCK;
private static final int ABASE;
private static final int ASHIFT;
private static final long QTOP;
private static final long QLOCK;
private static final long QCURRENTSTEAL;
static {
try {
U = sun.misc.Unsafe.getUnsafe();
Class<?> k = WorkQueue.class;
Class<?> wk = WorkQueue.class;
Class<?> ak = ForkJoinTask[].class;
QBASE = U.objectFieldOffset
(k.getDeclaredField("base"));
QTOP = U.objectFieldOffset
(wk.getDeclaredField("top"));
QLOCK = U.objectFieldOffset
(k.getDeclaredField("qlock"));
(wk.getDeclaredField("qlock"));
QCURRENTSTEAL = U.objectFieldOffset
(wk.getDeclaredField("currentSteal"));
ABASE = U.arrayBaseOffset(ak);
int scale = U.arrayIndexScale(ak);
if ((scale & (scale - 1)) != 0)
......@@ -1125,6 +1276,11 @@ public class ForkJoinPool extends AbstractExecutorService {
*/
static final int commonParallelism;
/**
* Limit on spare thread construction in tryCompensate.
*/
private static int commonMaxSpares;
/**
* Sequence number for creating workerNamePrefix.
*/
......@@ -1138,7 +1294,7 @@ public class ForkJoinPool extends AbstractExecutorService {
return ++poolNumberSequence;
}
// static constants
// static configuration constants
/**
* Initial timeout value (in nanoseconds) for the thread
......@@ -1151,24 +1307,29 @@ public class ForkJoinPool extends AbstractExecutorService {
private static final long IDLE_TIMEOUT = 2000L * 1000L * 1000L; // 2sec
/**
* Timeout value when there are more threads than parallelism level
* Tolerance for idle timeouts, to cope with timer undershoots
*/
private static final long FAST_IDLE_TIMEOUT = 200L * 1000L * 1000L;
private static final long TIMEOUT_SLOP = 20L * 1000L * 1000L; // 20ms
/**
* Tolerance for idle timeouts, to cope with timer undershoots
* The initial value for commonMaxSpares during static
* initialization. The value is far in excess of normal
* requirements, but also far short of MAX_CAP and typical
* OS thread limits, so allows JVMs to catch misuse/abuse
* before running out of resources needed to do so.
*/
private static final long TIMEOUT_SLOP = 2000000L;
private static final int DEFAULT_COMMON_MAX_SPARES = 256;
/**
* The maximum stolen->joining link depth allowed in method
* tryHelpStealer. Must be a power of two. Depths for legitimate
* chains are unbounded, but we use a fixed constant to avoid
* (otherwise unchecked) cycles and to bound staleness of
* traversal parameters at the expense of sometimes blocking when
* we could be helping.
* Number of times to spin-wait before blocking. The spins (in
* awaitRunStateLock and awaitWork) currently use randomized
* spins. If/when MWAIT-like intrinsics becomes available, they
* may allow quieter spinning. The value of SPINS must be a power
* of two, at least 4. The current value causes spinning for a
* small fraction of typical context-switch times, well worthwhile
* given the typical likelihoods that blocking is not necessary.
*/
private static final int MAX_HELP = 64;
private static final int SPINS = 1 << 11;
/**
* Increment for seed generators. See class ThreadLocal for
......@@ -1177,209 +1338,212 @@ public class ForkJoinPool extends AbstractExecutorService {
private static final int SEED_INCREMENT = 0x9e3779b9;
/*
* Bits and masks for control variables
*
* Field ctl is a long packed with:
* AC: Number of active running workers minus target parallelism (16 bits)
* TC: Number of total workers minus target parallelism (16 bits)
* ST: true if pool is terminating (1 bit)
* EC: the wait count of top waiting thread (15 bits)
* ID: poolIndex of top of Treiber stack of waiters (16 bits)
*
* When convenient, we can extract the upper 32 bits of counts and
* the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
* (int)ctl. The ec field is never accessed alone, but always
* together with id and st. The offsets of counts by the target
* parallelism and the positionings of fields makes it possible to
* perform the most common checks via sign tests of fields: When
* ac is negative, there are not enough active workers, when tc is
* negative, there are not enough total workers, and when e is
* negative, the pool is terminating. To deal with these possibly
* negative fields, we use casts in and out of "short" and/or
* signed shifts to maintain signedness.
*
* When a thread is queued (inactivated), its eventCount field is
* set negative, which is the only way to tell if a worker is
* prevented from executing tasks, even though it must continue to
* scan for them to avoid queuing races. Note however that
* eventCount updates lag releases so usage requires care.
*
* Field plock is an int packed with:
* SHUTDOWN: true if shutdown is enabled (1 bit)
* SEQ: a sequence lock, with PL_LOCK bit set if locked (30 bits)
* SIGNAL: set when threads may be waiting on the lock (1 bit)
*
* The sequence number enables simple consistency checks:
* Staleness of read-only operations on the workQueues array can
* be checked by comparing plock before vs after the reads.
*/
// bit positions/shifts for fields
* Bits and masks for field ctl, packed with 4 16 bit subfields:
* AC: Number of active running workers minus target parallelism
* TC: Number of total workers minus target parallelism
* SS: version count and status of top waiting thread
* ID: poolIndex of top of Treiber stack of waiters
*
* When convenient, we can extract the lower 32 stack top bits
* (including version bits) as sp=(int)ctl. The offsets of counts
* by the target parallelism and the positionings of fields makes
* it possible to perform the most common checks via sign tests of
* fields: When ac is negative, there are not enough active
* workers, when tc is negative, there are not enough total
* workers. When sp is non-zero, there are waiting workers. To
* deal with possibly negative fields, we use casts in and out of
* "short" and/or signed shifts to maintain signedness.
*
* Because it occupies uppermost bits, we can add one active count
* using getAndAddLong of AC_UNIT, rather than CAS, when returning
* from a blocked join. Other updates entail multiple subfields
* and masking, requiring CAS.
*/
// Lower and upper word masks
private static final long SP_MASK = 0xffffffffL;
private static final long UC_MASK = ~SP_MASK;
// Active counts
private static final int AC_SHIFT = 48;
private static final long AC_UNIT = 0x0001L << AC_SHIFT;
private static final long AC_MASK = 0xffffL << AC_SHIFT;
// Total counts
private static final int TC_SHIFT = 32;
private static final int ST_SHIFT = 31;
private static final int EC_SHIFT = 16;
// bounds
private static final int SMASK = 0xffff; // short bits
private static final int MAX_CAP = 0x7fff; // max #workers - 1
private static final int EVENMASK = 0xfffe; // even short bits
private static final int SQMASK = 0x007e; // max 64 (even) slots
private static final int SHORT_SIGN = 1 << 15;
private static final int INT_SIGN = 1 << 31;
// masks
private static final long STOP_BIT = 0x0001L << ST_SHIFT;
private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
// units for incrementing and decrementing
private static final long TC_UNIT = 1L << TC_SHIFT;
private static final long AC_UNIT = 1L << AC_SHIFT;
// masks and units for dealing with u = (int)(ctl >>> 32)
private static final int UAC_SHIFT = AC_SHIFT - 32;
private static final int UTC_SHIFT = TC_SHIFT - 32;
private static final int UAC_MASK = SMASK << UAC_SHIFT;
private static final int UTC_MASK = SMASK << UTC_SHIFT;
private static final int UAC_UNIT = 1 << UAC_SHIFT;
private static final int UTC_UNIT = 1 << UTC_SHIFT;
// masks and units for dealing with e = (int)ctl
private static final int E_MASK = 0x7fffffff; // no STOP_BIT
private static final int E_SEQ = 1 << EC_SHIFT;
// plock bits
private static final long TC_UNIT = 0x0001L << TC_SHIFT;
private static final long TC_MASK = 0xffffL << TC_SHIFT;
private static final long ADD_WORKER = 0x0001L << (TC_SHIFT + 15); // sign
// runState bits: SHUTDOWN must be negative, others arbitrary powers of two
private static final int RSLOCK = 1;
private static final int RSIGNAL = 1 << 1;
private static final int STARTED = 1 << 2;
private static final int STOP = 1 << 29;
private static final int TERMINATED = 1 << 30;
private static final int SHUTDOWN = 1 << 31;
private static final int PL_LOCK = 2;
private static final int PL_SIGNAL = 1;
private static final int PL_SPINS = 1 << 8;
// access mode for WorkQueue
static final int LIFO_QUEUE = 0;
static final int FIFO_QUEUE = 1;
static final int SHARED_QUEUE = -1;
// Instance fields
volatile long stealCount; // collects worker counts
volatile long ctl; // main pool control
volatile int plock; // shutdown status and seqLock
volatile int indexSeed; // worker/submitter index seed
final short parallelism; // parallelism level
final short mode; // LIFO/FIFO
WorkQueue[] workQueues; // main registry
volatile int runState; // lockable status
final int config; // parallelism, mode
int indexSeed; // to generate worker index
volatile WorkQueue[] workQueues; // main registry
final ForkJoinWorkerThreadFactory factory;
final UncaughtExceptionHandler ueh; // per-worker UEH
final String workerNamePrefix; // to create worker name string
volatile AtomicLong stealCounter; // also used as sync monitor
/**
* Acquires the plock lock to protect worker array and related
* updates. This method is called only if an initial CAS on plock
* fails. This acts as a spinlock for normal cases, but falls back
* to builtin monitor to block when (rarely) needed. This would be
* a terrible idea for a highly contended lock, but works fine as
* a more conservative alternative to a pure spinlock.
* Acquires the runState lock; returns current (locked) runState.
*/
private int acquirePlock() {
int spins = PL_SPINS, ps, nps;
for (;;) {
if (((ps = plock) & PL_LOCK) == 0 &&
U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
return nps;
else if (spins >= 0) {
if (ThreadLocalRandom.nextSecondarySeed() >= 0)
--spins;
private int lockRunState() {
int rs;
return ((((rs = runState) & RSLOCK) != 0 ||
!U.compareAndSwapInt(this, RUNSTATE, rs, rs |= RSLOCK)) ?
awaitRunStateLock() : rs);
}
else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
synchronized (this) {
if ((plock & PL_SIGNAL) != 0) {
try {
wait();
} catch (InterruptedException ie) {
/**
* Spins and/or blocks until runstate lock is available. See
* above for explanation.
*/
private int awaitRunStateLock() {
Object lock;
boolean wasInterrupted = false;
for (int spins = SPINS, r = 0, rs, ns;;) {
if (((rs = runState) & RSLOCK) == 0) {
if (U.compareAndSwapInt(this, RUNSTATE, rs, ns = rs | RSLOCK)) {
if (wasInterrupted) {
try {
Thread.currentThread().interrupt();
} catch (SecurityException ignore) {
}
}
return ns;
}
}
else if (r == 0)
r = ThreadLocalRandom.nextSecondarySeed();
else if (spins > 0) {
r ^= r << 6; r ^= r >>> 21; r ^= r << 7; // xorshift
if (r >= 0)
--spins;
}
else if ((rs & STARTED) == 0 || (lock = stealCounter) == null)
Thread.yield(); // initialization race
else if (U.compareAndSwapInt(this, RUNSTATE, rs, rs | RSIGNAL)) {
synchronized (lock) {
if ((runState & RSIGNAL) != 0) {
try {
lock.wait();
} catch (InterruptedException ie) {
if (!(Thread.currentThread() instanceof
ForkJoinWorkerThread))
wasInterrupted = true;
}
}
else
notifyAll();
lock.notifyAll();
}
}
}
}
/**
* Unlocks and signals any thread waiting for plock. Called only
* when CAS of seq value for unlock fails.
