提交 7f860593 编写于 作者: P psandoz
上级 b4fbda77
/*
* Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package java.util;
import java.security.SecureRandom;
import java.net.InetAddress;
import java.util.concurrent.atomic.AtomicLong;
import java.util.function.IntConsumer;
import java.util.function.LongConsumer;
import java.util.function.DoubleConsumer;
import java.util.stream.StreamSupport;
import java.util.stream.IntStream;
import java.util.stream.LongStream;
import java.util.stream.DoubleStream;
/**
* A generator of uniform pseudorandom values applicable for use in
* (among other contexts) isolated parallel computations that may
* generate subtasks. Class {@code SplittableRandom} supports methods for
* producing pseudorandom numbers of type {@code int}, {@code long},
* and {@code double} with similar usages as for class
* {@link java.util.Random} but differs in the following ways:
*
* <ul>
*
* <li>Series of generated values pass the DieHarder suite testing
* independence and uniformity properties of random number generators.
* (Most recently validated with <a
* href="http://www.phy.duke.edu/~rgb/General/dieharder.php"> version
* 3.31.1</a>.) These tests validate only the methods for certain
* types and ranges, but similar properties are expected to hold, at
* least approximately, for others as well. The <em>period</em>
* (length of any series of generated values before it repeats) is at
* least 2<sup>64</sup>. </li>
*
* <li> Method {@link #split} constructs and returns a new
* SplittableRandom instance that shares no mutable state with the
* current instance. However, with very high probability, the
* values collectively generated by the two objects have the same
* statistical properties as if the same quantity of values were
* generated by a single thread using a single {@code
* SplittableRandom} object. </li>
*
* <li>Instances of SplittableRandom are <em>not</em> thread-safe.
* They are designed to be split, not shared, across threads. For
* example, a {@link java.util.concurrent.ForkJoinTask
* fork/join-style} computation using random numbers might include a
* construction of the form {@code new
* Subtask(aSplittableRandom.split()).fork()}.
*
* <li>This class provides additional methods for generating random
* streams, that employ the above techniques when used in {@code
* stream.parallel()} mode.</li>
*
* </ul>
*
* <p>Instances of {@code SplittableRandom} are not cryptographically
* secure. Consider instead using {@link java.security.SecureRandom}
* in security-sensitive applications. Additionally,
* default-constructed instances do not use a cryptographically random
* seed unless the {@linkplain System#getProperty system property}
* {@code java.util.secureRandomSeed} is set to {@code true}.
*
* @author Guy Steele
* @author Doug Lea
* @since 1.8
*/
public final class SplittableRandom {
/*
* Implementation Overview.
*
* This algorithm was inspired by the "DotMix" algorithm by
* Leiserson, Schardl, and Sukha "Deterministic Parallel
* Random-Number Generation for Dynamic-Multithreading Platforms",
* PPoPP 2012, as well as those in "Parallel random numbers: as
* easy as 1, 2, 3" by Salmon, Morae, Dror, and Shaw, SC 2011. It
* differs mainly in simplifying and cheapening operations.
*
* The primary update step (method nextSeed()) is to add a
* constant ("gamma") to the current (64 bit) seed, forming a
* simple sequence. The seed and the gamma values for any two
* SplittableRandom instances are highly likely to be different.
*
* Methods nextLong, nextInt, and derivatives do not return the
* sequence (seed) values, but instead a hash-like bit-mix of
* their bits, producing more independently distributed sequences.
* For nextLong, the mix64 bit-mixing function computes the same
* value as the "64-bit finalizer" function in Austin Appleby's
* MurmurHash3 algorithm. See
* http://code.google.com/p/smhasher/wiki/MurmurHash3 , which
* comments: "The constants for the finalizers were generated by a
* simple simulated-annealing algorithm, and both avalanche all
* bits of 'h' to within 0.25% bias." The mix32 function is
* equivalent to (int)(mix64(seed) >>> 32), but faster because it
* omits a step that doesn't contribute to result.
*
* The split operation uses the current generator to form the seed
* and gamma for another SplittableRandom. To conservatively
* avoid potential correlations between seed and value generation,
* gamma selection (method nextGamma) uses the "Mix13" constants
* for MurmurHash3 described by David Stafford
* (http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html)
* To avoid potential weaknesses in bit-mixing transformations, we
* restrict gammas to odd values with at least 12 and no more than
* 52 bits set. Rather than rejecting candidates with too few or
* too many bits set, method nextGamma flips some bits (which has
* the effect of mapping at most 4 to any given gamma value).
* This reduces the effective set of 64bit odd gamma values by
* about 2<sup>14</sup>, a very tiny percentage, and serves as an
* automated screening for sequence constant selection that is
* left as an empirical decision in some other hashing and crypto
* algorithms.
*
* The resulting generator thus transforms a sequence in which
* (typically) many bits change on each step, with an inexpensive
* mixer with good (but less than cryptographically secure)
* avalanching.
*
* The default (no-argument) constructor, in essence, invokes
* split() for a common "seeder" SplittableRandom. Unlike other
* cases, this split must be performed in a thread-safe manner, so
* we use an AtomicLong to represent the seed rather than use an
* explicit SplittableRandom. To bootstrap the seeder, we start
* off using a seed based on current time and host unless the
* java.util.secureRandomSeed property is set. This serves as a
* slimmed-down (and insecure) variant of SecureRandom that also
* avoids stalls that may occur when using /dev/random.
*
* It is a relatively simple matter to apply the basic design here
* to use 128 bit seeds. However, emulating 128bit arithmetic and
* carrying around twice the state add more overhead than appears
* warranted for current usages.
*
* File organization: First the non-public methods that constitute
* the main algorithm, then the main public methods, followed by
* some custom spliterator classes needed for stream methods.
*/
/**
* The initial gamma value for (unsplit) SplittableRandoms. Must
* be odd with at least 12 and no more than 52 bits set. Currently
* set to the golden ratio scaled to 64bits.
*/
private static final long INITIAL_GAMMA = 0x9e3779b97f4a7c15L;
/**
* The least non-zero value returned by nextDouble(). This value
* is scaled by a random value of 53 bits to produce a result.
*/
private static final double DOUBLE_UNIT = 1.0 / (1L << 53);
/**
* The seed. Updated only via method nextSeed.
*/
private long seed;
/**
* The step value.
*/
private final long gamma;
/**
* Internal constructor used by all others except default constructor.
*/
private SplittableRandom(long seed, long gamma) {
this.seed = seed;
this.gamma = gamma;
}
/**
* Computes MurmurHash3 64bit mix function.
*/
private static long mix64(long z) {
z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL;
z = (z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L;
return z ^ (z >>> 33);
}
/**
* Returns the 32 high bits of mix64(z) as int.
*/
private static int mix32(long z) {
z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL;
return (int)(((z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L) >>> 32);
}
/**
* Returns the gamma value to use for a new split instance.
*/
private static long nextGamma(long z) {
z = (z ^ (z >>> 30)) * 0xbf58476d1ce4e5b9L; // Stafford "Mix13"
z = (z ^ (z >>> 27)) * 0x94d049bb133111ebL;
z = (z ^ (z >>> 31)) | 1L; // force to be odd
int n = Long.bitCount(z); // ensure enough 0 and 1 bits
return (n < 12 || n > 52) ? z ^ 0xaaaaaaaaaaaaaaaaL : z;
}
/**
* Adds gamma to seed.
