提交 71aac3bf 编写于 作者: D dl

7036559: ConcurrentHashMap footprint and contention improvements

Reviewed-by: chegar
上级 2c8e932e
......@@ -105,7 +105,25 @@ public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
/*
* The basic strategy is to subdivide the table among Segments,
* each of which itself is a concurrently readable hash table.
* each of which itself is a concurrently readable hash table. To
* reduce footprint, all but one segments are constructed only
* when first needed (see ensureSegment). To maintain visibility
* in the presence of lazy construction, accesses to segments as
* well as elements of segment's table must use volatile access,
* which is done via Unsafe within methods segmentAt etc
* below. These provide the functionality of AtomicReferenceArrays
* but reduce the levels of indirection. Additionally,
* volatile-writes of table elements and entry "next" fields
* within locked operations use the cheaper "lazySet" forms of
* writes (via putOrderedObject) because these writes are always
* followed by lock releases that maintain sequential consistency
* of table updates.
*
* Historical note: The previous version of this class relied
* heavily on "final" fields, which avoided some volatile reads at
* the expense of a large initial footprint. Some remnants of
* that design (including forced construction of segment 0) exist
* to ensure serialization compatibility.
*/
/* ---------------- Constants -------------- */
......@@ -136,9 +154,16 @@ public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
*/
static final int MAXIMUM_CAPACITY = 1 << 30;
/**
* The minimum capacity for per-segment tables. Must be a power
* of two, at least two to avoid immediate resizing on next use
* after lazy construction.
*/
static final int MIN_SEGMENT_TABLE_CAPACITY = 2;
/**
* The maximum number of segments to allow; used to bound
* constructor arguments.
* constructor arguments. Must be power of two less than 1 << 24.
*/
static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
......@@ -164,7 +189,7 @@ public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
final int segmentShift;
/**
* The segments, each of which is a specialized hash table
* The segments, each of which is a specialized hash table.
*/
final Segment<K,V>[] segments;
......@@ -172,7 +197,65 @@ public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
transient Set<Map.Entry<K,V>> entrySet;
transient Collection<V> values;
/* ---------------- Small Utilities -------------- */
/**
* ConcurrentHashMap list entry. Note that this is never exported
* out as a user-visible Map.Entry.
*/
static final class HashEntry<K,V> {
final int hash;
final K key;
volatile V value;
volatile HashEntry<K,V> next;
HashEntry(int hash, K key, V value, HashEntry<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
/**
* Sets next field with volatile write semantics. (See above
* about use of putOrderedObject.)
*/
final void setNext(HashEntry<K,V> n) {
UNSAFE.putOrderedObject(this, nextOffset, n);
}
// Unsafe mechanics
static final sun.misc.Unsafe UNSAFE;
static final long nextOffset;
static {
try {
UNSAFE = sun.misc.Unsafe.getUnsafe();
Class k = HashEntry.class;
nextOffset = UNSAFE.objectFieldOffset
(k.getDeclaredField("next"));
} catch (Exception e) {
throw new Error(e);
}
}
}
/**
* Gets the ith element of given table (if nonnull) with volatile
* read semantics.
*/
@SuppressWarnings("unchecked")
static final <K,V> HashEntry<K,V> entryAt(HashEntry<K,V>[] tab, int i) {
return (tab == null) ? null :
(HashEntry<K,V>) UNSAFE.getObjectVolatile
(tab, ((long)i << TSHIFT) + TBASE);
}
/**
* Sets the ith element of given table, with volatile write
* semantics. (See above about use of putOrderedObject.)
*/
static final <K,V> void setEntryAt(HashEntry<K,V>[] tab, int i,
HashEntry<K,V> e) {
UNSAFE.putOrderedObject(tab, ((long)i << TSHIFT) + TBASE, e);
}
/**
* Applies a supplemental hash function to a given hashCode, which
......@@ -192,48 +275,6 @@ public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
return h ^ (h >>> 16);
}
/**
* Returns the segment that should be used for key with given hash
* @param hash the hash code for the key
* @return the segment
*/
final Segment<K,V> segmentFor(int hash) {
return segments[(hash >>> segmentShift) & segmentMask];
}
/* ---------------- Inner Classes -------------- */
/**
* ConcurrentHashMap list entry. Note that this is never exported
* out as a user-visible Map.Entry.
*
* Because the value field is volatile, not final, it is legal wrt
* the Java Memory Model for an unsynchronized reader to see null
* instead of initial value when read via a data race. Although a
* reordering leading to this is not likely to ever actually
* occur, the Segment.readValueUnderLock method is used as a
* backup in case a null (pre-initialized) value is ever seen in
* an unsynchronized access method.
