提交 1650885e 编写于 作者: C chegar

8003981: Support Parallel Array Sorting - JEP 103

Reviewed-by: chegar, forax, dholmes, dl
Contributed-by: david.holmes@oracle.com, dl@cs.oswego.edu, chris.hegarty@oracle.com
上级 c92978fe
...@@ -294,6 +294,7 @@ JAVA_JAVA_java = \ ...@@ -294,6 +294,7 @@ JAVA_JAVA_java = \
java/util/IdentityHashMap.java \ java/util/IdentityHashMap.java \
java/util/EnumMap.java \ java/util/EnumMap.java \
java/util/Arrays.java \ java/util/Arrays.java \
java/util/ArraysParallelSortHelpers.java \
java/util/DualPivotQuicksort.java \ java/util/DualPivotQuicksort.java \
java/util/TimSort.java \ java/util/TimSort.java \
java/util/ComparableTimSort.java \ java/util/ComparableTimSort.java \
......
...@@ -26,6 +26,7 @@ ...@@ -26,6 +26,7 @@
package java.util; package java.util;
import java.lang.reflect.*; import java.lang.reflect.*;
import static java.util.ArraysParallelSortHelpers.*;
/** /**
* This class contains various methods for manipulating arrays (such as * This class contains various methods for manipulating arrays (such as
...@@ -54,6 +55,13 @@ import java.lang.reflect.*; ...@@ -54,6 +55,13 @@ import java.lang.reflect.*;
*/ */
public class Arrays { public class Arrays {
/**
* The minimum array length below which the sorting algorithm will not
* further partition the sorting task.
*/
// reasonable default so that we don't overcreate tasks
private static final int MIN_ARRAY_SORT_GRAN = 256;
// Suppresses default constructor, ensuring non-instantiability. // Suppresses default constructor, ensuring non-instantiability.
private Arrays() {} private Arrays() {}
...@@ -787,6 +795,613 @@ public class Arrays { ...@@ -787,6 +795,613 @@ public class Arrays {
} }
} }
/*
* Parallel sorting of primitive type arrays.
*/
/**
* Sorts the specified array into ascending numerical order.
*
* <p>Implementation note: The sorting algorithm is a parallel sort-merge
* that breaks the array into sub-arrays that are themselves sorted and then
* merged. When the sub-array length reaches a minimum granularity, the
* sub-array is sorted using the appropriate {@link Arrays#sort(byte[])
* Arrays.sort} method. The algorithm requires a working space equal to the
* size of the original array. The {@link
* java.util.concurrent.ForkJoinPool#commonPool() ForkJoin common pool} is
* used to execute any parallel tasks.
*
* @param a the array to be sorted
*
* @since 1.8
*/
public static void parallelSort(byte[] a) {
parallelSort(a, 0, a.length);
}
/**
* Sorts the specified range of the array into ascending order. The range
* to be sorted extends from the index {@code fromIndex}, inclusive, to
* the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
* the range to be sorted is empty.
*
* <p>Implementation note: The sorting algorithm is a parallel sort-merge
* that breaks the array into sub-arrays that are themselves sorted and then
* merged. When the sub-array length reaches a minimum granularity, the
* sub-array is sorted using the appropriate {@link Arrays#sort(byte[])
* Arrays.sort} method. The algorithm requires a working space equal to the
* size of the original array. The {@link
* java.util.concurrent.ForkJoinPool#commonPool() ForkJoin common pool} is
* used to execute any parallel tasks.
*
* @param a the array to be sorted
* @param fromIndex the index of the first element, inclusive, to be sorted
* @param toIndex the index of the last element, exclusive, to be sorted
*
* @throws IllegalArgumentException if {@code fromIndex > toIndex}
* @throws ArrayIndexOutOfBoundsException
* if {@code fromIndex < 0} or {@code toIndex > a.length}
*
* @since 1.8
*/
public static void parallelSort(byte[] a, int fromIndex, int toIndex) {
rangeCheck(a.length, fromIndex, toIndex);
int nelements = toIndex - fromIndex;
int gran = getSplitThreshold(nelements);
FJByte.Sorter task = new FJByte.Sorter(a, new byte[a.length], fromIndex,
nelements, gran);
task.invoke();
}
/**
* Sorts the specified array into ascending numerical order.
*
* <p>Implementation note: The sorting algorithm is a parallel sort-merge
* that breaks the array into sub-arrays that are themselves sorted and then
* merged. When the sub-array length reaches a minimum granularity, the
* sub-array is sorted using the appropriate {@link Arrays#sort(char[])
* Arrays.sort} method. The algorithm requires a working space equal to the
* size of the original array. The {@link
* java.util.concurrent.ForkJoinPool#commonPool() ForkJoin common pool} is
* used to execute any parallel tasks.
*
* @param a the array to be sorted
*
* @since 1.8
*/
public static void parallelSort(char[] a) {
parallelSort(a, 0, a.length);
}
/**
* Sorts the specified range of the array into ascending order. The range
* to be sorted extends from the index {@code fromIndex}, inclusive, to
* the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
* the range to be sorted is empty.
*
* <p>Implementation note: The sorting algorithm is a parallel sort-merge
* that breaks the array into sub-arrays that are themselves sorted and then
* merged. When the sub-array length reaches a minimum granularity, the
* sub-array is sorted using the appropriate {@link Arrays#sort(char[])
* Arrays.sort} method. The algorithm requires a working space equal to the
* size of the original array. The {@link
* java.util.concurrent.ForkJoinPool#commonPool() ForkJoin common pool} is
* used to execute any parallel tasks.
*
* @param a the array to be sorted
* @param fromIndex the index of the first element, inclusive, to be sorted
* @param toIndex the index of the last element, exclusive, to be sorted
*
* @throws IllegalArgumentException if {@code fromIndex > toIndex}
* @throws ArrayIndexOutOfBoundsException
* if {@code fromIndex < 0} or {@code toIndex > a.length}
*
* @since 1.8
*/
public static void parallelSort(char[] a, int fromIndex, int toIndex) {
rangeCheck(a.length, fromIndex, toIndex);
int nelements = toIndex - fromIndex;
int gran = getSplitThreshold(nelements);
FJChar.Sorter task = new FJChar.Sorter(a, new char[a.length], fromIndex,
nelements, gran);
task.invoke();
}
/**
* Sorts the specified array into ascending numerical order.
*
* <p>Implementation note: The sorting algorithm is a parallel sort-merge
* that breaks the array into sub-arrays that are themselves sorted and then
* merged. When the sub-array length reaches a minimum granularity, the
* sub-array is sorted using the appropriate {@link Arrays#sort(short[])
* Arrays.sort} method. The algorithm requires a working space equal to the
* size of the original array. The {@link
* java.util.concurrent.ForkJoinPool#commonPool() ForkJoin common pool} is
* used to execute any parallel tasks.
*
* @param a the array to be sorted
*
* @since 1.8
*/
public static void parallelSort(short[] a) {
parallelSort(a, 0, a.length);
}
/**
* Sorts the specified range of the array into ascending order. The range
* to be sorted extends from the index {@code fromIndex}, inclusive, to
* the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
* the range to be sorted is empty.
*
* <p>Implementation note: The sorting algorithm is a parallel sort-merge
* that breaks the array into sub-arrays that are themselves sorted and then
* merged. When the sub-array length reaches a minimum granularity, the
* sub-array is sorted using the appropriate {@link Arrays#sort(short[])
* Arrays.sort} method. The algorithm requires a working space equal to the
* size of the original array. The {@link
* java.util.concurrent.ForkJoinPool#commonPool() ForkJoin common pool} is
* used to execute any parallel tasks.
*
* @param a the array to be sorted
* @param fromIndex the index of the first element, inclusive, to be sorted
* @param toIndex the index of the last element, exclusive, to be sorted
*
* @throws IllegalArgumentException if {@code fromIndex > toIndex}
* @throws ArrayIndexOutOfBoundsException
* if {@code fromIndex < 0} or {@code toIndex > a.length}
*
* @since 1.8
*/
public static void parallelSort(short[] a, int fromIndex, int toIndex) {
rangeCheck(a.length, fromIndex, toIndex);
int nelements = toIndex - fromIndex;
int gran = getSplitThreshold(nelements);
FJShort.Sorter task = new FJShort.Sorter(a, new short[a.length], fromIndex,
nelements, gran);
task.invoke();
}
/**
* Sorts the specified array into ascending numerical order.
*
* <p>Implementation note: The sorting algorithm is a parallel sort-merge
* that breaks the array into sub-arrays that are themselves sorted and then
* merged. When the sub-array length reaches a minimum granularity, the
* sub-array is sorted using the appropriate {@link Arrays#sort(int[])
* Arrays.sort} method. The algorithm requires a working space equal to the
* size of the original array. The {@link
* java.util.concurrent.ForkJoinPool#commonPool() ForkJoin common pool} is
* used to execute any parallel tasks.
*
* @param a the array to be sorted
*
* @since 1.8
*/
public static void parallelSort(int[] a) {
parallelSort(a, 0, a.length);
}
/**
* Sorts the specified range of the array into ascending order. The range
* to be sorted extends from the index {@code fromIndex}, inclusive, to
* the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
* the range to be sorted is empty.
*
* <p>Implementation note: The sorting algorithm is a parallel sort-merge
* that breaks the array into sub-arrays that are themselves sorted and then
* merged. When the sub-array length reaches a minimum granularity, the
* sub-array is sorted using the appropriate {@link Arrays#sort(int[])
* Arrays.sort} method. The algorithm requires a working space equal to the
* size of the original array. The {@link
* java.util.concurrent.ForkJoinPool#commonPool() ForkJoin common pool} is
* used to execute any parallel tasks.