* Unlocks and sets runState to newRunState.
*
* @param oldRunState a value returned from lockRunState
* @param newRunState the next value (must have lock bit clear).
*/
private void releasePlock(int ps) {
plock = ps;
synchronized (this) { notifyAll(); }
private void unlockRunState(int oldRunState, int newRunState) {
if (!U.compareAndSwapInt(this, RUNSTATE, oldRunState, newRunState)) {
Object lock = stealCounter;
runState = newRunState; // clears RSIGNAL bit
if (lock != null)
synchronized (lock) { lock.notifyAll(); }
}
}
// Creating, registering and deregistering workers
/**
* Tries to create and start one worker if fewer than target
* parallelism level exist. Adjusts counts etc on failure.
* Tries to construct and start one worker. Assumes that total
* count has already been incremented as a reservation. Invokes
* deregisterWorker on any failure.
*
* @return true if successful
*/
private void tryAddWorker() {
long c; int u, e;
while ((u = (int)((c = ctl) >>> 32)) < 0 &&
(u & SHORT_SIGN) != 0 && (e = (int)c) >= 0) {
long nc = ((long)(((u + UTC_UNIT) & UTC_MASK) |
((u + UAC_UNIT) & UAC_MASK)) << 32) | (long)e;
if (U.compareAndSwapLong(this, CTL, c, nc)) {
ForkJoinWorkerThreadFactory fac;
private boolean createWorker() {
ForkJoinWorkerThreadFactory fac = factory;
Throwable ex = null;
ForkJoinWorkerThread wt = null;
try {
if ((fac = factory) != null &&
(wt = fac.newThread(this)) != null) {
if (fac != null && (wt = fac.newThread(this)) != null) {
wt.start();
break;
return true;
}
} catch (Throwable rex) {
ex = rex;
}
deregisterWorker(wt, ex);
return false;
}
/**
* Tries to add one worker, incrementing ctl counts before doing
* so, relying on createWorker to back out on failure.
*
* @param c incoming ctl value, with total count negative and no
* idle workers. On CAS failure, c is refreshed and retried if
* this holds (otherwise, a new worker is not needed).
*/
private void tryAddWorker(long c) {
boolean add = false;
do {
long nc = ((AC_MASK & (c + AC_UNIT)) |
(TC_MASK & (c + TC_UNIT)));
if (ctl == c) {
int rs, stop; // check if terminating
if ((stop = (rs = lockRunState()) & STOP) == 0)
add = U.compareAndSwapLong(this, CTL, c, nc);
unlockRunState(rs, rs & ~RSLOCK);
if (stop != 0)
break;
if (add) {
createWorker();
break;
}
}
} while (((c = ctl) & ADD_WORKER) != 0L && (int)c == 0);
}
// Registering and deregistering workers
/**
* Callback from ForkJoinWorkerThread to establish and record its
* WorkQueue. To avoid scanning bias due to packing entries in
* front of the workQueues array, we treat the array as a simple
* power-of-two hash table using per-thread seed as hash,
* expanding as needed.
* Callback from ForkJoinWorkerThread constructor to establish and
* record its WorkQueue.
*
* @param wt the worker thread
* @return the worker's queue
*/
final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
wt.setDaemon(true);
UncaughtExceptionHandler handler;
wt.setDaemon(true); // configure thread
if ((handler = ueh) != null)
wt.setUncaughtExceptionHandler(handler);
do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
s += SEED_INCREMENT) ||
s == 0); // skip 0
WorkQueue w = new WorkQueue(this, wt, mode, s);
if (((ps = plock) & PL_LOCK) != 0 ||
!U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
ps = acquirePlock();
int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
WorkQueue w = new WorkQueue(this, wt);
int i = 0; // assign a pool index
int mode = config & MODE_MASK;
int rs = lockRunState();
try {
if ((ws = workQueues) != null) { // skip if shutting down
int n = ws.length, m = n - 1;
int r = (s << 1) | 1; // use odd-numbered indices
if (ws[r &= m] != null) { // collision
int probes = 0; // step by approx half size
WorkQueue[] ws; int n; // skip if no array
if ((ws = workQueues) != null && (n = ws.length) > 0) {
int s = indexSeed += SEED_INCREMENT; // unlikely to collide
int m = n - 1;
i = ((s << 1) | 1) & m; // odd-numbered indices
if (ws[i] != null) { // collision
int probes = 0; // step by approx half n
int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
while (ws[r = (r + step) & m] != null) {
while (ws[i = (i + step) & m] != null) {
if (++probes >= n) {
workQueues = ws = Arrays.copyOf(ws, n <<= 1);
m = n - 1;
......@@ -1387,15 +1551,15 @@ public class ForkJoinPool extends AbstractExecutorService {
}
}
}
w.poolIndex = (short)r;
w.eventCount = r; // volatile write orders
ws[r] = w;
w.hint = s; // use as random seed
w.config = i | mode;
w.scanState = i; // publication fence
ws[i] = w;
}
} finally {
if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
releasePlock(nps);
unlockRunState(rs, rs & ~RSLOCK);
}
wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex >>> 1)));
wt.setName(workerNamePrefix.concat(Integer.toString(i >>> 1)));
return w;
}
......@@ -1411,229 +1575,106 @@ public class ForkJoinPool extends AbstractExecutorService {
final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
WorkQueue w = null;
if (wt != null && (w = wt.workQueue) != null) {
int ps;
w.qlock = -1; // ensure set
U.getAndAddLong(this, STEALCOUNT, w.nsteals); // collect steals
if (((ps = plock) & PL_LOCK) != 0 ||
!U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
ps = acquirePlock();
int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
try {
int idx = w.poolIndex;
WorkQueue[] ws = workQueues;
if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
WorkQueue[] ws; // remove index from array
int idx = w.config & SMASK;
int rs = lockRunState();
if ((ws = workQueues) != null && ws.length > idx && ws[idx] == w)
ws[idx] = null;
} finally {
if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
releasePlock(nps);
}
unlockRunState(rs, rs & ~RSLOCK);
}
long c; // adjust ctl counts
long c; // decrement counts
do {} while (!U.compareAndSwapLong
(this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
((c - TC_UNIT) & TC_MASK) |
(c & ~(AC_MASK|TC_MASK)))));
if (!tryTerminate(false, false) && w != null && w.array != null) {
(this, CTL, c = ctl, ((AC_MASK & (c - AC_UNIT)) |
(TC_MASK & (c - TC_UNIT)) |
(SP_MASK & c))));
if (w != null) {
w.qlock = -1; // ensure set
w.transferStealCount(this);
w.cancelAll(); // cancel remaining tasks
WorkQueue[] ws; WorkQueue v; Thread p; int u, i, e;
while ((u = (int)((c = ctl) >>> 32)) < 0 && (e = (int)c) >= 0) {
if (e > 0) { // activate or create replacement
if ((ws = workQueues) == null ||
(i = e & SMASK) >= ws.length ||
(v = ws[i]) == null)
break;
long nc = (((long)(v.nextWait & E_MASK)) |
((long)(u + UAC_UNIT) << 32));
if (v.eventCount != (e | INT_SIGN))
}
for (;;) { // possibly replace
WorkQueue[] ws; int m, sp;
if (tryTerminate(false, false) || w == null || w.array == null ||
(runState & STOP) != 0 || (ws = workQueues) == null ||
(m = ws.length - 1) < 0) // already terminating
break;
if (U.compareAndSwapLong(this, CTL, c, nc)) {
v.eventCount = (e + E_SEQ) & E_MASK;
if ((p = v.parker) != null)
U.unpark(p);
if ((sp = (int)(c = ctl)) != 0) { // wake up replacement
if (tryRelease(c, ws[sp & m], AC_UNIT))
break;
}
}
else {
if ((short)u < 0)
tryAddWorker();
else if (ex != null && (c & ADD_WORKER) != 0L) {
tryAddWorker(c); // create replacement
break;
}
else // don't need replacement
break;
}
}
if (ex == null) // help clean refs on way out
if (ex == null) // help clean on way out
ForkJoinTask.helpExpungeStaleExceptions();
else // rethrow
ForkJoinTask.rethrow(ex);
}
// Submissions
/**
* Unless shutting down, adds the given task to a submission queue
* at submitter's current queue index (modulo submission
* range). Only the most common path is directly handled in this
* method. All others are relayed to fullExternalPush.
*
* @param task the task. Caller must ensure non-null.
*/
final void externalPush(ForkJoinTask<?> task) {
WorkQueue q; int m, s, n, am; ForkJoinTask<?>[] a;
int r = ThreadLocalRandom.getProbe();
int ps = plock;
WorkQueue[] ws = workQueues;
if (ps > 0 && ws != null && (m = (ws.length - 1)) >= 0 &&
(q = ws[m & r & SQMASK]) != null && r != 0 &&
U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
if ((a = q.array) != null &&
(am = a.length - 1) > (n = (s = q.top) - q.base)) {
int j = ((am & s) << ASHIFT) + ABASE;
U.putOrderedObject(a, j, task);
q.top = s + 1; // push on to deque
q.qlock = 0;
if (n <= 1)
signalWork(ws, q);
return;
}
q.qlock = 0;
}
fullExternalPush(task);
}
/**
* Full version of externalPush. This method is called, among
* other times, upon the first submission of the first task to the
* pool, so must perform secondary initialization. It also
* detects first submission by an external thread by looking up
* its ThreadLocal, and creates a new shared queue if the one at
* index if empty or contended. The plock lock body must be
* exception-free (so no try/finally) so we optimistically
* allocate new queues outside the lock and throw them away if
* (very rarely) not needed.
*
* Secondary initialization occurs when plock is zero, to create
* workQueue array and set plock to a valid value. This lock body
* must also be exception-free. Because the plock seq value can
* eventually wrap around zero, this method harmlessly fails to
* reinitialize if workQueues exists, while still advancing plock.
*/
private void fullExternalPush(ForkJoinTask<?> task) {
int r;
if ((r = ThreadLocalRandom.getProbe()) == 0) {
ThreadLocalRandom.localInit();
r = ThreadLocalRandom.getProbe();
}
for (;;) {
WorkQueue[] ws; WorkQueue q; int ps, m, k;
boolean move = false;
if ((ps = plock) < 0)
throw new RejectedExecutionException();
else if (ps == 0 || (ws = workQueues) == null ||
(m = ws.length - 1) < 0) { // initialize workQueues
int p = parallelism; // find power of two table size
int n = (p > 1) ? p - 1 : 1; // ensure at least 2 slots
n |= n >>> 1; n |= n >>> 2; n |= n >>> 4;
n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
WorkQueue[] nws = ((ws = workQueues) == null || ws.length == 0 ?
new WorkQueue[n] : null);
if (((ps = plock) & PL_LOCK) != 0 ||
!U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
ps = acquirePlock();
if (((ws = workQueues) == null || ws.length == 0) && nws != null)
workQueues = nws;
int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
releasePlock(nps);
}
else if ((q = ws[k = r & m & SQMASK]) != null) {
if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
ForkJoinTask<?>[] a = q.array;
int s = q.top;
boolean submitted = false;
try { // locked version of push
if ((a != null && a.length > s + 1 - q.base) ||
(a = q.growArray()) != null) { // must presize
int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
U.putOrderedObject(a, j, task);
q.top = s + 1;
submitted = true;
}
} finally {
q.qlock = 0; // unlock
}
if (submitted) {
signalWork(ws, q);
return;
}
}
move = true; // move on failure
}
else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
q = new WorkQueue(this, null, SHARED_QUEUE, r);
q.poolIndex = (short)k;
if (((ps = plock) & PL_LOCK) != 0 ||
!U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
ps = acquirePlock();
if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
ws[k] = q;
int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
releasePlock(nps);
}
else
move = true; // move if busy
if (move)
r = ThreadLocalRandom.advanceProbe(r);
}
}
// Maintaining ctl counts
/**
* Increments active count; mainly called upon return from blocking.