*/
static final class HashEntry<K,V> {
final K key;
final int hash;
volatile V value;
final HashEntry<K,V> next;
HashEntry(K key, int hash, HashEntry<K,V> next, V value) {
this.key = key;
this.hash = hash;
this.next = next;
this.value = value;
}
@SuppressWarnings("unchecked")
static final <K,V> HashEntry<K,V>[] newArray(int i) {
return new HashEntry[i];
}
}
/**
* Segments are specialized versions of hash tables. This
* subclasses from ReentrantLock opportunistically, just to
......@@ -241,56 +282,61 @@ public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
*/
static final class Segment<K,V> extends ReentrantLock implements Serializable {
/*
* Segments maintain a table of entry lists that are ALWAYS
* kept in a consistent state, so can be read without locking.
* Next fields of nodes are immutable (final). All list
* additions are performed at the front of each bin. This
* makes it easy to check changes, and also fast to traverse.
* When nodes would otherwise be changed, new nodes are
* created to replace them. This works well for hash tables
* since the bin lists tend to be short. (The average length
* is less than two for the default load factor threshold.)
*
* Read operations can thus proceed without locking, but rely
* on selected uses of volatiles to ensure that completed
* write operations performed by other threads are
* noticed. For most purposes, the "count" field, tracking the
* number of elements, serves as that volatile variable
* ensuring visibility. This is convenient because this field
* needs to be read in many read operations anyway:
*
* - All (unsynchronized) read operations must first read the
* "count" field, and should not look at table entries if
* it is 0.
* Segments maintain a table of entry lists that are always
* kept in a consistent state, so can be read (via volatile
* reads of segments and tables) without locking. This
* requires replicating nodes when necessary during table
* resizing, so the old lists can be traversed by readers
* still using old version of table.
*
* - All (synchronized) write operations should write to
* the "count" field after structurally changing any bin.
* The operations must not take any action that could even
* momentarily cause a concurrent read operation to see
* inconsistent data. This is made easier by the nature of
* the read operations in Map. For example, no operation
* can reveal that the table has grown but the threshold
* has not yet been updated, so there are no atomicity
* requirements for this with respect to reads.
*
* As a guide, all critical volatile reads and writes to the
* count field are marked in code comments.
* This class defines only mutative methods requiring locking.
* Except as noted, the methods of this class perform the
* per-segment versions of ConcurrentHashMap methods. (Other
* methods are integrated directly into ConcurrentHashMap
* methods.) These mutative methods use a form of controlled
* spinning on contention via methods scanAndLock and
* scanAndLockForPut. These intersperse tryLocks with
* traversals to locate nodes. The main benefit is to absorb
* cache misses (which are very common for hash tables) while
* obtaining locks so that traversal is faster once
* acquired. We do not actually use the found nodes since they
* must be re-acquired under lock anyway to ensure sequential
* consistency of updates (and in any case may be undetectably
* stale), but they will normally be much faster to re-locate.
* Also, scanAndLockForPut speculatively creates a fresh node
* to use in put if no node is found.
*/
private static final long serialVersionUID = 2249069246763182397L;
/**
* The number of elements in this segment's region.
* The maximum number of times to tryLock in a prescan before
* possibly blocking on acquire in preparation for a locked
* segment operation. On multiprocessors, using a bounded
* number of retries maintains cache acquired while locating
* nodes.
*/
static final int MAX_SCAN_RETRIES =
Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
/**
* The per-segment table. Elements are accessed via
* entryAt/setEntryAt providing volatile semantics.
*/
transient volatile HashEntry<K,V>[] table;
/**
* The number of elements. Accessed only either within locks
* or among other volatile reads that maintain visibility.
*/
transient volatile int count;
transient int count;
/**
* Number of updates that alter the size of the table. This is
* used during bulk-read methods to make sure they see a
* consistent snapshot: If modCounts change during a traversal
* of segments computing size or checking containsValue, then
* we might have an inconsistent view of state so (usually)
* must retry.
* The total number of mutative operations in this segment.
* Even though this may overflows 32 bits, it provides
* sufficient accuracy for stability checks in CHM isEmpty()
* and size() methods. Accessed only either within locks or
* among other volatile reads that maintain visibility.
*/
transient int modCount;
......@@ -301,11 +347,6 @@ public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
*/
transient int threshold;
/**
* The per-segment table.
*/
transient volatile HashEntry<K,V>[] table;
/**
* The load factor for the hash table. Even though this value
* is same for all segments, it is replicated to avoid needing
......@@ -314,202 +355,94 @@ public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
*/
final float loadFactor;
Segment(int initialCapacity, float lf) {
loadFactor = lf;
setTable(HashEntry.<K,V>newArray(initialCapacity));
}
@SuppressWarnings("unchecked")
static final <K,V> Segment<K,V>[] newArray(int i) {
return new Segment[i];
}
/**
* Sets table to new HashEntry array.
* Call only while holding lock or in constructor.
*/
void setTable(HashEntry<K,V>[] newTable) {
threshold = (int)(newTable.length * loadFactor);
table = newTable;
}
/**
* Returns properly casted first entry of bin for given hash.