*
* @param a the array to be sorted
* @param fromIndex the index of the first element, inclusive, to be sorted
* @param toIndex the index of the last element, exclusive, to be sorted
*
* @throws IllegalArgumentException if {@code fromIndex > toIndex}
* @throws ArrayIndexOutOfBoundsException
* if {@code fromIndex < 0} or {@code toIndex > a.length}
*
* @since 1.8
*/
public static void parallelSort(int[] a, int fromIndex, int toIndex) {
rangeCheck(a.length, fromIndex, toIndex);
int nelements = toIndex - fromIndex;
int gran = getSplitThreshold(nelements);
FJInt.Sorter task = new FJInt.Sorter(a, new int[a.length], fromIndex,
nelements, gran);
task.invoke();
}
/**
* Sorts the specified array into ascending numerical order.
*
* <p>Implementation note: The sorting algorithm is a parallel sort-merge
* that breaks the array into sub-arrays that are themselves sorted and then
* merged. When the sub-array length reaches a minimum granularity, the
* sub-array is sorted using the appropriate {@link Arrays#sort(long[])
* Arrays.sort} method. The algorithm requires a working space equal to the
* size of the original array. The {@link
* java.util.concurrent.ForkJoinPool#commonPool() ForkJoin common pool} is
* used to execute any parallel tasks.
*
* @param a the array to be sorted
*
* @since 1.8
*/
public static void parallelSort(long[] a) {
parallelSort(a, 0, a.length);
}
/**
* Sorts the specified range of the array into ascending order. The range
* to be sorted extends from the index {@code fromIndex}, inclusive, to
* the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
* the range to be sorted is empty.
*
* <p>Implementation note: The sorting algorithm is a parallel sort-merge
* that breaks the array into sub-arrays that are themselves sorted and then
* merged. When the sub-array length reaches a minimum granularity, the
* sub-array is sorted using the appropriate {@link Arrays#sort(long[])
* Arrays.sort} method. The algorithm requires a working space equal to the
* size of the original array. The {@link
* java.util.concurrent.ForkJoinPool#commonPool() ForkJoin common pool} is
* used to execute any parallel tasks.
*
* @param a the array to be sorted
* @param fromIndex the index of the first element, inclusive, to be sorted
* @param toIndex the index of the last element, exclusive, to be sorted
*
* @throws IllegalArgumentException if {@code fromIndex > toIndex}
* @throws ArrayIndexOutOfBoundsException
* if {@code fromIndex < 0} or {@code toIndex > a.length}
*
* @since 1.8
*/
public static void parallelSort(long[] a, int fromIndex, int toIndex) {
rangeCheck(a.length, fromIndex, toIndex);
int nelements = toIndex - fromIndex;
int gran = getSplitThreshold(nelements);
FJLong.Sorter task = new FJLong.Sorter(a, new long[a.length], fromIndex,
nelements, gran);
task.invoke();
}
/**
* Sorts the specified array into ascending numerical order.
*
* <p>The {@code <} relation does not provide a total order on all float
* values: {@code -0.0f == 0.0f} is {@code true} and a {@code Float.NaN}
* value compares neither less than, greater than, nor equal to any value,
* even itself. This method uses the total order imposed by the method
* {@link Float#compareTo}: {@code -0.0f} is treated as less than value
* {@code 0.0f} and {@code Float.NaN} is considered greater than any
* other value and all {@code Float.NaN} values are considered equal.
*
* <p>Implementation note: The sorting algorithm is a parallel sort-merge
* that breaks the array into sub-arrays that are themselves sorted and then
* merged. When the sub-array length reaches a minimum granularity, the
* sub-array is sorted using the appropriate {@link Arrays#sort(float[])
* Arrays.sort} method. The algorithm requires a working space equal to the
* size of the original array. The {@link
* java.util.concurrent.ForkJoinPool#commonPool() ForkJoin common pool} is
* used to execute any parallel tasks.
*
* @param a the array to be sorted
*
* @since 1.8
*/
public static void parallelSort(float[] a) {
parallelSort(a, 0, a.length);
}
/**
* Sorts the specified range of the array into ascending order. The range
* to be sorted extends from the index {@code fromIndex}, inclusive, to
* the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
* the range to be sorted is empty.
*
* <p>The {@code <} relation does not provide a total order on all float
* values: {@code -0.0f == 0.0f} is {@code true} and a {@code Float.NaN}
* value compares neither less than, greater than, nor equal to any value,
* even itself. This method uses the total order imposed by the method
* {@link Float#compareTo}: {@code -0.0f} is treated as less than value
* {@code 0.0f} and {@code Float.NaN} is considered greater than any
* other value and all {@code Float.NaN} values are considered equal.
*
* <p>Implementation note: The sorting algorithm is a parallel sort-merge
* that breaks the array into sub-arrays that are themselves sorted and then
* merged. When the sub-array length reaches a minimum granularity, the
* sub-array is sorted using the appropriate {@link Arrays#sort(float[])
* Arrays.sort} method. The algorithm requires a working space equal to the
* size of the original array. The {@link
* java.util.concurrent.ForkJoinPool#commonPool() ForkJoin common pool} is
* used to execute any parallel tasks.
*
* @param a the array to be sorted
* @param fromIndex the index of the first element, inclusive, to be sorted
* @param toIndex the index of the last element, exclusive, to be sorted
*
* @throws IllegalArgumentException if {@code fromIndex > toIndex}
* @throws ArrayIndexOutOfBoundsException
* if {@code fromIndex < 0} or {@code toIndex > a.length}
*
* @since 1.8
*/
public static void parallelSort(float[] a, int fromIndex, int toIndex) {
rangeCheck(a.length, fromIndex, toIndex);
int nelements = toIndex - fromIndex;
int gran = getSplitThreshold(nelements);
FJFloat.Sorter task = new FJFloat.Sorter(a, new float[a.length], fromIndex,
nelements, gran);
task.invoke();
}
/**
* Sorts the specified array into ascending numerical order.
*
* <p>The {@code <} relation does not provide a total order on all double
* values: {@code -0.0d == 0.0d} is {@code true} and a {@code Double.NaN}
* value compares neither less than, greater than, nor equal to any value,
* even itself. This method uses the total order imposed by the method
* {@link Double#compareTo}: {@code -0.0d} is treated as less than value
* {@code 0.0d} and {@code Double.NaN} is considered greater than any
* other value and all {@code Double.NaN} values are considered equal.
*
* <p>Implementation note: The sorting algorithm is a parallel sort-merge
* that breaks the array into sub-arrays that are themselves sorted and then
* merged. When the sub-array length reaches a minimum granularity, the
* sub-array is sorted using the appropriate {@link Arrays#sort(double[])
* Arrays.sort} method. The algorithm requires a working space equal to the
* size of the original array. The {@link
* java.util.concurrent.ForkJoinPool#commonPool() ForkJoin common pool} is
* used to execute any parallel tasks.
*
* @param a the array to be sorted
*
* @since 1.8
*/
public static void parallelSort(double[] a) {
parallelSort(a, 0, a.length);
}
/**
* Sorts the specified range of the array into ascending order. The range
* to be sorted extends from the index {@code fromIndex}, inclusive, to
* the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
* the range to be sorted is empty.
*
* <p>The {@code <} relation does not provide a total order on all double
* values: {@code -0.0d == 0.0d} is {@code true} and a {@code Double.NaN}
* value compares neither less than, greater than, nor equal to any value,
* even itself. This method uses the total order imposed by the method
* {@link Double#compareTo}: {@code -0.0d} is treated as less than value
* {@code 0.0d} and {@code Double.NaN} is considered greater than any
* other value and all {@code Double.NaN} values are considered equal.
*
* <p>Implementation note: The sorting algorithm is a parallel sort-merge
* that breaks the array into sub-arrays that are themselves sorted and then
* merged. When the sub-array length reaches a minimum granularity, the
* sub-array is sorted using the appropriate {@link Arrays#sort(double[])
* Arrays.sort} method. The algorithm requires a working space equal to the
* size of the original array. The {@link
* java.util.concurrent.ForkJoinPool#commonPool() ForkJoin common pool} is
* used to execute any parallel tasks.
*
* @param a the array to be sorted
* @param fromIndex the index of the first element, inclusive, to be sorted
* @param toIndex the index of the last element, exclusive, to be sorted
*
* @throws IllegalArgumentException if {@code fromIndex > toIndex}
* @throws ArrayIndexOutOfBoundsException
* if {@code fromIndex < 0} or {@code toIndex > a.length}
*
* @since 1.8
*/
public static void parallelSort(double[] a, int fromIndex, int toIndex) {
rangeCheck(a.length, fromIndex, toIndex);
int nelements = toIndex - fromIndex;
int gran = getSplitThreshold(nelements);
FJDouble.Sorter task = new FJDouble.Sorter(a, new double[a.length],
fromIndex, nelements, gran);
task.invoke();
}
/*
* Parallel sorting of complex type arrays.
*/
/**
* Sorts the specified array of objects into ascending order, according
* to the {@linkplain Comparable natural ordering} of its elements.
* All elements in the array must implement the {@link Comparable}
* interface. Furthermore, all elements in the array must be
* <i>mutually comparable</i> (that is, {@code e1.compareTo(e2)} must
* not throw a {@code ClassCastException} for any elements {@code e1}
* and {@code e2} in the array).
*
* <p>This sort is not guaranteed to be <i>stable</i>: equal elements
* may be reordered as a result of the sort.
*
* <p>Implementation note: The sorting algorithm is a parallel sort-merge
* that breaks the array into sub-arrays that are themselves sorted and then
* merged. When the sub-array length reaches a minimum granularity, the
* sub-array is sorted using the appropriate {@link Arrays#sort(Object[])
* Arrays.sort} method. The algorithm requires a working space equal to the
* size of the original array. The {@link
* java.util.concurrent.ForkJoinPool#commonPool() ForkJoin common pool} is
* used to execute any parallel tasks.
*
* @param a the array to be sorted
*
* @throws ClassCastException if the array contains elements that are not
* <i>mutually comparable</i> (for example, strings and integers)
* @throws IllegalArgumentException (optional) if the natural
* ordering of the array elements is found to violate the
* {@link Comparable} contract
*
* @since 1.8
*/
public static <T extends Comparable<? super T>> void parallelSort(T[] a) {
parallelSort(a, 0, a.length);
}
/**
* Sorts the specified range of the specified array of objects into
* ascending order, according to the
* {@linkplain Comparable natural ordering} of its
* elements. The range to be sorted extends from index
* {@code fromIndex}, inclusive, to index {@code toIndex}, exclusive.