*/
private long nextSeed() {
return seed += gamma;
}
/**
* The seed generator for default constructors.
*/
private static final AtomicLong seeder = new AtomicLong(initialSeed());
private static long initialSeed() {
String pp = java.security.AccessController.doPrivileged(
new sun.security.action.GetPropertyAction(
"java.util.secureRandomSeed"));
if (pp != null && pp.equalsIgnoreCase("true")) {
byte[] seedBytes = java.security.SecureRandom.getSeed(8);
long s = (long)(seedBytes[0]) & 0xffL;
for (int i = 1; i < 8; ++i)
s = (s << 8) | ((long)(seedBytes[i]) & 0xffL);
return s;
}
int hh = 0; // hashed host address
try {
hh = InetAddress.getLocalHost().hashCode();
} catch (Exception ignore) {
}
return (mix64((((long)hh) << 32) ^ System.currentTimeMillis()) ^
mix64(System.nanoTime()));
}
// IllegalArgumentException messages
static final String BadBound = "bound must be positive";
static final String BadRange = "bound must be greater than origin";
static final String BadSize = "size must be non-negative";
/*
* Internal versions of nextX methods used by streams, as well as
* the public nextX(origin, bound) methods. These exist mainly to
* avoid the need for multiple versions of stream spliterators
* across the different exported forms of streams.
*/
/**
* The form of nextLong used by LongStream Spliterators. If
* origin is greater than bound, acts as unbounded form of
* nextLong, else as bounded form.
*
* @param origin the least value, unless greater than bound
* @param bound the upper bound (exclusive), must not equal origin
* @return a pseudorandom value
*/
final long internalNextLong(long origin, long bound) {
/*
* Four Cases:
*
* 1. If the arguments indicate unbounded form, act as
* nextLong().
*
* 2. If the range is an exact power of two, apply the
* associated bit mask.
*
* 3. If the range is positive, loop to avoid potential bias
* when the implicit nextLong() bound (2<sup>64</sup>) is not
* evenly divisible by the range. The loop rejects candidates
* computed from otherwise over-represented values. The
* expected number of iterations under an ideal generator
* varies from 1 to 2, depending on the bound. The loop itself
* takes an unlovable form. Because the first candidate is
* already available, we need a break-in-the-middle
* construction, which is concisely but cryptically performed
* within the while-condition of a body-less for loop.
*
* 4. Otherwise, the range cannot be represented as a positive
* long. The loop repeatedly generates unbounded longs until
* obtaining a candidate meeting constraints (with an expected
* number of iterations of less than two).
*/
long r = mix64(nextSeed());
if (origin < bound) {
long n = bound - origin, m = n - 1;
if ((n & m) == 0L) // power of two
r = (r & m) + origin;
else if (n > 0L) { // reject over-represented candidates
for (long u = r >>> 1; // ensure nonnegative
u + m - (r = u % n) < 0L; // rejection check
u = mix64(nextSeed()) >>> 1) // retry
;
r += origin;
}
else { // range not representable as long
while (r < origin || r >= bound)
r = mix64(nextSeed());
}
}
return r;
}
/**
* The form of nextInt used by IntStream Spliterators.
* Exactly the same as long version, except for types.
*
* @param origin the least value, unless greater than bound
* @param bound the upper bound (exclusive), must not equal origin
* @return a pseudorandom value
*/
final int internalNextInt(int origin, int bound) {
int r = mix32(nextSeed());
if (origin < bound) {
int n = bound - origin, m = n - 1;
if ((n & m) == 0)
r = (r & m) + origin;
else if (n > 0) {
for (int u = r >>> 1;
u + m - (r = u % n) < 0;
u = mix32(nextSeed()) >>> 1)
;
r += origin;
}
else {
while (r < origin || r >= bound)
r = mix32(nextSeed());
}
}
return r;
}
/**
* The form of nextDouble used by DoubleStream Spliterators.
*
* @param origin the least value, unless greater than bound
* @param bound the upper bound (exclusive), must not equal origin
* @return a pseudorandom value
*/
final double internalNextDouble(double origin, double bound) {
double r = (nextLong() >>> 11) * DOUBLE_UNIT;
if (origin < bound) {
r = r * (bound - origin) + origin;
if (r >= bound) // correct for rounding
r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
}
return r;
}
/* ---------------- public methods ---------------- */
/**
* Creates a new SplittableRandom instance using the specified
* initial seed. SplittableRandom instances created with the same
* seed in the same program generate identical sequences of values.
*
* @param seed the initial seed
*/
public SplittableRandom(long seed) {
this(seed, INITIAL_GAMMA);
}
/**
* Creates a new SplittableRandom instance that is likely to
* generate sequences of values that are statistically independent
* of those of any other instances in the current program; and
* may, and typically does, vary across program invocations.
*/
public SplittableRandom() { // emulate seeder.split()
this.gamma = nextGamma(this.seed = seeder.addAndGet(INITIAL_GAMMA));
}
/**
* Constructs and returns a new SplittableRandom instance that
* shares no mutable state with this instance. However, with very
* high probability, the set of values collectively generated by
* the two objects has the same statistical properties as if the
* same quantity of values were generated by a single thread using
* a single SplittableRandom object. Either or both of the two
* objects may be further split using the {@code split()} method,
* and the same expected statistical properties apply to the
* entire set of generators constructed by such recursive
* splitting.
*
* @return the new SplittableRandom instance
*/
public SplittableRandom split() {
long s = nextSeed();
return new SplittableRandom(s, nextGamma(s));
}
/**
* Returns a pseudorandom {@code int} value.
*
* @return a pseudorandom {@code int} value
*/
public int nextInt() {
return mix32(nextSeed());
}
/**
* Returns a pseudorandom {@code int} value between zero (inclusive)
* and the specified bound (exclusive).
*
* @param bound the upper bound (exclusive). Must be positive.
* @return a pseudorandom {@code int} value between zero
* (inclusive) and the bound (exclusive)
* @throws IllegalArgumentException if {@code bound} is not positive
*/
public int nextInt(int bound) {
if (bound <= 0)
throw new IllegalArgumentException(BadBound);
// Specialize internalNextInt for origin 0
int r = mix32(nextSeed());
int m = bound - 1;
if ((bound & m) == 0) // power of two
r &= m;
else { // reject over-represented candidates
for (int u = r >>> 1;
u + m - (r = u % bound) < 0;
u = mix32(nextSeed()) >>> 1)
;
}
return r;
}
/**
* Returns a pseudorandom {@code int} value between the specified
* origin (inclusive) and the specified bound (exclusive).
*
* @param origin the least value returned
* @param bound the upper bound (exclusive)
* @return a pseudorandom {@code int} value between the origin
* (inclusive) and the bound (exclusive)
* @throws IllegalArgumentException if {@code origin} is greater than
* or equal to {@code bound}
*/
public int nextInt(int origin, int bound) {
if (origin >= bound)
throw new IllegalArgumentException(BadRange);
return internalNextInt(origin, bound);
}
/**
* Returns a pseudorandom {@code long} value.