*/
HashEntry<K,V> getFirst(int hash) {
HashEntry<K,V>[] tab = table;
return tab[hash & (tab.length - 1)];
Segment(float lf, int threshold, HashEntry<K,V>[] tab) {
this.loadFactor = lf;
this.threshold = threshold;
this.table = tab;
}
/**
* Reads value field of an entry under lock. Called if value
* field ever appears to be null. This is possible only if a
* compiler happens to reorder a HashEntry initialization with
* its table assignment, which is legal under memory model
* but is not known to ever occur.
*/
V readValueUnderLock(HashEntry<K,V> e) {
lock();
final V put(K key, int hash, V value, boolean onlyIfAbsent) {
HashEntry<K,V> node = tryLock() ? null :
scanAndLockForPut(key, hash, value);
V oldValue;
try {
return e.value;
} finally {
unlock();
}
}
/* Specialized implementations of map methods */
V get(Object key, int hash) {
if (count != 0) { // read-volatile
HashEntry<K,V> e = getFirst(hash);
while (e != null) {
if (e.hash == hash && key.equals(e.key)) {
V v = e.value;
if (v != null)
return v;
return readValueUnderLock(e); // recheck
}
e = e.next;
}
}
return null;
}
boolean containsKey(Object key, int hash) {
if (count != 0) { // read-volatile
HashEntry<K,V> e = getFirst(hash);
while (e != null) {
if (e.hash == hash && key.equals(e.key))
return true;
e = e.next;
}
}
return false;
}
boolean containsValue(Object value) {
if (count != 0) { // read-volatile
HashEntry<K,V>[] tab = table;
int len = tab.length;
for (int i = 0 ; i < len; i++) {
for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
V v = e.value;
if (v == null) // recheck
v = readValueUnderLock(e);
if (value.equals(v))
return true;
}
}
}
return false;
}
boolean replace(K key, int hash, V oldValue, V newValue) {
lock();
try {
HashEntry<K,V> e = getFirst(hash);
while (e != null && (e.hash != hash || !key.equals(e.key)))
e = e.next;
boolean replaced = false;
if (e != null && oldValue.equals(e.value)) {
replaced = true;
e.value = newValue;
}
return replaced;
} finally {
unlock();
}
}
V replace(K key, int hash, V newValue) {
lock();
try {
HashEntry<K,V> e = getFirst(hash);
while (e != null && (e.hash != hash || !key.equals(e.key)))
e = e.next;
V oldValue = null;
int index = (tab.length - 1) & hash;
HashEntry<K,V> first = entryAt(tab, index);
for (HashEntry<K,V> e = first;;) {
if (e != null) {
K k;
if ((k = e.key) == key ||
(e.hash == hash && key.equals(k))) {
oldValue = e.value;
e.value = newValue;
}
return oldValue;
} finally {
unlock();
if (!onlyIfAbsent) {
e.value = value;
++modCount;
}
break;
}
V put(K key, int hash, V value, boolean onlyIfAbsent) {
lock();
try {
int c = count;
if (c++ > threshold) // ensure capacity
rehash();
HashEntry<K,V>[] tab = table;
int index = hash & (tab.length - 1);
HashEntry<K,V> first = tab[index];
HashEntry<K,V> e = first;
while (e != null && (e.hash != hash || !key.equals(e.key)))
e = e.next;
V oldValue;
if (e != null) {
oldValue = e.value;
if (!onlyIfAbsent)
e.value = value;
}
else {
oldValue = null;
if (node != null)
node.setNext(first);
else
node = new HashEntry<K,V>(hash, key, value, first);
int c = count + 1;
if (c > threshold && first != null &&
tab.length < MAXIMUM_CAPACITY)
rehash(node);
else
setEntryAt(tab, index, node);
++modCount;
tab[index] = new HashEntry<K,V>(key, hash, first, value);
count = c; // write-volatile
count = c;
oldValue = null;
break;
}
}
return oldValue;
} finally {
unlock();
}
return oldValue;
}
void rehash() {
/**
* Doubles size of table and repacks entries, also adding the
* given node to new table
*/
@SuppressWarnings("unchecked")
private void rehash(HashEntry<K,V> node) {
/*
* Reclassify nodes in each list to new table. Because we
* are using power-of-two expansion, the elements from
* each bin must either stay at same index, or move with a
* power of two offset. We eliminate unnecessary node
* creation by catching cases where old nodes can be
* reused because their next fields won't change.
* Statistically, at the default threshold, only about
* one-sixth of them need cloning when a table
* doubles. The nodes they replace will be garbage
* collectable as soon as they are no longer referenced by
* any reader thread that may be in the midst of
* concurrently traversing table. Entry accesses use plain
* array indexing because they are followed by volatile
* table write.
*/
HashEntry<K,V>[] oldTable = table;
int oldCapacity = oldTable.length;
if (oldCapacity >= MAXIMUM_CAPACITY)
return;
/*
* Reclassify nodes in each list to new Map. Because we are
* using power-of-two expansion, the elements from each bin
* must either stay at same index, or move with a power of two
* offset. We eliminate unnecessary node creation by catching
* cases where old nodes can be reused because their next
* fields won't change. Statistically, at the default
* threshold, only about one-sixth of them need cloning when
* a table doubles. The nodes they replace will be garbage
* collectable as soon as they are no longer referenced by any
* reader thread that may be in the midst of traversing table
* right now.