* (If {@code fromIndex==toIndex}, the range to be sorted is empty.) All
* elements in this range must implement the {@link Comparable}
* interface. Furthermore, all elements in this range must be <i>mutually
* comparable</i> (that is, {@code e1.compareTo(e2)} must not throw a
* {@code ClassCastException} for any elements {@code e1} and
* {@code e2} in the array).
*
* <p>This sort is not guaranteed to be <i>stable</i>: equal elements
* may be reordered as a result of the sort.
*
* <p>Implementation note: The sorting algorithm is a parallel sort-merge
* that breaks the array into sub-arrays that are themselves sorted and then
* merged. When the sub-array length reaches a minimum granularity, the
* sub-array is sorted using the appropriate {@link Arrays#sort(Object[])
* Arrays.sort} method. The algorithm requires a working space equal to the
* size of the original array. The {@link
* java.util.concurrent.ForkJoinPool#commonPool() ForkJoin common pool} is
* used to execute any parallel tasks.
*
* @param a the array to be sorted
* @param fromIndex the index of the first element (inclusive) to be
* sorted
* @param toIndex the index of the last element (exclusive) to be sorted
* @throws IllegalArgumentException if {@code fromIndex > toIndex} or
* (optional) if the natural ordering of the array elements is
* found to violate the {@link Comparable} contract
* @throws ArrayIndexOutOfBoundsException if {@code fromIndex < 0} or
* {@code toIndex > a.length}
* @throws ClassCastException if the array contains elements that are
* not <i>mutually comparable</i> (for example, strings and
* integers).
*
* @since 1.8
*/
public static <T extends Comparable<? super T>>
void parallelSort(T[] a, int fromIndex, int toIndex) {
rangeCheck(a.length, fromIndex, toIndex);
int nelements = toIndex - fromIndex;
Class<?> tc = a.getClass().getComponentType();
@SuppressWarnings("unchecked")
T[] workspace = (T[])Array.newInstance(tc, a.length);
int gran = getSplitThreshold(nelements);
FJComparable.Sorter<T> task = new FJComparable.Sorter<>(a, workspace,
fromIndex,
nelements, gran);
task.invoke();
}
/**
* Sorts the specified array of objects according to the order induced by
* the specified comparator. All elements in the array must be
* <i>mutually comparable</i> by the specified comparator (that is,
* {@code c.compare(e1, e2)} must not throw a {@code ClassCastException}
* for any elements {@code e1} and {@code e2} in the array).
*
* <p>This sort is not guaranteed to be <i>stable</i>: equal elements
* may be reordered as a result of the sort.
*
* <p>Implementation note: The sorting algorithm is a parallel sort-merge
* that breaks the array into sub-arrays that are themselves sorted and then
* merged. When the sub-array length reaches a minimum granularity, the
* sub-array is sorted using the appropriate {@link Arrays#sort(Object[])
* Arrays.sort} method. The algorithm requires a working space equal to the
* size of the original array. The {@link
* java.util.concurrent.ForkJoinPool#commonPool() ForkJoin common pool} is
* used to execute any parallel tasks.
*
* @param a the array to be sorted
* @param c the comparator to determine the order of the array. A
* {@code null} value indicates that the elements'
* {@linkplain Comparable natural ordering} should be used.
* @throws ClassCastException if the array contains elements that are
* not <i>mutually comparable</i> using the specified comparator
* @throws IllegalArgumentException (optional) if the comparator is
* found to violate the {@link java.util.Comparator} contract
*
* @since 1.8
*/
public static <T> void parallelSort(T[] a, Comparator<? super T> c) {
parallelSort(a, 0, a.length, c);
}
/**
* Sorts the specified range of the specified array of objects according
* to the order induced by the specified comparator. The range to be
* sorted extends from index {@code fromIndex}, inclusive, to index
* {@code toIndex}, exclusive. (If {@code fromIndex==toIndex}, the
* range to be sorted is empty.) All elements in the range must be
* <i>mutually comparable</i> by the specified comparator (that is,
* {@code c.compare(e1, e2)} must not throw a {@code ClassCastException}
* for any elements {@code e1} and {@code e2} in the range).
*
* <p>This sort is not guaranteed to be <i>stable</i>: equal elements
* may be reordered as a result of the sort.
*
* <p>Implementation note: The sorting algorithm is a parallel sort-merge
* that breaks the array into sub-arrays that are themselves sorted and then
* merged. When the sub-array length reaches a minimum granularity, the
* sub-array is sorted using the appropriate {@link Arrays#sort(Object[])
* Arrays.sort} method. The algorithm requires a working space equal to the
* size of the original array. The {@link
* java.util.concurrent.ForkJoinPool#commonPool() ForkJoin common pool} is
* used to execute any parallel tasks.
*
* @param a the array to be sorted
* @param fromIndex the index of the first element (inclusive) to be
* sorted
* @param toIndex the index of the last element (exclusive) to be sorted
* @param c the comparator to determine the order of the array. A
* {@code null} value indicates that the elements'
* {@linkplain Comparable natural ordering} should be used.
* @throws IllegalArgumentException if {@code fromIndex > toIndex} or
* (optional) if the natural ordering of the array elements is
* found to violate the {@link Comparable} contract
* @throws ArrayIndexOutOfBoundsException if {@code fromIndex < 0} or
* {@code toIndex > a.length}
* @throws ClassCastException if the array contains elements that are
* not <i>mutually comparable</i> (for example, strings and
* integers).
*
* @since 1.8
*/
public static <T> void parallelSort(T[] a, int fromIndex, int toIndex,
Comparator<? super T> c) {
rangeCheck(a.length, fromIndex, toIndex);
int nelements = toIndex - fromIndex;
Class<?> tc = a.getClass().getComponentType();
@SuppressWarnings("unchecked")
T[] workspace = (T[])Array.newInstance(tc, a.length);
int gran = getSplitThreshold(nelements);
FJComparator.Sorter<T> task = new FJComparator.Sorter<>(a, workspace,
fromIndex,
nelements, gran, c);
task.invoke();
}
/**
* Returns the size threshold for splitting into subtasks.
* By default, uses about 8 times as many tasks as threads
*
* @param n number of elements in the array to be processed
*/
private static int getSplitThreshold(int n) {
int p = java.util.concurrent.ForkJoinPool.getCommonPoolParallelism();
int t = (p > 1) ? (1 + n / (p << 3)) : n;
return t < MIN_ARRAY_SORT_GRAN ? MIN_ARRAY_SORT_GRAN : t;
}
/** /**
* Checks that {@code fromIndex} and {@code toIndex} are in * Checks that {@code fromIndex} and {@code toIndex} are in
* the range and throws an appropriate exception, if they aren't. * the range and throws an appropriate exception, if they aren't.
...@@ -1480,9 +2095,9 @@ public class Arrays { ...@@ -1480,9 +2095,9 @@ public class Arrays {
while (low <= high) { while (low <= high) {
int mid = (low + high) >>> 1; int mid = (low + high) >>> 1;
@SuppressWarnings("rawtypes") @SuppressWarnings("rawtypes")
Comparable midVal = (Comparable)a[mid]; Comparable midVal = (Comparable)a[mid];
@SuppressWarnings("unchecked") @SuppressWarnings("unchecked")
int cmp = midVal.compareTo(key); int cmp = midVal.compareTo(key);
if (cmp < 0) if (cmp < 0)
low = mid + 1; low = mid + 1;
...@@ -2847,19 +3462,20 @@ public class Arrays { ...@@ -2847,19 +3462,20 @@ public class Arrays {
private final E[] a; private final E[] a;
ArrayList(E[] array) { ArrayList(E[] array) {
if (array==null) a = Objects.requireNonNull(array);
throw new NullPointerException();
a = array;
} }
@Override
public int size() { public int size() {
return a.length; return a.length;
} }
@Override
public Object[] toArray() { public Object[] toArray() {
return a.clone(); return a.clone();
} }
@Override
@SuppressWarnings("unchecked") @SuppressWarnings("unchecked")
public <T> T[] toArray(T[] a) { public <T> T[] toArray(T[] a) {
int size = size(); int size = size();
...@@ -2872,16 +3488,19 @@ public class Arrays { ...@@ -2872,16 +3488,19 @@ public class Arrays {
return a; return a;
} }
@Override
public E get(int index) { public E get(int index) {
return a[index]; return a[index];
} }
@Override
public E set(int index, E element) { public E set(int index, E element) {
E oldValue = a[index]; E oldValue = a[index];
a[index] = element; a[index] = element;
return oldValue; return oldValue;
} }
@Override
public int indexOf(Object o) { public int indexOf(Object o) {
if (o==null) { if (o==null) {
for (int i=0; i<a.length; i++) for (int i=0; i<a.length; i++)
...@@ -2895,6 +3514,7 @@ public class Arrays { ...@@ -2895,6 +3514,7 @@ public class Arrays {
return -1; return -1;
} }
@Override
public boolean contains(Object o) { public boolean contains(Object o) {
return indexOf(o) != -1; return indexOf(o) != -1;
} }
......
/*
* Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package java.util;
import java.util.concurrent.RecursiveAction;
/**
* Helper utilities for the parallel sort methods in Arrays.parallelSort.
*
* For each primitive type, plus Object, we define a static class to
* contain the Sorter and Merger implementations for that type:
*
* Sorter classes based mainly on CilkSort
* <A href="http://supertech.lcs.mit.edu/cilk/"> Cilk</A>:
* Basic algorithm:
* if array size is small, just use a sequential quicksort (via Arrays.sort)
* Otherwise:
* 1. Break array in half.
* 2. For each half,
* a. break the half in half (i.e., quarters),
* b. sort the quarters
* c. merge them together
* 3. merge together the two halves.