*/
final void incrementActiveCount() {
long c;
do {} while (!U.compareAndSwapLong
(this, CTL, c = ctl, ((c & ~AC_MASK) |
((c & AC_MASK) + AC_UNIT))));
}
// Signalling
/**
* Tries to create or activate a worker if too few are active.
*
* @param ws the worker array to use to find signallees
* @param q if non-null, the queue holding tasks to be processed
* @param q a WorkQueue --if non-null, don't retry if now empty
*/
final void signalWork(WorkQueue[] ws, WorkQueue q) {
for (;;) {
long c; int e, u, i; WorkQueue w; Thread p;
if ((u = (int)((c = ctl) >>> 32)) >= 0)
break;
if ((e = (int)c) <= 0) {
if ((short)u < 0)
tryAddWorker();
long c; int sp, i; WorkQueue v; Thread p;
while ((c = ctl) < 0L) { // too few active
if ((sp = (int)c) == 0) { // no idle workers
if ((c & ADD_WORKER) != 0L) // too few workers
tryAddWorker(c);
break;
}
if (ws == null || ws.length <= (i = e & SMASK) ||
(w = ws[i]) == null)
if (ws == null) // unstarted/terminated
break;
long nc = (((long)(w.nextWait & E_MASK)) |
((long)(u + UAC_UNIT)) << 32);
int ne = (e + E_SEQ) & E_MASK;
if (w.eventCount == (e | INT_SIGN) &&
U.compareAndSwapLong(this, CTL, c, nc)) {
w.eventCount = ne;
if ((p = w.parker) != null)
if (ws.length <= (i = sp & SMASK)) // terminated
break;
if ((v = ws[i]) == null) // terminating
break;
int vs = (sp + SS_SEQ) & ~INACTIVE; // next scanState
int d = sp - v.scanState; // screen CAS
long nc = (UC_MASK & (c + AC_UNIT)) | (SP_MASK & v.stackPred);
if (d == 0 && U.compareAndSwapLong(this, CTL, c, nc)) {
v.scanState = vs; // activate v
if ((p = v.parker) != null)
U.unpark(p);
break;
}
if (q != null && q.base >= q.top)
if (q != null && q.base == q.top) // no more work
break;
}
}
/**
* Signals and releases worker v if it is top of idle worker
* stack. This performs a one-shot version of signalWork only if
* there is (apparently) at least one idle worker.
*
* @param c incoming ctl value
* @param v if non-null, a worker
* @param inc the increment to active count (zero when compensating)
* @return true if successful
*/
private boolean tryRelease(long c, WorkQueue v, long inc) {
int sp = (int)c, vs = (sp + SS_SEQ) & ~INACTIVE; Thread p;
if (v != null && v.scanState == sp) { // v is at top of stack
long nc = (UC_MASK & (c + inc)) | (SP_MASK & v.stackPred);
if (U.compareAndSwapLong(this, CTL, c, nc)) {
v.scanState = vs;
if ((p = v.parker) != null)
U.unpark(p);
return true;
}
}
return false;
}
// Scanning for tasks
/**
......@@ -1641,155 +1682,216 @@ public class ForkJoinPool extends AbstractExecutorService {
*/
final void runWorker(WorkQueue w) {
w.growArray(); // allocate queue
for (int r = w.hint; scan(w, r) == 0; ) {
int seed = w.hint; // initially holds randomization hint
int r = (seed == 0) ? 1 : seed; // avoid 0 for xorShift
for (ForkJoinTask<?> t;;) {
if ((t = scan(w, r)) != null)
w.runTask(t);
else if (!awaitWork(w, r))
break;
r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
}
}
/**
* Scans for and, if found, runs one task, else possibly
* inactivates the worker. This method operates on single reads of
* volatile state and is designed to be re-invoked continuously,
* in part because it returns upon detecting inconsistencies,
* contention, or state changes that indicate possible success on
* re-invocation.
*
* The scan searches for tasks across queues starting at a random
* index, checking each at least twice. The scan terminates upon
* either finding a non-empty queue, or completing the sweep. If
* the worker is not inactivated, it takes and runs a task from
* this queue. Otherwise, if not activated, it tries to activate
* itself or some other worker by signalling. On failure to find a
* task, returns (for retry) if pool state may have changed during
* an empty scan, or tries to inactivate if active, else possibly
* blocks or terminates via method awaitWork.
* Scans for and tries to steal a top-level task. Scans start at a
* random location, randomly moving on apparent contention,
* otherwise continuing linearly until reaching two consecutive
* empty passes over all queues with the same checksum (summing
* each base index of each queue, that moves on each steal), at
* which point the worker tries to inactivate and then re-scans,
* attempting to re-activate (itself or some other worker) if
* finding a task; otherwise returning null to await work. Scans
* otherwise touch as little memory as possible, to reduce
* disruption on other scanning threads.
*
* @param w the worker (via its WorkQueue)
* @param r a random seed
* @return worker qlock status if would have waited, else 0
* @return a task, or null if none found
*/
private final int scan(WorkQueue w, int r) {
private ForkJoinTask<?> scan(WorkQueue w, int r) {
WorkQueue[] ws; int m;
long c = ctl; // for consistency check
if ((ws = workQueues) != null && (m = ws.length - 1) >= 0 && w != null) {
for (int j = m + m + 1, ec = w.eventCount;;) {
WorkQueue q; int b, e; ForkJoinTask<?>[] a; ForkJoinTask<?> t;
if ((q = ws[(r - j) & m]) != null &&
(b = q.base) - q.top < 0 && (a = q.array) != null) {
if ((ws = workQueues) != null && (m = ws.length - 1) > 0 && w != null) {
int ss = w.scanState; // initially non-negative
for (int origin = r & m, k = origin, oldSum = 0, checkSum = 0;;) {
WorkQueue q; ForkJoinTask<?>[] a; ForkJoinTask<?> t;
int b, n; long c;
if ((q = ws[k]) != null) {
if ((n = (b = q.base) - q.top) < 0 &&
(a = q.array) != null) { // non-empty
long i = (((a.length - 1) & b) << ASHIFT) + ABASE;
if ((t = ((ForkJoinTask<?>)
U.getObjectVolatile(a, i))) != null) {
if (ec < 0)
helpRelease(c, ws, w, q, b);
else if (q.base == b &&
U.compareAndSwapObject(a, i, t, null)) {
U.putOrderedInt(q, QBASE, b + 1);
if ((b + 1) - q.top < 0)
U.getObjectVolatile(a, i))) != null &&
q.base == b) {
if (ss >= 0) {
if (U.compareAndSwapObject(a, i, t, null)) {
q.base = b + 1;
if (n < -1) // signal others
signalWork(ws, q);
w.runTask(t);
return t;
}
}
break;
else if (oldSum == 0 && // try to activate
w.scanState < 0)
tryRelease(c = ctl, ws[m & (int)c], AC_UNIT);
}
else if (--j < 0) {
if ((ec | (e = (int)c)) < 0) // inactive or terminating
return awaitWork(w, c, ec);
else if (ctl == c) { // try to inactivate and enqueue
long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
w.nextWait = e;
w.eventCount = ec | INT_SIGN;
if (!U.compareAndSwapLong(this, CTL, c, nc))
w.eventCount = ec; // back out
if (ss < 0) // refresh
ss = w.scanState;
r ^= r << 1; r ^= r >>> 3; r ^= r << 10;
origin = k = r & m; // move and rescan
oldSum = checkSum = 0;
continue;
}
checkSum += b;
}
if ((k = (k + 1) & m) == origin) { // continue until stable
if ((ss >= 0 || (ss == (ss = w.scanState))) &&
oldSum == (oldSum = checkSum)) {
if (ss < 0 || w.qlock < 0) // already inactive
break;
int ns = ss | INACTIVE; // try to inactivate
long nc = ((SP_MASK & ns) |
(UC_MASK & ((c = ctl) - AC_UNIT)));
w.stackPred = (int)c; // hold prev stack top
U.putInt(w, QSCANSTATE, ns);
if (U.compareAndSwapLong(this, CTL, c, nc))
ss = ns;
else
w.scanState = ss; // back out
}
checkSum = 0;
}
}
return 0;
}
return null;
}
/**
* A continuation of scan(), possibly blocking or terminating
* worker w. Returns without blocking if pool state has apparently
* changed since last invocation. Also, if inactivating w has
* caused the pool to become quiescent, checks for pool
* Possibly blocks worker w waiting for a task to steal, or
* returns false if the worker should terminate. If inactivating
* w has caused the pool to become quiescent, checks for pool
* termination, and, so long as this is not the only worker, waits
* for event for up to a given duration. On timeout, if ctl has
* not changed, terminates the worker, which will in turn wake up
* for up to a given duration. On timeout, if ctl has not
* changed, terminates the worker, which will in turn wake up
* another worker to possibly repeat this process.
