Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
openanolis
dragonwell8_jdk
提交
6b1b12bc
D
dragonwell8_jdk
项目概览
openanolis
/
dragonwell8_jdk
通知
4
Star
2
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
D
dragonwell8_jdk
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6b1b12bc
编写于
10月 29, 2009
作者:
M
mchung
浏览文件
操作
浏览文件
下载
差异文件
Merge
上级
cb1c3676
dac3d340
变更
12
显示空白变更内容
内联
并排
Showing
12 changed file
with
2135 addition
and
913 deletion
+2135
-913
make/java/java/FILES_java.gmk
make/java/java/FILES_java.gmk
+1
-0
src/share/classes/java/util/Arrays.java
src/share/classes/java/util/Arrays.java
+315
-905
src/share/classes/java/util/DualPivotQuicksort.java
src/share/classes/java/util/DualPivotQuicksort.java
+1554
-0
src/share/classes/sun/security/krb5/EncryptionKey.java
src/share/classes/sun/security/krb5/EncryptionKey.java
+20
-4
src/share/classes/sun/security/krb5/KrbApReq.java
src/share/classes/sun/security/krb5/KrbApReq.java
+2
-1
src/share/classes/sun/security/krb5/internal/ktab/KeyTab.java
...share/classes/sun/security/krb5/internal/ktab/KeyTab.java
+22
-0
src/share/classes/sun/security/tools/JarSigner.java
src/share/classes/sun/security/tools/JarSigner.java
+1
-0
src/share/classes/sun/security/tools/KeyTool.java
src/share/classes/sun/security/tools/KeyTool.java
+74
-2
src/share/classes/sun/security/util/Resources.java
src/share/classes/sun/security/util/Resources.java
+9
-0
test/sun/security/krb5/auto/KDC.java
test/sun/security/krb5/auto/KDC.java
+11
-1
test/sun/security/krb5/auto/MoreKvno.java
test/sun/security/krb5/auto/MoreKvno.java
+70
-0
test/sun/security/tools/keytool/readjar.sh
test/sun/security/tools/keytool/readjar.sh
+56
-0
未找到文件。
make/java/java/FILES_java.gmk
浏览文件 @
6b1b12bc
...
...
@@ -251,6 +251,7 @@ JAVA_JAVA_java = \
java/util/IdentityHashMap.java \
java/util/EnumMap.java \
java/util/Arrays.java \
java/util/DualPivotQuicksort.java \
java/util/TimSort.java \
java/util/ComparableTimSort.java \
java/util/ConcurrentModificationException.java \
...
...
src/share/classes/java/util/Arrays.java
浏览文件 @
6b1b12bc
/*
* Copyright 1997-200
8
Sun Microsystems, Inc. All Rights Reserved.
* Copyright 1997-200
9
Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
...
...
@@ -32,16 +32,16 @@ import java.lang.reflect.*;
* sorting and searching). This class also contains a static factory
* that allows arrays to be viewed as lists.
*
* <p>The methods in this class all throw a
<tt>NullPointerException</tt> if
* the specified array reference is null, except where noted.
* <p>The methods in this class all throw a
{@code NullPointerException},
*
if
the specified array reference is null, except where noted.
*
* <p>The documentation for the methods contained in this class includes
* briefs description of the <i>implementations</i>. Such descriptions should
* be regarded as <i>implementation notes</i>, rather than parts of the
* <i>specification</i>. Implementors should feel free to substitute other
* algorithms, so long as the specification itself is adhered to. (For
* example, the algorithm used by
<tt>sort(Object[])</tt>
does not have to be
* a
merges
ort, but it does have to be <i>stable</i>.)
* example, the algorithm used by
{@code sort(Object[])}
does not have to be
* a
MergeS
ort, but it does have to be <i>stable</i>.)
*
* <p>This class is a member of the
* <a href="{@docRoot}/../technotes/guides/collections/index.html">
...
...
@@ -52,1017 +52,428 @@ import java.lang.reflect.*;
* @author John Rose
* @since 1.2
*/
public
class
Arrays
{
// Suppresses default constructor, ensuring non-instantiability.
private
Arrays
()
{
}
private
Arrays
()
{}
// Sorting
/**
* Sorts the specified array of longs into ascending numerical order.
* The sorting algorithm is a tuned quicksort, adapted from Jon
* L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
* Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
* 1993). This algorithm offers n*log(n) performance on many data sets
* that cause other quicksorts to degrade to quadratic performance.
* Sorts the specified array into ascending numerical order.
*
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort,
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
* offers O(n log(n)) performance on many data sets that cause other
* quicksorts to degrade to quadratic performance, and is typically
* faster than traditional (one-pivot) Quicksort implementations.
*
* @param a the array to be sorted
*/
public
static
void
sort
(
long
[]
a
)
{
sort
1
(
a
,
0
,
a
.
length
);
sort
(
a
,
0
,
a
.
length
);
}
/**
* Sorts the specified range of the specified array
of longs into
*
ascending numerical order. The range to be sorted extends from index
*
<tt>fromIndex</tt>, inclusive, to index <tt>toIndex</tt>, exclusive.
*
(If <tt>fromIndex==toIndex</tt>, the range to be sorted is empty.)
* Sorts the specified range of the specified array
into ascending order. The
*
range of to be sorted extends from the index {@code fromIndex}, inclusive,
*
to the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
*
the range to be sorted is empty.
*
* <p>
The sorting algorithm is a tuned quicksort, adapted from Jon
*
L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
*
Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (Novemb
er
*
1993). This algorithm offers n*log(n) performance on many data sets
*
that cause other quicksorts to degrade to quadratic performance
.
* <p>
Implementation note: The sorting algorithm is a Dual-Pivot Quicksort,
*
by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
*
offers O(n log(n)) performance on many data sets that cause oth
er
*
quicksorts to degrade to quadratic performance, and is typically
*
faster than traditional (one-pivot) Quicksort implementations
.
*
* @param a the array to be sorted
* @param fromIndex the index of the first element (inclusive) to be
* sorted
* @param toIndex the index of the last element (exclusive) to be sorted
* @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt>
* @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or
* <tt>toIndex > a.length</tt>
* @param fromIndex the index of the first element, inclusively, to be sorted
* @param toIndex the index of the last element, exclusively, to be sorted
* @throws IllegalArgumentException if {@code fromIndex > toIndex}
* @throws ArrayIndexOutOfBoundsException
* if {@code fromIndex < 0} or {@code toIndex > a.length}
*/
public
static
void
sort
(
long
[]
a
,
int
fromIndex
,
int
toIndex
)
{
rangeCheck
(
a
.
length
,
fromIndex
,
toIndex
);
sort1
(
a
,
fromIndex
,
toIndex
-
fromIndex
);
DualPivotQuicksort
.
sort
(
a
,
fromIndex
,
toIndex
-
1
);
}
/**
* Sorts the specified array of ints into ascending numerical order.
* The sorting algorithm is a tuned quicksort, adapted from Jon
* L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
* Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
* 1993). This algorithm offers n*log(n) performance on many data sets
* that cause other quicksorts to degrade to quadratic performance.
* Sorts the specified array into ascending numerical order.
*
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort,
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
* offers O(n log(n)) performance on many data sets that cause other
* quicksorts to degrade to quadratic performance, and is typically
* faster than traditional (one-pivot) Quicksort implementations.
*
* @param a the array to be sorted
*/
public
static
void
sort
(
int
[]
a
)
{
sort
1
(
a
,
0
,
a
.
length
);
sort
(
a
,
0
,
a
.
length
);
}
/**
* Sorts the specified range of the specified array
of ints into
*
ascending numerical order. The range to be sorted extends from index
*
<tt>fromIndex</tt>, inclusive, to index <tt>toIndex</tt>, exclusive.
*
(If <tt>fromIndex==toIndex</tt>, the range to be sorted is empty.)<p>
* Sorts the specified range of the specified array
into ascending order. The
*
range of to be sorted extends from the index {@code fromIndex}, inclusive,
*
to the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
*
the range to be sorted is empty.
*
*
The sorting algorithm is a tuned quicksort, adapted from Jon
*
L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
*
Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (Novemb
er
*
1993). This algorithm offers n*log(n) performance on many data sets
*
that cause other quicksorts to degrade to quadratic performance
.
*
<p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort,
*
by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
*
offers O(n log(n)) performance on many data sets that cause oth
er
*
quicksorts to degrade to quadratic performance, and is typically
*
faster than traditional (one-pivot) Quicksort implementations
.
*
* @param a the array to be sorted
* @param fromIndex the index of the first element (inclusive) to be
* sorted
* @param toIndex the index of the last element (exclusive) to be sorted
* @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt>
* @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or
* <tt>toIndex > a.length</tt>
* @param fromIndex the index of the first element, inclusively, to be sorted
* @param toIndex the index of the last element, exclusively, to be sorted
* @throws IllegalArgumentException if {@code fromIndex > toIndex}
* @throws ArrayIndexOutOfBoundsException
* if {@code fromIndex < 0} or {@code toIndex > a.length}
*/
public
static
void
sort
(
int
[]
a
,
int
fromIndex
,
int
toIndex
)
{
rangeCheck
(
a
.
length
,
fromIndex
,
toIndex
);
sort1
(
a
,
fromIndex
,
toIndex
-
fromIndex
);
DualPivotQuicksort
.
sort
(
a
,
fromIndex
,
toIndex
-
1
);
}
/**
* Sorts the specified array of shorts into ascending numerical order.
* The sorting algorithm is a tuned quicksort, adapted from Jon
* L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
* Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
* 1993). This algorithm offers n*log(n) performance on many data sets
* that cause other quicksorts to degrade to quadratic performance.
* Sorts the specified array into ascending numerical order.
*
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort,
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
* offers O(n log(n)) performance on many data sets that cause other
* quicksorts to degrade to quadratic performance, and is typically
* faster than traditional (one-pivot) Quicksort implementations.
*
* @param a the array to be sorted
*/
public
static
void
sort
(
short
[]
a
)
{
sort
1
(
a
,
0
,
a
.
length
);
sort
(
a
,
0
,
a
.
length
);
}
/**
* Sorts the specified range of the specified array
of shorts into
*
ascending numerical order. The range to be sorted extends from index
*
<tt>fromIndex</tt>, inclusive, to index <tt>toIndex</tt>, exclusive.
*
(If <tt>fromIndex==toIndex</tt>, the range to be sorted is empty.)<p>
* Sorts the specified range of the specified array
into ascending order. The
*
range of to be sorted extends from the index {@code fromIndex}, inclusive,
*
to the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
*
the range to be sorted is empty.
*
*
The sorting algorithm is a tuned quicksort, adapted from Jon
*
L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
*
Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (Novemb
er
*
1993). This algorithm offers n*log(n) performance on many data sets
*
that cause other quicksorts to degrade to quadratic performance
.
*
<p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort,
*
by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
*
offers O(n log(n)) performance on many data sets that cause oth
er
*
quicksorts to degrade to quadratic performance, and is typically
*
faster than traditional (one-pivot) Quicksort implementations
.
*
* @param a the array to be sorted
* @param fromIndex the index of the first element (inclusive) to be
* sorted
* @param toIndex the index of the last element (exclusive) to be sorted
* @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt>
* @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or
* <tt>toIndex > a.length</tt>
* @param fromIndex the index of the first element, inclusively, to be sorted
* @param toIndex the index of the last element, exclusively, to be sorted
* @throws IllegalArgumentException if {@code fromIndex > toIndex}
* @throws ArrayIndexOutOfBoundsException
* if {@code fromIndex < 0} or {@code toIndex > a.length}
*/
public
static
void
sort
(
short
[]
a
,
int
fromIndex
,
int
toIndex
)
{
rangeCheck
(
a
.
length
,
fromIndex
,
toIndex
);
sort1
(
a
,
fromIndex
,
toIndex
-
fromIndex
);
DualPivotQuicksort
.
sort
(
a
,
fromIndex
,
toIndex
-
1
);
}
/**
* Sorts the specified array of chars into ascending numerical order.
* The sorting algorithm is a tuned quicksort, adapted from Jon
* L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
* Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
* 1993). This algorithm offers n*log(n) performance on many data sets
* that cause other quicksorts to degrade to quadratic performance.
* Sorts the specified array into ascending numerical order.
*
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort,
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
* offers O(n log(n)) performance on many data sets that cause other
* quicksorts to degrade to quadratic performance, and is typically
* faster than traditional (one-pivot) Quicksort implementations.
*
* @param a the array to be sorted
*/
public
static
void
sort
(
char
[]
a
)
{
sort
1
(
a
,
0
,
a
.
length
);
sort
(
a
,
0
,
a
.
length
);
}
/**
* Sorts the specified range of the specified array
of chars into
*
ascending numerical order. The range to be sorted extends from index
*
<tt>fromIndex</tt>, inclusive, to index <tt>toIndex</tt>, exclusive.
*
(If <tt>fromIndex==toIndex</tt>, the range to be sorted is empty.)<p>
* Sorts the specified range of the specified array
into ascending order. The
*
range of to be sorted extends from the index {@code fromIndex}, inclusive,
*
to the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
*
the range to be sorted is empty.
*
*
The sorting algorithm is a tuned quicksort, adapted from Jon
*
L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
*
Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (Novemb
er
*
1993). This algorithm offers n*log(n) performance on many data sets
*
that cause other quicksorts to degrade to quadratic performance
.
*
<p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort,
*
by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
*
offers O(n log(n)) performance on many data sets that cause oth
er
*
quicksorts to degrade to quadratic performance, and is typically
*
faster than traditional (one-pivot) Quicksort implementations
.
*
* @param a the array to be sorted
* @param fromIndex the index of the first element (inclusive) to be
* sorted
* @param toIndex the index of the last element (exclusive) to be sorted
* @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt>
* @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or
* <tt>toIndex > a.length</tt>
* @param fromIndex the index of the first element, inclusively, to be sorted
* @param toIndex the index of the last element, exclusively, to be sorted
* @throws IllegalArgumentException if {@code fromIndex > toIndex}
* @throws ArrayIndexOutOfBoundsException
* if {@code fromIndex < 0} or {@code toIndex > a.length}
*/
public
static
void
sort
(
char
[]
a
,
int
fromIndex
,
int
toIndex
)
{
rangeCheck
(
a
.
length
,
fromIndex
,
toIndex
);
sort1
(
a
,
fromIndex
,
toIndex
-
fromIndex
);
DualPivotQuicksort
.
sort
(
a
,
fromIndex
,
toIndex
-
1
);
}
/**
* Sorts the specified array of bytes into ascending numerical order.
* The sorting algorithm is a tuned quicksort, adapted from Jon
* L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
* Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
* 1993). This algorithm offers n*log(n) performance on many data sets
* that cause other quicksorts to degrade to quadratic performance.
* Sorts the specified array into ascending numerical order.
*
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort,
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
* offers O(n log(n)) performance on many data sets that cause other
* quicksorts to degrade to quadratic performance, and is typically
* faster than traditional (one-pivot) Quicksort implementations.
*
* @param a the array to be sorted
*/
public
static
void
sort
(
byte
[]
a
)
{
sort
1
(
a
,
0
,
a
.
length
);
sort
(
a
,
0
,
a
.
length
);
}
/**
* Sorts the specified range of the specified array
of bytes into
*
ascending numerical order. The range to be sorted extends from index
*
<tt>fromIndex</tt>, inclusive, to index <tt>toIndex</tt>, exclusive.
*
(If <tt>fromIndex==toIndex</tt>, the range to be sorted is empty.)<p>
* Sorts the specified range of the specified array
into ascending order. The
*
range of to be sorted extends from the index {@code fromIndex}, inclusive,
*
to the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
*
the range to be sorted is empty.
*
*
The sorting algorithm is a tuned quicksort, adapted from Jon
*
L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
*
Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (Novemb
er
*
1993). This algorithm offers n*log(n) performance on many data sets
*
that cause other quicksorts to degrade to quadratic performance
.
*
<p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort,
*
by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
*
offers O(n log(n)) performance on many data sets that cause oth
er
*
quicksorts to degrade to quadratic performance, and is typically
*
faster than traditional (one-pivot) Quicksort implementations
.
*
* @param a the array to be sorted
* @param fromIndex the index of the first element (inclusive) to be
* sorted
* @param toIndex the index of the last element (exclusive) to be sorted
* @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt>
* @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or
* <tt>toIndex > a.length</tt>
* @param fromIndex the index of the first element, inclusively, to be sorted
* @param toIndex the index of the last element, exclusively, to be sorted
* @throws IllegalArgumentException if {@code fromIndex > toIndex}
* @throws ArrayIndexOutOfBoundsException
* if {@code fromIndex < 0} or {@code toIndex > a.length}
*/
public
static
void
sort
(
byte
[]
a
,
int
fromIndex
,
int
toIndex
)
{
rangeCheck
(
a
.
length
,
fromIndex
,
toIndex
);
sort1
(
a
,
fromIndex
,
toIndex
-
fromIndex
);
DualPivotQuicksort
.
sort
(
a
,
fromIndex
,
toIndex
-
1
);
}
/**
* Sorts the specified array of doubles into ascending numerical order.