*
* One reason for splitting in quarters is that this guarantees
* that the final sort is in the main array, not the workspace
* array. (workspace and main swap roles on each subsort step.)
* Leaf-level sorts use a Sequential quicksort, that in turn uses
* insertion sort if under threshold. Otherwise it uses median of
* three to pick pivot, and loops rather than recurses along left
* path.
*
*
* Merger classes perform merging for Sorter. If big enough, splits Left
* partition in half; finds the greatest point in Right partition
* less than the beginning of the second half of Left via binary
* search; and then, in parallel, merges left half of Left with
* elements of Right up to split point, and merges right half of
* Left with elements of R past split point. At leaf, it just
* sequentially merges. This is all messy to code; sadly we need
* distinct versions for each type.
*
*/
/*package*/ class ArraysParallelSortHelpers {
// RFE: we should only need a working array as large as the subarray
// to be sorted, but the logic assumes that indices in the two
// arrays always line-up
/** byte support class */
static final class FJByte {
static final class Sorter extends RecursiveAction {
static final long serialVersionUID = 749471161188027634L;
final byte[] a; // array to be sorted.
final byte[] w; // workspace for merge
final int origin; // origin of the part of array we deal with
final int n; // Number of elements in (sub)arrays.
final int gran; // split control
Sorter(byte[] a, byte[] w, int origin, int n, int gran) {
this.a = a;
this.w = w;
this.origin = origin;
this.n = n;
this.gran = gran;
}
public void compute() {
final int l = origin;
final int g = gran;
final int n = this.n;
final byte[] a = this.a;
final byte[] w = this.w;
if (n > g) {
int h = n >>> 1; // half
int q = n >>> 2; // lower quarter index
int u = h + q; // upper quarter
FJSubSorter ls = new FJSubSorter(new Sorter(a, w, l, q, g),
new Sorter(a, w, l+q, h-q, g),
new Merger(a, w, l, q,
l+q, h-q, l, g, null));
FJSubSorter rs = new FJSubSorter(new Sorter(a, w, l+h, q, g),
new Sorter(a, w, l+u, n-u, g),
new Merger(a, w, l+h, q,
l+u, n-u, l+h, g, null));
rs.fork();
ls.compute();
if (rs.tryUnfork()) rs.compute(); else rs.join();
new Merger(w, a, l, h,
l+h, n-h, l, g, null).compute();
} else {
DualPivotQuicksort.sort(a, l, l+n-1); //skip rangeCheck
}
}
}
static final class Merger extends RecursiveAction {
static final long serialVersionUID = -9090258248781844470L;
final byte[] a;
final byte[] w;
final int lo;
final int ln;
final int ro;
final int rn;
final int wo;
final int gran;
final Merger next;
Merger(byte[] a, byte[] w, int lo, int ln, int ro, int rn, int wo,
int gran, Merger next) {
this.a = a;
this.w = w;
this.lo = lo;
this.ln = ln;
this.ro = ro;
this.rn = rn;
this.wo = wo;
this.gran = gran;
this.next = next;
}
public void compute() {
final byte[] a = this.a;
final byte[] w = this.w;
Merger rights = null;
int nleft = ln;
int nright = rn;
while (nleft > gran) {
int lh = nleft >>> 1;
int splitIndex = lo + lh;
byte split = a[splitIndex];
int rl = 0;
int rh = nright;
while (rl < rh) {
int mid = (rl + rh) >>> 1;
if (split <= a[ro + mid])
rh = mid;
else
rl = mid + 1;
}
(rights = new Merger(a, w, splitIndex, nleft-lh, ro+rh,
nright-rh, wo+lh+rh, gran, rights)).fork();
nleft = lh;
nright = rh;
}
int l = lo;
int lFence = l + nleft;
int r = ro;
int rFence = r + nright;
int k = wo;
while (l < lFence && r < rFence) {
byte al = a[l];
byte ar = a[r];
byte t;
if (al <= ar) {++l; t=al;} else {++r; t = ar;}
w[k++] = t;
}
while (l < lFence)
w[k++] = a[l++];
while (r < rFence)
w[k++] = a[r++];
while (rights != null) {
if (rights.tryUnfork())
rights.compute();
else
rights.join();
rights = rights.next;
}
}
}
} // FJByte
/** char support class */
static final class FJChar {
static final class Sorter extends RecursiveAction {
static final long serialVersionUID = 8723376019074596641L;
final char[] a; // array to be sorted.
final char[] w; // workspace for merge
final int origin; // origin of the part of array we deal with
final int n; // Number of elements in (sub)arrays.
final int gran; // split control
Sorter(char[] a, char[] w, int origin, int n, int gran) {
this.a = a;
this.w = w;
this.origin = origin;
this.n = n;
this.gran = gran;
}
public void compute() {
final int l = origin;
final int g = gran;
final int n = this.n;
final char[] a = this.a;
final char[] w = this.w;
if (n > g) {
int h = n >>> 1; // half
int q = n >>> 2; // lower quarter index
int u = h + q; // upper quarter
FJSubSorter ls = new FJSubSorter(new Sorter(a, w, l, q, g),
new Sorter(a, w, l+q, h-q, g),
new Merger(a, w, l, q,
l+q, h-q, l, g, null));
FJSubSorter rs = new FJSubSorter(new Sorter(a, w, l + h, q, g),
new Sorter(a, w, l+u, n-u, g),
new Merger(a, w, l+h, q,
l+u, n-u, l+h, g, null));
rs.fork();
ls.compute();
if (rs.tryUnfork()) rs.compute(); else rs.join();
new Merger(w, a, l, h, l + h, n - h, l, g, null).compute();
} else {
DualPivotQuicksort.sort(a, l, l+n-1); // skip rangeCheck
}
}
}
static final class Merger extends RecursiveAction {
static final long serialVersionUID = -1383975444621698926L;
final char[] a;
final char[] w;
final int lo;
final int ln;
final int ro;
final int rn;
final int wo;
final int gran;
final Merger next;
Merger(char[] a, char[] w, int lo, int ln, int ro, int rn, int wo,
int gran, Merger next) {
this.a = a;
this.w = w;
this.lo = lo;
this.ln = ln;
this.ro = ro;
this.rn = rn;
this.wo = wo;
this.gran = gran;
this.next = next;
}
public void compute() {
final char[] a = this.a;
final char[] w = this.w;
Merger rights = null;
int nleft = ln;
int nright = rn;
while (nleft > gran) {
int lh = nleft >>> 1;
int splitIndex = lo + lh;
char split = a[splitIndex];
int rl = 0;
int rh = nright;
while (rl < rh) {
int mid = (rl + rh) >>> 1;
if (split <= a[ro + mid])
rh = mid;
else
rl = mid + 1;
}
(rights = new Merger(a, w, splitIndex, nleft-lh, ro+rh,
nright-rh, wo+lh+rh, gran, rights)).fork();
nleft = lh;
nright = rh;
}
int l = lo;
int lFence = l + nleft;
int r = ro;
int rFence = r + nright;
int k = wo;
while (l < lFence && r < rFence) {
char al = a[l];
char ar = a[r];
char t;
if (al <= ar) {++l; t=al;} else {++r; t = ar;}
w[k++] = t;
}
while (l < lFence)
w[k++] = a[l++];
while (r < rFence)
w[k++] = a[r++];
while (rights != null) {
if (rights.tryUnfork())
rights.compute();
else
rights.join();
rights = rights.next;
}
}
}
} // FJChar
/** short support class */
static final class FJShort {
static final class Sorter extends RecursiveAction {
static final long serialVersionUID = -7886754793730583084L;
final short[] a; // array to be sorted.
final short[] w; // workspace for merge
final int origin; // origin of the part of array we deal with
final int n; // Number of elements in (sub)arrays.
final int gran; // split control
Sorter(short[] a, short[] w, int origin, int n, int gran) {
this.a = a;
this.w = w;
this.origin = origin;
this.n = n;
this.gran = gran;
}
public void compute() {
final int l = origin;
final int g = gran;
final int n = this.n;
final short[] a = this.a;
final short[] w = this.w;
if (n > g) {
int h = n >>> 1; // half
int q = n >>> 2; // lower quarter index
int u = h + q; // upper quarter
FJSubSorter ls = new FJSubSorter(new Sorter(a, w, l, q, g),
new Sorter(a, w, l+q, h-q, g),
new Merger(a, w, l, q,
l+q, h-q, l, g, null));
FJSubSorter rs = new FJSubSorter(new Sorter(a, w, l + h, q, g),
new Sorter(a, w, l+u, n-u, g),
new Merger(a, w, l+h, q,
l+u, n-u, l+h, g, null));
rs.fork();
ls.compute();
if (rs.tryUnfork()) rs.compute(); else rs.join();
new Merger(w, a, l, h, l + h, n - h, l, g, null).compute();
} else {
DualPivotQuicksort.sort(a, l, l+n-1); // skip rangeCheck
}
}
}
static final class Merger extends RecursiveAction {
static final long serialVersionUID = 3895749408536700048L;
final short[] a;
final short[] w;
final int lo;
final int ln;
final int ro;
final int rn;
final int wo;
final int gran;
final Merger next;
Merger(short[] a, short[] w, int lo, int ln, int ro, int rn, int wo,
int gran, Merger next) {
this.a = a;
this.w = w;
this.lo = lo;
this.ln = ln;
this.ro = ro;
this.rn = rn;
this.wo = wo;
this.gran = gran;
this.next = next;
}
public void compute() {
final short[] a = this.a;
final short[] w = this.w;
Merger rights = null;
int nleft = ln;
int nright = rn;
while (nleft > gran) {
int lh = nleft >>> 1;
int splitIndex = lo + lh;
short split = a[splitIndex];
int rl = 0;
int rh = nright;
while (rl < rh) {
int mid = (rl + rh) >>> 1;
if (split <= a[ro + mid])
rh = mid;
else
rl = mid + 1;
}
(rights = new Merger(a, w, splitIndex, nleft-lh, ro+rh,
nright-rh, wo+lh+rh, gran, rights)).fork();
nleft = lh;
nright = rh;
}
int l = lo;
int lFence = l + nleft;
int r = ro;
int rFence = r + nright;
int k = wo;
while (l < lFence && r < rFence) {
short al = a[l];
short ar = a[r];
short t;
if (al <= ar) {++l; t=al;} else {++r; t = ar;}
w[k++] = t;
}
while (l < lFence)
w[k++] = a[l++];
while (r < rFence)
w[k++] = a[r++];
while (rights != null) {
if (rights.tryUnfork())
rights.compute();
else
rights.join();
rights = rights.next;
}
}
}
} // FJShort
/** int support class */
static final class FJInt {
static final class Sorter extends RecursiveAction {
static final long serialVersionUID = 4263311808957292729L;
final int[] a; // array to be sorted.