*
* @param w the calling worker
* @param c the ctl value on entry to scan
* @param ec the worker's eventCount on entry to scan
*/
private final int awaitWork(WorkQueue w, long c, int ec) {
int stat, ns; long parkTime, deadline;
if ((stat = w.qlock) >= 0 && w.eventCount == ec && ctl == c &&
!Thread.interrupted()) {
int e = (int)c;
int u = (int)(c >>> 32);
int d = (u >> UAC_SHIFT) + parallelism; // active count
if (e < 0 || (d <= 0 && tryTerminate(false, false)))
stat = w.qlock = -1; // pool is terminating
else if ((ns = w.nsteals) != 0) { // collect steals and retry
w.nsteals = 0;
U.getAndAddLong(this, STEALCOUNT, (long)ns);
}
else {
long pc = ((d > 0 || ec != (e | INT_SIGN)) ? 0L :
((long)(w.nextWait & E_MASK)) | // ctl to restore
((long)(u + UAC_UNIT)) << 32);
if (pc != 0L) { // timed wait if last waiter
int dc = -(short)(c >>> TC_SHIFT);
parkTime = (dc < 0 ? FAST_IDLE_TIMEOUT:
(dc + 1) * IDLE_TIMEOUT);
* @param r a random seed (for spins)
* @return false if the worker should terminate
*/
private boolean awaitWork(WorkQueue w, int r) {
if (w == null || w.qlock < 0) // w is terminating
return false;
for (int pred = w.stackPred, spins = SPINS, ss;;) {
if ((ss = w.scanState) >= 0)
break;
else if (spins > 0) {
r ^= r << 6; r ^= r >>> 21; r ^= r << 7;
if (r >= 0 && --spins == 0) { // randomize spins
WorkQueue v; WorkQueue[] ws; int s, j; AtomicLong sc;
if (pred != 0 && (ws = workQueues) != null &&
(j = pred & SMASK) < ws.length &&
(v = ws[j]) != null && // see if pred parking
(v.parker == null || v.scanState >= 0))
spins = SPINS; // continue spinning
}
}
else if (w.qlock < 0) // recheck after spins
return false;
else if (!Thread.interrupted()) {
long c, prevctl, parkTime, deadline;
int ac = (int)((c = ctl) >> AC_SHIFT) + (config & SMASK);
if ((ac <= 0 && tryTerminate(false, false)) ||
(runState & STOP) != 0) // pool terminating
return false;
if (ac <= 0 && ss == (int)c) { // is last waiter
prevctl = (UC_MASK & (c + AC_UNIT)) | (SP_MASK & pred);
int t = (short)(c >>> TC_SHIFT); // shrink excess spares
if (t > 2 && U.compareAndSwapLong(this, CTL, c, prevctl))
return false; // else use timed wait
parkTime = IDLE_TIMEOUT * ((t >= 0) ? 1 : 1 - t);
deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
}
else
parkTime = deadline = 0L;
if (w.eventCount == ec && ctl == c) {
prevctl = parkTime = deadline = 0L;
Thread wt = Thread.currentThread();
U.putObject(wt, PARKBLOCKER, this);
w.parker = wt; // emulate LockSupport.park
if (w.eventCount == ec && ctl == c)
U.park(false, parkTime); // must recheck before park
w.parker = null;
U.putObject(wt, PARKBLOCKER, this); // emulate LockSupport
w.parker = wt;
if (w.scanState < 0 && ctl == c) // recheck before park
U.park(false, parkTime);
U.putOrderedObject(w, QPARKER, null);
U.putObject(wt, PARKBLOCKER, null);
if (w.scanState >= 0)
break;
if (parkTime != 0L && ctl == c &&
deadline - System.nanoTime() <= 0L &&
U.compareAndSwapLong(this, CTL, c, pc))
stat = w.qlock = -1; // shrink pool
U.compareAndSwapLong(this, CTL, c, prevctl))
return false; // shrink pool
}
}
}
return stat;
return true;
}
// Joining tasks
/**
* Possibly releases (signals) a worker. Called only from scan()
* when a worker with apparently inactive status finds a non-empty
* queue. This requires revalidating all of the associated state
* from caller.
* Tries to steal and run tasks within the target's computation.
* Uses a variant of the top-level algorithm, restricted to tasks
* with the given task as ancestor: It prefers taking and running
* eligible tasks popped from the worker's own queue (via
* popCC). Otherwise it scans others, randomly moving on
* contention or execution, deciding to give up based on a
* checksum (via return codes frob pollAndExecCC). The maxTasks
* argument supports external usages; internal calls use zero,
* allowing unbounded steps (external calls trap non-positive
* values).
*
* @param w caller
* @param maxTasks if non-zero, the maximum number of other tasks to run
* @return task status on exit
*/
private final void helpRelease(long c, WorkQueue[] ws, WorkQueue w,
WorkQueue q, int b) {
WorkQueue v; int e, i; Thread p;
if (w != null && w.eventCount < 0 && (e = (int)c) > 0 &&
ws != null && ws.length > (i = e & SMASK) &&
(v = ws[i]) != null && ctl == c) {
long nc = (((long)(v.nextWait & E_MASK)) |
((long)((int)(c >>> 32) + UAC_UNIT)) << 32);
int ne = (e + E_SEQ) & E_MASK;
if (q != null && q.base == b && w.eventCount < 0 &&
v.eventCount == (e | INT_SIGN) &&
U.compareAndSwapLong(this, CTL, c, nc)) {
v.eventCount = ne;
if ((p = v.parker) != null)
U.unpark(p);
final int helpComplete(WorkQueue w, CountedCompleter<?> task,
int maxTasks) {
WorkQueue[] ws; int s = 0, m;
if ((ws = workQueues) != null && (m = ws.length - 1) >= 0 &&
task != null && w != null) {
int mode = w.config; // for popCC
int r = w.hint ^ w.top; // arbitrary seed for origin
int origin = r & m; // first queue to scan
int h = 1; // 1:ran, >1:contended, <0:hash
for (int k = origin, oldSum = 0, checkSum = 0;;) {
CountedCompleter<?> p; WorkQueue q;
if ((s = task.status) < 0)
break;
if (h == 1 && (p = w.popCC(task, mode)) != null) {
p.doExec(); // run local task
if (maxTasks != 0 && --maxTasks == 0)
break;
origin = k; // reset
oldSum = checkSum = 0;
}
else { // poll other queues
if ((q = ws[k]) == null)
h = 0;
else if ((h = q.pollAndExecCC(task)) < 0)
checkSum += h;
if (h > 0) {
if (h == 1 && maxTasks != 0 && --maxTasks == 0)
break;
r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
origin = k = r & m; // move and restart
oldSum = checkSum = 0;
}
else if ((k = (k + 1) & m) == origin) {
if (oldSum == (oldSum = checkSum))
break;
checkSum = 0;
}
}
}
}
return s;
}
/**
* Tries to locate and execute tasks for a stealer of the given
......@@ -1799,268 +1901,167 @@ public class ForkJoinPool extends AbstractExecutorService {
* execute tasks from. The first call to this method upon a
* waiting join will often entail scanning/search, (which is OK
* because the joiner has nothing better to do), but this method
* leaves hints in workers to speed up subsequent calls. The
* implementation is very branchy to cope with potential
* inconsistencies or loops encountering chains that are stale,
* unknown, or so long that they are likely cyclic.
* leaves hints in workers to speed up subsequent calls.
*
* @param joiner the joining worker
* @param w caller
* @param task the task to join
* @return 0 if no progress can be made, negative if task
* known complete, else positive
*/
private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
int stat = 0, steps = 0; // bound to avoid cycles
if (task != null && joiner != null &&
joiner.base - joiner.top >= 0) { // hoist checks
restart: for (;;) {
ForkJoinTask<?> subtask = task; // current target
for (WorkQueue j = joiner, v;;) { // v is stealer of subtask
WorkQueue[] ws; int m, s, h;
if ((s = task.status) < 0) {
stat = s;
break restart;
}
if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
break restart; // shutting down
if ((v = ws[h = (j.hint | 1) & m]) == null ||
v.currentSteal != subtask) {
for (int origin = h;;) { // find stealer
if (((h = (h + 2) & m) & 15) == 1 &&
(subtask.status < 0 || j.currentJoin != subtask))
continue restart; // occasional staleness check
if ((v = ws[h]) != null &&
v.currentSteal == subtask) {
j.hint = h; // save hint
*/
private void helpStealer(WorkQueue w, ForkJoinTask<?> task) {
WorkQueue[] ws = workQueues;
int oldSum = 0, checkSum, m;
if (ws != null && (m = ws.length - 1) >= 0 && w != null &&
task != null) {
do { // restart point
checkSum = 0; // for stability check
ForkJoinTask<?> subtask;
WorkQueue j = w, v; // v is subtask stealer
descent: for (subtask = task; subtask.status >= 0; ) {
for (int h = j.hint | 1, k = 0, i; ; k += 2) {
if (k > m) // can't find stealer
break descent;
if ((v = ws[i = (h + k) & m]) != null) {
if (v.currentSteal == subtask) {
j.hint = i;
break;
}
if (h == origin)
break restart; // cannot find stealer
checkSum += v.base;
}
}
for (;;) { // help stealer or descend to its stealer
for (;;) { // help v or descend
ForkJoinTask<?>[] a; int b;
if (subtask.status < 0) // surround probes with
continue restart; // consistency checks
if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
ForkJoinTask<?> t =
(ForkJoinTask<?>)U.getObjectVolatile(a, i);
checkSum += (b = v.base);
ForkJoinTask<?> next = v.currentJoin;
if (subtask.status < 0 || j.currentJoin != subtask ||
v.currentSteal != subtask)
continue restart; // stale
stat = 1; // apparent progress
v.currentSteal != subtask) // stale
break descent;
if (b - v.top >= 0 || (a = v.array) == null) {
if ((subtask = next) == null)
break descent;
j = v;
break;
}
int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
ForkJoinTask<?> t = ((ForkJoinTask<?>)
U.getObjectVolatile(a, i));
if (v.base == b) {
if (t == null)
break restart;
if (t == null) // stale
break descent;
if (U.compareAndSwapObject(a, i, t, null)) {
U.putOrderedInt(v, QBASE, b + 1);
ForkJoinTask<?> ps = joiner.currentSteal;
int jt = joiner.top;
v.base = b + 1;
ForkJoinTask<?> ps = w.currentSteal;
int top = w.top;
do {
joiner.currentSteal = t;
U.putOrderedObject(w, QCURRENTSTEAL, t);
t.doExec(); // clear local tasks too
} while (task.status >= 0 &&
joiner.top != jt &&
(t = joiner.pop()) != null);
joiner.currentSteal = ps;
break restart;
}
}
}
else { // empty -- try to descend
ForkJoinTask<?> next = v.currentJoin;
if (subtask.status < 0 || j.currentJoin != subtask ||
v.currentSteal != subtask)
continue restart; // stale
else if (next == null || ++steps == MAX_HELP)
break restart; // dead-end or maybe cyclic
else {
subtask = next;
j = v;
break;
w.top != top &&
(t = w.pop()) != null);
U.putOrderedObject(w, QCURRENTSTEAL, ps);
if (w.base != w.top)
return; // can't further help
}
}
}
}
} while (task.status >= 0 && oldSum != (oldSum = checkSum));
}
}
return stat;
}
/**
* Analog of tryHelpStealer for CountedCompleters. Tries to steal
* and run tasks within the target's computation.
*
* @param task the task to join
* @param maxTasks the maximum number of other tasks to run
*/
final int helpComplete(WorkQueue joiner, CountedCompleter<?> task,
int maxTasks) {
WorkQueue[] ws; int m;
int s = 0;
if ((ws = workQueues) != null && (m = ws.length - 1) >= 0 &&
joiner != null && task != null) {
int j = joiner.poolIndex;
int scans = m + m + 1;
long c = 0L; // for stability check
for (int k = scans; ; j += 2) {
WorkQueue q;
if ((s = task.status) < 0)
break;
else if (joiner.internalPopAndExecCC(task)) {
if (--maxTasks <= 0) {
s = task.status;
break;
}
k = scans;
}
else if ((s = task.status) < 0)
break;
else if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) {
if (--maxTasks <= 0) {
s = task.status;
break;
}
k = scans;
}
else if (--k < 0) {
if (c == (c = ctl))
break;
k = scans;
}
}
}
return s;
}
/**
* Tries to decrement active count (sometimes implicitly) and
* possibly release or create a compensating worker in preparation
* for blocking. Fails on contention or termination. Otherwise,
* adds a new thread if no idle workers are available and pool
* may become starved.