* <p>
* The <code><</code> relation does not provide a total order on
* all floating-point values; although they are distinct numbers
* <code>-0.0 == 0.0</code> is <code>true</code> and a NaN value
* compares neither less than, greater than, nor equal to any
* floating-point value, even itself. To allow the sort to
* proceed, instead of using the <code><</code> relation to
* determine ascending numerical order, this method uses the total
* order imposed by {@link Double#compareTo}. This ordering
* differs from the <code><</code> relation in that
* <code>-0.0</code> is treated as less than <code>0.0</code> and
* NaN is considered greater than any other floating-point value.
* For the purposes of sorting, all NaN values are considered
* equivalent and equal.
* <p>
* The sorting algorithm is a tuned quicksort, adapted from Jon
* L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
* Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
* 1993). This algorithm offers n*log(n) performance on many data sets
* that cause other quicksorts to degrade to quadratic performance.
* Sorts the specified array into ascending numerical order.
*
* @param a the array to be sorted
*/
public
static
void
sort
(
double
[]
a
)
{
sort2
(
a
,
0
,
a
.
length
);
}
/**
* Sorts the specified range of the specified array of doubles into
* ascending numerical order. The range to be sorted extends from index
* <tt>fromIndex</tt>, inclusive, to index <tt>toIndex</tt>, exclusive.
* (If <tt>fromIndex==toIndex</tt>, the range to be sorted is empty.)
* <p>
* The <code><</code> relation does not provide a total order on
* <p>The {@code <} relation does not provide a total order on
* all floating-point values; although they are distinct numbers
* <code>-0.0 == 0.0</code> is <code>true</code> and a NaN value
* compares neither less than, greater than, nor equal to any
* floating-point value, even itself. To allow the sort to
* proceed, instead of using the <code><</code> relation to
* determine ascending numerical order, this method uses the total
* order imposed by {@link Double#compareTo}. This ordering
* differs from the <code><</code> relation in that
* <code>-0.0</code> is treated as less than <code>0.0</code> and
* NaN is considered greater than any other floating-point value.
* For the purposes of sorting, all NaN values are considered
* equivalent and equal.
* <p>
* The sorting algorithm is a tuned quicksort, adapted from Jon
* L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
* Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
* 1993). This algorithm offers n*log(n) performance on many data sets
* that cause other quicksorts to degrade to quadratic performance.
* {@code -0.0d == 0.0d} is {@code true} and a NaN value compares
* neither less than, greater than, nor equal to any floating-point
* value, even itself. To allow the sort to proceed, instead of using
* the {@code <} relation to determine ascending numerical order,
* this method uses the total order imposed by {@link Double#compareTo}.
* This ordering differs from the {@code <} relation in that {@code -0.0d}
* is treated as less than {@code 0.0d} and NaN is considered greater than
* any other floating-point value. For the purposes of sorting, all NaN
* values are considered equivalent and equal.
*
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort,
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
* offers O(n log(n)) performance on many data sets that cause other
* quicksorts to degrade to quadratic performance, and is typically
* faster than traditional (one-pivot) Quicksort implementations.
*
* @param a the array to be sorted
* @param fromIndex the index of the first element (inclusive) to be
* sorted
* @param toIndex the index of the last element (exclusive) to be sorted
* @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt>
* @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or
* <tt>toIndex > a.length</tt>
*/
public
static
void
sort
(
double
[]
a
,
int
fromIndex
,
int
toIndex
)
{
rangeCheck
(
a
.
length
,
fromIndex
,
toIndex
);
sort2
(
a
,
fromIndex
,
toIndex
);
public
static
void
sort
(
double
[]
a
)
{
sort
(
a
,
0
,
a
.
length
);
}
/**
* Sorts the specified array of floats into ascending numerical order.
* <p>
* The <code><</code> relation does not provide a total order on
* all floating-point values; although they are distinct numbers
* <code>-0.0f == 0.0f</code> is <code>true</code> and a NaN value
* compares neither less than, greater than, nor equal to any
* floating-point value, even itself. To allow the sort to
* proceed, instead of using the <code><</code> relation to
* determine ascending numerical order, this method uses the total
* order imposed by {@link Float#compareTo}. This ordering
* differs from the <code><</code> relation in that
* <code>-0.0f</code> is treated as less than <code>0.0f</code> and
* NaN is considered greater than any other floating-point value.
* For the purposes of sorting, all NaN values are considered
* equivalent and equal.
* <p>
* The sorting algorithm is a tuned quicksort, adapted from Jon
* L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
* Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
* 1993). This algorithm offers n*log(n) performance on many data sets
* that cause other quicksorts to degrade to quadratic performance.
* Sorts the specified range of the specified array into ascending order. The
* range of to be sorted extends from the index {@code fromIndex}, inclusive,
* to the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
* the range to be sorted is empty.
*
* @param a the array to be sorted
*/
public
static
void
sort
(
float
[]
a
)
{
sort2
(
a
,
0
,
a
.
length
);
}
/**
* Sorts the specified range of the specified array of floats into
* ascending numerical order. The range to be sorted extends from index
* <tt>fromIndex</tt>, inclusive, to index <tt>toIndex</tt>, exclusive.
* (If <tt>fromIndex==toIndex</tt>, the range to be sorted is empty.)
* <p>
* The <code><</code> relation does not provide a total order on
* <p>The {@code <} relation does not provide a total order on
* all floating-point values; although they are distinct numbers
* <code>-0.0f == 0.0f</code> is <code>true</code> and a NaN value
* compares neither less than, greater than, nor equal to any
* floating-point value, even itself. To allow the sort to
* proceed, instead of using the <code><</code> relation to
* determine ascending numerical order, this method uses the total
* order imposed by {@link Float#compareTo}. This ordering
* differs from the <code><</code> relation in that
* <code>-0.0f</code> is treated as less than <code>0.0f</code> and
* NaN is considered greater than any other floating-point value.
* For the purposes of sorting, all NaN values are considered
* equivalent and equal.
* <p>
* The sorting algorithm is a tuned quicksort, adapted from Jon
* L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function",
* Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November
* 1993). This algorithm offers n*log(n) performance on many data sets
* that cause other quicksorts to degrade to quadratic performance.
* {@code -0.0d == 0.0d} is {@code true} and a NaN value compares
* neither less than, greater than, nor equal to any floating-point
* value, even itself. To allow the sort to proceed, instead of using
* the {@code <} relation to determine ascending numerical order,
* this method uses the total order imposed by {@link Double#compareTo}.
* This ordering differs from the {@code <} relation in that {@code -0.0d}
* is treated as less than {@code 0.0d} and NaN is considered greater than
* any other floating-point value. For the purposes of sorting, all NaN
* values are considered equivalent and equal.
*
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort,
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
* offers O(n log(n)) performance on many data sets that cause other
* quicksorts to degrade to quadratic performance, and is typically
* faster than traditional (one-pivot) Quicksort implementations.
*
* @param a the array to be sorted
* @param fromIndex the index of the first element (inclusive) to be
* sorted
* @param toIndex the index of the last element (exclusive) to be sorted
* @throws IllegalArgumentException if <tt>fromIndex > toIndex</tt>
* @throws ArrayIndexOutOfBoundsException if <tt>fromIndex < 0</tt> or
* <tt>toIndex > a.length</tt>
* @param fromIndex the index of the first element, inclusively, to be sorted
* @param toIndex the index of the last element, exclusively, to be sorted
* @throws IllegalArgumentException if {@code fromIndex > toIndex}
* @throws ArrayIndexOutOfBoundsException
* if {@code fromIndex < 0} or {@code toIndex > a.length}
*/
public
static
void
sort
(
float
[]
a
,
int
fromIndex
,
int
toIndex
)
{
public
static
void
sort
(
double
[]
a
,
int
fromIndex
,
int
toIndex
)
{
rangeCheck
(
a
.
length
,
fromIndex
,
toIndex
);
sort
2
(
a
,
fromIndex
,
toIndex
);
sort
NegZeroAndNaN
(
a
,
fromIndex
,
toIndex
);
}
private
static
void
sort
2
(
double
a
[]
,
int
fromIndex
,
int
toIndex
)
{
private
static
void
sort
NegZeroAndNaN
(
double
[]
a
,
int
fromIndex
,
int
toIndex
)
{
final
long
NEG_ZERO_BITS
=
Double
.
doubleToLongBits
(-
0.0d
);
/*
* The sort is done in three phases to avoid the expense of using
* NaN and -0.0 aware comparisons during the main sort.
*/
/*
* Preprocessing phase: Move any NaN's to end of array, count the
* number of -0.0's, and turn them into 0.0's.
* NaN and -0.0d aware comparisons during the main sort.
*
* Preprocessing phase: move any NaN's to end of array, count the
* number of -0.0d's, and turn them into 0.0d's.
*/
int
numNegZeros
=
0
;
int
i
=
fromIndex
,
n
=
toIndex
;
while
(
i
<
n
)
{
int
i
=
fromIndex
;
int
n
=
toIndex
;
double
temp
;
while
(
i
<
n
)
{
if
(
a
[
i
]
!=
a
[
i
])
{
swap
(
a
,
i
,
--
n
);
}
else
{
if
(
a
[
i
]==
0
&&
Double
.
doubleToLongBits
(
a
[
i
])==
NEG_ZERO_BITS
)
{
n
--;
temp
=
a
[
i
];
a
[
i
]
=
a
[
n
];
a
[
n
]
=
temp
;
}
else
{
if
(
a
[
i
]
==
0
&&
Double
.
doubleToLongBits
(
a
[
i
])
==
NEG_ZERO_BITS
)
{
a
[
i
]
=
0.0d
;
numNegZeros
++;
}
i
++;
}
}
// Main sort phase: quicksort everything but the NaN's
sort1
(
a
,
fromIndex
,
n
-
fromIndex
);
DualPivotQuicksort
.
sort
(
a
,
fromIndex
,
n
-
1
);
// Postprocessing phase: change 0.0
's to -0.0
's as required
// Postprocessing phase: change 0.0
d's to -0.0d
's as required
if
(
numNegZeros
!=
0
)
{
int
j
=
binarySearch0
(
a
,
fromIndex
,
n
,
0.0d
);
// posn of ANY zero
int
j
=
binarySearch0
(
a
,
fromIndex
,
n
,
0.0d
);
// position of ANY zero
do
{
j
--;
}
while
(
j
>=
fromIndex
&&
a
[
j
]==
0.0d
);
}
while
(
j
>=
fromIndex
&&
a
[
j
]
==
0.0d
);
// j is now one less than the index of the FIRST zero
for
(
int
k
=
0
;
k
<
numNegZeros
;
k
++)
for
(
int
k
=
0
;
k
<
numNegZeros
;
k
++)
{
a
[++
j
]
=
-
0.0d
;
}
}
}
/**
* Sorts the specified array into ascending numerical order.
*
* <p>The {@code <} relation does not provide a total order on
* all floating-point values; although they are distinct numbers
* {@code -0.0f == 0.0f} is {@code true} and a NaN value compares
* neither less than, greater than, nor equal to any floating-point
* value, even itself. To allow the sort to proceed, instead of using
* the {@code <} relation to determine ascending numerical order,
* this method uses the total order imposed by {@link Float#compareTo}.
* This ordering differs from the {@code <} relation in that {@code -0.0f}
* is treated as less than {@code 0.0f} and NaN is considered greater than
* any other floating-point value. For the purposes of sorting, all NaN
* values are considered equivalent and equal.
*
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort,
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
* offers O(n log(n)) performance on many data sets that cause other
* quicksorts to degrade to quadratic performance, and is typically
* faster than traditional (one-pivot) Quicksort implementations.
*
* @param a the array to be sorted
*/
public
static
void
sort
(
float
[]
a
)
{
sort
(
a
,
0
,
a
.
length
);
}
private
static
void
sort2
(
float
a
[],
int
fromIndex
,
int
toIndex
)
{
final
int
NEG_ZERO_BITS
=
Float
.
floatToIntBits
(-
0.0f
);
/*
* The sort is done in three phases to avoid the expense of using
* NaN and -0.0 aware comparisons during the main sort.
/**
* Sorts the specified range of the specified array into ascending order. The
* range of to be sorted extends from the index {@code fromIndex}, inclusive,
* to the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
* the range to be sorted is empty.
*
* <p>The {@code <} relation does not provide a total order on
* all floating-point values; although they are distinct numbers
* {@code -0.0f == 0.0f} is {@code true} and a NaN value compares
* neither less than, greater than, nor equal to any floating-point
* value, even itself. To allow the sort to proceed, instead of using
* the {@code <} relation to determine ascending numerical order,
* this method uses the total order imposed by {@link Float#compareTo}.
* This ordering differs from the {@code <} relation in that {@code -0.0f}
* is treated as less than {@code 0.0f} and NaN is considered greater than
* any other floating-point value. For the purposes of sorting, all NaN
* values are considered equivalent and equal.
*
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort,
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
* offers O(n log(n)) performance on many data sets that cause other
* quicksorts to degrade to quadratic performance, and is typically
* faster than traditional (one-pivot) Quicksort implementations.
*
* @param a the array to be sorted
* @param fromIndex the index of the first element, inclusively, to be sorted
* @param toIndex the index of the last element, exclusively, to be sorted
* @throws IllegalArgumentException if {@code fromIndex > toIndex}
* @throws ArrayIndexOutOfBoundsException
* if {@code fromIndex < 0} or {@code toIndex > a.length}
*/
public
static
void
sort
(
float
[]
a
,
int
fromIndex
,
int
toIndex
)
{
rangeCheck
(
a
.
length
,
fromIndex
,
toIndex
);
sortNegZeroAndNaN
(
a
,
fromIndex
,
toIndex
);
}
private
static
void
sortNegZeroAndNaN
(
float
[]
a
,
int
fromIndex
,
int
toIndex
)
{
final
int
NEG_ZERO_BITS
=
Float
.
floatToIntBits
(-
0.0f
);
/*
* Preprocessing phase: Move any NaN's to end of array, count the
* number of -0.0's, and turn them into 0.0's.
* The sort is done in three phases to avoid the expense of using
* NaN and -0.0f aware comparisons during the main sort.
*
* Preprocessing phase: move any NaN's to end of array, count the
* number of -0.0f's, and turn them into 0.0f's.
*/
int
numNegZeros
=
0
;
int
i
=
fromIndex
,
n
=
toIndex
;
while
(
i
<
n
)
{
int
i
=
fromIndex
;
int
n
=
toIndex
;
float
temp
;
while
(
i
<
n
)
{
if
(
a
[
i
]
!=
a
[
i
])
{
swap
(
a
,
i
,
--
n
);
}
else
{
if
(
a
[
i
]==
0
&&
Float
.
floatToIntBits
(
a
[
i
])==
NEG_ZERO_BITS
)
{
n
--;
temp
=
a
[
i
];
a
[
i
]
=
a
[
n
];
a
[
n
]
=
temp
;
}
else
{
if
(
a
[
i
]
==
0
&&
Float
.
floatToIntBits
(
a
[
i
])
==
NEG_ZERO_BITS
)
{
a
[
i
]
=
0.0f
;
numNegZeros
++;
}
i
++;
}
}
// Main sort phase: quicksort everything but the NaN's
sort1
(
a
,
fromIndex
,
n
-
fromIndex
);
DualPivotQuicksort
.
sort
(
a
,
fromIndex
,
n
-
1
);
// Postprocessing phase: change 0.0
's to -0.0
's as required
// Postprocessing phase: change 0.0
f's to -0.0f
's as required
if
(
numNegZeros
!=
0
)
{
int
j
=
binarySearch0
(
a
,
fromIndex
,
n
,
0.0f
);
// posn of ANY zero
int
j
=
binarySearch0
(
a
,
fromIndex
,
n
,
0.0f
);
// position of ANY zero
do
{
j
--;
}
while
(
j
>=
fromIndex
&&
a
[
j
]==
0.0f
);
}
while
(
j
>=
fromIndex
&&
a
[
j
]
==
0.0f
);
// j is now one less than the index of the FIRST zero
for
(
int
k
=
0
;
k
<
numNegZeros
;
k
++)
for
(
int
k
=
0
;
k
<
numNegZeros
;
k
++)
{
a
[++
j
]
=
-
0.0f
;
}
}
/*
* The code for each of the seven primitive types is largely identical.
* C'est la vie.
*/
/**
* Sorts the specified sub-array of longs into ascending order.