final int[] w; // workspace for merge
final int origin; // origin of the part of array we deal with
final int n; // Number of elements in (sub)arrays.
final int gran; // split control
Sorter(int[] a, int[] w, int origin, int n, int gran) {
this.a = a;
this.w = w;
this.origin = origin;
this.n = n;
this.gran = gran;
}
public void compute() {
final int l = origin;
final int g = gran;
final int n = this.n;
final int[] a = this.a;
final int[] w = this.w;
if (n > g) {
int h = n >>> 1; // half
int q = n >>> 2; // lower quarter index
int u = h + q; // upper quarter
FJSubSorter ls = new FJSubSorter(new Sorter(a, w, l, q, g),
new Sorter(a, w, l+q, h-q, g),
new Merger(a, w, l, q,
l+q, h-q, l, g, null));
FJSubSorter rs = new FJSubSorter(new Sorter(a, w, l + h, q, g),
new Sorter(a, w, l+u, n-u, g),
new Merger(a, w, l+h, q,
l+u, n-u, l+h, g, null));
rs.fork();
ls.compute();
if (rs.tryUnfork()) rs.compute(); else rs.join();
new Merger(w, a, l, h, l + h, n - h, l, g, null).compute();
} else {
DualPivotQuicksort.sort(a, l, l+n-1); // skip rangeCheck
}
}
}
static final class Merger extends RecursiveAction {
static final long serialVersionUID = -8727507284219982792L;
final int[] a;
final int[] w;
final int lo;
final int ln;
final int ro;
final int rn;
final int wo;
final int gran;
final Merger next;
Merger(int[] a, int[] w, int lo, int ln, int ro, int rn, int wo,
int gran, Merger next) {
this.a = a;
this.w = w;
this.lo = lo;
this.ln = ln;
this.ro = ro;
this.rn = rn;
this.wo = wo;
this.gran = gran;
this.next = next;
}
public void compute() {
final int[] a = this.a;
final int[] w = this.w;
Merger rights = null;
int nleft = ln;
int nright = rn;
while (nleft > gran) {
int lh = nleft >>> 1;
int splitIndex = lo + lh;
int split = a[splitIndex];
int rl = 0;
int rh = nright;
while (rl < rh) {
int mid = (rl + rh) >>> 1;
if (split <= a[ro + mid])
rh = mid;
else
rl = mid + 1;
}
(rights = new Merger(a, w, splitIndex, nleft-lh, ro+rh,
nright-rh, wo+lh+rh, gran, rights)).fork();
nleft = lh;
nright = rh;
}
int l = lo;
int lFence = l + nleft;
int r = ro;
int rFence = r + nright;
int k = wo;
while (l < lFence && r < rFence) {
int al = a[l];
int ar = a[r];
int t;
if (al <= ar) {++l; t=al;} else {++r; t = ar;}
w[k++] = t;
}
while (l < lFence)
w[k++] = a[l++];
while (r < rFence)
w[k++] = a[r++];
while (rights != null) {
if (rights.tryUnfork())
rights.compute();
else
rights.join();
rights = rights.next;
}
}
}
} // FJInt
/** long support class */
static final class FJLong {
static final class Sorter extends RecursiveAction {
static final long serialVersionUID = 6553695007444392455L;
final long[] a; // array to be sorted.
final long[] w; // workspace for merge
final int origin; // origin of the part of array we deal with
final int n; // Number of elements in (sub)arrays.
final int gran; // split control
Sorter(long[] a, long[] w, int origin, int n, int gran) {
this.a = a;
this.w = w;
this.origin = origin;
this.n = n;
this.gran = gran;
}
public void compute() {
final int l = origin;
final int g = gran;
final int n = this.n;
final long[] a = this.a;
final long[] w = this.w;
if (n > g) {
int h = n >>> 1; // half
int q = n >>> 2; // lower quarter index
int u = h + q; // upper quarter
FJSubSorter ls = new FJSubSorter(new Sorter(a, w, l, q, g),
new Sorter(a, w, l+q, h-q, g),
new Merger(a, w, l, q,
l+q, h-q, l, g, null));
FJSubSorter rs = new FJSubSorter(new Sorter(a, w, l + h, q, g),
new Sorter(a, w, l+u, n-u, g),
new Merger(a, w, l+h, q,
l+u, n-u, l+h, g, null));
rs.fork();
ls.compute();
if (rs.tryUnfork()) rs.compute(); else rs.join();
new Merger(w, a, l, h, l + h, n - h, l, g, null).compute();
} else {
DualPivotQuicksort.sort(a, l, l+n-1); // skip rangeCheck
}
}
}
static final class Merger extends RecursiveAction {
static final long serialVersionUID = 8843567516333283861L;
final long[] a;
final long[] w;
final int lo;
final int ln;
final int ro;
final int rn;
final int wo;
final int gran;
final Merger next;
Merger(long[] a, long[] w, int lo, int ln, int ro, int rn, int wo,
int gran, Merger next) {
this.a = a;
this.w = w;
this.lo = lo;
this.ln = ln;
this.ro = ro;
this.rn = rn;
this.wo = wo;
this.gran = gran;
this.next = next;
}
public void compute() {
final long[] a = this.a;
final long[] w = this.w;
Merger rights = null;
int nleft = ln;
int nright = rn;
while (nleft > gran) {
int lh = nleft >>> 1;
int splitIndex = lo + lh;
long split = a[splitIndex];
int rl = 0;
int rh = nright;
while (rl < rh) {
int mid = (rl + rh) >>> 1;
if (split <= a[ro + mid])
rh = mid;
else
rl = mid + 1;
}
(rights = new Merger(a, w, splitIndex, nleft-lh, ro+rh,
nright-rh, wo+lh+rh, gran, rights)).fork();
nleft = lh;
nright = rh;
}
int l = lo;
int lFence = l + nleft;
int r = ro;
int rFence = r + nright;
int k = wo;
while (l < lFence && r < rFence) {
long al = a[l];
long ar = a[r];
long t;
if (al <= ar) {++l; t=al;} else {++r; t = ar;}
w[k++] = t;
}
while (l < lFence)
w[k++] = a[l++];
while (r < rFence)
w[k++] = a[r++];
while (rights != null) {
if (rights.tryUnfork())
rights.compute();
else
rights.join();
rights = rights.next;
}
}
}
} // FJLong
/** float support class */
static final class FJFloat {
static final class Sorter extends RecursiveAction {
static final long serialVersionUID = 1602600178202763377L;
final float[] a; // array to be sorted.
final float[] w; // workspace for merge
final int origin; // origin of the part of array we deal with
final int n; // Number of elements in (sub)arrays.
final int gran; // split control
Sorter(float[] a, float[] w, int origin, int n, int gran) {
this.a = a;
this.w = w;
this.origin = origin;
this.n = n;
this.gran = gran;
}
public void compute() {
final int l = origin;
final int g = gran;
final int n = this.n;
final float[] a = this.a;
final float[] w = this.w;
if (n > g) {
int h = n >>> 1; // half
int q = n >>> 2; // lower quarter index
int u = h + q; // upper quarter
FJSubSorter ls = new FJSubSorter(new Sorter(a, w, l, q, g),
new Sorter(a, w, l+q, h-q, g),
new Merger(a, w, l, q,
l+q, h-q, l, g, null));
FJSubSorter rs = new FJSubSorter(new Sorter(a, w, l + h, q, g),
new Sorter(a, w, l+u, n-u, g),
new Merger(a, w, l+h, q,
l+u, n-u, l+h, g, null));
rs.fork();
ls.compute();
if (rs.tryUnfork()) rs.compute(); else rs.join();
new Merger(w, a, l, h, l + h, n - h, l, g, null).compute();
} else {
DualPivotQuicksort.sort(a, l, l+n-1); // skip rangeCheck
}
}
}
static final class Merger extends RecursiveAction {
static final long serialVersionUID = 1518176433845397426L;
final float[] a;
final float[] w;
final int lo;
final int ln;
final int ro;
final int rn;
final int wo;
final int gran;
final Merger next;
Merger(float[] a, float[] w, int lo, int ln, int ro, int rn, int wo,
int gran, Merger next) {
this.a = a;
this.w = w;
this.lo = lo;
this.ln = ln;
this.ro = ro;
this.rn = rn;
this.wo = wo;
this.gran = gran;
this.next = next;
}
public void compute() {
final float[] a = this.a;
final float[] w = this.w;
Merger rights = null;
int nleft = ln;
int nright = rn;
while (nleft > gran) {
int lh = nleft >>> 1;
int splitIndex = lo + lh;
float split = a[splitIndex];
int rl = 0;
int rh = nright;
while (rl < rh) {
int mid = (rl + rh) >>> 1;
if (Float.compare(split, a[ro+mid]) <= 0)
rh = mid;
else
rl = mid + 1;
}
(rights = new Merger(a, w, splitIndex, nleft-lh, ro+rh,
nright-rh, wo+lh+rh, gran, rights)).fork();
nleft = lh;
nright = rh;
}
int l = lo;
int lFence = l + nleft;
int r = ro;
int rFence = r + nright;
int k = wo;
while (l < lFence && r < rFence) {
float al = a[l];
float ar = a[r];
float t;
if (Float.compare(al, ar) <= 0) {
++l;
t = al;
} else {
++r;
t = ar;
}
w[k++] = t;
}
while (l < lFence)
w[k++] = a[l++];
while (r < rFence)
w[k++] = a[r++];
while (rights != null) {
if (rights.tryUnfork())
rights.compute();
else
rights.join();
rights = rights.next;
}
}
}
} // FJFloat
/** double support class */
static final class FJDouble {
static final class Sorter extends RecursiveAction {
static final long serialVersionUID = 2446542900576103244L;
final double[] a; // array to be sorted.