*
* @param c the assumed ctl value
*/
final boolean tryCompensate(long c) {
WorkQueue[] ws = workQueues;
int pc = parallelism, e = (int)c, m, tc;
if (ws != null && (m = ws.length - 1) >= 0 && e >= 0 && ctl == c) {
WorkQueue w = ws[e & m];
if (e != 0 && w != null) {
Thread p;
long nc = ((long)(w.nextWait & E_MASK) |
(c & (AC_MASK|TC_MASK)));
int ne = (e + E_SEQ) & E_MASK;
if (w.eventCount == (e | INT_SIGN) &&
U.compareAndSwapLong(this, CTL, c, nc)) {
w.eventCount = ne;
if ((p = w.parker) != null)
U.unpark(p);
return true; // replace with idle worker
}
}
else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
(int)(c >> AC_SHIFT) + pc > 1) {
long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
if (U.compareAndSwapLong(this, CTL, c, nc))
return true; // no compensation
}
else if (tc + pc < MAX_CAP) {
long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
if (U.compareAndSwapLong(this, CTL, c, nc)) {
ForkJoinWorkerThreadFactory fac;
Throwable ex = null;
ForkJoinWorkerThread wt = null;
try {
if ((fac = factory) != null &&
(wt = fac.newThread(this)) != null) {
wt.start();
return true;
* for blocking. Returns false (retryable by caller), on
* contention, detected staleness, instability, or termination.
*
* @param w caller
*/
private boolean tryCompensate(WorkQueue w) {
boolean canBlock;
WorkQueue[] ws; long c; int m, pc, sp;
if (w == null || w.qlock < 0 || // caller terminating
(ws = workQueues) == null || (m = ws.length - 1) <= 0 ||
(pc = config & SMASK) == 0) // parallelism disabled
canBlock = false;
else if ((sp = (int)(c = ctl)) != 0) // release idle worker
canBlock = tryRelease(c, ws[sp & m], 0L);
else {
int ac = (int)(c >> AC_SHIFT) + pc;
int tc = (short)(c >> TC_SHIFT) + pc;
int nbusy = 0; // validate saturation
for (int i = 0; i <= m; ++i) { // two passes of odd indices
WorkQueue v;
if ((v = ws[((i << 1) | 1) & m]) != null) {
if ((v.scanState & SCANNING) != 0)
break;
++nbusy;
}
} catch (Throwable rex) {
ex = rex;
}
deregisterWorker(wt, ex); // clean up and return false
if (nbusy != (tc << 1) || ctl != c)
canBlock = false; // unstable or stale
else if (tc >= pc && ac > 1 && w.isEmpty()) {
long nc = ((AC_MASK & (c - AC_UNIT)) |
(~AC_MASK & c)); // uncompensated
canBlock = U.compareAndSwapLong(this, CTL, c, nc);
}
else if (tc >= MAX_CAP ||
(this == common && tc >= pc + commonMaxSpares))
throw new RejectedExecutionException(
"Thread limit exceeded replacing blocked worker");
else { // similar to tryAddWorker
boolean add = false; int rs; // CAS within lock
long nc = ((AC_MASK & c) |
(TC_MASK & (c + TC_UNIT)));
if (((rs = lockRunState()) & STOP) == 0)
add = U.compareAndSwapLong(this, CTL, c, nc);
unlockRunState(rs, rs & ~RSLOCK);
canBlock = add && createWorker(); // throws on exception
}
}
return false;
return canBlock;
}
/**
* Helps and/or blocks until the given task is done.
* Helps and/or blocks until the given task is done or timeout.
*
* @param joiner the joining worker
* @param w caller
* @param task the task
* @param deadline for timed waits, if nonzero
* @return task status on exit
*/
final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
final int awaitJoin(WorkQueue w, ForkJoinTask<?> task, long deadline) {
int s = 0;
if (task != null && (s = task.status) >= 0 && joiner != null) {
ForkJoinTask<?> prevJoin = joiner.currentJoin;
joiner.currentJoin = task;
do {} while (joiner.tryRemoveAndExec(task) && // process local tasks
(s = task.status) >= 0);
if (s >= 0 && (task instanceof CountedCompleter))
s = helpComplete(joiner, (CountedCompleter<?>)task, Integer.MAX_VALUE);
long cc = 0; // for stability checks
while (s >= 0 && (s = task.status) >= 0) {
if ((s = tryHelpStealer(joiner, task)) == 0 &&
(s = task.status) >= 0) {
if (!tryCompensate(cc))
cc = ctl;
else {
if (task.trySetSignal() && (s = task.status) >= 0) {
synchronized (task) {
if (task.status >= 0) {
try { // see ForkJoinTask
task.wait(); // for explanation
} catch (InterruptedException ie) {
}
}
else
task.notifyAll();
}
}
long c; // reactivate
do {} while (!U.compareAndSwapLong
(this, CTL, c = ctl,
((c & ~AC_MASK) |
((c & AC_MASK) + AC_UNIT))));
}
if (task != null && w != null) {
ForkJoinTask<?> prevJoin = w.currentJoin;
U.putOrderedObject(w, QCURRENTJOIN, task);
CountedCompleter<?> cc = (task instanceof CountedCompleter) ?
(CountedCompleter<?>)task : null;
for (;;) {
if ((s = task.status) < 0)
break;
if (cc != null)
helpComplete(w, cc, 0);
else if (w.base == w.top || w.tryRemoveAndExec(task))
helpStealer(w, task);
if ((s = task.status) < 0)
break;
long ms, ns;
if (deadline == 0L)
ms = 0L;
else if ((ns = deadline - System.nanoTime()) <= 0L)
break;
else if ((ms = TimeUnit.NANOSECONDS.toMillis(ns)) <= 0L)
ms = 1L;
if (tryCompensate(w)) {
task.internalWait(ms);
U.getAndAddLong(this, CTL, AC_UNIT);
}
}
joiner.currentJoin = prevJoin;
U.putOrderedObject(w, QCURRENTJOIN, prevJoin);
}
return s;
}
/**
* Stripped-down variant of awaitJoin used by timed joins. Tries
* to help join only while there is continuous progress. (Caller
* will then enter a timed wait.)
*
* @param joiner the joining worker
* @param task the task
*/
final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
int s;
if (joiner != null && task != null && (s = task.status) >= 0) {
ForkJoinTask<?> prevJoin = joiner.currentJoin;
joiner.currentJoin = task;
do {} while (joiner.tryRemoveAndExec(task) && // process local tasks
(s = task.status) >= 0);
if (s >= 0) {
if (task instanceof CountedCompleter)
helpComplete(joiner, (CountedCompleter<?>)task, Integer.MAX_VALUE);
do {} while (task.status >= 0 &&
tryHelpStealer(joiner, task) > 0);
}
joiner.currentJoin = prevJoin;
}
}
// Specialized scanning
/**
* Returns a (probably) non-empty steal queue, if one is found
......@@ -2068,19 +2069,24 @@ public class ForkJoinPool extends AbstractExecutorService {
* caller if, by the time it tries to use the queue, it is empty.
*/
private WorkQueue findNonEmptyStealQueue() {
WorkQueue[] ws; int m; // one-shot version of scan loop
int r = ThreadLocalRandom.nextSecondarySeed();
for (;;) {
int ps = plock, m; WorkQueue[] ws; WorkQueue q;
if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
for (int j = (m + 1) << 2; j >= 0; --j) {
if ((q = ws[(((r - j) << 1) | 1) & m]) != null &&
q.base - q.top < 0)
for (int origin = r & m, k = origin, oldSum = 0, checkSum = 0;;) {
WorkQueue q; int b;
if ((q = ws[k]) != null) {
if ((b = q.base) - q.top < 0)
return q;
checkSum += b;
}
if ((k = (k + 1) & m) == origin) {
if (oldSum == (oldSum = checkSum))
break;
checkSum = 0;
}
}
if (plock == ps)
return null;
}
return null;
}
/**
......@@ -2090,35 +2096,34 @@ public class ForkJoinPool extends AbstractExecutorService {
* find tasks either.
*/
final void helpQuiescePool(WorkQueue w) {
ForkJoinTask<?> ps = w.currentSteal;
ForkJoinTask<?> ps = w.currentSteal; // save context
for (boolean active = true;;) {
long c; WorkQueue q; ForkJoinTask<?> t; int b;
while ((t = w.nextLocalTask()) != null)
t.doExec();
w.execLocalTasks(); // run locals before each scan
if ((q = findNonEmptyStealQueue()) != null) {
if (!active) { // re-establish active count
active = true;
do {} while (!U.compareAndSwapLong
(this, CTL, c = ctl,
((c & ~AC_MASK) |
((c & AC_MASK) + AC_UNIT))));
U.getAndAddLong(this, CTL, AC_UNIT);
}
if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
U.putOrderedObject(w, QCURRENTSTEAL, t);
t.doExec();
if (++w.nsteals < 0)
w.transferStealCount(this);
}
if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
w.runTask(t);
}
else if (active) { // decrement active count without queuing
long nc = ((c = ctl) & ~AC_MASK) | ((c & AC_MASK) - AC_UNIT);
if ((int)(nc >> AC_SHIFT) + parallelism == 0)
long nc = (AC_MASK & ((c = ctl) - AC_UNIT)) | (~AC_MASK & c);
if ((int)(nc >> AC_SHIFT) + (config & SMASK) <= 0)
break; // bypass decrement-then-increment
if (U.compareAndSwapLong(this, CTL, c, nc))
active = false;
}
else if ((int)((c = ctl) >> AC_SHIFT) + parallelism <= 0 &&
U.compareAndSwapLong
(this, CTL, c, ((c & ~AC_MASK) |
((c & AC_MASK) + AC_UNIT))))
else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) <= 0 &&
U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
break;
}
U.putOrderedObject(w, QCURRENTSTEAL, ps);
}
/**
......@@ -2141,7 +2146,7 @@ public class ForkJoinPool extends AbstractExecutorService {
/**
* Returns a cheap heuristic guide for task partitioning when
* programmers, frameworks, tools, or languages have little or no
* idea about task granularity. In essence by offering this
* idea about task granularity. In essence, by offering this
* method, we ask users only about tradeoffs in overhead vs
* expected throughput and its variance, rather than how finely to
* partition tasks.
......@@ -2179,15 +2184,12 @@ public class ForkJoinPool extends AbstractExecutorService {
* many of these by further considering the number of "idle"
* threads, that are known to have zero queued tasks, so
* compensate by a factor of (#idle/#active) threads.
*
* Note: The approximation of #busy workers as #active workers is
* not very good under current signalling scheme, and should be
* improved.
*/
static int getSurplusQueuedTaskCount() {
Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).parallelism;
int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).
config & SMASK;
int n = (q = wt.workQueue).top - q.base;
int a = (int)(pool.ctl >> AC_SHIFT) + p;
return n - (a > (p >>>= 1) ? 0 :
......@@ -2202,13 +2204,7 @@ public class ForkJoinPool extends AbstractExecutorService {
// Termination
/**
* Possibly initiates and/or completes termination. The caller
* triggering termination runs three passes through workQueues:
* (0) Setting termination status, followed by wakeups of queued
* workers; (1) cancelling all tasks; (2) interrupting lagging
* threads (likely in external tasks, but possibly also blocked in
* joins). Each pass repeats previous steps because of potential
* lagging thread creation.
* Possibly initiates and/or completes termination.