*/
HashEntry<K,V>[] newTable = HashEntry.newArray(oldCapacity<<1);
threshold = (int)(newTable.length * loadFactor);
int sizeMask = newTable.length - 1;
int newCapacity = oldCapacity << 1;
threshold = (int)(newCapacity * loadFactor);
HashEntry<K,V>[] newTable =
(HashEntry<K,V>[]) new HashEntry[newCapacity];
int sizeMask = newCapacity - 1;
for (int i = 0; i < oldCapacity ; i++) {
// We need to guarantee that any existing reads of old Map can
// proceed. So we cannot yet null out each bin.
HashEntry<K,V> e = oldTable[i];
if (e != null) {
HashEntry<K,V> next = e.next;
int idx = e.hash & sizeMask;
// Single node on list
if (next == null)
if (next == null) // Single node on list
newTable[idx] = e;
else {
// Reuse trailing consecutive sequence at same slot
else { // Reuse consecutive sequence at same slot
HashEntry<K,V> lastRun = e;
int lastIdx = idx;
for (HashEntry<K,V> last = next;
......@@ -522,74 +455,259 @@ public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
}
}
newTable[lastIdx] = lastRun;
// Clone all remaining nodes
// Clone remaining nodes
for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
int k = p.hash & sizeMask;
V v = p.value;
int h = p.hash;
int k = h & sizeMask;
HashEntry<K,V> n = newTable[k];
newTable[k] = new HashEntry<K,V>(p.key, p.hash,
n, p.value);
newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
}
}
}
}
int nodeIndex = node.hash & sizeMask; // add the new node
node.setNext(newTable[nodeIndex]);
newTable[nodeIndex] = node;
table = newTable;
}
/**
* Remove; match on key only if value null, else match both.
* Scans for a node containing given key while trying to
* acquire lock, creating and returning one if not found. Upon
* return, guarantees that lock is held. UNlike in most
* methods, calls to method equals are not screened: Since
* traversal speed doesn't matter, we might as well help warm
* up the associated code and accesses as well.
*
* @return a new node if key not found, else null
*/
V remove(Object key, int hash, Object value) {
private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {
HashEntry<K,V> first = entryForHash(this, hash);
HashEntry<K,V> e = first;
HashEntry<K,V> node = null;
int retries = -1; // negative while locating node
while (!tryLock()) {
HashEntry<K,V> f; // to recheck first below
if (retries < 0) {
if (e == null) {
if (node == null) // speculatively create node
node = new HashEntry<K,V>(hash, key, value, null);
retries = 0;
}
else if (key.equals(e.key))
retries = 0;
else
e = e.next;
}
else if (++retries > MAX_SCAN_RETRIES) {
lock();
try {
int c = count - 1;
HashEntry<K,V>[] tab = table;
int index = hash & (tab.length - 1);
HashEntry<K,V> first = tab[index];
break;
}
else if ((retries & 1) == 0 &&
(f = entryForHash(this, hash)) != first) {
e = first = f; // re-traverse if entry changed
retries = -1;
}
}
return node;
}
/**
* Scans for a node containing the given key while trying to
* acquire lock for a remove or replace operation. Upon
* return, guarantees that lock is held. Note that we must
* lock even if the key is not found, to ensure sequential
* consistency of updates.
*/
private void scanAndLock(Object key, int hash) {
// similar to but simpler than scanAndLockForPut
HashEntry<K,V> first = entryForHash(this, hash);
HashEntry<K,V> e = first;
while (e != null && (e.hash != hash || !key.equals(e.key)))
int retries = -1;
while (!tryLock()) {
HashEntry<K,V> f;
if (retries < 0) {
if (e == null || key.equals(e.key))
retries = 0;
else
e = e.next;
}
else if (++retries > MAX_SCAN_RETRIES) {
lock();
break;
}
else if ((retries & 1) == 0 &&
(f = entryForHash(this, hash)) != first) {
e = first = f;
retries = -1;
}
}
}
/**
* Remove; match on key only if value null, else match both.
*/
final V remove(Object key, int hash, Object value) {
if (!tryLock())
scanAndLock(key, hash);
V oldValue = null;
if (e != null) {
try {
HashEntry<K,V>[] tab = table;
int index = (tab.length - 1) & hash;
HashEntry<K,V> e = entryAt(tab, index);
HashEntry<K,V> pred = null;
while (e != null) {
K k;
HashEntry<K,V> next = e.next;
if ((k = e.key) == key ||
(e.hash == hash && key.equals(k))) {
V v = e.value;
if (value == null || value.equals(v)) {
oldValue = v;
// All entries following removed node can stay
// in list, but all preceding ones need to be
// cloned.