final double[] w; // workspace for merge
final int origin; // origin of the part of array we deal with
final int n; // Number of elements in (sub)arrays.
final int gran; // split control
Sorter(double[] a, double[] w, int origin, int n, int gran) {
this.a = a;
this.w = w;
this.origin = origin;
this.n = n;
this.gran = gran;
}
public void compute() {
final int l = origin;
final int g = gran;
final int n = this.n;
final double[] a = this.a;
final double[] w = this.w;
if (n > g) {
int h = n >>> 1; // half
int q = n >>> 2; // lower quarter index
int u = h + q; // upper quarter
FJSubSorter ls = new FJSubSorter(new Sorter(a, w, l, q, g),
new Sorter(a, w, l+q, h-q, g),
new Merger(a, w, l, q,
l+q, h-q, l, g, null));
FJSubSorter rs = new FJSubSorter(new Sorter(a, w, l + h, q, g),
new Sorter(a, w, l+u, n-u, g),
new Merger(a, w, l+h, q,
l+u, n-u, l+h, g, null));
rs.fork();
ls.compute();
if (rs.tryUnfork()) rs.compute(); else rs.join();
new Merger(w, a, l, h, l + h, n - h, l, g, null).compute();
} else {
DualPivotQuicksort.sort(a, l, l+n-1); // skip rangeCheck
}
}
}
static final class Merger extends RecursiveAction {
static final long serialVersionUID = 8076242187166127592L;
final double[] a;
final double[] w;
final int lo;
final int ln;
final int ro;
final int rn;
final int wo;
final int gran;
final Merger next;
Merger(double[] a, double[] w, int lo, int ln, int ro, int rn, int wo,
int gran, Merger next) {
this.a = a;
this.w = w;
this.lo = lo;
this.ln = ln;
this.ro = ro;
this.rn = rn;
this.wo = wo;
this.gran = gran;
this.next = next;
}
public void compute() {
final double[] a = this.a;
final double[] w = this.w;
Merger rights = null;
int nleft = ln;
int nright = rn;
while (nleft > gran) {
int lh = nleft >>> 1;
int splitIndex = lo + lh;
double split = a[splitIndex];
int rl = 0;
int rh = nright;
while (rl < rh) {
int mid = (rl + rh) >>> 1;
if (Double.compare(split, a[ro+mid]) <= 0)
rh = mid;
else
rl = mid + 1;
}
(rights = new Merger(a, w, splitIndex, nleft-lh, ro+rh,
nright-rh, wo+lh+rh, gran, rights)).fork();
nleft = lh;
nright = rh;
}
int l = lo;
int lFence = l + nleft;
int r = ro;
int rFence = r + nright;
int k = wo;
while (l < lFence && r < rFence) {
double al = a[l];
double ar = a[r];
double t;
if (Double.compare(al, ar) <= 0) {
++l;
t = al;
} else {
++r;
t = ar;
}
w[k++] = t;
}
while (l < lFence)
w[k++] = a[l++];
while (r < rFence)
w[k++] = a[r++];
while (rights != null) {
if (rights.tryUnfork())
rights.compute();
else
rights.join();
rights = rights.next;
}
}
}
} // FJDouble
/** Comparable support class */
static final class FJComparable {
static final class Sorter<T extends Comparable<? super T>> extends RecursiveAction {
static final long serialVersionUID = -1024003289463302522L;
final T[] a;
final T[] w;
final int origin;
final int n;
final int gran;
Sorter(T[] a, T[] w, int origin, int n, int gran) {
this.a = a;
this.w = w;
this.origin = origin;
this.n = n;
this.gran = gran;
}
public void compute() {
final int l = origin;
final int g = gran;
final int n = this.n;
final T[] a = this.a;
final T[] w = this.w;
if (n > g) {
int h = n >>> 1;
int q = n >>> 2;
int u = h + q;
FJSubSorter ls = new FJSubSorter(new Sorter<>(a, w, l, q, g),
new Sorter<>(a, w, l+q, h-q, g),
new Merger<>(a, w, l, q,
l+q, h-q, l, g, null));
FJSubSorter rs = new FJSubSorter(new Sorter<>(a, w, l+h, q, g),
new Sorter<>(a, w, l+u, n-u, g),
new Merger<>(a, w, l+h, q,
l+u, n-u, l+h, g, null));
rs.fork();
ls.compute();
if (rs.tryUnfork()) rs.compute(); else rs.join();
new Merger<>(w, a, l, h, l + h, n - h, l, g, null).compute();
} else {
Arrays.sort(a, l, l+n);
}
}
}
static final class Merger<T extends Comparable<? super T>> extends RecursiveAction {
static final long serialVersionUID = -3989771675258379302L;
final T[] a;
final T[] w;
final int lo;
final int ln;
final int ro;
final int rn;
final int wo;
final int gran;
final Merger<T> next;
Merger(T[] a, T[] w, int lo, int ln, int ro, int rn, int wo,
int gran, Merger<T> next) {
this.a = a;
this.w = w;
this.lo = lo;
this.ln = ln;
this.ro = ro;
this.rn = rn;
this.wo = wo;
this.gran = gran;
this.next = next;
}
public void compute() {
final T[] a = this.a;
final T[] w = this.w;
Merger<T> rights = null;
int nleft = ln;
int nright = rn;
while (nleft > gran) {
int lh = nleft >>> 1;
int splitIndex = lo + lh;
T split = a[splitIndex];
int rl = 0;
int rh = nright;
while (rl < rh) {
int mid = (rl + rh) >>> 1;
if (split.compareTo(a[ro + mid]) <= 0)
rh = mid;
else
rl = mid + 1;
}
(rights = new Merger<>(a, w, splitIndex, nleft-lh, ro+rh,
nright-rh, wo+lh+rh, gran, rights)).fork();
nleft = lh;
nright = rh;
}
int l = lo;
int lFence = l + nleft;
int r = ro;
int rFence = r + nright;
int k = wo;
while (l < lFence && r < rFence) {
T al = a[l];
T ar = a[r];
T t;
if (al.compareTo(ar) <= 0) {++l; t=al;} else {++r; t=ar; }
w[k++] = t;
}
while (l < lFence)
w[k++] = a[l++];
while (r < rFence)
w[k++] = a[r++];
while (rights != null) {
if (rights.tryUnfork())
rights.compute();
else
rights.join();
rights = rights.next;
}
}
}
} // FJComparable
/** Object + Comparator support class */
static final class FJComparator {
static final class Sorter<T> extends RecursiveAction {
static final long serialVersionUID = 9191600840025808581L;
final T[] a; // array to be sorted.
final T[] w; // workspace for merge
final int origin; // origin of the part of array we deal with
final int n; // Number of elements in (sub)arrays.
final int gran; // split control
final Comparator<? super T> cmp; // Comparator to use
Sorter(T[] a, T[] w, int origin, int n, int gran, Comparator<? super T> cmp) {
this.a = a;
this.w = w;
this.origin = origin;
this.n = n;
this.cmp = cmp;
this.gran = gran;
}
public void compute() {
final int l = origin;
final int g = gran;
final int n = this.n;
final T[] a = this.a;
final T[] w = this.w;
if (n > g) {
int h = n >>> 1; // half
int q = n >>> 2; // lower quarter index
int u = h + q; // upper quarter
FJSubSorter ls = new FJSubSorter(new Sorter<>(a, w, l, q, g, cmp),
new Sorter<>(a, w, l+q, h-q, g, cmp),
new Merger<>(a, w, l, q,
l+q, h-q, l, g, null, cmp));
FJSubSorter rs = new FJSubSorter(new Sorter<>(a, w, l + h, q, g, cmp),
new Sorter<>(a, w, l+u, n-u, g, cmp),
new Merger<>(a, w, l+h, q,
l+u, n-u, l+h, g, null, cmp));
rs.fork();
ls.compute();
if (rs.tryUnfork()) rs.compute(); else rs.join();
new Merger<>(w, a, l, h, l + h, n - h, l, g, null, cmp).compute();
} else {
Arrays.sort(a, l, l+n, cmp);
}
}
}
static final class Merger<T> extends RecursiveAction {
static final long serialVersionUID = -2679539040379156203L;
final T[] a;
final T[] w;
final int lo;
final int ln;
final int ro;
final int rn;
final int wo;
final int gran;
final Merger<T> next;
final Comparator<? super T> cmp;
Merger(T[] a, T[] w, int lo, int ln, int ro, int rn, int wo,
int gran, Merger<T> next, Comparator<? super T> cmp) {
this.a = a;
this.w = w;
this.lo = lo;
this.ln = ln;
this.ro = ro;
this.rn = rn;
this.wo = wo;
this.gran = gran;
this.next = next;
this.cmp = cmp;
}
public void compute() {
final T[] a = this.a;
final T[] w = this.w;
Merger<T> rights = null;
int nleft = ln;
int nright = rn;
while (nleft > gran) {
int lh = nleft >>> 1;
int splitIndex = lo + lh;
T split = a[splitIndex];
int rl = 0;
int rh = nright;
while (rl < rh) {
int mid = (rl + rh) >>> 1;
if (cmp.compare(split, a[ro+mid]) <= 0)
rh = mid;
else
rl = mid + 1;
}
(rights = new Merger<>(a, w, splitIndex, nleft-lh, ro+rh,
nright-rh, wo+lh+rh, gran, rights, cmp)).fork();
nleft = lh;
nright = rh;
}
int l = lo;
int lFence = l + nleft;
int r = ro;
int rFence = r + nright;
int k = wo;
while (l < lFence && r < rFence) {
T al = a[l];
T ar = a[r];
T t;
if (cmp.compare(al, ar) <= 0) {
++l;
t = al;
} else {
++r;
t = ar;
}
w[k++] = t;
}
while (l < lFence)
w[k++] = a[l++];
while (r < rFence)
w[k++] = a[r++];
while (rights != null) {
if (rights.tryUnfork())
rights.compute();
else
rights.join();
rights = rights.next;
}
}
}
} // FJComparator
/** Utility class to sort half a partitioned array */
private static final class FJSubSorter extends RecursiveAction {
static final long serialVersionUID = 9159249695527935512L;
final RecursiveAction left;
final RecursiveAction right;
final RecursiveAction merger;
FJSubSorter(RecursiveAction left, RecursiveAction right,
RecursiveAction merger) {
this.left = left;
this.right = right;
this.merger = merger;
}
public void compute() {
right.fork();
left.invoke();
right.join();
merger.invoke();
}
}
}
/*
* Copyright (c) 2011, 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* Adapted from test/java/util/Arrays/Sorting.java
*
* Where that test checks Arrays.sort against manual quicksort routines,
* this test checks parallelSort against either Arrays.sort or manual
* quicksort routines.