*/
private
static
void
sort1
(
long
x
[],
int
off
,
int
len
)
{
// Insertion sort on smallest arrays
if
(
len
<
7
)
{
for
(
int
i
=
off
;
i
<
len
+
off
;
i
++)
for
(
int
j
=
i
;
j
>
off
&&
x
[
j
-
1
]>
x
[
j
];
j
--)
swap
(
x
,
j
,
j
-
1
);
return
;
}
// Choose a partition element, v
int
m
=
off
+
(
len
>>
1
);
// Small arrays, middle element
if
(
len
>
7
)
{
int
l
=
off
;
int
n
=
off
+
len
-
1
;
if
(
len
>
40
)
{
// Big arrays, pseudomedian of 9
int
s
=
len
/
8
;
l
=
med3
(
x
,
l
,
l
+
s
,
l
+
2
*
s
);
m
=
med3
(
x
,
m
-
s
,
m
,
m
+
s
);
n
=
med3
(
x
,
n
-
2
*
s
,
n
-
s
,
n
);
}
m
=
med3
(
x
,
l
,
m
,
n
);
// Mid-size, med of 3
}
long
v
=
x
[
m
];
// Establish Invariant: v* (<v)* (>v)* v*
int
a
=
off
,
b
=
a
,
c
=
off
+
len
-
1
,
d
=
c
;
while
(
true
)
{
while
(
b
<=
c
&&
x
[
b
]
<=
v
)
{
if
(
x
[
b
]
==
v
)
swap
(
x
,
a
++,
b
);
b
++;
}
while
(
c
>=
b
&&
x
[
c
]
>=
v
)
{
if
(
x
[
c
]
==
v
)
swap
(
x
,
c
,
d
--);
c
--;
}
if
(
b
>
c
)
break
;
swap
(
x
,
b
++,
c
--);
}
// Swap partition elements back to middle
int
s
,
n
=
off
+
len
;
s
=
Math
.
min
(
a
-
off
,
b
-
a
);
vecswap
(
x
,
off
,
b
-
s
,
s
);
s
=
Math
.
min
(
d
-
c
,
n
-
d
-
1
);
vecswap
(
x
,
b
,
n
-
s
,
s
);
// Recursively sort non-partition-elements
if
((
s
=
b
-
a
)
>
1
)
sort1
(
x
,
off
,
s
);
if
((
s
=
d
-
c
)
>
1
)
sort1
(
x
,
n
-
s
,
s
);
}
/**
* Swaps x[a] with x[b].
*/
private
static
void
swap
(
long
x
[],
int
a
,
int
b
)
{
long
t
=
x
[
a
];
x
[
a
]
=
x
[
b
];
x
[
b
]
=
t
;
}
/**
* Swaps x[a .. (a+n-1)] with x[b .. (b+n-1)].
*/
private
static
void
vecswap
(
long
x
[],
int
a
,
int
b
,
int
n
)
{
for
(
int
i
=
0
;
i
<
n
;
i
++,
a
++,
b
++)
swap
(
x
,
a
,
b
);
}
/**
* Returns the index of the median of the three indexed longs.
*/
private
static
int
med3
(
long
x
[],
int
a
,
int
b
,
int
c
)
{
return
(
x
[
a
]
<
x
[
b
]
?
(
x
[
b
]
<
x
[
c
]
?
b
:
x
[
a
]
<
x
[
c
]
?
c
:
a
)
:
(
x
[
b
]
>
x
[
c
]
?
b
:
x
[
a
]
>
x
[
c
]
?
c
:
a
));
}
/**
* Sorts the specified sub-array of integers into ascending order.
*/
private
static
void
sort1
(
int
x
[],
int
off
,
int
len
)
{
// Insertion sort on smallest arrays
if
(
len
<
7
)
{
for
(
int
i
=
off
;
i
<
len
+
off
;
i
++)
for
(
int
j
=
i
;
j
>
off
&&
x
[
j
-
1
]>
x
[
j
];
j
--)
swap
(
x
,
j
,
j
-
1
);
return
;
}
// Choose a partition element, v
int
m
=
off
+
(
len
>>
1
);
// Small arrays, middle element
if
(
len
>
7
)
{
int
l
=
off
;
int
n
=
off
+
len
-
1
;
if
(
len
>
40
)
{
// Big arrays, pseudomedian of 9
int
s
=
len
/
8
;
l
=
med3
(
x
,
l
,
l
+
s
,
l
+
2
*
s
);
m
=
med3
(
x
,
m
-
s
,
m
,
m
+
s
);
n
=
med3
(
x
,
n
-
2
*
s
,
n
-
s
,
n
);
}
m
=
med3
(
x
,
l
,
m
,
n
);
// Mid-size, med of 3
}
int
v
=
x
[
m
];
// Establish Invariant: v* (<v)* (>v)* v*
int
a
=
off
,
b
=
a
,
c
=
off
+
len
-
1
,
d
=
c
;
while
(
true
)
{
while
(
b
<=
c
&&
x
[
b
]
<=
v
)
{
if
(
x
[
b
]
==
v
)
swap
(
x
,
a
++,
b
);
b
++;
}
while
(
c
>=
b
&&
x
[
c
]
>=
v
)
{
if
(
x
[
c
]
==
v
)
swap
(
x
,
c
,
d
--);
c
--;
}
if
(
b
>
c
)
break
;
swap
(
x
,
b
++,
c
--);
}
// Swap partition elements back to middle
int
s
,
n
=
off
+
len
;
s
=
Math
.
min
(
a
-
off
,
b
-
a
);
vecswap
(
x
,
off
,
b
-
s
,
s
);
s
=
Math
.
min
(
d
-
c
,
n
-
d
-
1
);
vecswap
(
x
,
b
,
n
-
s
,
s
);
// Recursively sort non-partition-elements
if
((
s
=
b
-
a
)
>
1
)
sort1
(
x
,
off
,
s
);
if
((
s
=
d
-
c
)
>
1
)
sort1
(
x
,
n
-
s
,
s
);
}
/**
* Swaps x[a] with x[b].
*/
private
static
void
swap
(
int
x
[],
int
a
,
int
b
)
{
int
t
=
x
[
a
];
x
[
a
]
=
x
[
b
];
x
[
b
]
=
t
;
}
/**
* Swaps x[a .. (a+n-1)] with x[b .. (b+n-1)].
*/
private
static
void
vecswap
(
int
x
[],
int
a
,
int
b
,
int
n
)
{
for
(
int
i
=
0
;
i
<
n
;
i
++,
a
++,
b
++)
swap
(
x
,
a
,
b
);
}
/**
* Returns the index of the median of the three indexed integers.
*/
private
static
int
med3
(
int
x
[],
int
a
,
int
b
,
int
c
)
{
return
(
x
[
a
]
<
x
[
b
]
?
(
x
[
b
]
<
x
[
c
]
?
b
:
x
[
a
]
<
x
[
c
]
?
c
:
a
)
:
(
x
[
b
]
>
x
[
c
]
?
b
:
x
[
a
]
>
x
[
c
]
?
c
:
a
));
}
/**
* Sorts the specified sub-array of shorts into ascending order.
*/
private
static
void
sort1
(
short
x
[],
int
off
,
int
len
)
{
// Insertion sort on smallest arrays
if
(
len
<
7
)
{
for
(
int
i
=
off
;
i
<
len
+
off
;
i
++)
for
(
int
j
=
i
;
j
>
off
&&
x
[
j
-
1
]>
x
[
j
];
j
--)
swap
(
x
,
j
,
j
-
1
);
return
;
}
// Choose a partition element, v
int
m
=
off
+
(
len
>>
1
);
// Small arrays, middle element
if
(
len
>
7
)
{
int
l
=
off
;
int
n
=
off
+
len
-
1
;
if
(
len
>
40
)
{
// Big arrays, pseudomedian of 9
int
s
=
len
/
8
;
l
=
med3
(
x
,
l
,
l
+
s
,
l
+
2
*
s
);
m
=
med3
(
x
,
m
-
s
,
m
,
m
+
s
);
n
=
med3
(
x
,
n
-
2
*
s
,
n
-
s
,
n
);
}
m
=
med3
(
x
,
l
,
m
,
n
);
// Mid-size, med of 3
}
short
v
=
x
[
m
];
// Establish Invariant: v* (<v)* (>v)* v*
int
a
=
off
,
b
=
a
,
c
=
off
+
len
-
1
,
d
=
c
;
while
(
true
)
{
while
(
b
<=
c
&&
x
[
b
]
<=
v
)
{
if
(
x
[
b
]
==
v
)
swap
(
x
,
a
++,
b
);
b
++;
}
while
(
c
>=
b
&&
x
[
c
]
>=
v
)
{
if
(
x
[
c
]
==
v
)
swap
(
x
,
c
,
d
--);
c
--;
}
if
(
b
>
c
)
break
;
swap
(
x
,
b
++,
c
--);
}
// Swap partition elements back to middle
int
s
,
n
=
off
+
len
;
s
=
Math
.
min
(
a
-
off
,
b
-
a
);
vecswap
(
x
,
off
,
b
-
s
,
s
);
s
=
Math
.
min
(
d
-
c
,
n
-
d
-
1
);
vecswap
(
x
,
b
,
n
-
s
,
s
);
// Recursively sort non-partition-elements
if
((
s
=
b
-
a
)
>
1
)
sort1
(
x
,
off
,
s
);
if
((
s
=
d
-
c
)
>
1
)
sort1
(
x
,
n
-
s
,
s
);
}
/**
* Swaps x[a] with x[b].
*/
private
static
void
swap
(
short
x
[],
int
a
,
int
b
)
{
short
t
=
x
[
a
];
x
[
a
]
=
x
[
b
];
x
[
b
]
=
t
;
}
/**
* Swaps x[a .. (a+n-1)] with x[b .. (b+n-1)].
*/
private
static
void
vecswap
(
short
x
[],
int
a
,
int
b
,
int
n
)
{
for
(
int
i
=
0
;
i
<
n
;
i
++,
a
++,
b
++)
swap
(
x
,
a
,
b
);
}
/**
* Returns the index of the median of the three indexed shorts.
*/
private
static
int
med3
(
short
x
[],
int
a
,
int
b
,
int
c
)
{
return
(
x
[
a
]
<
x
[
b
]
?
(
x
[
b
]
<
x
[
c
]
?
b
:
x
[
a
]
<
x
[
c
]
?
c
:
a
)
:
(
x
[
b
]
>
x
[
c
]
?
b
:
x
[
a
]
>
x
[
c
]
?
c
:
a
));
}
/**
* Sorts the specified sub-array of chars into ascending order.
*/
private
static
void
sort1
(
char
x
[],
int
off
,
int
len
)
{
// Insertion sort on smallest arrays
if
(
len
<
7
)
{
for
(
int
i
=
off
;
i
<
len
+
off
;
i
++)
for
(
int
j
=
i
;
j
>
off
&&
x
[
j
-
1
]>
x
[
j
];
j
--)
swap
(
x
,
j
,
j
-
1
);
return
;
}
// Choose a partition element, v
int
m
=
off
+
(
len
>>
1
);
// Small arrays, middle element
if
(
len
>
7
)
{
int
l
=
off
;
int
n
=
off
+
len
-
1
;
if
(
len
>
40
)
{
// Big arrays, pseudomedian of 9
int
s
=
len
/
8
;
l
=
med3
(
x
,
l
,
l
+
s
,
l
+
2
*
s
);
m
=
med3
(
x
,
m
-
s
,
m
,
m
+
s
);
n
=
med3
(
x
,
n
-
2
*
s
,
n
-
s
,
n
);
}
m
=
med3
(
x
,
l
,
m
,
n
);
// Mid-size, med of 3
}
char
v
=
x
[
m
];
// Establish Invariant: v* (<v)* (>v)* v*
int
a
=
off
,
b
=
a
,
c
=
off
+
len
-
1
,
d
=
c
;
while
(
true
)
{
while
(
b
<=
c
&&
x
[
b
]
<=
v
)
{
if
(
x
[
b
]
==
v
)
swap
(
x
,
a
++,
b
);
b
++;
}
while
(
c
>=
b
&&
x
[
c
]
>=
v
)
{
if
(
x
[
c
]
==
v
)
swap
(
x
,
c
,
d
--);
c
--;
}
if
(
b
>
c
)
break
;
swap
(
x
,
b
++,
c
--);
}
// Swap partition elements back to middle
int
s
,
n
=
off
+
len
;
s
=
Math
.
min
(
a
-
off
,
b
-
a
);
vecswap
(
x
,
off
,
b
-
s
,
s
);
s
=
Math
.
min
(
d
-
c
,
n
-
d
-
1
);
vecswap
(
x
,
b
,
n
-
s
,
s
);
// Recursively sort non-partition-elements
if
((
s
=
b
-
a
)
>
1
)
sort1
(
x
,
off
,
s
);
if
((
s
=
d
-
c
)
>
1
)
sort1
(
x
,
n
-
s
,
s
);
}
/**
* Swaps x[a] with x[b].
*/
private
static
void
swap
(
char
x
[],
int
a
,
int
b
)
{
char
t
=
x
[
a
];
x
[
a
]
=
x
[
b
];
x
[
b
]
=
t
;
}
/**
* Swaps x[a .. (a+n-1)] with x[b .. (b+n-1)].
*/
private
static
void
vecswap
(
char
x
[],
int
a
,
int
b
,
int
n
)
{
for
(
int
i
=
0
;
i
<
n
;
i
++,
a
++,
b
++)
swap
(
x
,
a
,
b
);
}
/**
* Returns the index of the median of the three indexed chars.
*/
private
static
int
med3
(
char
x
[],
int
a
,
int
b
,
int
c
)
{
return
(
x
[
a
]
<
x
[
b
]
?
(
x
[
b
]
<
x
[
c
]
?
b
:
x
[
a
]
<
x
[
c
]
?
c
:
a
)
:
(
x
[
b
]
>
x
[
c
]
?
b
:
x
[
a
]
>
x
[
c
]
?
c
:
a
));
}
/**
* Sorts the specified sub-array of bytes into ascending order.
*/
private
static
void
sort1
(
byte
x
[],
int
off
,
int
len
)
{
// Insertion sort on smallest arrays
if
(
len
<
7
)
{
for
(
int
i
=
off
;
i
<
len
+
off
;
i
++)
for
(
int
j
=
i
;
j
>
off
&&
x
[
j
-
1
]>
x
[
j
];
j
--)
swap
(
x
,
j
,
j
-
1
);
return
;
}
// Choose a partition element, v
int
m
=
off
+
(
len
>>
1
);
// Small arrays, middle element
if
(
len
>
7
)
{
int
l
=
off
;
int
n
=
off
+
len
-
1
;
if
(
len
>
40
)
{
// Big arrays, pseudomedian of 9
int
s
=
len
/
8
;
l
=
med3
(
x
,
l
,
l
+
s
,
l
+
2
*
s
);
m
=
med3
(
x
,
m
-
s
,
m
,
m
+
s
);
n
=
med3
(
x
,
n
-
2
*
s
,
n
-
s
,
n
);
}
m
=
med3
(
x
,
l
,
m
,
n
);
// Mid-size, med of 3
}
byte
v
=
x
[
m
];
// Establish Invariant: v* (<v)* (>v)* v*
int
a
=
off
,
b
=
a
,
c
=
off
+
len
-
1
,
d
=
c
;
while
(
true
)
{
while
(
b
<=
c
&&
x
[
b
]
<=
v
)
{
if
(
x
[
b
]
==
v
)
swap
(
x
,
a
++,
b
);
b
++;
}
while
(
c
>=
b
&&
x
[
c
]
>=
v
)
{
if
(
x
[
c
]
==
v
)
swap
(
x
,
c
,
d
--);
c
--;
}
if
(
b
>
c
)
break
;
swap
(
x
,
b
++,
c
--);
}
// Swap partition elements back to middle
int
s
,
n
=
off
+
len
;
s
=
Math
.
min
(
a
-
off
,
b
-
a
);
vecswap
(
x
,
off
,
b
-
s
,
s
);
s
=
Math
.
min
(
d
-
c
,
n
-
d
-
1
);
vecswap
(
x
,
b
,
n
-
s
,
s
);
// Recursively sort non-partition-elements
if
((
s
=
b
-
a
)
>
1
)
sort1
(
x
,
off
,
s
);
if
((
s
=
d
-
c
)
>
1
)
sort1
(
x
,
n
-
s
,
s
);
}
/**
* Swaps x[a] with x[b].
*/
private
static
void
swap
(
byte
x
[],
int
a
,
int
b
)
{
byte
t
=
x
[
a
];
x
[
a
]
=
x
[
b
];
x
[
b
]
=
t
;
}
/**
* Swaps x[a .. (a+n-1)] with x[b .. (b+n-1)].
*/
private
static
void
vecswap
(
byte
x
[],
int
a
,
int
b
,
int
n
)
{
for
(
int
i
=
0
;
i
<
n
;
i
++,
a
++,
b
++)
swap
(
x
,
a
,
b
);
}
/**
* Returns the index of the median of the three indexed bytes.
*/
private
static
int
med3
(
byte
x
[],
int
a
,
int
b
,
int
c
)
{
return
(
x
[
a
]
<
x
[
b
]
?
(
x
[
b
]
<
x
[
c
]
?
b
:
x
[
a
]
<
x
[
c
]
?
c
:
a
)
:
(
x
[
b
]
>
x
[
c
]
?
b
:
x
[
a
]
>
x
[
c
]
?
c
:
a
));
}
/**
* Sorts the specified sub-array of doubles into ascending order.