if (value == null || value == v || value.equals(v)) {
if (pred == null)
setEntryAt(tab, index, next);
else
pred.setNext(next);
++modCount;
HashEntry<K,V> newFirst = e.next;
for (HashEntry<K,V> p = first; p != e; p = p.next)
newFirst = new HashEntry<K,V>(p.key, p.hash,
newFirst, p.value);
tab[index] = newFirst;
count = c; // write-volatile
--count;
oldValue = v;
}
break;
}
pred = e;
e = next;
}
} finally {
unlock();
}
return oldValue;
}
final boolean replace(K key, int hash, V oldValue, V newValue) {
if (!tryLock())
scanAndLock(key, hash);
boolean replaced = false;
try {
HashEntry<K,V> e;
for (e = entryForHash(this, hash); e != null; e = e.next) {
K k;
if ((k = e.key) == key ||
(e.hash == hash && key.equals(k))) {
if (oldValue.equals(e.value)) {
e.value = newValue;
++modCount;
replaced = true;
}
break;
}
}
} finally {
unlock();
}
return replaced;
}
final V replace(K key, int hash, V value) {
if (!tryLock())
scanAndLock(key, hash);
V oldValue = null;
try {
HashEntry<K,V> e;
for (e = entryForHash(this, hash); e != null; e = e.next) {
K k;
if ((k = e.key) == key ||
(e.hash == hash && key.equals(k))) {
oldValue = e.value;
e.value = value;
++modCount;
break;
}
}
} finally {
unlock();
}
return oldValue;
}
void clear() {
if (count != 0) {
final void clear() {
lock();
try {
HashEntry<K,V>[] tab = table;
for (int i = 0; i < tab.length ; i++)
tab[i] = null;
setEntryAt(tab, i, null);
++modCount;
count = 0; // write-volatile
count = 0;
} finally {
unlock();
}
}
}
// Accessing segments
/**
* Gets the jth element of given segment array (if nonnull) with
* volatile element access semantics via Unsafe.
*/
@SuppressWarnings("unchecked")
static final <K,V> Segment<K,V> segmentAt(Segment<K,V>[] ss, int j) {
long u = (j << SSHIFT) + SBASE;
return ss == null ? null :
(Segment<K,V>) UNSAFE.getObjectVolatile(ss, u);
}
/**
* Returns the segment for the given index, creating it and
* recording in segment table (via CAS) if not already present.
*
* @param k the index
* @return the segment
*/
@SuppressWarnings("unchecked")
private Segment<K,V> ensureSegment(int k) {
final Segment<K,V>[] ss = this.segments;
long u = (k << SSHIFT) + SBASE; // raw offset
Segment<K,V> seg;
if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) {
Segment<K,V> proto = ss[0]; // use segment 0 as prototype
int cap = proto.table.length;
float lf = proto.loadFactor;
int threshold = (int)(cap * lf);
HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry[cap];
if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
== null) { // recheck
Segment<K,V> s = new Segment<K,V>(lf, threshold, tab);
while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
== null) {
if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s))
break;
}
}
}
return seg;
}
// Hash-based segment and entry accesses
/**
* Get the segment for the given hash
*/
@SuppressWarnings("unchecked")
private Segment<K,V> segmentForHash(int h) {
long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
return (Segment<K,V>) UNSAFE.getObjectVolatile(segments, u);
}
/**
* Gets the table entry for the given segment and hash
*/
@SuppressWarnings("unchecked")
static final <K,V> HashEntry<K,V> entryForHash(Segment<K,V> seg, int h) {
HashEntry<K,V>[] tab;
return (seg == null || (tab = seg.table) == null) ? null :
(HashEntry<K,V>) UNSAFE.getObjectVolatile
(tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
}
/* ---------------- Public operations -------------- */
......@@ -609,14 +727,13 @@ public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
* negative or the load factor or concurrencyLevel are
* nonpositive.
*/
@SuppressWarnings("unchecked")
public ConcurrentHashMap(int initialCapacity,
float loadFactor, int concurrencyLevel) {
if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
throw new IllegalArgumentException();
if (concurrencyLevel > MAX_SEGMENTS)
concurrencyLevel = MAX_SEGMENTS;
// Find power-of-two sizes best matching arguments
int sshift = 0;
int ssize = 1;
......@@ -624,21 +741,23 @@ public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
++sshift;
ssize <<= 1;
}
segmentShift = 32 - sshift;
segmentMask = ssize - 1;
this.segments = Segment.newArray(ssize);
this.segmentShift = 32 - sshift;
this.segmentMask = ssize - 1;
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
int c = initialCapacity / ssize;
if (c * ssize < initialCapacity)
++c;
int cap = 1;
int cap = MIN_SEGMENT_TABLE_CAPACITY;
while (cap < c)
cap <<= 1;
for (int i = 0; i < this.segments.length; ++i)
this.segments[i] = new Segment<K,V>(cap, loadFactor);
// create segments and segments[0]
Segment<K,V> s0 =
new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
(HashEntry<K,V>[])new HashEntry[cap]);
Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
this.segments = ss;
}
/**
......@@ -701,34 +820,37 @@ public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
* @return <tt>true</tt> if this map contains no key-value mappings
*/
public boolean isEmpty() {
final Segment<K,V>[] segments = this.segments;
/*
* We keep track of per-segment modCounts to avoid ABA
* problems in which an element in one segment was added and
* in another removed during traversal, in which case the
* table was never actually empty at any point. Note the
* similar use of modCounts in the size() and containsValue()
* methods, which are the only other methods also susceptible
* to ABA problems.