*/
/*
* @test
* @bug 8003981
* @run main ParallelSorting -shortrun
* @summary Exercise Arrays.parallelSort (adapted from test Sorting)
*
* @author Vladimir Yaroslavskiy
* @author Jon Bentley
* @author Josh Bloch
*/
import java.util.Arrays;
import java.util.Random;
import java.io.PrintStream;
import java.util.Comparator;
public class ParallelSorting {
private static final PrintStream out = System.out;
private static final PrintStream err = System.err;
// Array lengths used in a long run (default)
private static final int[] LONG_RUN_LENGTHS = {
1, 2, 3, 5, 8, 13, 21, 34, 55, 100, 1000, 10000, 100000, 1000000 };
// Array lengths used in a short run
private static final int[] SHORT_RUN_LENGTHS = {
1, 2, 3, 21, 55, 1000, 10000 };
// Random initial values used in a long run (default)
private static final long[] LONG_RUN_RANDOMS = { 666, 0xC0FFEE, 999 };
// Random initial values used in a short run
private static final long[] SHORT_RUN_RANDOMS = { 666 };
public static void main(String[] args) {
boolean shortRun = args.length > 0 && args[0].equals("-shortrun");
long start = System.currentTimeMillis();
if (shortRun) {
testAndCheck(SHORT_RUN_LENGTHS, SHORT_RUN_RANDOMS);
} else {
testAndCheck(LONG_RUN_LENGTHS, LONG_RUN_RANDOMS);
}
long end = System.currentTimeMillis();
out.format("PASSED in %d sec.\n", Math.round((end - start) / 1E3));
}
private static void testAndCheck(int[] lengths, long[] randoms) {
testEmptyAndNullIntArray();
testEmptyAndNullLongArray();
testEmptyAndNullShortArray();
testEmptyAndNullCharArray();
testEmptyAndNullByteArray();
testEmptyAndNullFloatArray();
testEmptyAndNullDoubleArray();
for (int length : lengths) {
testMergeSort(length);
testAndCheckRange(length);
testAndCheckSubArray(length);
}
for (long seed : randoms) {
for (int length : lengths) {
testAndCheckWithInsertionSort(length, new MyRandom(seed));
testAndCheckWithCheckSum(length, new MyRandom(seed));
testAndCheckWithScrambling(length, new MyRandom(seed));
testAndCheckFloat(length, new MyRandom(seed));
testAndCheckDouble(length, new MyRandom(seed));
testStable(length, new MyRandom(seed));
}
}
}
private static void testEmptyAndNullIntArray() {
ourDescription = "Check empty and null array";
Arrays.parallelSort(new int[]{});
Arrays.parallelSort(new int[]{}, 0, 0);
try {
Arrays.parallelSort((int[]) null);
} catch (NullPointerException expected) {
try {
Arrays.parallelSort((int[]) null, 0, 0);
} catch (NullPointerException expected2) {
return;
}
failed("Arrays.parallelSort(int[],fromIndex,toIndex) shouldn't " +
"catch null array");
}
failed("Arrays.parallelSort(int[]) shouldn't catch null array");
}
private static void testEmptyAndNullLongArray() {
ourDescription = "Check empty and null array";
Arrays.parallelSort(new long[]{});
Arrays.parallelSort(new long[]{}, 0, 0);
try {
Arrays.parallelSort((long[]) null);
} catch (NullPointerException expected) {
try {
Arrays.parallelSort((long[]) null, 0, 0);
} catch (NullPointerException expected2) {
return;
}
failed("Arrays.parallelSort(long[],fromIndex,toIndex) shouldn't " +
"catch null array");
}
failed("Arrays.parallelSort(long[]) shouldn't catch null array");
}
private static void testEmptyAndNullShortArray() {
ourDescription = "Check empty and null array";
Arrays.parallelSort(new short[]{});
Arrays.parallelSort(new short[]{}, 0, 0);
try {
Arrays.parallelSort((short[]) null);
} catch (NullPointerException expected) {
try {
Arrays.parallelSort((short[]) null, 0, 0);
} catch (NullPointerException expected2) {
return;
}
failed("Arrays.parallelSort(short[],fromIndex,toIndex) shouldn't " +
"catch null array");
}
failed("Arrays.parallelSort(short[]) shouldn't catch null array");
}
private static void testEmptyAndNullCharArray() {
ourDescription = "Check empty and null array";
Arrays.parallelSort(new char[]{});
Arrays.parallelSort(new char[]{}, 0, 0);
try {
Arrays.parallelSort((char[]) null);
} catch (NullPointerException expected) {
try {
Arrays.parallelSort((char[]) null, 0, 0);
} catch (NullPointerException expected2) {
return;
}
failed("Arrays.parallelSort(char[],fromIndex,toIndex) shouldn't " +
"catch null array");
}
failed("Arrays.parallelSort(char[]) shouldn't catch null array");
}
private static void testEmptyAndNullByteArray() {
ourDescription = "Check empty and null array";
Arrays.parallelSort(new byte[]{});
Arrays.parallelSort(new byte[]{}, 0, 0);
try {
Arrays.parallelSort((byte[]) null);
} catch (NullPointerException expected) {
try {
Arrays.parallelSort((byte[]) null, 0, 0);
} catch (NullPointerException expected2) {
return;
}
failed("Arrays.parallelSort(byte[],fromIndex,toIndex) shouldn't " +
"catch null array");
}
failed("Arrays.parallelSort(byte[]) shouldn't catch null array");
}
private static void testEmptyAndNullFloatArray() {
ourDescription = "Check empty and null array";
Arrays.parallelSort(new float[]{});
Arrays.parallelSort(new float[]{}, 0, 0);
try {
Arrays.parallelSort((float[]) null);
} catch (NullPointerException expected) {
try {
Arrays.parallelSort((float[]) null, 0, 0);
} catch (NullPointerException expected2) {
return;
}
failed("Arrays.parallelSort(float[],fromIndex,toIndex) shouldn't " +
"catch null array");
}
failed("Arrays.parallelSort(float[]) shouldn't catch null array");
}
private static void testEmptyAndNullDoubleArray() {
ourDescription = "Check empty and null array";
Arrays.parallelSort(new double[]{});
Arrays.parallelSort(new double[]{}, 0, 0);
try {
Arrays.parallelSort((double[]) null);
} catch (NullPointerException expected) {
try {
Arrays.parallelSort((double[]) null, 0, 0);
} catch (NullPointerException expected2) {
return;
}
failed("Arrays.parallelSort(double[],fromIndex,toIndex) shouldn't " +
"catch null array");
}
failed("Arrays.parallelSort(double[]) shouldn't catch null array");
}
private static void testAndCheckSubArray(int length) {
ourDescription = "Check sorting of subarray";
int[] golden = new int[length];
boolean newLine = false;
for (int m = 1; m < length / 2; m *= 2) {
newLine = true;
int fromIndex = m;
int toIndex = length - m;
prepareSubArray(golden, fromIndex, toIndex, m);
int[] test = golden.clone();
for (TypeConverter converter : TypeConverter.values()) {
out.println("Test 'subarray': " + converter +
" length = " + length + ", m = " + m);
Object convertedGolden = converter.convert(golden);
Object convertedTest = converter.convert(test);
sortSubArray(convertedTest, fromIndex, toIndex);
checkSubArray(convertedTest, fromIndex, toIndex, m);
}
}
if (newLine) {
out.println();
}
}
private static void testAndCheckRange(int length) {
ourDescription = "Check range check";
int[] golden = new int[length];
for (int m = 1; m < 2 * length; m *= 2) {
for (int i = 1; i <= length; i++) {
golden[i - 1] = i % m + m % i;
}
for (TypeConverter converter : TypeConverter.values()) {
out.println("Test 'range': " + converter +
", length = " + length + ", m = " + m);
Object convertedGolden = converter.convert(golden);
checkRange(convertedGolden, m);
}
}
out.println();
}
private static void testStable(int length, MyRandom random) {
ourDescription = "Check if sorting is stable";
Pair[] a = build(length, random);
out.println("Test 'stable': " + "random = " + random.getSeed() +
", length = " + length);
Arrays.parallelSort(a);
checkSorted(a);
checkStable(a);
out.println();
a = build(length, random);
out.println("Test 'stable' comparator: " + "random = " + random.getSeed() +
", length = " + length);
Arrays.parallelSort(a, pairCmp);
checkSorted(a);
checkStable(a);
out.println();
}
private static void checkSorted(Pair[] a) {
for (int i = 0; i < a.length - 1; i++) {
if (a[i].getKey() > a[i + 1].getKey()) {
failedSort(i, "" + a[i].getKey(), "" + a[i + 1].getKey());
}
}
}
private static void checkStable(Pair[] a) {
for (int i = 0; i < a.length / 4; ) {
int key1 = a[i].getKey();
int value1 = a[i++].getValue();
int key2 = a[i].getKey();
int value2 = a[i++].getValue();
int key3 = a[i].getKey();
int value3 = a[i++].getValue();
int key4 = a[i].getKey();
int value4 = a[i++].getValue();
if (!(key1 == key2 && key2 == key3 && key3 == key4)) {
failed("On position " + i + " keys are different " +
key1 + ", " + key2 + ", " + key3 + ", " + key4);
}
if (!(value1 < value2 && value2 < value3 && value3 < value4)) {
failed("Sorting is not stable at position " + i +
". Second values have been changed: " + value1 + ", " +