*/
private
static
void
sort1
(
double
x
[],
int
off
,
int
len
)
{
// Insertion sort on smallest arrays
if
(
len
<
7
)
{
for
(
int
i
=
off
;
i
<
len
+
off
;
i
++)
for
(
int
j
=
i
;
j
>
off
&&
x
[
j
-
1
]>
x
[
j
];
j
--)
swap
(
x
,
j
,
j
-
1
);
return
;
}
// Choose a partition element, v
int
m
=
off
+
(
len
>>
1
);
// Small arrays, middle element
if
(
len
>
7
)
{
int
l
=
off
;
int
n
=
off
+
len
-
1
;
if
(
len
>
40
)
{
// Big arrays, pseudomedian of 9
int
s
=
len
/
8
;
l
=
med3
(
x
,
l
,
l
+
s
,
l
+
2
*
s
);
m
=
med3
(
x
,
m
-
s
,
m
,
m
+
s
);
n
=
med3
(
x
,
n
-
2
*
s
,
n
-
s
,
n
);
}
m
=
med3
(
x
,
l
,
m
,
n
);
// Mid-size, med of 3
}
double
v
=
x
[
m
];
// Establish Invariant: v* (<v)* (>v)* v*
int
a
=
off
,
b
=
a
,
c
=
off
+
len
-
1
,
d
=
c
;
while
(
true
)
{
while
(
b
<=
c
&&
x
[
b
]
<=
v
)
{
if
(
x
[
b
]
==
v
)
swap
(
x
,
a
++,
b
);
b
++;
}
while
(
c
>=
b
&&
x
[
c
]
>=
v
)
{
if
(
x
[
c
]
==
v
)
swap
(
x
,
c
,
d
--);
c
--;
}
if
(
b
>
c
)
break
;
swap
(
x
,
b
++,
c
--);
}
// Swap partition elements back to middle
int
s
,
n
=
off
+
len
;
s
=
Math
.
min
(
a
-
off
,
b
-
a
);
vecswap
(
x
,
off
,
b
-
s
,
s
);
s
=
Math
.
min
(
d
-
c
,
n
-
d
-
1
);
vecswap
(
x
,
b
,
n
-
s
,
s
);
// Recursively sort non-partition-elements
if
((
s
=
b
-
a
)
>
1
)
sort1
(
x
,
off
,
s
);
if
((
s
=
d
-
c
)
>
1
)
sort1
(
x
,
n
-
s
,
s
);
}
/**
* Swaps x[a] with x[b].
*/
private
static
void
swap
(
double
x
[],
int
a
,
int
b
)
{
double
t
=
x
[
a
];
x
[
a
]
=
x
[
b
];
x
[
b
]
=
t
;
}
/**
* Swaps x[a .. (a+n-1)] with x[b .. (b+n-1)].
*/
private
static
void
vecswap
(
double
x
[],
int
a
,
int
b
,
int
n
)
{
for
(
int
i
=
0
;
i
<
n
;
i
++,
a
++,
b
++)
swap
(
x
,
a
,
b
);
}
/**
* Returns the index of the median of the three indexed doubles.
*/
private
static
int
med3
(
double
x
[],
int
a
,
int
b
,
int
c
)
{
return
(
x
[
a
]
<
x
[
b
]
?
(
x
[
b
]
<
x
[
c
]
?
b
:
x
[
a
]
<
x
[
c
]
?
c
:
a
)
:
(
x
[
b
]
>
x
[
c
]
?
b
:
x
[
a
]
>
x
[
c
]
?
c
:
a
));
}
/**
* Sorts the specified sub-array of floats into ascending order.
*/
private
static
void
sort1
(
float
x
[],
int
off
,
int
len
)
{
// Insertion sort on smallest arrays
if
(
len
<
7
)
{
for
(
int
i
=
off
;
i
<
len
+
off
;
i
++)
for
(
int
j
=
i
;
j
>
off
&&
x
[
j
-
1
]>
x
[
j
];
j
--)
swap
(
x
,
j
,
j
-
1
);
return
;
}
// Choose a partition element, v
int
m
=
off
+
(
len
>>
1
);
// Small arrays, middle element
if
(
len
>
7
)
{
int
l
=
off
;
int
n
=
off
+
len
-
1
;
if
(
len
>
40
)
{
// Big arrays, pseudomedian of 9
int
s
=
len
/
8
;
l
=
med3
(
x
,
l
,
l
+
s
,
l
+
2
*
s
);
m
=
med3
(
x
,
m
-
s
,
m
,
m
+
s
);
n
=
med3
(
x
,
n
-
2
*
s
,
n
-
s
,
n
);
}
m
=
med3
(
x
,
l
,
m
,
n
);
// Mid-size, med of 3
}
float
v
=
x
[
m
];
// Establish Invariant: v* (<v)* (>v)* v*
int
a
=
off
,
b
=
a
,
c
=
off
+
len
-
1
,
d
=
c
;
while
(
true
)
{
while
(
b
<=
c
&&
x
[
b
]
<=
v
)
{
if
(
x
[
b
]
==
v
)
swap
(
x
,
a
++,
b
);
b
++;
}
while
(
c
>=
b
&&
x
[
c
]
>=
v
)
{
if
(
x
[
c
]
==
v
)
swap
(
x
,
c
,
d
--);
c
--;
}
if
(
b
>
c
)
break
;
swap
(
x
,
b
++,
c
--);
}
// Swap partition elements back to middle
int
s
,
n
=
off
+
len
;
s
=
Math
.
min
(
a
-
off
,
b
-
a
);
vecswap
(
x
,
off
,
b
-
s
,
s
);
s
=
Math
.
min
(
d
-
c
,
n
-
d
-
1
);
vecswap
(
x
,
b
,
n
-
s
,
s
);
// Recursively sort non-partition-elements
if
((
s
=
b
-
a
)
>
1
)
sort1
(
x
,
off
,
s
);
if
((
s
=
d
-
c
)
>
1
)
sort1
(
x
,
n
-
s
,
s
);
}
/**
* Swaps x[a] with x[b].
*/
private
static
void
swap
(
float
x
[],
int
a
,
int
b
)
{
float
t
=
x
[
a
];
x
[
a
]
=
x
[
b
];
x
[
b
]
=
t
;
}
/**
* Swaps x[a .. (a+n-1)] with x[b .. (b+n-1)].
*/
private
static
void
vecswap
(
float
x
[],
int
a
,
int
b
,
int
n
)
{
for
(
int
i
=
0
;
i
<
n
;
i
++,
a
++,
b
++)
swap
(
x
,
a
,
b
);
}
/**
* Returns the index of the median of the three indexed floats.
*/
private
static
int
med3
(
float
x
[],
int
a
,
int
b
,
int
c
)
{
return
(
x
[
a
]
<
x
[
b
]
?
(
x
[
b
]
<
x
[
c
]
?
b
:
x
[
a
]
<
x
[
c
]
?
c
:
a
)
:
(
x
[
b
]
>
x
[
c
]
?
b
:
x
[
a
]
>
x
[
c
]
?
c
:
a
));
}
/**
...
...
@@ -1235,7 +646,7 @@ public class Arrays {
/**
* Tuning parameter: list size at or below which insertion sort will be
* used in preference to mergesort
or quicksort
.
* used in preference to mergesort.
* To be removed in a future release.
*/
private
static
final
int
INSERTIONSORT_THRESHOLD
=
7
;
...
...
@@ -1474,18 +885,21 @@ public class Arrays {
}
/**
* Check
that fromIndex and toIndex are in range, and throw a
n
*
appropriate exception
if they aren't.
* Check
s that {@code fromIndex} and {@code toIndex} are i
n
*
the range and throws an appropriate exception,
if they aren't.
*/
private
static
void
rangeCheck
(
int
arrayLen
,
int
fromIndex
,
int
toIndex
)
{
if
(
fromIndex
>
toIndex
)
throw
new
IllegalArgumentException
(
"fromIndex("
+
fromIndex
+
") > toIndex("
+
toIndex
+
")"
);
if
(
fromIndex
<
0
)
private
static
void
rangeCheck
(
int
length
,
int
fromIndex
,
int
toIndex
)
{
if
(
fromIndex
>
toIndex
)
{
throw
new
IllegalArgumentException
(
"fromIndex("
+
fromIndex
+
") > toIndex("
+
toIndex
+
")"
);
}
if
(
fromIndex
<
0
)
{
throw
new
ArrayIndexOutOfBoundsException
(
fromIndex
);
if
(
toIndex
>
arrayLen
)
}
if
(
toIndex
>
length
)
{
throw
new
ArrayIndexOutOfBoundsException
(
toIndex
);
}
}
// Searching
...
...
@@ -2076,7 +1490,6 @@ public class Arrays {
return
-(
low
+
1
);
// key not found.
}
/**
* Searches the specified array for the specified object using the binary
* search algorithm. The array must be sorted into ascending order
...
...
@@ -2269,7 +1682,6 @@ public class Arrays {
int
mid
=
(
low
+
high
)
>>>
1
;
T
midVal
=
a
[
mid
];
int
cmp
=
c
.
compare
(
midVal
,
key
);
if
(
cmp
<
0
)
low
=
mid
+
1
;
else
if
(
cmp
>
0
)
...
...
@@ -2280,7 +1692,6 @@ public class Arrays {
return
-(
low
+
1
);
// key not found.
}
// Equality Testing
/**
...
...
@@ -2527,7 +1938,6 @@ public class Arrays {
return
true
;
}
/**
* Returns <tt>true</tt> if the two specified arrays of Objects are
* <i>equal</i> to one another. The two arrays are considered equal if
...
...
@@ -2562,7 +1972,6 @@ public class Arrays {
return
true
;
}
// Filling
/**
...
...
@@ -2885,8 +2294,8 @@ public class Arrays {
a
[
i
]
=
val
;
}
// Cloning
/**
* Copies the specified array, truncating or padding with nulls (if necessary)
* so the copy has the specified length. For all indices that are
...
...
@@ -3495,7 +2904,6 @@ public class Arrays {
return
copy
;
}
// Misc
/**
...
...
@@ -4180,6 +3588,7 @@ public class Arrays {
public
static
String
toString
(
float
[]
a
)
{
if
(
a
==
null
)
return
"null"
;
int
iMax
=
a
.
length
-
1
;
if
(
iMax
==
-
1
)
return
"[]"
;
...
...
@@ -4243,6 +3652,7 @@ public class Arrays {
public
static
String
toString
(
Object
[]
a
)
{
if
(
a
==
null
)
return
"null"
;
int
iMax
=
a
.
length
-
1
;
if
(
iMax
==
-
1
)
return
"[]"
;
...
...
src/share/classes/java/util/DualPivotQuicksort.java
0 → 100644
浏览文件 @
6b1b12bc
/*
* Copyright 2009 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Sun designates this
* particular file as subject to the "Classpath" exception as provided
* by Sun in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*/
package
java.util
;
/**
* This class implements the Dual-Pivot Quicksort algorithm by
* Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. The algorithm
* offers O(n log(n)) performance on many data sets that cause other
* quicksorts to degrade to quadratic performance, and is typically
* faster than traditional (one-pivot) Quicksort implementations.
*
* @author Vladimir Yaroslavskiy
* @author Jon Bentley
* @author Josh Bloch
*
* @version 2009.10.22 m765.827.v4
*/
final
class
DualPivotQuicksort
{
// Suppresses default constructor, ensuring non-instantiability.
private
DualPivotQuicksort
()
{}
/*
* Tuning Parameters.
*/
/**
* If the length of an array to be sorted is less than this
* constant, insertion sort is used in preference to Quicksort.
*/
private
static
final
int
INSERTION_SORT_THRESHOLD
=
32
;
/**
* If the length of a byte array to be sorted is greater than
* this constant, counting sort is used in preference to Quicksort.
*/
private
static
final
int
COUNTING_SORT_THRESHOLD_FOR_BYTE
=
128
;
/**
* If the length of a short or char array to be sorted is greater
* than this constant, counting sort is used in preference to Quicksort.
*/
private
static
final
int
COUNTING_SORT_THRESHOLD_FOR_SHORT_OR_CHAR
=
32768
;
/*
* Sorting methods for the seven primitive types.
*/
/**
* Sorts the specified range of the array into ascending order.
*
* @param a the array to be sorted
* @param left the index of the first element, inclusively, to be sorted
* @param right the index of the last element, inclusively, to be sorted
*/
static
void
sort
(
int
[]
a
,
int
left
,
int
right
)
{
// Use insertion sort on tiny arrays
if
(
right
-
left
+
1
<
INSERTION_SORT_THRESHOLD
)
{
for
(
int
k
=
left
+
1
;
k
<=
right
;
k
++)
{
int
ak
=
a
[
k
];
int
j
;
for
(
j
=
k
-
1
;
j
>=
left
&&
ak
<
a
[
j
];
j
--)
{
a
[
j
+
1
]
=
a
[
j
];
}
a
[
j
+
1
]
=
ak
;
}
}
else
{
// Use Dual-Pivot Quicksort on large arrays
dualPivotQuicksort
(
a
,
left
,
right
);
}
}
/**
* Sorts the specified range of the array into ascending order
* by Dual-Pivot Quicksort.
*
* @param a the array to be sorted
* @param left the index of the first element, inclusively, to be sorted
* @param right the index of the last element, inclusively, to be sorted
*/
private
static
void
dualPivotQuicksort
(
int
[]
a
,
int
left
,
int
right
)
{
// Compute indices of five evenly spaced elements
int
sixth
=
(
right
-
left
+
1
)
/
6
;
int
e1
=
left
+
sixth
;
int
e5
=
right
-
sixth
;
int
e3
=
(
left
+
right
)
>>>
1
;
// The midpoint
int
e4
=
e3
+
sixth
;
int
e2
=
e3
-
sixth
;
// Sort these elements in place using a 5-element sorting network
if
(
a
[
e1
]
>
a
[
e2
])
{
int
t
=
a
[
e1
];
a
[
e1
]
=
a
[
e2
];
a
[
e2
]
=
t
;
}
if
(
a
[
e4
]
>
a
[
e5
])
{
int
t
=
a
[
e4
];
a
[
e4
]
=
a
[
e5
];
a
[
e5
]
=
t
;
}
if
(
a
[
e1
]
>
a
[
e3
])
{
int
t
=
a
[
e1
];
a
[
e1
]
=
a
[
e3
];
a
[
e3
]
=
t
;
}
if
(
a
[
e2
]
>
a
[
e3
])
{
int
t
=
a
[
e2
];
a
[
e2
]
=
a
[
e3
];
a
[
e3
]
=
t
;
}
if
(
a
[
e1
]
>
a
[
e4
])
{
int
t
=
a
[
e1
];
a
[
e1
]
=
a
[
e4
];
a
[
e4
]
=
t
;
}
if
(
a
[
e3
]
>
a
[
e4
])
{
int
t
=
a
[
e3
];
a
[
e3
]
=
a
[
e4
];
a
[
e4
]
=
t
;
}
if
(
a
[
e2
]
>
a
[
e5
])
{
int
t
=
a
[
e2
];
a
[
e2
]
=
a
[
e5
];
a
[
e5
]
=
t
;
}
if
(
a
[
e2
]
>
a
[
e3
])
{
int
t
=
a
[
e2
];
a
[
e2
]
=
a
[
e3
];
a
[
e3
]
=
t
;
}
if
(
a
[
e4
]
>
a
[
e5
])
{
int
t
=
a
[
e4
];
a
[
e4
]
=
a
[
e5
];
a
[
e5
]
=
t
;
}
/*
* Use the second and fourth of the five sorted elements as pivots.
* These values are inexpensive approximations of the first and
* second terciles of the array. Note that pivot1 <= pivot2.
*
* The pivots are stored in local variables, and the first and
* the last of the sorted elements are moved to the locations
* formerly occupied by the pivots. When partitioning is complete,
* the pivots are swapped back into their final positions, and
* excluded from subsequent sorting.
*/
int
pivot1
=
a
[
e2
];
a
[
e2
]
=
a
[
left
];
int
pivot2
=
a
[
e4
];
a
[
e4
]
=
a
[
right
];
/*
* Partitioning
*
* left part center part right part
* ------------------------------------------------------------
* [ < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 ]
* ------------------------------------------------------------
* ^ ^ ^
* | | |
* less k great
*/
// Pointers
int
less
=
left
+
1
;
// The index of first element of center part
int
great
=
right
-
1
;
// The index before first element of right part
boolean
pivotsDiffer
=
pivot1
!=
pivot2
;
if
(
pivotsDiffer
)
{
/*
* Invariants:
* all in (left, less) < pivot1
* pivot1 <= all in [less, k) <= pivot2
* all in (great, right) > pivot2
*
* Pointer k is the first index of ?-part
*/
for
(
int
k
=
less
;
k
<=
great
;
k
++)
{
int
ak
=
a
[
k
];
if
(
ak
<
pivot1
)
{
a
[
k
]
=
a
[
less
];
a
[
less
++]
=
ak
;
}
else
if
(
ak
>
pivot2
)
{
while
(
a
[
great
]
>
pivot2
&&
k
<
great
)
{
great
--;
}
a
[
k
]
=
a
[
great
];
a
[
great
--]
=
ak
;
ak
=
a
[
k
];
if
(
ak
<
pivot1
)
{
a
[
k
]
=
a
[
less
];
a
[
less
++]
=
ak
;
}
}
}
}
else
{
// Pivots are equal
/*
* Partition degenerates to the traditional 3-way
* (or "Dutch National Flag") partition:
*
* left part center part right part
* -------------------------------------------------
* [ < pivot | == pivot | ? | > pivot ]
* -------------------------------------------------
*
* ^ ^ ^
* | | |
* less k great
*
* Invariants:
*
* all in (left, less) < pivot
* all in [less, k) == pivot
* all in (great, right) > pivot
*
* Pointer k is the first index of ?-part
*/
for
(
int
k
=
less
;
k
<=
great
;
k
++)
{
int
ak
=
a
[
k
];
if
(
ak
==
pivot1
)
{
continue
;
}
if
(
ak
<
pivot1
)
{
a
[
k
]
=
a
[
less
];
a
[
less
++]
=
ak
;
}
else
{
while
(
a
[
great
]
>
pivot1
)
{
great
--;
}
a
[
k
]
=
a
[
great
];
a
[
great
--]
=
ak
;
ak
=
a
[
k
];
if
(
ak
<
pivot1
)
{
a
[
k
]
=
a
[
less
];
a
[
less
++]
=
ak
;
}
}
}
}
// Swap pivots into their final positions
a
[
left
]
=
a
[
less
-
1
];
a
[
less
-
1
]
=
pivot1
;
a
[
right
]
=
a
[
great
+
1
];
a
[
great
+
1
]
=
pivot2
;
// Sort left and right parts recursively, excluding known pivot values
sort
(
a
,
left
,
less
-
2
);
sort
(
a
,
great
+
2
,
right
);
/*
* If pivot1 == pivot2, all elements from center
* part are equal and, therefore, already sorted
*/
if
(!
pivotsDiffer
)
{
return
;
}
/*
* If center part is too large (comprises > 5/6 of
* the array), swap internal pivot values to ends
*/
if
(
less
<
e1
&&
e5
<
great
)
{
while
(
a
[
less
]
==
pivot1
)
{
less
++;
}
for
(
int
k
=
less
+
1
;
k
<=
great
;
k
++)
{
if
(
a
[
k
]
==
pivot1
)
{
a
[
k
]
=
a
[
less
];
a
[
less
++]
=
pivot1
;
}
}
while
(
a
[
great
]
==
pivot2
)
{
great
--;
}
for
(
int
k
=
great
-
1
;
k
>=
less
;
k
--)
{
if
(
a
[
k
]
==
pivot2
)
{
a
[
k
]
=
a
[
great
];
a
[
great
--]
=
pivot2
;
}
}
}
// Sort center part recursively, excluding known pivot values
sort
(
a
,
less
,
great
);
}
/**
* Sorts the specified range of the array into ascending order.