*
* @return a pseudorandom {@code long} value
*/
public long nextLong() {
return mix64(nextSeed());
}
/**
* Returns a pseudorandom {@code long} value between zero (inclusive)
* and the specified bound (exclusive).
*
* @param bound the upper bound (exclusive). Must be positive.
* @return a pseudorandom {@code long} value between zero
* (inclusive) and the bound (exclusive)
* @throws IllegalArgumentException if {@code bound} is not positive
*/
public long nextLong(long bound) {
if (bound <= 0)
throw new IllegalArgumentException(BadBound);
// Specialize internalNextLong for origin 0
long r = mix64(nextSeed());
long m = bound - 1;
if ((bound & m) == 0L) // power of two
r &= m;
else { // reject over-represented candidates
for (long u = r >>> 1;
u + m - (r = u % bound) < 0L;
u = mix64(nextSeed()) >>> 1)
;
}
return r;
}
/**
* Returns a pseudorandom {@code long} value between the specified
* origin (inclusive) and the specified bound (exclusive).
*
* @param origin the least value returned
* @param bound the upper bound (exclusive)
* @return a pseudorandom {@code long} value between the origin
* (inclusive) and the bound (exclusive)
* @throws IllegalArgumentException if {@code origin} is greater than
* or equal to {@code bound}
*/
public long nextLong(long origin, long bound) {
if (origin >= bound)
throw new IllegalArgumentException(BadRange);
return internalNextLong(origin, bound);
}
/**
* Returns a pseudorandom {@code double} value between zero
* (inclusive) and one (exclusive).
*
* @return a pseudorandom {@code double} value between zero
* (inclusive) and one (exclusive)
*/
public double nextDouble() {
return (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT;
}
/**
* Returns a pseudorandom {@code double} value between 0.0
* (inclusive) and the specified bound (exclusive).
*
* @param bound the upper bound (exclusive). Must be positive.
* @return a pseudorandom {@code double} value between zero
* (inclusive) and the bound (exclusive)
* @throws IllegalArgumentException if {@code bound} is not positive
*/
public double nextDouble(double bound) {
if (!(bound > 0.0))
throw new IllegalArgumentException(BadBound);
double result = (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT * bound;
return (result < bound) ? result : // correct for rounding
Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
}
/**
* Returns a pseudorandom {@code double} value between the specified
* origin (inclusive) and bound (exclusive).
*
* @param origin the least value returned
* @param bound the upper bound (exclusive)
* @return a pseudorandom {@code double} value between the origin
* (inclusive) and the bound (exclusive)
* @throws IllegalArgumentException if {@code origin} is greater than
* or equal to {@code bound}
*/
public double nextDouble(double origin, double bound) {
if (!(origin < bound))
throw new IllegalArgumentException(BadRange);
return internalNextDouble(origin, bound);
}
/**
* Returns a pseudorandom {@code boolean} value.
*
* @return a pseudorandom {@code boolean} value
*/
public boolean nextBoolean() {
return mix32(nextSeed()) < 0;
}
// stream methods, coded in a way intended to better isolate for
// maintenance purposes the small differences across forms.
/**
* Returns a stream producing the given {@code streamSize} number
* of pseudorandom {@code int} values from this generator and/or
* one split from it.
*
* @param streamSize the number of values to generate
* @return a stream of pseudorandom {@code int} values
* @throws IllegalArgumentException if {@code streamSize} is
* less than zero
*/
public IntStream ints(long streamSize) {
if (streamSize < 0L)
throw new IllegalArgumentException(BadSize);
return StreamSupport.intStream
(new RandomIntsSpliterator
(this, 0L, streamSize, Integer.MAX_VALUE, 0),
false);
}
/**
* Returns an effectively unlimited stream of pseudorandom {@code int}
* values from this generator and/or one split from it.
*
* @implNote This method is implemented to be equivalent to {@code
* ints(Long.MAX_VALUE)}.
*
* @return a stream of pseudorandom {@code int} values
*/
public IntStream ints() {
return StreamSupport.intStream
(new RandomIntsSpliterator
(this, 0L, Long.MAX_VALUE, Integer.MAX_VALUE, 0),
false);
}
/**
* Returns a stream producing the given {@code streamSize} number
* of pseudorandom {@code int} values from this generator and/or one split
* from it; each value conforms to the given origin (inclusive) and bound
* (exclusive).
*
* @param streamSize the number of values to generate
* @param randomNumberOrigin the origin (inclusive) of each random value
* @param randomNumberBound the bound (exclusive) of each random value
* @return a stream of pseudorandom {@code int} values,
* each with the given origin (inclusive) and bound (exclusive)
* @throws IllegalArgumentException if {@code streamSize} is
* less than zero, or {@code randomNumberOrigin}
* is greater than or equal to {@code randomNumberBound}
*/
public IntStream ints(long streamSize, int randomNumberOrigin,
int randomNumberBound) {
if (streamSize < 0L)
throw new IllegalArgumentException(BadSize);
if (randomNumberOrigin >= randomNumberBound)
throw new IllegalArgumentException(BadRange);
return StreamSupport.intStream
(new RandomIntsSpliterator
(this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
false);
}
/**
* Returns an effectively unlimited stream of pseudorandom {@code
* int} values from this generator and/or one split from it; each value
* conforms to the given origin (inclusive) and bound (exclusive).
*
* @implNote This method is implemented to be equivalent to {@code
* ints(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
*
* @param randomNumberOrigin the origin (inclusive) of each random value
* @param randomNumberBound the bound (exclusive) of each random value
* @return a stream of pseudorandom {@code int} values,
* each with the given origin (inclusive) and bound (exclusive)
* @throws IllegalArgumentException if {@code randomNumberOrigin}
* is greater than or equal to {@code randomNumberBound}
*/
public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
if (randomNumberOrigin >= randomNumberBound)
throw new IllegalArgumentException(BadRange);
return StreamSupport.intStream
(new RandomIntsSpliterator
(this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
false);
}
/**
* Returns a stream producing the given {@code streamSize} number
* of pseudorandom {@code long} values from this generator and/or
* one split from it.
*
* @param streamSize the number of values to generate
* @return a stream of pseudorandom {@code long} values
* @throws IllegalArgumentException if {@code streamSize} is
* less than zero
*/
public LongStream longs(long streamSize) {
if (streamSize < 0L)
throw new IllegalArgumentException(BadSize);
return StreamSupport.longStream
(new RandomLongsSpliterator
(this, 0L, streamSize, Long.MAX_VALUE, 0L),
false);
}
/**
* Returns an effectively unlimited stream of pseudorandom {@code
* long} values from this generator and/or one split from it.
*
* @implNote This method is implemented to be equivalent to {@code
* longs(Long.MAX_VALUE)}.
*
* @return a stream of pseudorandom {@code long} values
*/
public LongStream longs() {
return StreamSupport.longStream
(new RandomLongsSpliterator
(this, 0L, Long.MAX_VALUE, Long.MAX_VALUE, 0L),
false);
}
/**
* Returns a stream producing the given {@code streamSize} number of
* pseudorandom {@code long} values from this generator and/or one split
* from it; each value conforms to the given origin (inclusive) and bound
* (exclusive).