*
* @param now if true, unconditionally terminate, else only
* if no work and no active workers
......@@ -2216,166 +2212,256 @@ public class ForkJoinPool extends AbstractExecutorService {
* @return true if now terminating or terminated
*/
private boolean tryTerminate(boolean now, boolean enable) {
int ps;
int rs;
if (this == common) // cannot shut down
return false;
if ((ps = plock) >= 0) { // enable by setting plock
if ((rs = runState) >= 0) {
if (!enable)
return false;
if ((ps & PL_LOCK) != 0 ||
!U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
ps = acquirePlock();
int nps = ((ps + PL_LOCK) & ~SHUTDOWN) | SHUTDOWN;
if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
releasePlock(nps);
}
for (long c;;) {
if (((c = ctl) & STOP_BIT) != 0) { // already terminating
if ((short)(c >>> TC_SHIFT) + parallelism <= 0) {
synchronized (this) {
notifyAll(); // signal when 0 workers
rs = lockRunState(); // enter SHUTDOWN phase
unlockRunState(rs, (rs & ~RSLOCK) | SHUTDOWN);
}
if ((rs & STOP) == 0) {
if (!now) { // check quiescence
for (long oldSum = 0L;;) { // repeat until stable
WorkQueue[] ws; WorkQueue w; int m, b; long c;
long checkSum = ctl;
if ((int)(checkSum >> AC_SHIFT) + (config & SMASK) > 0)
return false; // still active workers
if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
break; // check queues
for (int i = 0; i <= m; ++i) {
if ((w = ws[i]) != null) {
if ((b = w.base) != w.top || w.scanState >= 0 ||
w.currentSteal != null) {
tryRelease(c = ctl, ws[m & (int)c], AC_UNIT);
return false; // arrange for recheck
}
return true;
checkSum += b;
if ((i & 1) == 0)
w.qlock = -1; // try to disable external
}
if (!now) { // check if idle & no tasks
WorkQueue[] ws; WorkQueue w;
if ((int)(c >> AC_SHIFT) + parallelism > 0)
return false;
if ((ws = workQueues) != null) {
for (int i = 0; i < ws.length; ++i) {
if ((w = ws[i]) != null &&
(!w.isEmpty() ||
((i & 1) != 0 && w.eventCount >= 0))) {
signalWork(ws, w);
return false;
}
if (oldSum == (oldSum = checkSum))
break;
}
}
if ((runState & STOP) == 0) {
rs = lockRunState(); // enter STOP phase
unlockRunState(rs, (rs & ~RSLOCK) | STOP);
}
}
if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
for (int pass = 0; pass < 3; ++pass) {
WorkQueue[] ws; WorkQueue w; Thread wt;
if ((ws = workQueues) != null) {
int n = ws.length;
for (int i = 0; i < n; ++i) {
int pass = 0; // 3 passes to help terminate
for (long oldSum = 0L;;) { // or until done or stable
WorkQueue[] ws; WorkQueue w; ForkJoinWorkerThread wt; int m;
long checkSum = ctl;
if ((short)(checkSum >>> TC_SHIFT) + (config & SMASK) <= 0 ||
(ws = workQueues) == null || (m = ws.length - 1) <= 0) {
if ((runState & TERMINATED) == 0) {
rs = lockRunState(); // done
unlockRunState(rs, (rs & ~RSLOCK) | TERMINATED);
synchronized (this) { notifyAll(); } // for awaitTermination
}
break;
}
for (int i = 0; i <= m; ++i) {
if ((w = ws[i]) != null) {
w.qlock = -1;
checkSum += w.base;
w.qlock = -1; // try to disable
if (pass > 0) {
w.cancelAll();
w.cancelAll(); // clear queue
if (pass > 1 && (wt = w.owner) != null) {
if (!wt.isInterrupted()) {
try {
try { // unblock join
wt.interrupt();
} catch (Throwable ignore) {
}
}
U.unpark(wt);
if (w.scanState < 0)
U.unpark(wt); // wake up
}
}
}
}
// Wake up workers parked on event queue
int i, e; long cc; Thread p;
while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
(i = e & SMASK) < n && i >= 0 &&
(w = ws[i]) != null) {
long nc = ((long)(w.nextWait & E_MASK) |
((cc + AC_UNIT) & AC_MASK) |
(cc & (TC_MASK|STOP_BIT)));
if (w.eventCount == (e | INT_SIGN) &&
U.compareAndSwapLong(this, CTL, cc, nc)) {
w.eventCount = (e + E_SEQ) & E_MASK;
w.qlock = -1;
if ((p = w.parker) != null)
U.unpark(p);
if (checkSum != oldSum) { // unstable
oldSum = checkSum;
pass = 0;
}
else if (pass > 3 && pass > m) // can't further help
break;
else if (++pass > 1) { // try to dequeue
long c; int j = 0, sp; // bound attempts
while (j++ <= m && (sp = (int)(c = ctl)) != 0)
tryRelease(c, ws[sp & m], AC_UNIT);
}
}
return true;
}
// External operations
/**
* Full version of externalPush, handling uncommon cases, as well
* as performing secondary initialization upon the first
* submission of the first task to the pool. It also detects
* first submission by an external thread and creates a new shared
* queue if the one at index if empty or contended.
*
* @param task the task. Caller must ensure non-null.
*/
private void externalSubmit(ForkJoinTask<?> task) {
int r; // initialize caller's probe
if ((r = ThreadLocalRandom.getProbe()) == 0) {
ThreadLocalRandom.localInit();
r = ThreadLocalRandom.getProbe();
}
for (;;) {
WorkQueue[] ws; WorkQueue q; int rs, m, k;
boolean move = false;
if ((rs = runState) < 0) {
tryTerminate(false, false); // help terminate
throw new RejectedExecutionException();
}
else if ((rs & STARTED) == 0 || // initialize
((ws = workQueues) == null || (m = ws.length - 1) < 0)) {
int ns = 0;
rs = lockRunState();
try {
if ((rs & STARTED) == 0) {
U.compareAndSwapObject(this, STEALCOUNTER, null,
new AtomicLong());
// create workQueues array with size a power of two
int p = config & SMASK; // ensure at least 2 slots
int n = (p > 1) ? p - 1 : 1;
n |= n >>> 1; n |= n >>> 2; n |= n >>> 4;
n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
workQueues = new WorkQueue[n];
ns = STARTED;
}
} finally {
unlockRunState(rs, (rs & ~RSLOCK) | ns);
}
}
else if ((q = ws[k = r & m & SQMASK]) != null) {
if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
ForkJoinTask<?>[] a = q.array;
int s = q.top;
boolean submitted = false; // initial submission or resizing
try { // locked version of push
if ((a != null && a.length > s + 1 - q.base) ||
(a = q.growArray()) != null) {
int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
U.putOrderedObject(a, j, task);
U.putOrderedInt(q, QTOP, s + 1);
submitted = true;
}
} finally {
U.compareAndSwapInt(q, QLOCK, 1, 0);
}
if (submitted) {
signalWork(ws, q);
return;
}
}
move = true; // move on failure
}
else if (((rs = runState) & RSLOCK) == 0) { // create new queue
q = new WorkQueue(this, null);
q.hint = r;
q.config = k | SHARED_QUEUE;
q.scanState = INACTIVE;
rs = lockRunState(); // publish index
if (rs > 0 && (ws = workQueues) != null &&
k < ws.length && ws[k] == null)
ws[k] = q; // else terminated
unlockRunState(rs, rs & ~RSLOCK);
}
else
move = true; // move if busy
if (move)
r = ThreadLocalRandom.advanceProbe(r);
}
}
// external operations on common pool
/**
* Tries to add the given task to a submission queue at
* submitter's current queue. Only the (vastly) most common path
* is directly handled in this method, while screening for need
* for externalSubmit.
*
* @param task the task. Caller must ensure non-null.
*/
final void externalPush(ForkJoinTask<?> task) {
WorkQueue[] ws; WorkQueue q; int m;
int r = ThreadLocalRandom.getProbe();
int rs = runState;
if ((ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
(q = ws[m & r & SQMASK]) != null && r != 0 && rs > 0 &&
U.compareAndSwapInt(q, QLOCK, 0, 1)) {
ForkJoinTask<?>[] a; int am, n, s;
if ((a = q.array) != null &&
(am = a.length - 1) > (n = (s = q.top) - q.base)) {
int j = ((am & s) << ASHIFT) + ABASE;
U.putOrderedObject(a, j, task);
U.putOrderedInt(q, QTOP, s + 1);
U.putOrderedInt(q, QLOCK, 0);
if (n <= 1)
signalWork(ws, q);
return;
}
U.compareAndSwapInt(q, QLOCK, 1, 0);
}
externalSubmit(task);
}
/**
* Returns common pool queue for a thread that has submitted at
* least one task.
* Returns common pool queue for an external thread.
*/
static WorkQueue commonSubmitterQueue() {
ForkJoinPool p; WorkQueue[] ws; int m, z;
return ((z = ThreadLocalRandom.getProbe()) != 0 &&
(p = common) != null &&
(ws = p.workQueues) != null &&
ForkJoinPool p = common;
int r = ThreadLocalRandom.getProbe();
WorkQueue[] ws; int m;
return (p != null && (ws = p.workQueues) != null &&
(m = ws.length - 1) >= 0) ?
ws[m & z & SQMASK] : null;
ws[m & r & SQMASK] : null;
}
/**
* Tries to pop the given task from submitter's queue in common pool.
* Performs tryUnpush for an external submitter: Finds queue,
* locks if apparently non-empty, validates upon locking, and
* adjusts top. Each check can fail but rarely does.
*/
final boolean tryExternalUnpush(ForkJoinTask<?> task) {
WorkQueue joiner; ForkJoinTask<?>[] a; int m, s;
WorkQueue[] ws = workQueues;
int z = ThreadLocalRandom.getProbe();
boolean popped = false;
if (ws != null && (m = ws.length - 1) >= 0 &&
(joiner = ws[z & m & SQMASK]) != null &&
joiner.base != (s = joiner.top) &&
(a = joiner.array) != null) {
WorkQueue[] ws; WorkQueue w; ForkJoinTask<?>[] a; int m, s;
int r = ThreadLocalRandom.getProbe();
if ((ws = workQueues) != null && (m = ws.length - 1) >= 0 &&
(w = ws[m & r & SQMASK]) != null &&
(a = w.array) != null && (s = w.top) != w.base) {
long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
if (U.getObject(a, j) == task &&
U.compareAndSwapInt(joiner, QLOCK, 0, 1)) {
if (joiner.top == s && joiner.array == a &&
if (U.compareAndSwapInt(w, QLOCK, 0, 1)) {
if (w.top == s && w.array == a &&
U.getObject(a, j) == task &&
U.compareAndSwapObject(a, j, task, null)) {
joiner.top = s - 1;
popped = true;
U.putOrderedInt(w, QTOP, s - 1);
U.putOrderedInt(w, QLOCK, 0);
return true;
}
joiner.qlock = 0;
U.compareAndSwapInt(w, QLOCK, 1, 0);
}
}
return popped;
return false;
}
/**
* Performs helpComplete for an external submitter.