*
* @param a the array to be sorted
* @param left the index of the first element, inclusively, to be sorted
* @param right the index of the last element, inclusively, to be sorted
*/
static
void
sort
(
long
[]
a
,
int
left
,
int
right
)
{
// Use insertion sort on tiny arrays
if
(
right
-
left
+
1
<
INSERTION_SORT_THRESHOLD
)
{
for
(
int
k
=
left
+
1
;
k
<=
right
;
k
++)
{
long
ak
=
a
[
k
];
int
j
;
for
(
j
=
k
-
1
;
j
>=
left
&&
ak
<
a
[
j
];
j
--)
{
a
[
j
+
1
]
=
a
[
j
];
}
a
[
j
+
1
]
=
ak
;
}
}
else
{
// Use Dual-Pivot Quicksort on large arrays
dualPivotQuicksort
(
a
,
left
,
right
);
}
}
/**
* Sorts the specified range of the array into ascending order
* by Dual-Pivot Quicksort.
*
* @param a the array to be sorted
* @param left the index of the first element, inclusively, to be sorted
* @param right the index of the last element, inclusively, to be sorted
*/
private
static
void
dualPivotQuicksort
(
long
[]
a
,
int
left
,
int
right
)
{
// Compute indices of five evenly spaced elements
int
sixth
=
(
right
-
left
+
1
)
/
6
;
int
e1
=
left
+
sixth
;
int
e5
=
right
-
sixth
;
int
e3
=
(
left
+
right
)
>>>
1
;
// The midpoint
int
e4
=
e3
+
sixth
;
int
e2
=
e3
-
sixth
;
// Sort these elements in place using a 5-element sorting network
if
(
a
[
e1
]
>
a
[
e2
])
{
long
t
=
a
[
e1
];
a
[
e1
]
=
a
[
e2
];
a
[
e2
]
=
t
;
}
if
(
a
[
e4
]
>
a
[
e5
])
{
long
t
=
a
[
e4
];
a
[
e4
]
=
a
[
e5
];
a
[
e5
]
=
t
;
}
if
(
a
[
e1
]
>
a
[
e3
])
{
long
t
=
a
[
e1
];
a
[
e1
]
=
a
[
e3
];
a
[
e3
]
=
t
;
}
if
(
a
[
e2
]
>
a
[
e3
])
{
long
t
=
a
[
e2
];
a
[
e2
]
=
a
[
e3
];
a
[
e3
]
=
t
;
}
if
(
a
[
e1
]
>
a
[
e4
])
{
long
t
=
a
[
e1
];
a
[
e1
]
=
a
[
e4
];
a
[
e4
]
=
t
;
}
if
(
a
[
e3
]
>
a
[
e4
])
{
long
t
=
a
[
e3
];
a
[
e3
]
=
a
[
e4
];
a
[
e4
]
=
t
;
}
if
(
a
[
e2
]
>
a
[
e5
])
{
long
t
=
a
[
e2
];
a
[
e2
]
=
a
[
e5
];
a
[
e5
]
=
t
;
}
if
(
a
[
e2
]
>
a
[
e3
])
{
long
t
=
a
[
e2
];
a
[
e2
]
=
a
[
e3
];
a
[
e3
]
=
t
;
}
if
(
a
[
e4
]
>
a
[
e5
])
{
long
t
=
a
[
e4
];
a
[
e4
]
=
a
[
e5
];
a
[
e5
]
=
t
;
}
/*
* Use the second and fourth of the five sorted elements as pivots.
* These values are inexpensive approximations of the first and
* second terciles of the array. Note that pivot1 <= pivot2.
*
* The pivots are stored in local variables, and the first and
* the last of the sorted elements are moved to the locations
* formerly occupied by the pivots. When partitioning is complete,
* the pivots are swapped back into their final positions, and
* excluded from subsequent sorting.
*/
long
pivot1
=
a
[
e2
];
a
[
e2
]
=
a
[
left
];
long
pivot2
=
a
[
e4
];
a
[
e4
]
=
a
[
right
];
/*
* Partitioning
*
* left part center part right part
* ------------------------------------------------------------
* [ < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 ]
* ------------------------------------------------------------
* ^ ^ ^
* | | |
* less k great
*/
// Pointers
int
less
=
left
+
1
;
// The index of first element of center part
int
great
=
right
-
1
;
// The index before first element of right part
boolean
pivotsDiffer
=
pivot1
!=
pivot2
;
if
(
pivotsDiffer
)
{
/*
* Invariants:
* all in (left, less) < pivot1
* pivot1 <= all in [less, k) <= pivot2
* all in (great, right) > pivot2
*
* Pointer k is the first index of ?-part
*/
for
(
int
k
=
less
;
k
<=
great
;
k
++)
{
long
ak
=
a
[
k
];
if
(
ak
<
pivot1
)
{
a
[
k
]
=
a
[
less
];
a
[
less
++]
=
ak
;
}
else
if
(
ak
>
pivot2
)
{
while
(
a
[
great
]
>
pivot2
&&
k
<
great
)
{
great
--;
}
a
[
k
]
=
a
[
great
];
a
[
great
--]
=
ak
;
ak
=
a
[
k
];
if
(
ak
<
pivot1
)
{
a
[
k
]
=
a
[
less
];
a
[
less
++]
=
ak
;
}
}
}
}
else
{
// Pivots are equal
/*
* Partition degenerates to the traditional 3-way
* (or "Dutch National Flag") partition:
*
* left part center part right part
* -------------------------------------------------
* [ < pivot | == pivot | ? | > pivot ]
* -------------------------------------------------
*
* ^ ^ ^
* | | |
* less k great
*
* Invariants:
*
* all in (left, less) < pivot
* all in [less, k) == pivot
* all in (great, right) > pivot
*
* Pointer k is the first index of ?-part
*/
for
(
int
k
=
less
;
k
<=
great
;
k
++)
{
long
ak
=
a
[
k
];
if
(
ak
==
pivot1
)
{
continue
;
}
if
(
ak
<
pivot1
)
{
a
[
k
]
=
a
[
less
];
a
[
less
++]
=
ak
;
}
else
{
while
(
a
[
great
]
>
pivot1
)
{
great
--;
}
a
[
k
]
=
a
[
great
];
a
[
great
--]
=
ak
;
ak
=
a
[
k
];
if
(
ak
<
pivot1
)
{
a
[
k
]
=
a
[
less
];
a
[
less
++]
=
ak
;
}
}
}
}
// Swap pivots into their final positions
a
[
left
]
=
a
[
less
-
1
];
a
[
less
-
1
]
=
pivot1
;
a
[
right
]
=
a
[
great
+
1
];
a
[
great
+
1
]
=
pivot2
;
// Sort left and right parts recursively, excluding known pivot values
sort
(
a
,
left
,
less
-
2
);
sort
(
a
,
great
+
2
,
right
);
/*
* If pivot1 == pivot2, all elements from center
* part are equal and, therefore, already sorted
*/
if
(!
pivotsDiffer
)
{
return
;
}
/*
* If center part is too large (comprises > 5/6 of
* the array), swap internal pivot values to ends
*/
if
(
less
<
e1
&&
e5
<
great
)
{
while
(
a
[
less
]
==
pivot1
)
{
less
++;
}
for
(
int
k
=
less
+
1
;
k
<=
great
;
k
++)
{
if
(
a
[
k
]
==
pivot1
)
{
a
[
k
]
=
a
[
less
];
a
[
less
++]
=
pivot1
;
}
}
while
(
a
[
great
]
==
pivot2
)
{
great
--;
}
for
(
int
k
=
great
-
1
;
k
>=
less
;
k
--)
{
if
(
a
[
k
]
==
pivot2
)
{
a
[
k
]
=
a
[
great
];
a
[
great
--]
=
pivot2
;
}
}
}
else
{
// Use Dual-Pivot Quicksort on large arrays
dualPivotQuicksort
(
a
,
left
,
right
);
}
}
/** The number of distinct short values */
private
static
final
int
NUM_SHORT_VALUES
=
1
<<
16
;
/**
* Sorts the specified range of the array into ascending order.
*
* @param a the array to be sorted
* @param left the index of the first element, inclusively, to be sorted
* @param right the index of the last element, inclusively, to be sorted
*/
static
void
sort
(
short
[]
a
,
int
left
,
int
right
)
{
// Use insertion sort on tiny arrays
if
(
right
-
left
+
1
<
INSERTION_SORT_THRESHOLD
)
{
for
(
int
k
=
left
+
1
;
k
<=
right
;
k
++)
{
short
ak
=
a
[
k
];
int
j
;
for
(
j
=
k
-
1
;
j
>=
left
&&
ak
<
a
[
j
];
j
--)
{
a
[
j
+
1
]
=
a
[
j
];
}
a
[
j
+
1
]
=
ak
;
}
}
else
if
(
right
-
left
+
1
>
COUNTING_SORT_THRESHOLD_FOR_SHORT_OR_CHAR
)
{
// Use counting sort on huge arrays
int
[]
count
=
new
int
[
NUM_SHORT_VALUES
];
for
(
int
i
=
left
;
i
<=
right
;
i
++)
{
count
[
a
[
i
]
-
Short
.
MIN_VALUE
]++;
}
for
(
int
i
=
0
,
k
=
left
;
i
<
count
.
length
&&
k
<
right
;
i
++)
{
short
value
=
(
short
)
(
i
+
Short
.
MIN_VALUE
);
for
(
int
s
=
count
[
i
];
s
>
0
;
s
--)
{
a
[
k
++]
=
value
;
}
}
}
else
{
// Use Dual-Pivot Quicksort on large arrays
dualPivotQuicksort
(
a
,
left
,
right
);
}
}
/**
* Sorts the specified range of the array into ascending order
* by Dual-Pivot Quicksort.
*
* @param a the array to be sorted
* @param left the index of the first element, inclusively, to be sorted
* @param right the index of the last element, inclusively, to be sorted
*/
private
static
void
dualPivotQuicksort
(
short
[]
a
,
int
left
,
int
right
)
{
// Compute indices of five evenly spaced elements
int
sixth
=
(
right
-
left
+
1
)
/
6
;
int
e1
=
left
+
sixth
;
int
e5
=
right
-
sixth
;
int
e3
=
(
left
+
right
)
>>>
1
;
// The midpoint
int
e4
=
e3
+
sixth
;
int
e2
=
e3
-
sixth
;
// Sort these elements in place using a 5-element sorting network
if
(
a
[
e1
]
>
a
[
e2
])
{
short
t
=
a
[
e1
];
a
[
e1
]
=
a
[
e2
];
a
[
e2
]
=
t
;
}
if
(
a
[
e4
]
>
a
[
e5
])
{
short
t
=
a
[
e4
];
a
[
e4
]
=
a
[
e5
];
a
[
e5
]
=
t
;
}
if
(
a
[
e1
]
>
a
[
e3
])
{
short
t
=
a
[
e1
];
a
[
e1
]
=
a
[
e3
];
a
[
e3
]
=
t
;
}
if
(
a
[
e2
]
>
a
[
e3
])
{
short
t
=
a
[
e2
];
a
[
e2
]
=
a
[
e3
];
a
[
e3
]
=
t
;
}
if
(
a
[
e1
]
>
a
[
e4
])
{
short
t
=
a
[
e1
];
a
[
e1
]
=
a
[
e4
];
a
[
e4
]
=
t
;
}
if
(
a
[
e3
]
>
a
[
e4
])
{
short
t
=
a
[
e3
];
a
[
e3
]
=
a
[
e4
];
a
[
e4
]
=
t
;
}
if
(
a
[
e2
]
>
a
[
e5
])
{
short
t
=
a
[
e2
];
a
[
e2
]
=
a
[
e5
];
a
[
e5
]
=
t
;
}
if
(
a
[
e2
]
>
a
[
e3
])
{
short
t
=
a
[
e2
];
a
[
e2
]
=
a
[
e3
];
a
[
e3
]
=
t
;
}
if
(
a
[
e4
]
>
a
[
e5
])
{
short
t
=
a
[
e4
];
a
[
e4
]
=
a
[
e5
];
a
[
e5
]
=
t
;
}
/*
* Use the second and fourth of the five sorted elements as pivots.
* These values are inexpensive approximations of the first and
* second terciles of the array. Note that pivot1 <= pivot2.
*
* The pivots are stored in local variables, and the first and
* the last of the sorted elements are moved to the locations
* formerly occupied by the pivots. When partitioning is complete,
* the pivots are swapped back into their final positions, and
* excluded from subsequent sorting.
*/
short
pivot1
=
a
[
e2
];
a
[
e2
]
=
a
[
left
];
short
pivot2
=
a
[
e4
];
a
[
e4
]
=
a
[
right
];
/*
* Partitioning
*
* left part center part right part
* ------------------------------------------------------------
* [ < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 ]
* ------------------------------------------------------------
* ^ ^ ^
* | | |
* less k great
*/
// Pointers
int
less
=
left
+
1
;
// The index of first element of center part
int
great
=
right
-
1
;
// The index before first element of right part
boolean
pivotsDiffer
=
pivot1
!=
pivot2
;
if
(
pivotsDiffer
)
{
/*
* Invariants:
* all in (left, less) < pivot1
* pivot1 <= all in [less, k) <= pivot2
* all in (great, right) > pivot2
*
* Pointer k is the first index of ?-part
*/
for
(
int
k
=
less
;
k
<=
great
;
k
++)
{
short
ak
=
a
[
k
];
if
(
ak
<
pivot1
)
{
a
[
k
]
=
a
[
less
];
a
[
less
++]
=
ak
;
}
else
if
(
ak
>
pivot2
)
{
while
(
a
[
great
]
>
pivot2
&&
k
<
great
)
{
great
--;
}
a
[
k
]
=
a
[
great
];
a
[
great
--]
=
ak
;
ak
=
a
[
k
];
if
(
ak
<
pivot1
)
{
a
[
k
]
=
a
[
less
];
a
[
less
++]
=
ak
;
}
}
}
}
else
{
// Pivots are equal
/*
* Partition degenerates to the traditional 3-way
* (or "Dutch National Flag") partition:
*
* left part center part right part
* -------------------------------------------------
* [ < pivot | == pivot | ? | > pivot ]
* -------------------------------------------------
*
* ^ ^ ^
* | | |
* less k great
*
* Invariants:
*
* all in (left, less) < pivot
* all in [less, k) == pivot
* all in (great, right) > pivot
*
* Pointer k is the first index of ?-part
*/
for
(
int
k
=
less
;
k
<=
great
;
k
++)
{
short
ak
=
a
[
k
];
if
(
ak
==
pivot1
)
{
continue
;
}
if
(
ak
<
pivot1
)
{
a
[
k
]
=
a
[
less
];
a
[
less
++]
=
ak
;
}
else
{
while
(
a
[
great
]
>
pivot1
)
{
great
--;
}
a
[
k
]
=
a
[
great
];
a
[
great
--]
=
ak
;
ak
=
a
[
k
];
if
(
ak
<
pivot1
)
{
a
[
k
]
=
a
[
less
];
a
[
less
++]
=
ak
;
}
}
}
}
// Swap pivots into their final positions
a
[
left
]
=
a
[
less
-
1
];
a
[
less
-
1
]
=
pivot1
;
a
[
right
]
=
a
[
great
+
1
];
a
[
great
+
1
]
=
pivot2
;
// Sort left and right parts recursively, excluding known pivot values
sort
(
a
,
left
,
less
-
2
);
sort
(
a
,
great
+
2
,
right
);
/*
* If pivot1 == pivot2, all elements from center
* part are equal and, therefore, already sorted
*/
if
(!
pivotsDiffer
)
{
return
;
}
/*
* If center part is too large (comprises > 5/6 of
* the array), swap internal pivot values to ends
*/
if
(
less
<
e1
&&
e5
<
great
)
{
while
(
a
[
less
]
==
pivot1
)
{
less
++;
}
for
(
int
k
=
less
+
1
;
k
<=
great
;
k
++)
{
if
(
a
[
k
]
==
pivot1
)
{
a
[
k
]
=
a
[
less
];
a
[
less
++]
=
pivot1
;
}
}
while
(
a
[
great
]
==
pivot2
)
{
great
--;
}
for
(
int
k
=
great
-
1
;
k
>=
less
;
k
--)
{
if
(
a
[
k
]
==
pivot2
)
{
a
[
k
]
=
a
[
great
];
a
[
great
--]
=
pivot2
;
}
}
}
// Sort center part recursively, excluding known pivot values
sort
(
a
,
less
,
great
);
}
/** The number of distinct byte values */
private
static
final
int
NUM_BYTE_VALUES
=
1
<<
8
;
/**
* Sorts the specified range of the array into ascending order.