*
* @param streamSize the number of values to generate
* @param randomNumberOrigin the origin (inclusive) of each random value
* @param randomNumberBound the bound (exclusive) of each random value
* @return a stream of pseudorandom {@code long} values,
* each with the given origin (inclusive) and bound (exclusive)
* @throws IllegalArgumentException if {@code streamSize} is
* less than zero, or {@code randomNumberOrigin}
* is greater than or equal to {@code randomNumberBound}
*/
public LongStream longs(long streamSize, long randomNumberOrigin,
long randomNumberBound) {
if (streamSize < 0L)
throw new IllegalArgumentException(BadSize);
if (randomNumberOrigin >= randomNumberBound)
throw new IllegalArgumentException(BadRange);
return StreamSupport.longStream
(new RandomLongsSpliterator
(this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
false);
}
/**
* Returns an effectively unlimited stream of pseudorandom {@code
* long} values from this generator and/or one split from it; each value
* conforms to the given origin (inclusive) and bound (exclusive).
*
* @implNote This method is implemented to be equivalent to {@code
* longs(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
*
* @param randomNumberOrigin the origin (inclusive) of each random value
* @param randomNumberBound the bound (exclusive) of each random value
* @return a stream of pseudorandom {@code long} values,
* each with the given origin (inclusive) and bound (exclusive)
* @throws IllegalArgumentException if {@code randomNumberOrigin}
* is greater than or equal to {@code randomNumberBound}
*/
public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
if (randomNumberOrigin >= randomNumberBound)
throw new IllegalArgumentException(BadRange);
return StreamSupport.longStream
(new RandomLongsSpliterator
(this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
false);
}
/**
* Returns a stream producing the given {@code streamSize} number of
* pseudorandom {@code double} values from this generator and/or one split
* from it; each value is between zero (inclusive) and one (exclusive).
*
* @param streamSize the number of values to generate
* @return a stream of {@code double} values
* @throws IllegalArgumentException if {@code streamSize} is
* less than zero
*/
public DoubleStream doubles(long streamSize) {
if (streamSize < 0L)
throw new IllegalArgumentException(BadSize);
return StreamSupport.doubleStream
(new RandomDoublesSpliterator
(this, 0L, streamSize, Double.MAX_VALUE, 0.0),
false);
}
/**
* Returns an effectively unlimited stream of pseudorandom {@code
* double} values from this generator and/or one split from it; each value
* is between zero (inclusive) and one (exclusive).
*
* @implNote This method is implemented to be equivalent to {@code
* doubles(Long.MAX_VALUE)}.
*
* @return a stream of pseudorandom {@code double} values
*/
public DoubleStream doubles() {
return StreamSupport.doubleStream
(new RandomDoublesSpliterator
(this, 0L, Long.MAX_VALUE, Double.MAX_VALUE, 0.0),
false);
}
/**
* Returns a stream producing the given {@code streamSize} number of
* pseudorandom {@code double} values from this generator and/or one split
* from it; each value conforms to the given origin (inclusive) and bound
* (exclusive).
*
* @param streamSize the number of values to generate
* @param randomNumberOrigin the origin (inclusive) of each random value
* @param randomNumberBound the bound (exclusive) of each random value
* @return a stream of pseudorandom {@code double} values,
* each with the given origin (inclusive) and bound (exclusive)
* @throws IllegalArgumentException if {@code streamSize} is
* less than zero
* @throws IllegalArgumentException if {@code randomNumberOrigin}
* is greater than or equal to {@code randomNumberBound}
*/
public DoubleStream doubles(long streamSize, double randomNumberOrigin,
double randomNumberBound) {
if (streamSize < 0L)
throw new IllegalArgumentException(BadSize);
if (!(randomNumberOrigin < randomNumberBound))
throw new IllegalArgumentException(BadRange);
return StreamSupport.doubleStream
(new RandomDoublesSpliterator
(this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
false);
}
/**
* Returns an effectively unlimited stream of pseudorandom {@code
* double} values from this generator and/or one split from it; each value
* conforms to the given origin (inclusive) and bound (exclusive).
*
* @implNote This method is implemented to be equivalent to {@code
* doubles(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
*
* @param randomNumberOrigin the origin (inclusive) of each random value
* @param randomNumberBound the bound (exclusive) of each random value
* @return a stream of pseudorandom {@code double} values,
* each with the given origin (inclusive) and bound (exclusive)
* @throws IllegalArgumentException if {@code randomNumberOrigin}
* is greater than or equal to {@code randomNumberBound}
*/
public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
if (!(randomNumberOrigin < randomNumberBound))
throw new IllegalArgumentException(BadRange);
return StreamSupport.doubleStream
(new RandomDoublesSpliterator
(this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
false);
}
/**
* Spliterator for int streams. We multiplex the four int
* versions into one class by treating a bound less than origin as
* unbounded, and also by treating "infinite" as equivalent to
* Long.MAX_VALUE. For splits, it uses the standard divide-by-two
* approach. The long and double versions of this class are
* identical except for types.
*/
static final class RandomIntsSpliterator implements Spliterator.OfInt {
final SplittableRandom rng;
long index;
final long fence;
final int origin;
final int bound;
RandomIntsSpliterator(SplittableRandom rng, long index, long fence,
int origin, int bound) {
this.rng = rng; this.index = index; this.fence = fence;
this.origin = origin; this.bound = bound;
}
public RandomIntsSpliterator trySplit() {
long i = index, m = (i + fence) >>> 1;
return (m <= i) ? null :
new RandomIntsSpliterator(rng.split(), i, index = m, origin, bound);
}
public long estimateSize() {
return fence - index;
}
public int characteristics() {
return (Spliterator.SIZED | Spliterator.SUBSIZED |
Spliterator.NONNULL | Spliterator.IMMUTABLE);
}
public boolean tryAdvance(IntConsumer consumer) {
if (consumer == null) throw new NullPointerException();
long i = index, f = fence;
if (i < f) {
consumer.accept(rng.internalNextInt(origin, bound));
index = i + 1;
return true;
}
return false;
}
public void forEachRemaining(IntConsumer consumer) {
if (consumer == null) throw new NullPointerException();
long i = index, f = fence;
if (i < f) {
index = f;
SplittableRandom r = rng;
int o = origin, b = bound;
do {
consumer.accept(r.internalNextInt(o, b));
} while (++i < f);
}
}
}
/**
* Spliterator for long streams.
*/
static final class RandomLongsSpliterator implements Spliterator.OfLong {
final SplittableRandom rng;
long index;
final long fence;
final long origin;
final long bound;
RandomLongsSpliterator(SplittableRandom rng, long index, long fence,
long origin, long bound) {
this.rng = rng; this.index = index; this.fence = fence;
this.origin = origin; this.bound = bound;
}
public RandomLongsSpliterator trySplit() {
long i = index, m = (i + fence) >>> 1;
return (m <= i) ? null :
new RandomLongsSpliterator(rng.split(), i, index = m, origin, bound);
}
public long estimateSize() {
return fence - index;
}
public int characteristics() {
return (Spliterator.SIZED | Spliterator.SUBSIZED |
Spliterator.NONNULL | Spliterator.IMMUTABLE);
}
public boolean tryAdvance(LongConsumer consumer) {
if (consumer == null) throw new NullPointerException();
long i = index, f = fence;
if (i < f) {
consumer.accept(rng.internalNextLong(origin, bound));
index = i + 1;
return true;
}
return false;
}
public void forEachRemaining(LongConsumer consumer) {
if (consumer == null) throw new NullPointerException();
long i = index, f = fence;
if (i < f) {
index = f;
SplittableRandom r = rng;
long o = origin, b = bound;
do {
consumer.accept(r.internalNextLong(o, b));
} while (++i < f);
}
}
}
/**
* Spliterator for double streams.