*/
int[] mc = new int[segments.length];
int mcsum = 0;
for (int i = 0; i < segments.length; ++i) {
if (segments[i].count != 0)
* Sum per-segment modCounts to avoid mis-reporting when
* elements are concurrently added and removed in one segment
* while checking another, in which case the table was never
* actually empty at any point. (The sum ensures accuracy up
* through at least 1<<31 per-segment modifications before
* recheck.) Methods size() and containsValue() use similar
* constructions for stability checks.
*/
long sum = 0L;
final Segment<K,V>[] segments = this.segments;
for (int j = 0; j < segments.length; ++j) {
Segment<K,V> seg = segmentAt(segments, j);
if (seg != null) {
if (seg.count != 0)
return false;
else
mcsum += mc[i] = segments[i].modCount;
}
// If mcsum happens to be zero, then we know we got a snapshot
// before any modifications at all were made. This is
// probably common enough to bother tracking.
if (mcsum != 0) {
for (int i = 0; i < segments.length; ++i) {
if (segments[i].count != 0 ||
mc[i] != segments[i].modCount)
sum += seg.modCount;
}
}
if (sum != 0L) { // recheck unless no modifications
for (int j = 0; j < segments.length; ++j) {
Segment<K,V> seg = segmentAt(segments, j);
if (seg != null) {
if (seg.count != 0)
return false;
sum -= seg.modCount;
}
}
if (sum != 0L)
return false;
}
return true;
}
......@@ -740,45 +862,43 @@ public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
* @return the number of key-value mappings in this map
*/
public int size() {
final Segment<K,V>[] segments = this.segments;
long sum = 0;
long check = 0;
int[] mc = new int[segments.length];
// Try a few times to get accurate count. On failure due to
// continuous async changes in table, resort to locking.
for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
check = 0;
sum = 0;
int mcsum = 0;
for (int i = 0; i < segments.length; ++i) {
sum += segments[i].count;
mcsum += mc[i] = segments[i].modCount;
}
if (mcsum != 0) {
for (int i = 0; i < segments.length; ++i) {
check += segments[i].count;
if (mc[i] != segments[i].modCount) {
check = -1; // force retry
final Segment<K,V>[] segments = this.segments;
int size;
boolean overflow; // true if size overflows 32 bits
long sum; // sum of modCounts
long last = 0L; // previous sum
int retries = -1; // first iteration isn't retry
try {
for (;;) {
if (retries++ == RETRIES_BEFORE_LOCK) {
for (int j = 0; j < segments.length; ++j)
ensureSegment(j).lock(); // force creation
}
sum = 0L;
size = 0;
overflow = false;
for (int j = 0; j < segments.length; ++j) {
Segment<K,V> seg = segmentAt(segments, j);
if (seg != null) {
sum += seg.modCount;
int c = seg.count;
if (c < 0 || (size += c) < 0)
overflow = true;
}
}
if (sum == last)
break;
last = sum;
}
} finally {
if (retries > RETRIES_BEFORE_LOCK) {
for (int j = 0; j < segments.length; ++j)
segmentAt(segments, j).unlock();
}
}
if (check == sum)
break;
}
if (check != sum) { // Resort to locking all segments
sum = 0;
for (int i = 0; i < segments.length; ++i)
segments[i].lock();
for (int i = 0; i < segments.length; ++i)
sum += segments[i].count;
for (int i = 0; i < segments.length; ++i)
segments[i].unlock();
}
if (sum > Integer.MAX_VALUE)
return Integer.MAX_VALUE;
else
return (int)sum;
return overflow ? Integer.MAX_VALUE : size;
}
/**
......@@ -794,7 +914,13 @@ public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
*/
public V get(Object key) {
int hash = hash(key.hashCode());
return segmentFor(hash).get(key, hash);
for (HashEntry<K,V> e = entryForHash(segmentForHash(hash), hash);
e != null; e = e.next) {
K k;
if ((k = e.key) == key || (e.hash == hash && key.equals(k)))
return e.value;
}
return null;
}
/**
......@@ -808,7 +934,13 @@ public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
*/
public boolean containsKey(Object key) {
int hash = hash(key.hashCode());
return segmentFor(hash).containsKey(key, hash);
for (HashEntry<K,V> e = entryForHash(segmentForHash(hash), hash);
e != null; e = e.next) {
K k;
if ((k = e.key) == key || (e.hash == hash && key.equals(k)))
return true;
}
return false;
}
/**
......@@ -823,51 +955,47 @@ public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
* @throws NullPointerException if the specified value is null
*/
public boolean containsValue(Object value) {
// Same idea as size()
if (value == null)
throw new NullPointerException();
// See explanation of modCount use above
final Segment<K,V>[] segments = this.segments;
int[] mc = new int[segments.length];
// Try a few times without locking
for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