*
* @param a the array to be sorted
* @param left the index of the first element, inclusively, to be sorted
* @param right the index of the last element, inclusively, to be sorted
*/
static
void
sort
(
byte
[]
a
,
int
left
,
int
right
)
{
// Use insertion sort on tiny arrays
if
(
right
-
left
+
1
<
INSERTION_SORT_THRESHOLD
)
{
for
(
int
k
=
left
+
1
;
k
<=
right
;
k
++)
{
byte
ak
=
a
[
k
];
int
j
;
for
(
j
=
k
-
1
;
j
>=
left
&&
ak
<
a
[
j
];
j
--)
{
a
[
j
+
1
]
=
a
[
j
];
}
a
[
j
+
1
]
=
ak
;
}
}
else
if
(
right
-
left
+
1
>
COUNTING_SORT_THRESHOLD_FOR_BYTE
)
{
// Use counting sort on large arrays
int
[]
count
=
new
int
[
NUM_BYTE_VALUES
];
for
(
int
i
=
left
;
i
<=
right
;
i
++)
{
count
[
a
[
i
]
-
Byte
.
MIN_VALUE
]++;
}
for
(
int
i
=
0
,
k
=
left
;
i
<
count
.
length
&&
k
<
right
;
i
++)
{
byte
value
=
(
byte
)
(
i
+
Byte
.
MIN_VALUE
);
for
(
int
s
=
count
[
i
];
s
>
0
;
s
--)
{
a
[
k
++]
=
value
;
}
}
}
else
{
// Use Dual-Pivot Quicksort on large arrays
dualPivotQuicksort
(
a
,
left
,
right
);
}
}
/**
* Sorts the specified range of the array into ascending order
* by Dual-Pivot Quicksort.
*
* @param a the array to be sorted
* @param left the index of the first element, inclusively, to be sorted
* @param right the index of the last element, inclusively, to be sorted
*/
private
static
void
dualPivotQuicksort
(
byte
[]
a
,
int
left
,
int
right
)
{
// Compute indices of five evenly spaced elements
int
sixth
=
(
right
-
left
+
1
)
/
6
;
int
e1
=
left
+
sixth
;
int
e5
=
right
-
sixth
;
int
e3
=
(
left
+
right
)
>>>
1
;
// The midpoint
int
e4
=
e3
+
sixth
;
int
e2
=
e3
-
sixth
;
// Sort these elements in place using a 5-element sorting network
if
(
a
[
e1
]
>
a
[
e2
])
{
byte
t
=
a
[
e1
];
a
[
e1
]
=
a
[
e2
];
a
[
e2
]
=
t
;
}
if
(
a
[
e4
]
>
a
[
e5
])
{
byte
t
=
a
[
e4
];
a
[
e4
]
=
a
[
e5
];
a
[
e5
]
=
t
;
}
if
(
a
[
e1
]
>
a
[
e3
])
{
byte
t
=
a
[
e1
];
a
[
e1
]
=
a
[
e3
];
a
[
e3
]
=
t
;
}
if
(
a
[
e2
]
>
a
[
e3
])
{
byte
t
=
a
[
e2
];
a
[
e2
]
=
a
[
e3
];
a
[
e3
]
=
t
;
}
if
(
a
[
e1
]
>
a
[
e4
])
{
byte
t
=
a
[
e1
];
a
[
e1
]
=
a
[
e4
];
a
[
e4
]
=
t
;
}
if
(
a
[
e3
]
>
a
[
e4
])
{
byte
t
=
a
[
e3
];
a
[
e3
]
=
a
[
e4
];
a
[
e4
]
=
t
;
}
if
(
a
[
e2
]
>
a
[
e5
])
{
byte
t
=
a
[
e2
];
a
[
e2
]
=
a
[
e5
];
a
[
e5
]
=
t
;
}
if
(
a
[
e2
]
>
a
[
e3
])
{
byte
t
=
a
[
e2
];
a
[
e2
]
=
a
[
e3
];
a
[
e3
]
=
t
;
}
if
(
a
[
e4
]
>
a
[
e5
])
{
byte
t
=
a
[
e4
];
a
[
e4
]
=
a
[
e5
];
a
[
e5
]
=
t
;
}
/*
* Use the second and fourth of the five sorted elements as pivots.
* These values are inexpensive approximations of the first and
* second terciles of the array. Note that pivot1 <= pivot2.
*
* The pivots are stored in local variables, and the first and
* the last of the sorted elements are moved to the locations
* formerly occupied by the pivots. When partitioning is complete,
* the pivots are swapped back into their final positions, and
* excluded from subsequent sorting.
*/
byte
pivot1
=
a
[
e2
];
a
[
e2
]
=
a
[
left
];
byte
pivot2
=
a
[
e4
];
a
[
e4
]
=
a
[
right
];
/*
* Partitioning
*
* left part center part right part
* ------------------------------------------------------------
* [ < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 ]
* ------------------------------------------------------------
* ^ ^ ^
* | | |
* less k great
*/
// Pointers
int
less
=
left
+
1
;
// The index of first element of center part
int
great
=
right
-
1
;
// The index before first element of right part
boolean
pivotsDiffer
=
pivot1
!=
pivot2
;
if
(
pivotsDiffer
)
{
/*
* Invariants:
* all in (left, less) < pivot1
* pivot1 <= all in [less, k) <= pivot2
* all in (great, right) > pivot2
*
* Pointer k is the first index of ?-part
*/
for
(
int
k
=
less
;
k
<=
great
;
k
++)
{
byte
ak
=
a
[
k
];
if
(
ak
<
pivot1
)
{
a
[
k
]
=
a
[
less
];
a
[
less
++]
=
ak
;
}
else
if
(
ak
>
pivot2
)
{
while
(
a
[
great
]
>
pivot2
&&
k
<
great
)
{
great
--;
}
a
[
k
]
=
a
[
great
];
a
[
great
--]
=
ak
;
ak
=
a
[
k
];
if
(
ak
<
pivot1
)
{
a
[
k
]
=
a
[
less
];
a
[
less
++]
=
ak
;
}
}
}
}
else
{
// Pivots are equal
/*
* Partition degenerates to the traditional 3-way
* (or "Dutch National Flag") partition:
*
* left part center part right part
* -------------------------------------------------
* [ < pivot | == pivot | ? | > pivot ]
* -------------------------------------------------
*
* ^ ^ ^
* | | |
* less k great
*
* Invariants:
*
* all in (left, less) < pivot
* all in [less, k) == pivot
* all in (great, right) > pivot
*
* Pointer k is the first index of ?-part
*/
for
(
int
k
=
less
;
k
<=
great
;
k
++)
{
byte
ak
=
a
[
k
];
if
(
ak
==
pivot1
)
{
continue
;
}
if
(
ak
<
pivot1
)
{
a
[
k
]
=
a
[
less
];
a
[
less
++]
=
ak
;
}
else
{
while
(
a
[
great
]
>
pivot1
)
{
great
--;
}
a
[
k
]
=
a
[
great
];
a
[
great
--]
=
ak
;
ak
=
a
[
k
];
if
(
ak
<
pivot1
)
{
a
[
k
]
=
a
[
less
];
a
[
less
++]
=
ak
;
}
}
}
}
// Swap pivots into their final positions
a
[
left
]
=
a
[
less
-
1
];
a
[
less
-
1
]
=
pivot1
;
a
[
right
]
=
a
[
great
+
1
];
a
[
great
+
1
]
=
pivot2
;
// Sort left and right parts recursively, excluding known pivot values
sort
(
a
,
left
,
less
-
2
);
sort
(
a
,
great
+
2
,
right
);
/*
* If pivot1 == pivot2, all elements from center
* part are equal and, therefore, already sorted
*/
if
(!
pivotsDiffer
)
{
return
;
}
/*
* If center part is too large (comprises > 5/6 of
* the array), swap internal pivot values to ends
*/
if
(
less
<
e1
&&
e5
<
great
)
{
while
(
a
[
less
]
==
pivot1
)
{
less
++;
}
for
(
int
k
=
less
+
1
;
k
<=
great
;
k
++)
{
if
(
a
[
k
]
==
pivot1
)
{
a
[
k
]
=
a
[
less
];
a
[
less
++]
=
pivot1
;
}
}
while
(
a
[
great
]
==
pivot2
)
{
great
--;
}
for
(
int
k
=
great
-
1
;
k
>=
less
;
k
--)
{
if
(
a
[
k
]
==
pivot2
)
{
a
[
k
]
=
a
[
great
];
a
[
great
--]
=
pivot2
;
}
}
}
// Sort center part recursively, excluding known pivot values
sort
(
a
,
less
,
great
);
}
/** The number of distinct char values */
private
static
final
int
NUM_CHAR_VALUES
=
1
<<
16
;
/**
* Sorts the specified range of the array into ascending order.
*
* @param a the array to be sorted
* @param left the index of the first element, inclusively, to be sorted
* @param right the index of the last element, inclusively, to be sorted
*/
static
void
sort
(
char
[]
a
,
int
left
,
int
right
)
{
// Use insertion sort on tiny arrays
if
(
right
-
left
+
1
<
INSERTION_SORT_THRESHOLD
)
{
for
(
int
k
=
left
+
1
;
k
<=
right
;
k
++)
{
char
ak
=
a
[
k
];
int
j
;
for
(
j
=
k
-
1
;
j
>=
left
&&
ak
<
a
[
j
];
j
--)
{
a
[
j
+
1
]
=
a
[
j
];
}
a
[
j
+
1
]
=
ak
;
}
}
else
if
(
right
-
left
+
1
>
COUNTING_SORT_THRESHOLD_FOR_SHORT_OR_CHAR
)
{
// Use counting sort on huge arrays
int
[]
count
=
new
int
[
NUM_CHAR_VALUES
];
for
(
int
i
=
left
;
i
<=
right
;
i
++)
{
count
[
a
[
i
]]++;
}
for
(
int
i
=
0
,
k
=
left
;
i
<
count
.
length
&&
k
<
right
;
i
++)
{
for
(
int
s
=
count
[
i
];
s
>
0
;
s
--)
{
a
[
k
++]
=
(
char
)
i
;
}
}
}
else
{
// Use Dual-Pivot Quicksort on large arrays
dualPivotQuicksort
(
a
,
left
,
right
);
}
}
/**
* Sorts the specified range of the array into ascending order
* by Dual-Pivot Quicksort.
*
* @param a the array to be sorted
* @param left the index of the first element, inclusively, to be sorted
* @param right the index of the last element, inclusively, to be sorted
*/
private
static
void
dualPivotQuicksort
(
char
[]
a
,
int
left
,
int
right
)
{
// Compute indices of five evenly spaced elements
int
sixth
=
(
right
-
left
+
1
)
/
6
;
int
e1
=
left
+
sixth
;
int
e5
=
right
-
sixth
;
int
e3
=
(
left
+
right
)
>>>
1
;
// The midpoint
int
e4
=
e3
+
sixth
;
int
e2
=
e3
-
sixth
;
// Sort these elements in place using a 5-element sorting network
if
(
a
[
e1
]
>
a
[
e2
])
{
char
t
=
a
[
e1
];
a
[
e1
]
=
a
[
e2
];
a
[
e2
]
=
t
;
}
if
(
a
[
e4
]
>
a
[
e5
])
{
char
t
=
a
[
e4
];
a
[
e4
]
=
a
[
e5
];
a
[
e5
]
=
t
;
}
if
(
a
[
e1
]
>
a
[
e3
])
{
char
t
=
a
[
e1
];
a
[
e1
]
=
a
[
e3
];
a
[
e3
]
=
t
;
}
if
(
a
[
e2
]
>
a
[
e3
])
{
char
t
=
a
[
e2
];
a
[
e2
]
=
a
[
e3
];
a
[
e3
]
=
t
;
}
if
(
a
[
e1
]
>
a
[
e4
])
{
char
t
=
a
[
e1
];
a
[
e1
]
=
a
[
e4
];
a
[
e4
]
=
t
;
}
if
(
a
[
e3
]
>
a
[
e4
])
{
char
t
=
a
[
e3
];
a
[
e3
]
=
a
[
e4
];
a
[
e4
]
=
t
;
}
if
(
a
[
e2
]
>
a
[
e5
])
{
char
t
=
a
[
e2
];
a
[
e2
]
=
a
[
e5
];
a
[
e5
]
=
t
;
}
if
(
a
[
e2
]
>
a
[
e3
])
{
char
t
=
a
[
e2
];
a
[
e2
]
=
a
[
e3
];
a
[
e3
]
=
t
;
}
if
(
a
[
e4
]
>
a
[
e5
])
{
char
t
=
a
[
e4
];
a
[
e4
]
=
a
[
e5
];
a
[
e5
]
=
t
;
}
/*
* Use the second and fourth of the five sorted elements as pivots.
* These values are inexpensive approximations of the first and
* second terciles of the array. Note that pivot1 <= pivot2.
*
* The pivots are stored in local variables, and the first and
* the last of the sorted elements are moved to the locations
* formerly occupied by the pivots. When partitioning is complete,
* the pivots are swapped back into their final positions, and
* excluded from subsequent sorting.
*/
char
pivot1
=
a
[
e2
];
a
[
e2
]
=
a
[
left
];
char
pivot2
=
a
[
e4
];
a
[
e4
]
=
a
[
right
];
/*
* Partitioning
*
* left part center part right part
* ------------------------------------------------------------
* [ < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 ]
* ------------------------------------------------------------
* ^ ^ ^
* | | |
* less k great
*/
// Pointers
int
less
=
left
+
1
;
// The index of first element of center part
int
great
=
right
-
1
;
// The index before first element of right part
boolean
pivotsDiffer
=
pivot1
!=
pivot2
;
if
(
pivotsDiffer
)
{
/*
* Invariants:
* all in (left, less) < pivot1
* pivot1 <= all in [less, k) <= pivot2
* all in (great, right) > pivot2
*
* Pointer k is the first index of ?-part
*/
for
(
int
k
=
less
;
k
<=
great
;
k
++)
{
char
ak
=
a
[
k
];
if
(
ak
<
pivot1
)
{
a
[
k
]
=
a
[
less
];
a
[
less
++]
=
ak
;
}
else
if
(
ak
>
pivot2
)
{
while
(
a
[
great
]
>
pivot2
&&
k
<
great
)
{
great
--;
}
a
[
k
]
=
a
[
great
];
a
[
great
--]
=
ak
;
ak
=
a
[
k
];
if
(
ak
<
pivot1
)
{
a
[
k
]
=
a
[
less
];
a
[
less
++]
=
ak
;
}
}
}
}
else
{
// Pivots are equal
/*
* Partition degenerates to the traditional 3-way
* (or "Dutch National Flag") partition:
*
* left part center part right part
* -------------------------------------------------
* [ < pivot | == pivot | ? | > pivot ]
* -------------------------------------------------
*
* ^ ^ ^
* | | |
* less k great
*
* Invariants:
*
* all in (left, less) < pivot
* all in [less, k) == pivot
* all in (great, right) > pivot
*
* Pointer k is the first index of ?-part
*/
for
(
int
k
=
less
;
k
<=
great
;
k
++)
{
char
ak
=
a
[
k
];
if
(
ak
==
pivot1
)
{
continue
;
}
if
(
ak
<
pivot1
)
{
a
[
k
]
=
a
[
less
];
a
[
less
++]
=
ak
;
}
else
{
while
(
a
[
great
]
>
pivot1
)
{
great
--;
}
a
[
k
]
=
a
[
great
];
a
[
great
--]
=
ak
;
ak
=
a
[
k
];
if
(
ak
<
pivot1
)
{
a
[
k
]
=
a
[
less
];
a
[
less
++]
=
ak
;
}
}
}
}
// Swap pivots into their final positions
a
[
left
]
=
a
[
less
-
1
];
a
[
less
-
1
]
=
pivot1
;
a
[
right
]
=
a
[
great
+
1
];
a
[
great
+
1
]
=
pivot2
;
// Sort left and right parts recursively, excluding known pivot values
sort
(
a
,
left
,
less
-
2
);
sort
(
a
,
great
+
2
,
right
);
/*
* If pivot1 == pivot2, all elements from center
* part are equal and, therefore, already sorted
*/
if
(!
pivotsDiffer
)
{
return
;
}
/*
* If center part is too large (comprises > 5/6 of
* the array), swap internal pivot values to ends
*/
if
(
less
<
e1
&&
e5
<
great
)
{
while
(
a
[
less
]
==
pivot1
)
{
less
++;
}
for
(
int
k
=
less
+
1
;
k
<=
great
;
k
++)
{
if
(
a
[
k
]
==
pivot1
)
{
a
[
k
]
=
a
[
less
];
a
[
less
++]
=
pivot1
;
}
}
while
(
a
[
great
]
==
pivot2
)
{
great
--;
}
for
(
int
k
=
great
-
1
;
k
>=
less
;
k
--)
{
if
(
a
[
k
]
==
pivot2
)
{
a
[
k
]
=
a
[
great
];
a
[
great
--]
=
pivot2
;
}
}
}
// Sort center part recursively, excluding known pivot values
sort
(
a
,
less
,
great
);
}
/**
* Sorts the specified range of the array into ascending order.