*/
static final class RandomDoublesSpliterator implements Spliterator.OfDouble {
final SplittableRandom rng;
long index;
final long fence;
final double origin;
final double bound;
RandomDoublesSpliterator(SplittableRandom rng, long index, long fence,
double origin, double bound) {
this.rng = rng; this.index = index; this.fence = fence;
this.origin = origin; this.bound = bound;
}
public RandomDoublesSpliterator trySplit() {
long i = index, m = (i + fence) >>> 1;
return (m <= i) ? null :
new RandomDoublesSpliterator(rng.split(), i, index = m, origin, bound);
}
public long estimateSize() {
return fence - index;
}
public int characteristics() {
return (Spliterator.SIZED | Spliterator.SUBSIZED |
Spliterator.NONNULL | Spliterator.IMMUTABLE);
}
public boolean tryAdvance(DoubleConsumer consumer) {
if (consumer == null) throw new NullPointerException();
long i = index, f = fence;
if (i < f) {
consumer.accept(rng.internalNextDouble(origin, bound));
index = i + 1;
return true;
}
return false;
}
public void forEachRemaining(DoubleConsumer consumer) {
if (consumer == null) throw new NullPointerException();
long i = index, f = fence;
if (i < f) {
index = f;
SplittableRandom r = rng;
double o = origin, b = bound;
do {
consumer.accept(r.internalNextDouble(o, b));
} while (++i < f);
}
}
}
}
/*
* Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
import org.testng.Assert;
import org.testng.annotations.Test;
import java.util.SplittableRandom;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.LongAdder;
import static org.testng.Assert.assertEquals;
import static org.testng.Assert.assertNotNull;
import static org.testng.AssertJUnit.assertTrue;
/**
* @test
* @run testng SplittableRandomTest
* @run testng/othervm -Djava.util.secureRandomSeed=true SplittableRandomTest
* @summary test methods on SplittableRandom
*/
@Test
public class SplittableRandomTest {
// Note: this test was copied from the 166 TCK SplittableRandomTest test
// and modified to be a TestNG test
/*
* Testing coverage notes:
*
* 1. Many of the test methods are adapted from ThreadLocalRandomTest.
*
* 2. These tests do not check for random number generator quality.
* But we check for minimal API compliance by requiring that
* repeated calls to nextX methods, up to NCALLS tries, produce at
* least two distinct results. (In some possible universe, a
* "correct" implementation might fail, but the odds are vastly
* less than that of encountering a hardware failure while running
* the test.) For bounded nextX methods, we sample various
* intervals across multiples of primes. In other tests, we repeat
* under REPS different values.
*/
// max numbers of calls to detect getting stuck on one value
static final int NCALLS = 10000;
// max sampled int bound
static final int MAX_INT_BOUND = (1 << 28);
// max sampled long bound
static final long MAX_LONG_BOUND = (1L << 42);
// Number of replications for other checks
static final int REPS = 20;
/**
* Repeated calls to nextInt produce at least two distinct results
*/
public void testNextInt() {
SplittableRandom sr = new SplittableRandom();
int f = sr.nextInt();
int i = 0;
while (i < NCALLS && sr.nextInt() == f)
++i;
assertTrue(i < NCALLS);
}
/**
* Repeated calls to nextLong produce at least two distinct results
*/
public void testNextLong() {
SplittableRandom sr = new SplittableRandom();
long f = sr.nextLong();
int i = 0;
while (i < NCALLS && sr.nextLong() == f)
++i;
assertTrue(i < NCALLS);
}
/**
* Repeated calls to nextDouble produce at least two distinct results
*/
public void testNextDouble() {
SplittableRandom sr = new SplittableRandom();
double f = sr.nextDouble();
int i = 0;
while (i < NCALLS && sr.nextDouble() == f)
++i;
assertTrue(i < NCALLS);
}
/**
* Two SplittableRandoms created with the same seed produce the
* same values for nextLong.
*/
public void testSeedConstructor() {
for (long seed = 2; seed < MAX_LONG_BOUND; seed += 15485863) {
SplittableRandom sr1 = new SplittableRandom(seed);
SplittableRandom sr2 = new SplittableRandom(seed);
for (int i = 0; i < REPS; ++i)
assertEquals(sr1.nextLong(), sr2.nextLong());
}
}
/**
* A SplittableRandom produced by split() of a default-constructed
* SplittableRandom generates a different sequence
*/
public void testSplit1() {
SplittableRandom sr = new SplittableRandom();
for (int reps = 0; reps < REPS; ++reps) {
SplittableRandom sc = sr.split();
int i = 0;
while (i < NCALLS && sr.nextLong() == sc.nextLong())
++i;
assertTrue(i < NCALLS);
}
}
/**
* A SplittableRandom produced by split() of a seeded-constructed
* SplittableRandom generates a different sequence
*/
public void testSplit2() {
SplittableRandom sr = new SplittableRandom(12345);
for (int reps = 0; reps < REPS; ++reps) {
SplittableRandom sc = sr.split();
int i = 0;
while (i < NCALLS && sr.nextLong() == sc.nextLong())
++i;
assertTrue(i < NCALLS);
}
}
/**
* nextInt(negative) throws IllegalArgumentException
*/
@Test(expectedExceptions = IllegalArgumentException.class)
public void testNextIntBoundedNeg() {
SplittableRandom sr = new SplittableRandom();
int f = sr.nextInt(-17);
}
/**
* nextInt(least >= bound) throws IllegalArgumentException
*/
@Test(expectedExceptions = IllegalArgumentException.class)
public void testNextIntBadBounds() {
SplittableRandom sr = new SplittableRandom();
int f = sr.nextInt(17, 2);
}
/**
* nextInt(bound) returns 0 <= value < bound;
* repeated calls produce at least two distinct results
*/
public void testNextIntBounded() {
SplittableRandom sr = new SplittableRandom();
// sample bound space across prime number increments
for (int bound = 2; bound < MAX_INT_BOUND; bound += 524959) {
int f = sr.nextInt(bound);
assertTrue(0 <= f && f < bound);
int i = 0;
int j;
while (i < NCALLS &&
(j = sr.nextInt(bound)) == f) {
assertTrue(0 <= j && j < bound);
++i;
}
assertTrue(i < NCALLS);
}
}
/**
* nextInt(least, bound) returns least <= value < bound;
* repeated calls produce at least two distinct results
*/
public void testNextIntBounded2() {
SplittableRandom sr = new SplittableRandom();
for (int least = -15485863; least < MAX_INT_BOUND; least += 524959) {
for (int bound = least + 2; bound > least && bound < MAX_INT_BOUND; bound += 49979687) {
int f = sr.nextInt(least, bound);
assertTrue(least <= f && f < bound);
int i = 0;
int j;
while (i < NCALLS &&
(j = sr.nextInt(least, bound)) == f) {