boolean found = false;
long last = 0;
int retries = -1;
try {
outer: for (;;) {
if (retries++ == RETRIES_BEFORE_LOCK) {
for (int j = 0; j < segments.length; ++j)
ensureSegment(j).lock(); // force creation
}
long hashSum = 0L;
int sum = 0;
int mcsum = 0;
for (int i = 0; i < segments.length; ++i) {
int c = segments[i].count;
mcsum += mc[i] = segments[i].modCount;
if (segments[i].containsValue(value))
return true;
for (int j = 0; j < segments.length; ++j) {
HashEntry<K,V>[] tab;
Segment<K,V> seg = segmentAt(segments, j);
if (seg != null && (tab = seg.table) != null) {
for (int i = 0 ; i < tab.length; i++) {
HashEntry<K,V> e;
for (e = entryAt(tab, i); e != null; e = e.next) {
V v = e.value;
if (v != null && value.equals(v)) {
found = true;
break outer;
}
boolean cleanSweep = true;
if (mcsum != 0) {
for (int i = 0; i < segments.length; ++i) {
int c = segments[i].count;
if (mc[i] != segments[i].modCount) {
cleanSweep = false;
break;
}
}
sum += seg.modCount;
}
if (cleanSweep)
return false;
}
// Resort to locking all segments
for (int i = 0; i < segments.length; ++i)
segments[i].lock();
boolean found = false;
try {
for (int i = 0; i < segments.length; ++i) {
if (segments[i].containsValue(value)) {
found = true;
if (retries > 0 && sum == last)
break;
}
last = sum;
}
} finally {
for (int i = 0; i < segments.length; ++i)
segments[i].unlock();
if (retries > RETRIES_BEFORE_LOCK) {
for (int j = 0; j < segments.length; ++j)
segmentAt(segments, j).unlock();
}
}
return found;
}
......@@ -908,7 +1036,11 @@ public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
if (value == null)
throw new NullPointerException();
int hash = hash(key.hashCode());
return segmentFor(hash).put(key, hash, value, false);
int j = (hash >>> segmentShift) & segmentMask;
Segment<K,V> s = segmentAt(segments, j);
if (s == null)
s = ensureSegment(j);
return s.put(key, hash, value, false);
}
/**
......@@ -922,7 +1054,11 @@ public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
if (value == null)
throw new NullPointerException();
int hash = hash(key.hashCode());
return segmentFor(hash).put(key, hash, value, true);
int j = (hash >>> segmentShift) & segmentMask;
Segment<K,V> s = segmentAt(segments, j);
if (s == null)
s = ensureSegment(j);
return s.put(key, hash, value, true);
}
/**
......@@ -948,7 +1084,8 @@ public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
*/
public V remove(Object key) {
int hash = hash(key.hashCode());
return segmentFor(hash).remove(key, hash, null);
Segment<K,V> s = segmentForHash(hash);
return s == null ? null : s.remove(key, hash, null);
}
/**
......@@ -958,9 +1095,9 @@ public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
*/
public boolean remove(Object key, Object value) {
int hash = hash(key.hashCode());
if (value == null)
return false;
return segmentFor(hash).remove(key, hash, value) != null;
Segment<K,V> s;
return value != null && (s = segmentForHash(hash)) != null &&
s.remove(key, hash, value) != null;
}
/**
......@@ -969,10 +1106,11 @@ public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
* @throws NullPointerException if any of the arguments are null
*/
public boolean replace(K key, V oldValue, V newValue) {
int hash = hash(key.hashCode());
if (oldValue == null || newValue == null)
throw new NullPointerException();
int hash = hash(key.hashCode());
return segmentFor(hash).replace(key, hash, oldValue, newValue);
Segment<K,V> s = segmentForHash(hash);
return s != null && s.replace(key, hash, oldValue, newValue);
}
/**
......@@ -983,18 +1121,23 @@ public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
* @throws NullPointerException if the specified key or value is null
*/
public V replace(K key, V value) {
int hash = hash(key.hashCode());
if (value == null)
throw new NullPointerException();
int hash = hash(key.hashCode());
return segmentFor(hash).replace(key, hash, value);
Segment<K,V> s = segmentForHash(hash);
return s == null ? null : s.replace(key, hash, value);
}
/**
* Removes all of the mappings from this map.
*/
public void clear() {
for (int i = 0; i < segments.length; ++i)
segments[i].clear();
final Segment<K,V>[] segments = this.segments;
for (int j = 0; j < segments.length; ++j) {
Segment<K,V> s = segmentAt(segments, j);
if (s != null)
s.clear();
}
}
/**
......@@ -1095,42 +1238,41 @@ public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
advance();
}
public boolean hasMoreElements() { return hasNext(); }
/**
* Set nextEntry to first node of next non-empty table
* (in backwards order, to simplify checks).