*
* @param a the array to be sorted
* @param left the index of the first element, inclusively, to be sorted
* @param right the index of the last element, inclusively, to be sorted
*/
static
void
sort
(
float
[]
a
,
int
left
,
int
right
)
{
// Use insertion sort on tiny arrays
if
(
right
-
left
+
1
<
INSERTION_SORT_THRESHOLD
)
{
for
(
int
k
=
left
+
1
;
k
<=
right
;
k
++)
{
float
ak
=
a
[
k
];
int
j
;
for
(
j
=
k
-
1
;
j
>=
left
&&
ak
<
a
[
j
];
j
--)
{
a
[
j
+
1
]
=
a
[
j
];
}
a
[
j
+
1
]
=
ak
;
}
}
else
{
// Use Dual-Pivot Quicksort on large arrays
dualPivotQuicksort
(
a
,
left
,
right
);
}
}
/**
* Sorts the specified range of the array into ascending order
* by Dual-Pivot Quicksort.
*
* @param a the array to be sorted
* @param left the index of the first element, inclusively, to be sorted
* @param right the index of the last element, inclusively, to be sorted
*/
private
static
void
dualPivotQuicksort
(
float
[]
a
,
int
left
,
int
right
)
{
// Compute indices of five evenly spaced elements
int
sixth
=
(
right
-
left
+
1
)
/
6
;
int
e1
=
left
+
sixth
;
int
e5
=
right
-
sixth
;
int
e3
=
(
left
+
right
)
>>>
1
;
// The midpoint
int
e4
=
e3
+
sixth
;
int
e2
=
e3
-
sixth
;
// Sort these elements in place using a 5-element sorting network
if
(
a
[
e1
]
>
a
[
e2
])
{
float
t
=
a
[
e1
];
a
[
e1
]
=
a
[
e2
];
a
[
e2
]
=
t
;
}
if
(
a
[
e4
]
>
a
[
e5
])
{
float
t
=
a
[
e4
];
a
[
e4
]
=
a
[
e5
];
a
[
e5
]
=
t
;
}
if
(
a
[
e1
]
>
a
[
e3
])
{
float
t
=
a
[
e1
];
a
[
e1
]
=
a
[
e3
];
a
[
e3
]
=
t
;
}
if
(
a
[
e2
]
>
a
[
e3
])
{
float
t
=
a
[
e2
];
a
[
e2
]
=
a
[
e3
];
a
[
e3
]
=
t
;
}
if
(
a
[
e1
]
>
a
[
e4
])
{
float
t
=
a
[
e1
];
a
[
e1
]
=
a
[
e4
];
a
[
e4
]
=
t
;
}
if
(
a
[
e3
]
>
a
[
e4
])
{
float
t
=
a
[
e3
];
a
[
e3
]
=
a
[
e4
];
a
[
e4
]
=
t
;
}
if
(
a
[
e2
]
>
a
[
e5
])
{
float
t
=
a
[
e2
];
a
[
e2
]
=
a
[
e5
];
a
[
e5
]
=
t
;
}
if
(
a
[
e2
]
>
a
[
e3
])
{
float
t
=
a
[
e2
];
a
[
e2
]
=
a
[
e3
];
a
[
e3
]
=
t
;
}
if
(
a
[
e4
]
>
a
[
e5
])
{
float
t
=
a
[
e4
];
a
[
e4
]
=
a
[
e5
];
a
[
e5
]
=
t
;
}
/*
* Use the second and fourth of the five sorted elements as pivots.
* These values are inexpensive approximations of the first and
* second terciles of the array. Note that pivot1 <= pivot2.
*
* The pivots are stored in local variables, and the first and
* the last of the sorted elements are moved to the locations
* formerly occupied by the pivots. When partitioning is complete,
* the pivots are swapped back into their final positions, and
* excluded from subsequent sorting.
*/
float
pivot1
=
a
[
e2
];
a
[
e2
]
=
a
[
left
];
float
pivot2
=
a
[
e4
];
a
[
e4
]
=
a
[
right
];
/*
* Partitioning
*
* left part center part right part
* ------------------------------------------------------------
* [ < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 ]
* ------------------------------------------------------------
* ^ ^ ^
* | | |
* less k great
*/
// Pointers
int
less
=
left
+
1
;
// The index of first element of center part
int
great
=
right
-
1
;
// The index before first element of right part
boolean
pivotsDiffer
=
pivot1
!=
pivot2
;
if
(
pivotsDiffer
)
{
/*
* Invariants:
* all in (left, less) < pivot1
* pivot1 <= all in [less, k) <= pivot2
* all in (great, right) > pivot2
*
* Pointer k is the first index of ?-part
*/
for
(
int
k
=
less
;
k
<=
great
;
k
++)
{
float
ak
=
a
[
k
];
if
(
ak
<
pivot1
)
{
a
[
k
]
=
a
[
less
];
a
[
less
++]
=
ak
;
}
else
if
(
ak
>
pivot2
)
{
while
(
a
[
great
]
>
pivot2
&&
k
<
great
)
{
great
--;
}
a
[
k
]
=
a
[
great
];
a
[
great
--]
=
ak
;
ak
=
a
[
k
];
if
(
ak
<
pivot1
)
{
a
[
k
]
=
a
[
less
];
a
[
less
++]
=
ak
;
}
}
}
}
else
{
// Pivots are equal
/*
* Partition degenerates to the traditional 3-way
* (or "Dutch National Flag") partition:
*
* left part center part right part
* -------------------------------------------------
* [ < pivot | == pivot | ? | > pivot ]
* -------------------------------------------------
*
* ^ ^ ^
* | | |
* less k great
*
* Invariants:
*
* all in (left, less) < pivot
* all in [less, k) == pivot
* all in (great, right) > pivot
*
* Pointer k is the first index of ?-part
*/
for
(
int
k
=
less
;
k
<=
great
;
k
++)
{
float
ak
=
a
[
k
];
if
(
ak
==
pivot1
)
{
continue
;
}
if
(
ak
<
pivot1
)
{
a
[
k
]
=
a
[
less
];
a
[
less
++]
=
ak
;
}
else
{
while
(
a
[
great
]
>
pivot1
)
{
great
--;
}
a
[
k
]
=
a
[
great
];
a
[
great
--]
=
ak
;
ak
=
a
[
k
];
if
(
ak
<
pivot1
)
{
a
[
k
]
=
a
[
less
];
a
[
less
++]
=
ak
;
}
}
}
}
// Swap pivots into their final positions
a
[
left
]
=
a
[
less
-
1
];
a
[
less
-
1
]
=
pivot1
;
a
[
right
]
=
a
[
great
+
1
];
a
[
great
+
1
]
=
pivot2
;
// Sort left and right parts recursively, excluding known pivot values
sort
(
a
,
left
,
less
-
2
);
sort
(
a
,
great
+
2
,
right
);
/*
* If pivot1 == pivot2, all elements from center
* part are equal and, therefore, already sorted
*/
if
(!
pivotsDiffer
)
{
return
;
}
/*
* If center part is too large (comprises > 5/6 of
* the array), swap internal pivot values to ends
*/
if
(
less
<
e1
&&
e5
<
great
)
{
while
(
a
[
less
]
==
pivot1
)
{
less
++;
}
for
(
int
k
=
less
+
1
;
k
<=
great
;
k
++)
{
if
(
a
[
k
]
==
pivot1
)
{
a
[
k
]
=
a
[
less
];
a
[
less
++]
=
pivot1
;
}
}
while
(
a
[
great
]
==
pivot2
)
{
great
--;
}
for
(
int
k
=
great
-
1
;
k
>=
less
;
k
--)
{
if
(
a
[
k
]
==
pivot2
)
{
a
[
k
]
=
a
[
great
];
a
[
great
--]
=
pivot2
;
}
}
}
// Sort center part recursively, excluding known pivot values
sort
(
a
,
less
,
great
);
}
/**
* Sorts the specified range of the array into ascending order.
*
* @param a the array to be sorted
* @param left the index of the first element, inclusively, to be sorted
* @param right the index of the last element, inclusively, to be sorted
*/
static
void
sort
(
double
[]
a
,
int
left
,
int
right
)
{
// Use insertion sort on tiny arrays
if
(
right
-
left
+
1
<
INSERTION_SORT_THRESHOLD
)
{
for
(
int
k
=
left
+
1
;
k
<=
right
;
k
++)
{
double
ak
=
a
[
k
];
int
j
;
for
(
j
=
k
-
1
;
j
>=
left
&&
ak
<
a
[
j
];
j
--)
{
a
[
j
+
1
]
=
a
[
j
];
}
a
[
j
+
1
]
=
ak
;
}
}
else
{
// Use Dual-Pivot Quicksort on large arrays
dualPivotQuicksort
(
a
,
left
,
right
);
}
}
/**
* Sorts the specified range of the array into ascending order
* by Dual-Pivot Quicksort.
*
* @param a the array to be sorted
* @param left the index of the first element, inclusively, to be sorted
* @param right the index of the last element, inclusively, to be sorted
*/
private
static
void
dualPivotQuicksort
(
double
[]
a
,
int
left
,
int
right
)
{
// Compute indices of five evenly spaced elements
int
sixth
=
(
right
-
left
+
1
)
/
6
;
int
e1
=
left
+
sixth
;
int
e5
=
right
-
sixth
;
int
e3
=
(
left
+
right
)
>>>
1
;
// The midpoint
int
e4
=
e3
+
sixth
;
int
e2
=
e3
-
sixth
;
// Sort these elements in place using a 5-element sorting network
if
(
a
[
e1
]
>
a
[
e2
])
{
double
t
=
a
[
e1
];
a
[
e1
]
=
a
[
e2
];
a
[
e2
]
=
t
;
}
if
(
a
[
e4
]
>
a
[
e5
])
{
double
t
=
a
[
e4
];
a
[
e4
]
=
a
[
e5
];
a
[
e5
]
=
t
;
}
if
(
a
[
e1
]
>
a
[
e3
])
{
double
t
=
a
[
e1
];
a
[
e1
]
=
a
[
e3
];
a
[
e3
]
=
t
;
}
if
(
a
[
e2
]
>
a
[
e3
])
{
double
t
=
a
[
e2
];
a
[
e2
]
=
a
[
e3
];
a
[
e3
]
=
t
;
}
if
(
a
[
e1
]
>
a
[
e4
])
{
double
t
=
a
[
e1
];
a
[
e1
]
=
a
[
e4
];
a
[
e4
]
=
t
;
}
if
(
a
[
e3
]
>
a
[
e4
])
{
double
t
=
a
[
e3
];
a
[
e3
]
=
a
[
e4
];
a
[
e4
]
=
t
;
}
if
(
a
[
e2
]
>
a
[
e5
])
{
double
t
=
a
[
e2
];
a
[
e2
]
=
a
[
e5
];
a
[
e5
]
=
t
;
}
if
(
a
[
e2
]
>
a
[
e3
])
{
double
t
=
a
[
e2
];
a
[
e2
]
=
a
[
e3
];
a
[
e3
]
=
t
;
}
if
(
a
[
e4
]
>
a
[
e5
])
{
double
t
=
a
[
e4
];
a
[
e4
]
=
a
[
e5
];
a
[
e5
]
=
t
;
}
/*
* Use the second and fourth of the five sorted elements as pivots.
* These values are inexpensive approximations of the first and
* second terciles of the array. Note that pivot1 <= pivot2.
*
* The pivots are stored in local variables, and the first and
* the last of the sorted elements are moved to the locations
* formerly occupied by the pivots. When partitioning is complete,
* the pivots are swapped back into their final positions, and
* excluded from subsequent sorting.
*/
double
pivot1
=
a
[
e2
];
a
[
e2
]
=
a
[
left
];
double
pivot2
=
a
[
e4
];
a
[
e4
]
=
a
[
right
];
/*
* Partitioning
*
* left part center part right part
* ------------------------------------------------------------
* [ < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 ]
* ------------------------------------------------------------
* ^ ^ ^
* | | |
* less k great
*/
// Pointers
int
less
=
left
+
1
;
// The index of first element of center part
int
great
=
right
-
1
;
// The index before first element of right part
boolean
pivotsDiffer
=
pivot1
!=
pivot2
;
if
(
pivotsDiffer
)
{
/*
* Invariants:
* all in (left, less) < pivot1
* pivot1 <= all in [less, k) <= pivot2
* all in (great, right) > pivot2
*
* Pointer k is the first index of ?-part
*/
for
(
int
k
=
less
;
k
<=
great
;
k
++)
{
double
ak
=
a
[
k
];
if
(
ak
<
pivot1
)
{
a
[
k
]
=
a
[
less
];
a
[
less
++]
=
ak
;
}
else
if
(
ak
>
pivot2
)
{
while
(
a
[
great
]
>
pivot2
&&
k
<
great
)
{
great
--;
}
a
[
k
]
=
a
[
great
];
a
[
great
--]
=
ak
;
ak
=
a
[
k
];
if
(
ak
<
pivot1
)
{
a
[
k
]
=
a
[
less
];
a
[
less
++]
=
ak
;
}
}
}
}
else
{
// Pivots are equal
/*
* Partition degenerates to the traditional 3-way
* (or "Dutch National Flag") partition:
*
* left part center part right part
* -------------------------------------------------
* [ < pivot | == pivot | ? | > pivot ]
* -------------------------------------------------
*
* ^ ^ ^
* | | |
* less k great
*
* Invariants:
*
* all in (left, less) < pivot
* all in [less, k) == pivot
* all in (great, right) > pivot
*
* Pointer k is the first index of ?-part
*/
for
(
int
k
=
less
;
k
<=
great
;
k
++)
{
double
ak
=
a
[
k
];
if
(
ak
==
pivot1
)
{
continue
;
}
if
(
ak
<
pivot1
)
{
a
[
k
]
=
a
[
less
];
a
[
less
++]
=
ak
;
}
else
{
while
(
a
[
great
]
>
pivot1
)
{
great
--;
}
a
[
k
]
=
a
[
great
];
a
[
great
--]
=
ak
;
ak
=
a
[
k
];
if
(
ak
<
pivot1
)
{
a
[
k
]
=
a
[
less
];
a
[
less
++]
=
ak
;
}
}
}
}
// Swap pivots into their final positions
a
[
left
]
=
a
[
less
-
1
];
a
[
less
-
1
]
=
pivot1
;
a
[
right
]
=
a
[
great
+
1
];
a
[
great
+
1
]
=
pivot2
;
// Sort left and right parts recursively, excluding known pivot values
sort
(
a
,
left
,
less
-
2
);
sort
(
a
,
great
+
2
,
right
);
/*
* If pivot1 == pivot2, all elements from center
* part are equal and, therefore, already sorted
*/
if
(!
pivotsDiffer
)
{
return
;
}
/*
* If center part is too large (comprises > 5/6 of
* the array), swap internal pivot values to ends
*/
if
(
less
<
e1
&&
e5
<
great
)
{
while
(
a
[
less
]
==
pivot1
)
{
less
++;
}
for
(
int
k
=
less
+
1
;
k
<=
great
;
k
++)
{
if
(
a
[
k
]
==
pivot1
)
{
a
[
k
]
=
a
[
less
];
a
[
less
++]
=
pivot1
;
}
}
while
(
a
[
great
]
==
pivot2
)
{
great
--;
}
for
(
int
k
=
great
-
1
;
k
>=
less
;
k
--)
{
if
(
a
[
k
]
==
pivot2
)
{
a
[
k
]
=
a
[
great
];
a
[
great
--]
=
pivot2
;
}
}
}
// Sort center part recursively, excluding known pivot values
sort
(
a
,
less
,
great
);
}
}
src/share/classes/sun/security/krb5/EncryptionKey.java
浏览文件 @
6b1b12bc
/*
* Portions Copyright 2000-200
7
Sun Microsystems, Inc. All Rights Reserved.
* Portions Copyright 2000-200
9
Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
...
...