assertTrue(least <= j && j < bound);
++i;
}
assertTrue(i < NCALLS);
}
}
}
/**
* nextLong(negative) throws IllegalArgumentException
*/
@Test(expectedExceptions = IllegalArgumentException.class)
public void testNextLongBoundedNeg() {
SplittableRandom sr = new SplittableRandom();
long f = sr.nextLong(-17);
}
/**
* nextLong(least >= bound) throws IllegalArgumentException
*/
@Test(expectedExceptions = IllegalArgumentException.class)
public void testNextLongBadBounds() {
SplittableRandom sr = new SplittableRandom();
long f = sr.nextLong(17, 2);
}
/**
* nextLong(bound) returns 0 <= value < bound;
* repeated calls produce at least two distinct results
*/
public void testNextLongBounded() {
SplittableRandom sr = new SplittableRandom();
for (long bound = 2; bound < MAX_LONG_BOUND; bound += 15485863) {
long f = sr.nextLong(bound);
assertTrue(0 <= f && f < bound);
int i = 0;
long j;
while (i < NCALLS &&
(j = sr.nextLong(bound)) == f) {
assertTrue(0 <= j && j < bound);
++i;
}
assertTrue(i < NCALLS);
}
}
/**
* nextLong(least, bound) returns least <= value < bound;
* repeated calls produce at least two distinct results
*/
public void testNextLongBounded2() {
SplittableRandom sr = new SplittableRandom();
for (long least = -86028121; least < MAX_LONG_BOUND; least += 982451653L) {
for (long bound = least + 2; bound > least && bound < MAX_LONG_BOUND; bound += Math.abs(bound * 7919)) {
long f = sr.nextLong(least, bound);
assertTrue(least <= f && f < bound);
int i = 0;
long j;
while (i < NCALLS &&
(j = sr.nextLong(least, bound)) == f) {
assertTrue(least <= j && j < bound);
++i;
}
assertTrue(i < NCALLS);
}
}
}
/**
* nextDouble(least, bound) returns least <= value < bound;
* repeated calls produce at least two distinct results
*/
public void testNextDoubleBounded2() {
SplittableRandom sr = new SplittableRandom();
for (double least = 0.0001; least < 1.0e20; least *= 8) {
for (double bound = least * 1.001; bound < 1.0e20; bound *= 16) {
double f = sr.nextDouble(least, bound);
assertTrue(least <= f && f < bound);
int i = 0;
double j;
while (i < NCALLS &&
(j = sr.nextDouble(least, bound)) == f) {
assertTrue(least <= j && j < bound);
++i;
}
assertTrue(i < NCALLS);
}
}
}
/**
* Invoking sized ints, long, doubles, with negative sizes throws
* IllegalArgumentException
*/
public void testBadStreamSize() {
SplittableRandom r = new SplittableRandom();
executeAndCatchIAE(() -> r.ints(-1L));
executeAndCatchIAE(() -> r.ints(-1L, 2, 3));
executeAndCatchIAE(() -> r.longs(-1L));
executeAndCatchIAE(() -> r.longs(-1L, -1L, 1L));
executeAndCatchIAE(() -> r.doubles(-1L));
executeAndCatchIAE(() -> r.doubles(-1L, .5, .6));
}
/**
* Invoking bounded ints, long, doubles, with illegal bounds throws
* IllegalArgumentException
*/
public void testBadStreamBounds() {
SplittableRandom r = new SplittableRandom();
executeAndCatchIAE(() -> r.ints(2, 1));
executeAndCatchIAE(() -> r.ints(10, 42, 42));
executeAndCatchIAE(() -> r.longs(-1L, -1L));
executeAndCatchIAE(() -> r.longs(10, 1L, -2L));
executeAndCatchIAE(() -> r.doubles(0.0, 0.0));
executeAndCatchIAE(() -> r.doubles(10, .5, .4));
}
private void executeAndCatchIAE(Runnable r) {
executeAndCatch(IllegalArgumentException.class, r);
}
private void executeAndCatch(Class<? extends Exception> expected, Runnable r) {
Exception caught = null;
try {
r.run();
}
catch (Exception e) {
caught = e;
}
assertNotNull(caught,
String.format("No Exception was thrown, expected an Exception of %s to be thrown",
expected.getName()));
Assert.assertTrue(expected.isInstance(caught),
String.format("Exception thrown %s not an instance of %s",
caught.getClass().getName(), expected.getName()));
}
/**
* A parallel sized stream of ints generates the given number of values
*/
public void testIntsCount() {
LongAdder counter = new LongAdder();
SplittableRandom r = new SplittableRandom();
long size = 0;
for (int reps = 0; reps < REPS; ++reps) {
counter.reset();
r.ints(size).parallel().forEach(x -> {counter.increment();});
assertEquals(counter.sum(), size);
size += 524959;
}
}
/**
* A parallel sized stream of longs generates the given number of values
*/
public void testLongsCount() {
LongAdder counter = new LongAdder();
SplittableRandom r = new SplittableRandom();
long size = 0;
for (int reps = 0; reps < REPS; ++reps) {
counter.reset();
r.longs(size).parallel().forEach(x -> {counter.increment();});
assertEquals(counter.sum(), size);
size += 524959;
}
}
/**
* A parallel sized stream of doubles generates the given number of values
*/
public void testDoublesCount() {
LongAdder counter = new LongAdder();
SplittableRandom r = new SplittableRandom();
long size = 0;
for (int reps = 0; reps < REPS; ++reps) {
counter.reset();
r.doubles(size).parallel().forEach(x -> {counter.increment();});
assertEquals(counter.sum(), size);
size += 524959;
}
}
/**
* Each of a parallel sized stream of bounded ints is within bounds
*/
public void testBoundedInts() {
AtomicInteger fails = new AtomicInteger(0);
SplittableRandom r = new SplittableRandom();
long size = 12345L;
for (int least = -15485867; least < MAX_INT_BOUND; least += 524959) {
for (int bound = least + 2; bound > least && bound < MAX_INT_BOUND; bound += 67867967) {
final int lo = least, hi = bound;
r.ints(size, lo, hi).parallel().
forEach(x -> {if (x < lo || x >= hi)
fails.getAndIncrement(); });
}
}
assertEquals(fails.get(), 0);
}
/**
* Each of a parallel sized stream of bounded longs is within bounds
*/
public void testBoundedLongs() {
AtomicInteger fails = new AtomicInteger(0);
SplittableRandom r = new SplittableRandom();
long size = 123L;
for (long least = -86028121; least < MAX_LONG_BOUND; least += 1982451653L) {
for (long bound = least + 2; bound > least && bound < MAX_LONG_BOUND; bound += Math.abs(bound * 7919)) {
final long lo = least, hi = bound;
r.longs(size, lo, hi).parallel().
forEach(x -> {if (x < lo || x >= hi)
fails.getAndIncrement(); });
}
}
assertEquals(fails.get(), 0);
}
/**
* Each of a parallel sized stream of bounded doubles is within bounds
*/
public void testBoundedDoubles() {
AtomicInteger fails = new AtomicInteger(0);
SplittableRandom r = new SplittableRandom();
long size = 456;
for (double least = 0.00011; least < 1.0e20; least *= 9) {
for (double bound = least * 1.0011; bound < 1.0e20; bound *= 17) {
final double lo = least, hi = bound;
r.doubles(size, lo, hi).parallel().