*/
final int externalHelpComplete(CountedCompleter<?> task, int maxTasks) {
WorkQueue joiner; int m;
WorkQueue[] ws = workQueues;
int j = ThreadLocalRandom.getProbe();
int s = 0;
if (ws != null && (m = ws.length - 1) >= 0 &&
(joiner = ws[j & m & SQMASK]) != null && task != null) {
int scans = m + m + 1;
long c = 0L; // for stability check
j |= 1; // poll odd queues
for (int k = scans; ; j += 2) {
WorkQueue q;
if ((s = task.status) < 0)
break;
else if (joiner.externalPopAndExecCC(task)) {
if (--maxTasks <= 0) {
s = task.status;
break;
}
k = scans;
}
else if ((s = task.status) < 0)
break;
else if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) {
if (--maxTasks <= 0) {
s = task.status;
break;
}
k = scans;
}
else if (--k < 0) {
if (c == (c = ctl))
break;
k = scans;
}
}
}
return s;
WorkQueue[] ws; int n;
int r = ThreadLocalRandom.getProbe();
return ((ws = workQueues) == null || (n = ws.length) == 0) ? 0 :
helpComplete(ws[(n - 1) & r & SQMASK], task, maxTasks);
}
// Exported methods
......@@ -2447,7 +2533,7 @@ public class ForkJoinPool extends AbstractExecutorService {
this(checkParallelism(parallelism),
checkFactory(factory),
handler,
(asyncMode ? FIFO_QUEUE : LIFO_QUEUE),
asyncMode ? FIFO_QUEUE : LIFO_QUEUE,
"ForkJoinPool-" + nextPoolId() + "-worker-");
checkPermission();
}
......@@ -2478,8 +2564,7 @@ public class ForkJoinPool extends AbstractExecutorService {
this.workerNamePrefix = workerNamePrefix;
this.factory = factory;
this.ueh = handler;
this.mode = (short)mode;
this.parallelism = (short)parallelism;
this.config = (parallelism & SMASK) | mode;
long np = (long)(-parallelism); // offset ctl counts
this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
}
......@@ -2624,7 +2709,7 @@ public class ForkJoinPool extends AbstractExecutorService {
// In previous versions of this class, this method constructed
// a task to run ForkJoinTask.invokeAll, but now external
// invocation of multiple tasks is at least as efficient.
ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size());
ArrayList<Future<T>> futures = new ArrayList<>(tasks.size());
boolean done = false;
try {
......@@ -2670,7 +2755,7 @@ public class ForkJoinPool extends AbstractExecutorService {
*/
public int getParallelism() {
int par;
return ((par = parallelism) > 0) ? par : 1;
return ((par = config & SMASK) > 0) ? par : 1;
}
/**
......@@ -2692,7 +2777,7 @@ public class ForkJoinPool extends AbstractExecutorService {
* @return the number of worker threads
*/
public int getPoolSize() {
return parallelism + (short)(ctl >>> TC_SHIFT);
return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
}
/**
......@@ -2702,7 +2787,7 @@ public class ForkJoinPool extends AbstractExecutorService {
* @return {@code true} if this pool uses async mode
*/
public boolean getAsyncMode() {
return mode == FIFO_QUEUE;
return (config & FIFO_QUEUE) != 0;
}
/**
......@@ -2733,7 +2818,7 @@ public class ForkJoinPool extends AbstractExecutorService {
* @return the number of active threads
*/
public int getActiveThreadCount() {
int r = parallelism + (int)(ctl >> AC_SHIFT);
int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
return (r <= 0) ? 0 : r; // suppress momentarily negative values
}
......@@ -2749,7 +2834,7 @@ public class ForkJoinPool extends AbstractExecutorService {
* @return {@code true} if all threads are currently idle
*/
public boolean isQuiescent() {
return parallelism + (int)(ctl >> AC_SHIFT) <= 0;
return (config & SMASK) + (int)(ctl >> AC_SHIFT) <= 0;
}
/**
......@@ -2764,7 +2849,8 @@ public class ForkJoinPool extends AbstractExecutorService {
* @return the number of steals
*/
public long getStealCount() {
long count = stealCount;
AtomicLong sc = stealCounter;
long count = (sc == null) ? 0L : sc.get();
WorkQueue[] ws; WorkQueue w;
if ((ws = workQueues) != null) {
for (int i = 1; i < ws.length; i += 2) {
......@@ -2894,7 +2980,8 @@ public class ForkJoinPool extends AbstractExecutorService {
public String toString() {
// Use a single pass through workQueues to collect counts
long qt = 0L, qs = 0L; int rc = 0;
long st = stealCount;
AtomicLong sc = stealCounter;
long st = (sc == null) ? 0L : sc.get();
long c = ctl;
WorkQueue[] ws; WorkQueue w;
if ((ws = workQueues) != null) {
......@@ -2912,16 +2999,16 @@ public class ForkJoinPool extends AbstractExecutorService {
}
}
}
int pc = parallelism;
int pc = (config & SMASK);
int tc = pc + (short)(c >>> TC_SHIFT);
int ac = pc + (int)(c >> AC_SHIFT);
if (ac < 0) // ignore transient negative
ac = 0;
String level;
if ((c & STOP_BIT) != 0)
level = (tc == 0) ? "Terminated" : "Terminating";
else
level = plock < 0 ? "Shutting down" : "Running";
int rs = runState;
String level = ((rs & TERMINATED) != 0 ? "Terminated" :
(rs & STOP) != 0 ? "Terminating" :
(rs & SHUTDOWN) != 0 ? "Shutting down" :
"Running");
return super.toString() +
"[" + level +
", parallelism = " + pc +
......@@ -2983,9 +3070,7 @@ public class ForkJoinPool extends AbstractExecutorService {
* @return {@code true} if all tasks have completed following shut down
*/
public boolean isTerminated() {
long c = ctl;
return ((c & STOP_BIT) != 0L &&
(short)(c >>> TC_SHIFT) + parallelism <= 0);
return (runState & TERMINATED) != 0;
}
/**
......@@ -3002,9 +3087,8 @@ public class ForkJoinPool extends AbstractExecutorService {
* @return {@code true} if terminating but not yet terminated
*/
public boolean isTerminating() {
long c = ctl;
return ((c & STOP_BIT) != 0L &&
(short)(c >>> TC_SHIFT) + parallelism > 0);
int rs = runState;
return (rs & STOP) != 0 && (rs & TERMINATED) == 0;
}
/**
......@@ -3013,7 +3097,7 @@ public class ForkJoinPool extends AbstractExecutorService {
* @return {@code true} if this pool has been shut down
*/
public boolean isShutdown() {
return plock < 0;
return (runState & SHUTDOWN) != 0;
}
/**
......@@ -3090,8 +3174,9 @@ public class ForkJoinPool extends AbstractExecutorService {
}
found = false;
for (int j = (m + 1) << 2; j >= 0; --j) {
ForkJoinTask<?> t; WorkQueue q; int b;
if ((q = ws[r++ & m]) != null && (b = q.base) - q.top < 0) {
ForkJoinTask<?> t; WorkQueue q; int b, k;
if ((k = r++ & m) <= m && k >= 0 && (q = ws[k]) != null &&
(b = q.base) - q.top < 0) {
found = true;
if ((t = q.pollAt(b)) != null)
t.doExec();
......@@ -3115,8 +3200,8 @@ public class ForkJoinPool extends AbstractExecutorService {
* in {@link ForkJoinPool}s.
*
* <p>A {@code ManagedBlocker} provides two methods. Method
* {@code isReleasable} must return {@code true} if blocking is
* not necessary. Method {@code block} blocks the current thread
* {@link #isReleasable} must return {@code true} if blocking is
* not necessary. Method {@link #block} blocks the current thread
* if necessary (perhaps internally invoking {@code isReleasable}
* before actually blocking). These actions are performed by any
* thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
......@@ -3185,37 +3270,46 @@ public class ForkJoinPool extends AbstractExecutorService {
}
/**
* Blocks in accord with the given blocker. If the current thread
* is a {@link ForkJoinWorkerThread}, this method possibly
* arranges for a spare thread to be activated if necessary to
* ensure sufficient parallelism while the current thread is blocked.
* Runs the given possibly blocking task. When {@linkplain
* ForkJoinTask#inForkJoinPool() running in a ForkJoinPool}, this
* method possibly arranges for a spare thread to be activated if
* necessary to ensure sufficient parallelism while the current
* thread is blocked in {@link ManagedBlocker#block blocker.block()}.
*
* <p>This method repeatedly calls {@code blocker.isReleasable()} and
* {@code blocker.block()} until either method returns {@code true}.
* Every call to {@code blocker.block()} is preceded by a call to
* {@code blocker.isReleasable()} that returned {@code false}.
*
* <p>If the caller is not a {@link ForkJoinTask}, this method is
* <p>If not running in a ForkJoinPool, this method is
* behaviorally equivalent to
* <pre> {@code
* while (!blocker.isReleasable())
* if (blocker.block())
* return;
* }</pre>
* break;}</pre>
*
* If the caller is a {@code ForkJoinTask}, then the pool may
* first be expanded to ensure parallelism, and later adjusted.
* If running in a ForkJoinPool, the pool may first be expanded to
* ensure sufficient parallelism available during the call to
* {@code blocker.block()}.
*
* @param blocker the blocker
* @throws InterruptedException if blocker.block did so
* @param blocker the blocker task
* @throws InterruptedException if {@code blocker.block()} did so
*/
public static void managedBlock(ManagedBlocker blocker)
throws InterruptedException {
ForkJoinPool p;
ForkJoinWorkerThread wt;
Thread t = Thread.currentThread();
if (t instanceof ForkJoinWorkerThread) {
ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
if ((t instanceof ForkJoinWorkerThread) &&
(p = (wt = (ForkJoinWorkerThread)t).pool) != null) {
WorkQueue w = wt.workQueue;
while (!blocker.isReleasable()) {
if (p.tryCompensate(p.ctl)) {
if (p.tryCompensate(w)) {
try {
do {} while (!blocker.isReleasable() &&
!blocker.block());
} finally {
p.incrementActiveCount();
U.getAndAddLong(p, CTL, AC_UNIT);
}
break;
}
......@@ -3241,15 +3335,18 @@ public class ForkJoinPool extends AbstractExecutorService {
// Unsafe mechanics
private static final sun.misc.Unsafe U;
private static final long CTL;
private static final long PARKBLOCKER;
private static final int ABASE;
private static final int ASHIFT;
private static final long STEALCOUNT;
private static final long PLOCK;
private static final long INDEXSEED;
private static final long QBASE;
private static final long CTL;
private static final long RUNSTATE;
private static final long STEALCOUNTER;
private static final long PARKBLOCKER;
private static final long QTOP;
private static final long QLOCK;
private static final long QSCANSTATE;
private static final long QPARKER;
private static final long QCURRENTSTEAL;
private static final long QCURRENTJOIN;
static {
// initialize field offsets for CAS etc
......@@ -3258,20 +3355,26 @@ public class ForkJoinPool extends AbstractExecutorService {
Class<?> k = ForkJoinPool.class;
CTL = U.objectFieldOffset
(k.getDeclaredField("ctl"));
STEALCOUNT = U.objectFieldOffset
(k.getDeclaredField("stealCount"));
PLOCK = U.objectFieldOffset
(k.getDeclaredField("plock"));
INDEXSEED = U.objectFieldOffset
(k.getDeclaredField("indexSeed"));
RUNSTATE = U.objectFieldOffset
(k.getDeclaredField("runState"));
STEALCOUNTER = U.objectFieldOffset
(k.getDeclaredField("stealCounter"));
Class<?> tk = Thread.class;
PARKBLOCKER = U.objectFieldOffset
(tk.getDeclaredField("parkBlocker"));
Class<?> wk = WorkQueue.class;
QBASE = U.objectFieldOffset
(wk.getDeclaredField("base"));
QTOP = U.objectFieldOffset
(wk.getDeclaredField("top"));
QLOCK = U.objectFieldOffset
(wk.getDeclaredField("qlock"));
QSCANSTATE = U.objectFieldOffset
(wk.getDeclaredField("scanState"));
QPARKER = U.objectFieldOffset
(wk.getDeclaredField("parker"));
QCURRENTSTEAL = U.objectFieldOffset
(wk.getDeclaredField("currentSteal"));
QCURRENTJOIN = U.objectFieldOffset
(wk.getDeclaredField("currentJoin"));
Class<?> ak = ForkJoinTask[].class;
ABASE = U.arrayBaseOffset(ak);
int scale = U.arrayIndexScale(ak);
......@@ -3282,6 +3385,7 @@ public class ForkJoinPool extends AbstractExecutorService {
throw new Error(e);
}
commonMaxSpares = DEFAULT_COMMON_MAX_SPARES;
defaultForkJoinWorkerThreadFactory =
new DefaultForkJoinWorkerThreadFactory();
modifyThreadPermission = new RuntimePermission("modifyThread");
......@@ -3289,7 +3393,7 @@ public class ForkJoinPool extends AbstractExecutorService {
common = java.security.AccessController.doPrivileged
(new java.security.PrivilegedAction<ForkJoinPool>() {
public ForkJoinPool run() { return makeCommonPool(); }});
int par = common.parallelism; // report 1 even if threads disabled
int par = common.config & SMASK; // report 1 even if threads disabled
commonParallelism = par > 0 ? par : 1;
}
......