@@ -503,8 +503,20 @@ public class EncryptionKey
+
'\n'
));
}
/**
* Find a key with given etype
*/
public
static
EncryptionKey
findKey
(
int
etype
,
EncryptionKey
[]
keys
)
throws
KrbException
{
return
findKey
(
etype
,
null
,
keys
);
}
/**
* Find a key with given etype and kvno
* @param kvno if null, return any (first?) key
*/
public
static
EncryptionKey
findKey
(
int
etype
,
Integer
kvno
,
EncryptionKey
[]
keys
)
throws
KrbException
{
// check if encryption type is supported
if
(!
EType
.
isSupported
(
etype
))
{
...
...
@@ -516,7 +528,8 @@ public class EncryptionKey
for
(
int
i
=
0
;
i
<
keys
.
length
;
i
++)
{
ktype
=
keys
[
i
].
getEType
();
if
(
EType
.
isSupported
(
ktype
))
{
if
(
etype
==
ktype
)
{
Integer
kv
=
keys
[
i
].
getKeyVersionNumber
();
if
(
etype
==
ktype
&&
(
kvno
==
null
||
kvno
.
equals
(
kv
)))
{
return
keys
[
i
];
}
}
...
...
@@ -529,10 +542,13 @@ public class EncryptionKey
ktype
=
keys
[
i
].
getEType
();
if
(
ktype
==
EncryptedData
.
ETYPE_DES_CBC_CRC
||
ktype
==
EncryptedData
.
ETYPE_DES_CBC_MD5
)
{
Integer
kv
=
keys
[
i
].
getKeyVersionNumber
();
if
(
kvno
==
null
||
kvno
.
equals
(
kv
))
{
return
new
EncryptionKey
(
etype
,
keys
[
i
].
getBytes
());
}
}
}
}
return
null
;
}
}
src/share/classes/sun/security/krb5/KrbApReq.java
浏览文件 @
6b1b12bc
...
...
@@ -268,7 +268,8 @@ public class KrbApReq {
private
void
authenticate
(
EncryptionKey
[]
keys
,
InetAddress
initiator
)
throws
KrbException
,
IOException
{
int
encPartKeyType
=
apReqMessg
.
ticket
.
encPart
.
getEType
();
EncryptionKey
dkey
=
EncryptionKey
.
findKey
(
encPartKeyType
,
keys
);
Integer
kvno
=
apReqMessg
.
ticket
.
encPart
.
getKeyVersionNumber
();
EncryptionKey
dkey
=
EncryptionKey
.
findKey
(
encPartKeyType
,
kvno
,
keys
);
if
(
dkey
==
null
)
{
throw
new
KrbException
(
Krb5
.
API_INVALID_ARG
,
...
...
src/share/classes/sun/security/krb5/internal/ktab/KeyTab.java
浏览文件 @
6b1b12bc
...
...
@@ -395,6 +395,28 @@ public class KeyTab implements KeyTabConstants {
}
}
/**
* Only used by KDC test. This method can specify kvno and does not
* remove any old keys.
*/
public
void
addEntry
(
PrincipalName
service
,
char
[]
psswd
,
int
kvno
)
throws
KrbException
{
EncryptionKey
[]
encKeys
=
EncryptionKey
.
acquireSecretKeys
(
psswd
,
service
.
getSalt
());
for
(
int
i
=
0
;
encKeys
!=
null
&&
i
<
encKeys
.
length
;
i
++)
{
int
keyType
=
encKeys
[
i
].
getEType
();
byte
[]
keyValue
=
encKeys
[
i
].
getBytes
();
KeyTabEntry
newEntry
=
new
KeyTabEntry
(
service
,
service
.
getRealm
(),
new
KerberosTime
(
System
.
currentTimeMillis
()),
kvno
,
keyType
,
keyValue
);
if
(
entries
==
null
)
entries
=
new
Vector
<
KeyTabEntry
>
();
entries
.
addElement
(
newEntry
);
}
}
/**
* Retrieves the key table entry with the specified service name.
...
...
src/share/classes/sun/security/tools/JarSigner.java
浏览文件 @
6b1b12bc
...
...
@@ -1483,6 +1483,7 @@ public class JarSigner {
Timestamp
timestamp
=
signer
.
getTimestamp
();
if
(
timestamp
!=
null
)
{
s
.
append
(
printTimestamp
(
tab
,
timestamp
));
s
.
append
(
'\n'
);
}
// display the certificate(s)
for
(
Certificate
c
:
certs
)
{
...
...
src/share/classes/sun/security/tools/KeyTool.java
浏览文件 @
6b1b12bc
...
...
@@ -26,6 +26,7 @@
package
sun.security.tools
;
import
java.io.*
;
import
java.security.CodeSigner
;
import
java.security.KeyStore
;
import
java.security.KeyStoreException
;
import
java.security.MessageDigest
;
...
...
@@ -34,6 +35,7 @@ import java.security.PublicKey;
import
java.security.PrivateKey
;
import
java.security.Security
;
import
java.security.Signature
;
import
java.security.Timestamp
;
import
java.security.UnrecoverableEntryException
;
import
java.security.UnrecoverableKeyException
;
import
java.security.Principal
;
...
...
@@ -46,6 +48,8 @@ import java.security.cert.CertificateException;
import
java.text.Collator
;
import
java.text.MessageFormat
;
import
java.util.*
;
import
java.util.jar.JarEntry
;
import
java.util.jar.JarFile
;
import
java.lang.reflect.Constructor
;
import
java.net.URL
;
import
java.net.URLClassLoader
;
...
...
@@ -130,6 +134,7 @@ public final class KeyTool {
private
File
ksfile
=
null
;
private
InputStream
ksStream
=
null
;
// keystore stream
private
String
sslserver
=
null
;
private
String
jarfile
=
null
;
private
KeyStore
keyStore
=
null
;
private
boolean
token
=
false
;
private
boolean
nullStream
=
false
;
...
...
@@ -206,7 +211,7 @@ public final class KeyTool {
"-providername"
,
"-providerclass"
,
"-providerarg"
,
"-providerpath"
,
"-v"
,
"-protected"
),
PRINTCERT
(
"Prints the content of a certificate"
,
"-rfc"
,
"-file"
,
"-sslserver"
,
"-v"
),
"-rfc"
,
"-file"
,
"-sslserver"
,
"-
jarfile"
,
"-
v"
),
PRINTCERTREQ
(
"Prints the content of a certificate request"
,
"-file"
,
"-v"
),
SELFCERT
(
"Generates a self-signed certificate"
,
...
...
@@ -266,6 +271,7 @@ public final class KeyTool {
{
"-srcstorepass"
,
"<arg>"
,
"source keystore password"
},
{
"-srcstoretype"
,
"<srcstoretype>"
,
"source keystore type"
},
{
"-sslserver"
,
"<server[:port]>"
,
"SSL server host and port"
},
{
"-jarfile"
,
"<filename>"
,
"signed jar file"
},
{
"-startdate"
,
"<startdate>"
,
"certificate validity start date/time"
},
{
"-storepass"
,
"<arg>"
,
"keystore password"
},
{
"-storetype"
,
"<storetype>"
,
"keystore type"
},
...
...
@@ -453,6 +459,8 @@ public final class KeyTool {
outfilename
=
args
[++
i
];
}
else
if
(
collator
.
compare
(
flags
,
"-sslserver"
)
==
0
)
{
sslserver
=
args
[++
i
];
}
else
if
(
collator
.
compare
(
flags
,
"-jarfile"
)
==
0
)
{
jarfile
=
args
[++
i
];
}
else
if
(
collator
.
compare
(
flags
,
"-srckeystore"
)
==
0
)
{
srcksfname
=
args
[++
i
];
}
else
if
((
collator
.
compare
(
flags
,
"-provider"
)
==
0
)
||
...
...
@@ -2065,7 +2073,71 @@ public final class KeyTool {
}
private
void
doPrintCert
(
final
PrintStream
out
)
throws
Exception
{
if
(
sslserver
!=
null
)
{
if
(
jarfile
!=
null
)
{
JarFile
jf
=
new
JarFile
(
jarfile
,
true
);
Enumeration
<
JarEntry
>
entries
=
jf
.
entries
();
Set
<
CodeSigner
>
ss
=
new
HashSet
<
CodeSigner
>();
byte
[]
buffer
=
new
byte
[
8192
];
int
pos
=
0
;
while
(
entries
.
hasMoreElements
())
{
JarEntry
je
=
entries
.
nextElement
();
InputStream
is
=
null
;
try
{
is
=
jf
.
getInputStream
(
je
);
while
(
is
.
read
(
buffer
)
!=
-
1
)
{
// we just read. this will throw a SecurityException
// if a signature/digest check fails. This also
// populate the signers
}
}
finally
{
if
(
is
!=
null
)
{
is
.
close
();
}
}
CodeSigner
[]
signers
=
je
.
getCodeSigners
();
if
(
signers
!=
null
)
{
for
(
CodeSigner
signer:
signers
)
{
if
(!
ss
.
contains
(
signer
))
{
ss
.
add
(
signer
);
out
.
printf
(
rb
.
getString
(
"Signer #%d:"
),
++
pos
);
out
.
println
();
out
.
println
();
out
.
println
(
rb
.
getString
(
"Signature:"
));
out
.
println
();
for
(
Certificate
cert:
signer
.
getSignerCertPath
().
getCertificates
())
{
X509Certificate
x
=
(
X509Certificate
)
cert
;
if
(
rfc
)
{
out
.
println
(
rb
.
getString
(
"Certificate owner: "
)
+
x
.
getSubjectDN
()
+
"\n"
);
dumpCert
(
x
,
out
);
}
else
{
printX509Cert
(
x
,
out
);
}
out
.
println
();
}
Timestamp
ts
=
signer
.
getTimestamp
();
if
(
ts
!=
null
)
{
out
.
println
(
rb
.
getString
(
"Timestamp:"
));
out
.
println
();
for
(
Certificate
cert:
ts
.
getSignerCertPath
().
getCertificates
())
{
X509Certificate
x
=
(
X509Certificate
)
cert
;
if
(
rfc
)
{
out
.
println
(
rb
.
getString
(
"Certificate owner: "
)
+
x
.
getSubjectDN
()
+
"\n"
);
dumpCert
(
x
,
out
);
}
else
{
printX509Cert
(
x
,
out
);
}
out
.
println
();
}
}
}
}
}
}
jf
.
close
();
if
(
ss
.
size
()
==
0
)
{
out
.
println
(
rb
.
getString
(
"Not a signed jar file"
));
}
}
else
if
(
sslserver
!=
null
)
{
SSLContext
sc
=
SSLContext
.
getInstance
(
"SSL"
);
final
boolean
[]
certPrinted
=
new
boolean
[
1
];
sc
.
init
(
null
,
new
TrustManager
[]
{
...
...
src/share/classes/sun/security/util/Resources.java
浏览文件 @
6b1b12bc
...
...
@@ -162,6 +162,8 @@ public class Resources extends java.util.ListResourceBundle {
"source keystore type"
},
//-srcstoretype
{
"SSL server host and port"
,
"SSL server host and port"
},
//-sslserver
{
"signed jar file"
,
"signed jar file"
},
//=jarfile
{
"certificate validity start date/time"
,
"certificate validity start date/time"
},
//-startdate
{
"keystore password"
,
...
...
@@ -370,6 +372,13 @@ public class Resources extends java.util.ListResourceBundle {
{
"***************** WARNING WARNING WARNING *****************"
,
"***************** WARNING WARNING WARNING *****************"
},
{
"Signer #%d:"
,
"Signer #%d:"
},
{
"Timestamp:"
,
"Timestamp:"
},
{
"Signature:"
,
"Signature:"
},
{
"Certificate owner: "
,
"Certificate owner: "
},
{
"Not a signed jar file"
,
"Not a signed jar file"
},
{
"No certificate from the SSL server"
,
"No certificate from the SSL server"
},
// Translators of the following 5 pairs, ATTENTION:
// the next 5 string pairs are meant to be combined into 2 paragraphs,
...
...
test/sun/security/krb5/auto/KDC.java
浏览文件 @
6b1b12bc
...
...
@@ -466,7 +466,17 @@ public class KDC {
// the krb5.conf config file would be loaded.
Method
stringToKey
=
EncryptionKey
.
class
.
getDeclaredMethod
(
"stringToKey"
,
char
[].
class
,
String
.
class
,
byte
[].
class
,
Integer
.
TYPE
);
stringToKey
.
setAccessible
(
true
);
return
new
EncryptionKey
((
byte
[])
stringToKey
.
invoke
(
null
,
getPassword
(
p
),
getSalt
(
p
),
null
,
etype
),
etype
,
null
);
Integer
kvno
=
null
;
// For service whose password ending with a number, use it as kvno
if
(
p
.
toString
().
indexOf
(
'/'
)
>=
0
)
{
char
[]
pass
=
getPassword
(
p
);
if
(
Character
.
isDigit
(
pass
[
pass
.
length
-
1
]))
{
kvno
=
pass
[
pass
.
length
-
1
]
-
'0'
;
}
}
return
new
EncryptionKey
((
byte
[])
stringToKey
.
invoke
(
null
,
getPassword
(
p
),
getSalt
(
p
),
null
,
etype
),
etype
,
kvno
);
}
catch
(
InvocationTargetException
ex
)
{
KrbException
ke
=
(
KrbException
)
ex
.
getCause
();
throw
ke
;
...
...
test/sun/security/krb5/auto/MoreKvno.java
0 → 100644
浏览文件 @
6b1b12bc
/*
* Copyright 2009 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*/
/*
* @test
* @bug 6893158
* @summary AP_REQ check should use key version number
*/
import
sun.security.jgss.GSSUtil
;
import
sun.security.krb5.PrincipalName
;
import
sun.security.krb5.internal.ktab.KeyTab
;
public
class
MoreKvno
{
public
static
void
main
(
String
[]
args
)
throws
Exception
{
OneKDC
kdc
=
new
OneKDC
(
null
);
kdc
.
writeJAASConf
();
// Rewrite keytab, 3 set of keys with different kvno
KeyTab
ktab
=
KeyTab
.
create
(
OneKDC
.
KTAB
);
PrincipalName
p
=
new
PrincipalName
(
OneKDC
.
SERVER
+
"@"
+
OneKDC
.
REALM
,
PrincipalName
.
KRB_NT_SRV_HST
);
ktab
.
addEntry
(
p
,
"pass0"
.
toCharArray
(),
0
);
ktab
.
addEntry
(
p
,
"pass2"
.
toCharArray
(),
2
);
ktab
.
addEntry
(
p
,
"pass1"
.
toCharArray
(),
1
);
ktab
.
save
();
kdc
.
addPrincipal
(
OneKDC
.
SERVER
,
"pass1"
.
toCharArray
());
go
(
OneKDC
.
SERVER
,
"com.sun.security.jgss.krb5.accept"
);
kdc
.
addPrincipal
(
OneKDC
.
SERVER
,
"pass2"
.
toCharArray
());
// "server" initiate also, check pass2 is used at authentication
go
(
OneKDC
.
SERVER
,
"server"
);
}
static
void
go
(
String
server
,
String
entry
)
throws
Exception
{
Context
c
,
s
;
c
=
Context
.
fromUserPass
(
"dummy"
,
"bogus"
.
toCharArray
(),
false
);
s
=
Context
.
fromJAAS
(
entry
);
c
.
startAsClient
(
server
,
GSSUtil
.
GSS_KRB5_MECH_OID
);
s
.
startAsServer
(
GSSUtil
.
GSS_KRB5_MECH_OID
);
Context
.
handshake
(
c
,
s
);
s
.
dispose
();
c
.
dispose
();
}
}
test/sun/security/tools/keytool/readjar.sh
0 → 100644
浏览文件 @
6b1b12bc
#
# Copyright 2009 Sun Microsystems, Inc. All Rights Reserved.
# DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
#
# This code is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License version 2 only, as
# published by the Free Software Foundation.
#
# This code is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# version 2 for more details (a copy is included in the LICENSE file that
# accompanied this code).
#
# You should have received a copy of the GNU General Public License version
# 2 along with this work; if not, write to the Free Software Foundation,
# Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
#
# Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
# CA 95054 USA or visit www.sun.com if you need additional information or
# have any questions.
#
# @test
# @bug 6890872
# @summary keytool -printcert to recognize signed jar files
#
if
[
"
${
TESTJAVA
}
"
=
""
]
;
then
JAVAC_CMD
=
`
which javac
`
TESTJAVA
=
`
dirname
$JAVAC_CMD
`
/..
fi
# set platform-dependent variables
OS
=
`
uname
-s
`
case
"
$OS
"
in
Windows_
*
)
FS
=
"
\\
"
;;
*
)
FS
=
"/"
;;
esac
KS
=
readjar.jks
rm
$KS
$TESTJAVA
${
FS
}
bin
${
FS
}
keytool
-storepass
changeit
-keypass
changeit
-keystore
$KS
\
-alias
x
-dname
CN
=
X
-genkeypair
$TESTJAVA
${
FS
}
bin
${
FS
}
jar cvf readjar.jar
$KS
$TESTJAVA
${
FS
}
bin
${
FS
}
jarsigner
-storepass
changeit
-keystore
$KS
readjar.jar x
$TESTJAVA
${
FS
}
bin
${
FS
}
keytool
-printcert
-jarfile
readjar.jar
||
exit
1
$TESTJAVA
${
FS
}
bin
${
FS
}
keytool
-printcert
-jarfile
readjar.jar
-rfc
||
exit
1
exit
0
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录