forEach(x -> {if (x < lo || x >= hi)
fails.getAndIncrement(); });
}
}
assertEquals(fails.get(), 0);
}
/**
* A parallel unsized stream of ints generates at least 100 values
*/
public void testUnsizedIntsCount() {
LongAdder counter = new LongAdder();
SplittableRandom r = new SplittableRandom();
long size = 100;
r.ints().limit(size).parallel().forEach(x -> {counter.increment();});
assertEquals(counter.sum(), size);
}
/**
* A parallel unsized stream of longs generates at least 100 values
*/
public void testUnsizedLongsCount() {
LongAdder counter = new LongAdder();
SplittableRandom r = new SplittableRandom();
long size = 100;
r.longs().limit(size).parallel().forEach(x -> {counter.increment();});
assertEquals(counter.sum(), size);
}
/**
* A parallel unsized stream of doubles generates at least 100 values
*/
public void testUnsizedDoublesCount() {
LongAdder counter = new LongAdder();
SplittableRandom r = new SplittableRandom();
long size = 100;
r.doubles().limit(size).parallel().forEach(x -> {counter.increment();});
assertEquals(counter.sum(), size);
}
/**
* A sequential unsized stream of ints generates at least 100 values
*/
public void testUnsizedIntsCountSeq() {
LongAdder counter = new LongAdder();
SplittableRandom r = new SplittableRandom();
long size = 100;
r.ints().limit(size).forEach(x -> {counter.increment();});
assertEquals(counter.sum(), size);
}
/**
* A sequential unsized stream of longs generates at least 100 values
*/
public void testUnsizedLongsCountSeq() {
LongAdder counter = new LongAdder();
SplittableRandom r = new SplittableRandom();
long size = 100;
r.longs().limit(size).forEach(x -> {counter.increment();});
assertEquals(counter.sum(), size);
}
/**
* A sequential unsized stream of doubles generates at least 100 values
*/
public void testUnsizedDoublesCountSeq() {
LongAdder counter = new LongAdder();
SplittableRandom r = new SplittableRandom();
long size = 100;
r.doubles().limit(size).forEach(x -> {counter.increment();});
assertEquals(counter.sum(), size);
}
}
/*
* Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package org.openjdk.tests.java.util;
import org.testng.annotations.DataProvider;
import org.testng.annotations.Test;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
import java.util.Spliterator;
import java.util.SplittableRandom;
import java.util.function.Consumer;
import java.util.function.Function;
import java.util.stream.DoubleStream;
import java.util.stream.DoubleStreamTestScenario;
import java.util.stream.IntStream;
import java.util.stream.IntStreamTestScenario;
import java.util.stream.LongStream;
import java.util.stream.LongStreamTestScenario;
import java.util.stream.OpTestCase;
import java.util.stream.StreamSupport;
import java.util.stream.TestData;
@Test
public class SplittableRandomTest extends OpTestCase {
static class RandomBoxedSpliterator<T> implements Spliterator<T> {
final SplittableRandom rng;
long index;
final long fence;
final Function<SplittableRandom, T> rngF;
RandomBoxedSpliterator(SplittableRandom rng, long index, long fence, Function<SplittableRandom, T> rngF) {
this.rng = rng;
this.index = index;
this.fence = fence;
this.rngF = rngF;
}
public RandomBoxedSpliterator<T> trySplit() {
long i = index, m = (i + fence) >>> 1;
return (m <= i) ? null :
new RandomBoxedSpliterator<>(rng.split(), i, index = m, rngF);
}
public long estimateSize() {
return fence - index;
}
public int characteristics() {
return (Spliterator.SIZED | Spliterator.SUBSIZED |
Spliterator.NONNULL | Spliterator.IMMUTABLE);
}
@Override
public boolean tryAdvance(Consumer<? super T> consumer) {
if (consumer == null) throw new NullPointerException();
long i = index, f = fence;
if (i < f) {
consumer.accept(rngF.apply(rng));
index = i + 1;
return true;
}
return false;
}
}
static final int SIZE = 1 << 16;
// Ensure there is a range of a power of 2
static final int[] BOUNDS = {256};
static final int[] ORIGINS = {-16, 0, 16};
static <T extends Comparable<T>> ResultAsserter<Iterable<T>> randomAsserter(int size, T origin, T bound) {
return (act, exp, ord, par) -> {
int count = 0;
Set<Comparable<T>> values = new HashSet<>();
for (Comparable<T> t : act) {
if (origin.compareTo(bound) < 0) {
assertTrue(t.compareTo(origin) >= 0);
assertTrue(t.compareTo(bound) < 0);
}
values.add(t);
count++;
}
assertEquals(count, size);
// Assert that at least one different result is produced
// For the size of the data it is highly improbable that this
// will cause a false negative (i.e. a false failure)
assertTrue(values.size() > 1);
};
}
@DataProvider(name = "ints")
public static Object[][] intsDataProvider() {
List<Object[]> data = new ArrayList<>();
// Function to create a stream using a RandomBoxedSpliterator
Function<Function<SplittableRandom, Integer>, IntStream> rbsf =
sf -> StreamSupport.stream(new RandomBoxedSpliterator<>(new SplittableRandom(), 0, SIZE, sf), false).
mapToInt(i -> i);
// Unbounded
data.add(new Object[]{
TestData.Factory.ofIntSupplier(
String.format("new SplittableRandom().ints().limit(%d)", SIZE),
() -> new SplittableRandom().ints().limit(SIZE)),
randomAsserter(SIZE, Integer.MAX_VALUE, 0)
});
data.add(new Object[]{
TestData.Factory.ofIntSupplier(
String.format("new SplittableRandom().ints(%d)", SIZE),
() -> new SplittableRandom().ints(SIZE)),
randomAsserter(SIZE, Integer.MAX_VALUE, 0)
});
data.add(new Object[]{
TestData.Factory.ofIntSupplier(
String.format("new RandomBoxedSpliterator(0, %d, sr -> sr.nextInt())", SIZE),
() -> rbsf.apply(sr -> sr.nextInt())),
randomAsserter(SIZE, Integer.MAX_VALUE, 0)
});
// Bounded
for (int b : BOUNDS) {
for (int o : ORIGINS) {
final int origin = o;
final int bound = b;
data.add(new Object[]{
TestData.Factory.ofIntSupplier(
String.format("new SplittableRandom().ints(%d, %d).limit(%d)", origin, bound, SIZE),
() -> new SplittableRandom().ints(origin, bound).limit(SIZE)),
randomAsserter(SIZE, origin, bound)
});
data.add(new Object[]{
TestData.Factory.ofIntSupplier(
String.format("new SplittableRandom().ints(%d, %d, %d)", SIZE, origin, bound),
() -> new SplittableRandom().ints(SIZE, origin, bound)),
randomAsserter(SIZE, origin, bound)
});
if (origin == 0) {
data.add(new Object[]{
TestData.Factory.ofIntSupplier(
String.format("new RandomBoxedSpliterator(0, %d, sr -> sr.nextInt(%d))", SIZE, bound),
() -> rbsf.apply(sr -> sr.nextInt(bound))),
randomAsserter(SIZE, origin, bound)
});
}
data.add(new Object[]{
TestData.Factory.ofIntSupplier(
String.format("new RandomBoxedSpliterator(0, %d, sr -> sr.nextInt(%d, %d))", SIZE, origin, bound),
() -> rbsf.apply(sr -> sr.nextInt(origin, bound))),
randomAsserter(SIZE, origin, bound)
});
}
}
return data.toArray(new Object[0][]);
}
@Test(dataProvider = "ints")
public void testInts(TestData.OfInt data, ResultAsserter<Iterable<Integer>> ra) {
withData(data).