*/
final void advance() {
if (nextEntry != null && (nextEntry = nextEntry.next) != null)
return;
while (nextTableIndex >= 0) {
if ( (nextEntry = currentTable[nextTableIndex--]) != null)
return;
}
while (nextSegmentIndex >= 0) {
Segment<K,V> seg = segments[nextSegmentIndex--];
if (seg.count != 0) {
currentTable = seg.table;
for (int j = currentTable.length - 1; j >= 0; --j) {
if ( (nextEntry = currentTable[j]) != null) {
nextTableIndex = j - 1;
return;
}
for (;;) {
if (nextTableIndex >= 0) {
if ((nextEntry = entryAt(currentTable,
nextTableIndex--)) != null)
break;
}
else if (nextSegmentIndex >= 0) {
Segment<K,V> seg = segmentAt(segments, nextSegmentIndex--);
if (seg != null && (currentTable = seg.table) != null)
nextTableIndex = currentTable.length - 1;
}
else
break;
}
}
public boolean hasNext() { return nextEntry != null; }
HashEntry<K,V> nextEntry() {
if (nextEntry == null)
final HashEntry<K,V> nextEntry() {
HashEntry<K,V> e = nextEntry;
if (e == null)
throw new NoSuchElementException();
lastReturned = nextEntry;
lastReturned = e; // cannot assign until after null check
if ((nextEntry = e.next) == null)
advance();
return lastReturned;
return e;
}
public void remove() {
public final boolean hasNext() { return nextEntry != null; }
public final boolean hasMoreElements() { return nextEntry != null; }
public final void remove() {
if (lastReturned == null)
throw new IllegalStateException();
ConcurrentHashMap.this.remove(lastReturned.key);
......@@ -1142,16 +1284,16 @@ public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
extends HashIterator
implements Iterator<K>, Enumeration<K>
{
public K next() { return super.nextEntry().key; }
public K nextElement() { return super.nextEntry().key; }
public final K next() { return super.nextEntry().key; }
public final K nextElement() { return super.nextEntry().key; }
}
final class ValueIterator
extends HashIterator
implements Iterator<V>, Enumeration<V>
{
public V next() { return super.nextEntry().value; }
public V nextElement() { return super.nextEntry().value; }
public final V next() { return super.nextEntry().value; }
public final V nextElement() { return super.nextEntry().value; }
}
/**
......@@ -1271,15 +1413,20 @@ public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
* The key-value mappings are emitted in no particular order.
*/
private void writeObject(java.io.ObjectOutputStream s) throws IOException {
// force all segments for serialization compatibility
for (int k = 0; k < segments.length; ++k)
ensureSegment(k);
s.defaultWriteObject();
final Segment<K,V>[] segments = this.segments;
for (int k = 0; k < segments.length; ++k) {
Segment<K,V> seg = segments[k];
Segment<K,V> seg = segmentAt(segments, k);
seg.lock();
try {
HashEntry<K,V>[] tab = seg.table;
for (int i = 0; i < tab.length; ++i) {
for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
HashEntry<K,V> e;
for (e = entryAt(tab, i); e != null; e = e.next) {
s.writeObject(e.key);
s.writeObject(e.value);
}
......@@ -1297,13 +1444,20 @@ public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
* stream (i.e., deserialize it).
* @param s the stream
*/
@SuppressWarnings("unchecked")
private void readObject(java.io.ObjectInputStream s)
throws IOException, ClassNotFoundException {
s.defaultReadObject();
// Initialize each segment to be minimally sized, and let grow.
for (int i = 0; i < segments.length; ++i) {
segments[i].setTable(new HashEntry[1]);
// Re-initialize segments to be minimally sized, and let grow.
int cap = MIN_SEGMENT_TABLE_CAPACITY;
final Segment<K,V>[] segments = this.segments;
for (int k = 0; k < segments.length; ++k) {
Segment<K,V> seg = segments[k];
if (seg != null) {
seg.threshold = (int)(cap * seg.loadFactor);
seg.table = (HashEntry<K,V>[]) new HashEntry[cap];
}
}
// Read the keys and values, and put the mappings in the table
......@@ -1315,4 +1469,31 @@ public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
put(key, value);
}
}
// Unsafe mechanics
private static final sun.misc.Unsafe UNSAFE;
private static final long SBASE;
private static final int SSHIFT;
private static final long TBASE;
private static final int TSHIFT;
static {
int ss, ts;
try {
UNSAFE = sun.misc.Unsafe.getUnsafe();
Class tc = HashEntry[].class;
Class sc = Segment[].class;
TBASE = UNSAFE.arrayBaseOffset(tc);
SBASE = UNSAFE.arrayBaseOffset(sc);
ts = UNSAFE.arrayIndexScale(tc);
ss = UNSAFE.arrayIndexScale(sc);
} catch (Exception e) {
throw new Error(e);
}
if ((ss & (ss-1)) != 0 || (ts & (ts-1)) != 0)
throw new Error("data type scale not a power of two");
SSHIFT = 31 - Integer.numberOfLeadingZeros(ss);
TSHIFT = 31 - Integer.numberOfLeadingZeros(ts);
}
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册