......@@ -297,15 +297,22 @@ public abstract class ForkJoinTask<V> implements Future<V>, Serializable {
}
/**
* Tries to set SIGNAL status unless already completed. Used by
* ForkJoinPool. Other variants are directly incorporated into
* externalAwaitDone etc.
* If not done, sets SIGNAL status and performs Object.wait(timeout).
* This task may or may not be done on exit. Ignores interrupts.
*
* @return true if successful
* @param timeout using Object.wait conventions.
*/
final boolean trySetSignal() {
int s = status;
return s >= 0 && U.compareAndSwapInt(this, STATUS, s, s | SIGNAL);
final void internalWait(long timeout) {
int s;
if ((s = status) >= 0 && // force completer to issue notify
U.compareAndSwapInt(this, STATUS, s, s | SIGNAL)) {
synchronized (this) {
if (status >= 0)
try { wait(timeout); } catch (InterruptedException ie) { }
else
notifyAll();
}
}
}
/**
......@@ -313,15 +320,10 @@ public abstract class ForkJoinTask<V> implements Future<V>, Serializable {
* @return status upon completion
*/
private int externalAwaitDone() {
int s;
ForkJoinPool cp = ForkJoinPool.common;
if ((s = status) >= 0) {
if (cp != null) {
if (this instanceof CountedCompleter)
s = cp.externalHelpComplete((CountedCompleter<?>)this, Integer.MAX_VALUE);
else if (cp.tryExternalUnpush(this))
s = doExec();
}
int s = ((this instanceof CountedCompleter) ? // try helping
ForkJoinPool.common.externalHelpComplete(
(CountedCompleter<?>)this, 0) :
ForkJoinPool.common.tryExternalUnpush(this) ? doExec() : 0);
if (s >= 0 && (s = status) >= 0) {
boolean interrupted = false;
do {
......@@ -329,7 +331,7 @@ public abstract class ForkJoinTask<V> implements Future<V>, Serializable {
synchronized (this) {
if (status >= 0) {
try {
wait();
wait(0L);
} catch (InterruptedException ie) {
interrupted = true;
}
......@@ -342,7 +344,6 @@ public abstract class ForkJoinTask<V> implements Future<V>, Serializable {
if (interrupted)
Thread.currentThread().interrupt();
}
}
return s;
}
......@@ -351,25 +352,25 @@ public abstract class ForkJoinTask<V> implements Future<V>, Serializable {
*/
private int externalInterruptibleAwaitDone() throws InterruptedException {
int s;
ForkJoinPool cp = ForkJoinPool.common;
if (Thread.interrupted())
throw new InterruptedException();
if ((s = status) >= 0 && cp != null) {
if (this instanceof CountedCompleter)
cp.externalHelpComplete((CountedCompleter<?>)this, Integer.MAX_VALUE);
else if (cp.tryExternalUnpush(this))
doExec();
}
if ((s = status) >= 0 &&
(s = ((this instanceof CountedCompleter) ?
ForkJoinPool.common.externalHelpComplete(
(CountedCompleter<?>)this, 0) :
ForkJoinPool.common.tryExternalUnpush(this) ? doExec() :
0)) >= 0) {
while ((s = status) >= 0) {
if (U.compareAndSwapInt(this, STATUS, s, s | SIGNAL)) {
synchronized (this) {
if (status >= 0)
wait();
wait(0L);
else
notifyAll();
}
}
}
}
return s;
}
......@@ -386,7 +387,7 @@ public abstract class ForkJoinTask<V> implements Future<V>, Serializable {
((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) ?
(w = (wt = (ForkJoinWorkerThread)t).workQueue).
tryUnpush(this) && (s = doExec()) < 0 ? s :
wt.pool.awaitJoin(w, this) :
wt.pool.awaitJoin(w, this, 0L) :
externalAwaitDone();
}
......@@ -399,7 +400,8 @@ public abstract class ForkJoinTask<V> implements Future<V>, Serializable {
int s; Thread t; ForkJoinWorkerThread wt;
return (s = doExec()) < 0 ? s :
((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) ?
(wt = (ForkJoinWorkerThread)t).pool.awaitJoin(wt.workQueue, this) :
(wt = (ForkJoinWorkerThread)t).pool.
awaitJoin(wt.workQueue, this, 0L) :
externalAwaitDone();
}
......@@ -577,7 +579,7 @@ public abstract class ForkJoinTask<V> implements Future<V>, Serializable {
Throwable ex;
if (e == null || (ex = e.ex) == null)
return null;
if (false && e.thrower != Thread.currentThread().getId()) {
if (e.thrower != Thread.currentThread().getId()) {
Class<? extends Throwable> ec = ex.getClass();
try {
Constructor<?> noArgCtor = null;
......@@ -587,14 +589,18 @@ public abstract class ForkJoinTask<V> implements Future<V>, Serializable {
Class<?>[] ps = c.getParameterTypes();
if (ps.length == 0)
noArgCtor = c;
else if (ps.length == 1 && ps[0] == Throwable.class)
return (Throwable)(c.newInstance(ex));
else if (ps.length == 1 && ps[0] == Throwable.class) {
Throwable wx = (Throwable)c.newInstance(ex);
return (wx == null) ? ex : wx;
}
}
if (noArgCtor != null) {
Throwable wx = (Throwable)(noArgCtor.newInstance());
if (wx != null) {
wx.initCause(ex);
return wx;
}
}
} catch (Exception ignore) {
}
}
......@@ -1017,67 +1023,40 @@ public abstract class ForkJoinTask<V> implements Future<V>, Serializable {
*/
public final V get(long timeout, TimeUnit unit)
throws InterruptedException, ExecutionException, TimeoutException {
int s;
long nanos = unit.toNanos(timeout);
if (Thread.interrupted())
throw new InterruptedException();
// Messy in part because we measure in nanosecs, but wait in millisecs
int s; long ms;
long ns = unit.toNanos(timeout);
ForkJoinPool cp;
if ((s = status) >= 0 && ns > 0L) {
long deadline = System.nanoTime() + ns;
ForkJoinPool p = null;
ForkJoinPool.WorkQueue w = null;
if ((s = status) >= 0 && nanos > 0L) {
long d = System.nanoTime() + nanos;
long deadline = (d == 0L) ? 1L : d; // avoid 0
Thread t = Thread.currentThread();
if (t instanceof ForkJoinWorkerThread) {
ForkJoinWorkerThread wt = (ForkJoinWorkerThread)t;
p = wt.pool;
w = wt.workQueue;
p.helpJoinOnce(w, this); // no retries on failure
}
else if ((cp = ForkJoinPool.common) != null) {
if (this instanceof CountedCompleter)
cp.externalHelpComplete((CountedCompleter<?>)this, Integer.MAX_VALUE);
else if (cp.tryExternalUnpush(this))
doExec();
}
boolean canBlock = false;
boolean interrupted = false;
try {
while ((s = status) >= 0) {
if (w != null && w.qlock < 0)
cancelIgnoringExceptions(this);
else if (!canBlock) {
if (p == null || p.tryCompensate(p.ctl))
canBlock = true;
}
else {
s = wt.pool.awaitJoin(wt.workQueue, this, deadline);
}
else if ((s = ((this instanceof CountedCompleter) ?
ForkJoinPool.common.externalHelpComplete(
(CountedCompleter<?>)this, 0) :
ForkJoinPool.common.tryExternalUnpush(this) ?
doExec() : 0)) >= 0) {
long ns, ms; // measure in nanosecs, but wait in millisecs
while ((s = status) >= 0 &&
(ns = deadline - System.nanoTime()) > 0L) {
if ((ms = TimeUnit.NANOSECONDS.toMillis(ns)) > 0L &&
U.compareAndSwapInt(this, STATUS, s, s | SIGNAL)) {
synchronized (this) {
if (status >= 0) {
try {
wait(ms);
} catch (InterruptedException ie) {
if (p == null)
interrupted = true;
}
}
if (status >= 0)
wait(ms); // OK to throw InterruptedException
else
notifyAll();
}
}
if ((s = status) < 0 || interrupted ||
(ns = deadline - System.nanoTime()) <= 0L)
break;
}
}
} finally {
if (p != null && canBlock)
p.incrementActiveCount();
}
if (interrupted)
throw new InterruptedException();
}
if (s >= 0)
s = status;
if ((s &= DONE_MASK) != NORMAL) {
Throwable ex;
if (s == CANCELLED)
......
......@@ -66,7 +66,7 @@ public class ForkJoinWorkerThread extends Thread {
* owning thread.
*
* Support for (non-public) subclass InnocuousForkJoinWorkerThread
* requires that we break quite a lot of encapulation (via Unsafe)
* requires that we break quite a lot of encapsulation (via Unsafe)
* both here and in the subclass to access and set Thread fields.
*/
......@@ -118,7 +118,7 @@ public class ForkJoinWorkerThread extends Thread {
* @return the index number
*/
public int getPoolIndex() {
return workQueue.poolIndex >>> 1; // ignore odd/even tag bit
return workQueue.getPoolIndex();
}
/**
......@@ -171,7 +171,7 @@ public class ForkJoinWorkerThread extends Thread {
}
/**
* Erases ThreadLocals by nulling out Thread maps
* Erases ThreadLocals by nulling out Thread maps.
*/
final void eraseThreadLocals() {
U.putObject(this, THREADLOCALS, null);
......@@ -246,8 +246,8 @@ public class ForkJoinWorkerThread extends Thread {
/**
* Returns a new group with the system ThreadGroup (the
* topmost, parentless group) as parent. Uses Unsafe to
* traverse Thread group and ThreadGroup parent fields.
* topmost, parent-less group) as parent. Uses Unsafe to
* traverse Thread.group and ThreadGroup.parent fields.
*/
private static ThreadGroup createThreadGroup() {
try {
......@@ -274,4 +274,3 @@ public class ForkJoinWorkerThread extends Thread {
}
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册