stream(s -> s).
without(IntStreamTestScenario.PAR_STREAM_TO_ARRAY_CLEAR_SIZED).
resultAsserter(ra).
exercise();
}
@DataProvider(name = "longs")
public static Object[][] longsDataProvider() {
List<Object[]> data = new ArrayList<>();
// Function to create a stream using a RandomBoxedSpliterator
Function<Function<SplittableRandom, Long>, LongStream> rbsf =
sf -> StreamSupport.stream(new RandomBoxedSpliterator<>(new SplittableRandom(), 0, SIZE, sf), false).
mapToLong(i -> i);
// Unbounded
data.add(new Object[]{
TestData.Factory.ofLongSupplier(
String.format("new SplittableRandom().longs().limit(%d)", SIZE),
() -> new SplittableRandom().longs().limit(SIZE)),
randomAsserter(SIZE, Long.MAX_VALUE, 0L)
});
data.add(new Object[]{
TestData.Factory.ofLongSupplier(
String.format("new SplittableRandom().longs(%d)", SIZE),
() -> new SplittableRandom().longs(SIZE)),
randomAsserter(SIZE, Long.MAX_VALUE, 0L)
});
data.add(new Object[]{
TestData.Factory.ofLongSupplier(
String.format("new RandomBoxedSpliterator(0, %d, sr -> sr.nextLong())", SIZE),
() -> rbsf.apply(sr -> sr.nextLong())),
randomAsserter(SIZE, Long.MAX_VALUE, 0L)
});
// Bounded
for (int b : BOUNDS) {
for (int o : ORIGINS) {
final long origin = o;
final long bound = b;
data.add(new Object[]{
TestData.Factory.ofLongSupplier(
String.format("new SplittableRandom().longs(%d, %d).limit(%d)", origin, bound, SIZE),
() -> new SplittableRandom().longs(origin, bound).limit(SIZE)),
randomAsserter(SIZE, origin, bound)
});
data.add(new Object[]{
TestData.Factory.ofLongSupplier(
String.format("new SplittableRandom().longs(%d, %d, %d)", SIZE, origin, bound),
() -> new SplittableRandom().longs(SIZE, origin, bound)),
randomAsserter(SIZE, origin, bound)
});
if (origin == 0) {
data.add(new Object[]{
TestData.Factory.ofLongSupplier(
String.format("new RandomBoxedSpliterator(0, %d, sr -> sr.nextLong(%d))", SIZE, bound),
() -> rbsf.apply(sr -> sr.nextLong(bound))),
randomAsserter(SIZE, origin, bound)
});
}
data.add(new Object[]{
TestData.Factory.ofLongSupplier(
String.format("new RandomBoxedSpliterator(0, %d, sr -> sr.nextLong(%d, %d))", SIZE, origin, bound),
() -> rbsf.apply(sr -> sr.nextLong(origin, bound))),
randomAsserter(SIZE, origin, bound)
});
}
}
return data.toArray(new Object[0][]);
}
@Test(dataProvider = "longs")
public void testLongs(TestData.OfLong data, ResultAsserter<Iterable<Long>> ra) {
withData(data).
stream(s -> s).
without(LongStreamTestScenario.PAR_STREAM_TO_ARRAY_CLEAR_SIZED).
resultAsserter(ra).
exercise();
}
@DataProvider(name = "doubles")
public static Object[][] doublesDataProvider() {
List<Object[]> data = new ArrayList<>();
// Function to create a stream using a RandomBoxedSpliterator
Function<Function<SplittableRandom, Double>, DoubleStream> rbsf =
sf -> StreamSupport.stream(new RandomBoxedSpliterator<>(new SplittableRandom(), 0, SIZE, sf), false).
mapToDouble(i -> i);
// Unbounded
data.add(new Object[]{
TestData.Factory.ofDoubleSupplier(
String.format("new SplittableRandom().doubles().limit(%d)", SIZE),
() -> new SplittableRandom().doubles().limit(SIZE)),
randomAsserter(SIZE, Double.MAX_VALUE, 0d)
});
data.add(new Object[]{
TestData.Factory.ofDoubleSupplier(
String.format("new SplittableRandom().doubles(%d)", SIZE),
() -> new SplittableRandom().doubles(SIZE)),
randomAsserter(SIZE, Double.MAX_VALUE, 0d)
});
data.add(new Object[]{
TestData.Factory.ofDoubleSupplier(
String.format("new RandomBoxedSpliterator(0, %d, sr -> sr.nextDouble())", SIZE),
() -> rbsf.apply(sr -> sr.nextDouble())),
randomAsserter(SIZE, Double.MAX_VALUE, 0d)
});
// Bounded
for (int b : BOUNDS) {
for (int o : ORIGINS) {
final double origin = o;
final double bound = b;
data.add(new Object[]{
TestData.Factory.ofDoubleSupplier(
String.format("new SplittableRandom().doubles(%f, %f).limit(%d)", origin, bound, SIZE),
() -> new SplittableRandom().doubles(origin, bound).limit(SIZE)),
randomAsserter(SIZE, origin, bound)
});
data.add(new Object[]{
TestData.Factory.ofDoubleSupplier(
String.format("new SplittableRandom().doubles(%d, %f, %f)", SIZE, origin, bound),
() -> new SplittableRandom().doubles(SIZE, origin, bound)),
randomAsserter(SIZE, origin, bound)
});
if (origin == 0) {
data.add(new Object[]{
TestData.Factory.ofDoubleSupplier(
String.format("new RandomBoxedSpliterator(0, %d, sr -> sr.nextDouble(%f))", SIZE, bound),
() -> rbsf.apply(sr -> sr.nextDouble(bound))),
randomAsserter(SIZE, origin, bound)
});
}
data.add(new Object[]{
TestData.Factory.ofDoubleSupplier(
String.format("new RandomBoxedSpliterator(0, %d, sr -> sr.nextDouble(%f, %f))", SIZE, origin, bound),
() -> rbsf.apply(sr -> sr.nextDouble(origin, bound))),
randomAsserter(SIZE, origin, bound)
});
}
}
return data.toArray(new Object[0][]);
}
@Test(dataProvider = "doubles")
public void testDoubles(TestData.OfDouble data, ResultAsserter<Iterable<Double>> ra) {
withData(data).
stream(s -> s).
without(DoubleStreamTestScenario.PAR_STREAM_TO_ARRAY_CLEAR_SIZED).
resultAsserter(ra).
exercise();
}
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册