value2 + ", " + value3 + ", " + value4);
}
}
}
private static Pair[] build(int length, Random random) {
Pair[] a = new Pair[length * 4];
for (int i = 0; i < a.length; ) {
int key = random.nextInt();
a[i++] = new Pair(key, 1);
a[i++] = new Pair(key, 2);
a[i++] = new Pair(key, 3);
a[i++] = new Pair(key, 4);
}
return a;
}
private static Comparator<Pair> pairCmp = new Comparator<Pair>() {
public int compare(Pair p1, Pair p2) {
return p1.compareTo(p2);
}
};
private static final class Pair implements Comparable<Pair> {
Pair(int key, int value) {
myKey = key;
myValue = value;
}
int getKey() {
return myKey;
}
int getValue() {
return myValue;
}
public int compareTo(Pair pair) {
if (myKey < pair.myKey) {
return -1;
}
if (myKey > pair.myKey) {
return 1;
}
return 0;
}
@Override
public String toString() {
return "(" + myKey + ", " + myValue + ")";
}
private int myKey;
private int myValue;
}
private static void testAndCheckWithInsertionSort(int length, MyRandom random) {
if (length > 1000) {
return;
}
ourDescription = "Check sorting with insertion sort";
int[] golden = new int[length];
for (int m = 1; m < 2 * length; m *= 2) {
for (UnsortedBuilder builder : UnsortedBuilder.values()) {
builder.build(golden, m, random);
int[] test = golden.clone();
for (TypeConverter converter : TypeConverter.values()) {
out.println("Test 'insertion sort': " + converter +
" " + builder + "random = " + random.getSeed() +
", length = " + length + ", m = " + m);
Object convertedGolden = converter.convert(golden);
Object convertedTest1 = converter.convert(test);
Object convertedTest2 = converter.convert(test);
sort(convertedTest1);
sortByInsertionSort(convertedTest2);
compare(convertedTest1, convertedTest2);
}
}
}
out.println();
}
private static void testMergeSort(int length) {
if (length < 1000) {
return;
}
ourDescription = "Check merge sorting";
int[] golden = new int[length];
int period = 67; // java.util.DualPivotQuicksort.MAX_RUN_COUNT
for (int m = period - 2; m <= period + 2; m++) {
for (MergeBuilder builder : MergeBuilder.values()) {
builder.build(golden, m);
int[] test = golden.clone();
for (TypeConverter converter : TypeConverter.values()) {
out.println("Test 'merge sort': " + converter + " " +
builder + "length = " + length + ", m = " + m);
Object convertedGolden = converter.convert(golden);
sort(convertedGolden);
checkSorted(convertedGolden);
}
}
}
out.println();
}
private static void testAndCheckWithCheckSum(int length, MyRandom random) {
ourDescription = "Check sorting with check sum";
int[] golden = new int[length];
for (int m = 1; m < 2 * length; m *= 2) {
for (UnsortedBuilder builder : UnsortedBuilder.values()) {
builder.build(golden, m, random);
int[] test = golden.clone();
for (TypeConverter converter : TypeConverter.values()) {
out.println("Test 'check sum': " + converter +
" " + builder + "random = " + random.getSeed() +
", length = " + length + ", m = " + m);
Object convertedGolden = converter.convert(golden);
Object convertedTest = converter.convert(test);
sort(convertedTest);
checkWithCheckSum(convertedTest, convertedGolden);
}
}
}
out.println();
}
private static void testAndCheckWithScrambling(int length, MyRandom random) {
ourDescription = "Check sorting with scrambling";
int[] golden = new int[length];
for (int m = 1; m <= 7; m++) {
if (m > length) {
break;
}
for (SortedBuilder builder : SortedBuilder.values()) {
builder.build(golden, m);
int[] test = golden.clone();
scramble(test, random);
for (TypeConverter converter : TypeConverter.values()) {
out.println("Test 'scrambling': " + converter +
" " + builder + "random = " + random.getSeed() +
", length = " + length + ", m = " + m);
Object convertedGolden = converter.convert(golden);
Object convertedTest = converter.convert(test);
sort(convertedTest);
compare(convertedTest, convertedGolden);
}
}
}
out.println();
}
private static void testAndCheckFloat(int length, MyRandom random) {
ourDescription = "Check float sorting";
float[] golden = new float[length];
final int MAX = 10;
boolean newLine = false;
for (int a = 0; a <= MAX; a++) {
for (int g = 0; g <= MAX; g++) {
for (int z = 0; z <= MAX; z++) {
for (int n = 0; n <= MAX; n++) {
for (int p = 0; p <= MAX; p++) {
if (a + g + z + n + p > length) {
continue;
}
if (a + g + z + n + p < length) {
continue;
}
for (FloatBuilder builder : FloatBuilder.values()) {
out.println("Test 'float': random = " + random.getSeed() +
", length = " + length + ", a = " + a + ", g = " +
g + ", z = " + z + ", n = " + n + ", p = " + p);
builder.build(golden, a, g, z, n, p, random);
float[] test = golden.clone();
scramble(test, random);
sort(test);
compare(test, golden, a, n, g);
}
newLine = true;
}
}
}
}
}
if (newLine) {
out.println();
}
}
private static void testAndCheckDouble(int length, MyRandom random) {
ourDescription = "Check double sorting";
double[] golden = new double[length];
final int MAX = 10;
boolean newLine = false;
for (int a = 0; a <= MAX; a++) {
for (int g = 0; g <= MAX; g++) {
for (int z = 0; z <= MAX; z++) {
for (int n = 0; n <= MAX; n++) {
for (int p = 0; p <= MAX; p++) {
if (a + g + z + n + p > length) {
continue;
}
if (a + g + z + n + p < length) {
continue;
}
for (DoubleBuilder builder : DoubleBuilder.values()) {
out.println("Test 'double': random = " + random.getSeed() +
", length = " + length + ", a = " + a + ", g = " +
g + ", z = " + z + ", n = " + n + ", p = " + p);
builder.build(golden, a, g, z, n, p, random);
double[] test = golden.clone();
scramble(test, random);
sort(test);
compare(test, golden, a, n, g);
}
newLine = true;
}
}
}
}
}
if (newLine) {
out.println();
}
}
private static void prepareSubArray(int[] a, int fromIndex, int toIndex, int m) {
for (int i = 0; i < fromIndex; i++) {
a[i] = 0xDEDA;
}
int middle = (fromIndex + toIndex) >>> 1;
int k = 0;
for (int i = fromIndex; i < middle; i++) {
a[i] = k++;
}
for (int i = middle; i < toIndex; i++) {
a[i] = k--;
}
for (int i = toIndex; i < a.length; i++) {
a[i] = 0xBABA;
}
}
private static void scramble(int[] a, Random random) {
for (int i = 0; i < a.length * 7; i++) {
swap(a, random.nextInt(a.length), random.nextInt(a.length));
}
}
private static void scramble(float[] a, Random random) {
for (int i = 0; i < a.length * 7; i++) {
swap(a, random.nextInt(a.length), random.nextInt(a.length));
}
}
private static void scramble(double[] a, Random random) {
for (int i = 0; i < a.length * 7; i++) {
swap(a, random.nextInt(a.length), random.nextInt(a.length));
}
}
private static void swap(int[] a, int i, int j) {
int t = a[i];
a[i] = a[j];
a[j] = t;
}
private static void swap(float[] a, int i, int j) {
float t = a[i];
a[i] = a[j];
a[j] = t;
}
private static void swap(double[] a, int i, int j) {
double t = a[i];
a[i] = a[j];
a[j] = t;
}
private static enum TypeConverter {
INT {
Object convert(int[] a) {
return a.clone();
}
},
LONG {
Object convert(int[] a) {
long[] b = new long[a.length];
for (int i = 0; i < a.length; i++) {
b[i] = (long) a[i];
}
return b;
}
},
BYTE {
Object convert(int[] a) {
byte[] b = new byte[a.length];
for (int i = 0; i < a.length; i++) {
b[i] = (byte) a[i];
}
return b;
}
},
SHORT {
Object convert(int[] a) {
short[] b = new short[a.length];
for (int i = 0; i < a.length; i++) {
b[i] = (short) a[i];
}
return b;
}
},
CHAR {
Object convert(int[] a) {
char[] b = new char[a.length];
for (int i = 0; i < a.length; i++) {
b[i] = (char) a[i];
}
return b;
}
},
FLOAT {
Object convert(int[] a) {
float[] b = new float[a.length];
for (int i = 0; i < a.length; i++) {
b[i] = (float) a[i];
}
return b;
}
},
DOUBLE {
Object convert(int[] a) {
double[] b = new double[a.length];
for (int i = 0; i < a.length; i++) {
b[i] = (double) a[i];
}
return b;
}
},
INTEGER {
Object convert(int[] a) {
Integer[] b = new Integer[a.length];
for (int i = 0; i < a.length; i++) {
b[i] = new Integer(a[i]);
}
return b;
}
};
abstract Object convert(int[] a);
@Override public String toString() {
String name = name();
for (int i = name.length(); i < 9; i++) {
name += " ";
}
return name;
}
}
private static enum FloatBuilder {
SIMPLE {
void build(float[] x, int a, int g, int z, int n, int p, Random random) {
int fromIndex = 0;
float negativeValue = -random.nextFloat();
float positiveValue = random.nextFloat();
writeValue(x, negativeValue, fromIndex, n);
fromIndex += n;
writeValue(x, -0.0f, fromIndex, g);
fromIndex += g;
writeValue(x, 0.0f, fromIndex, z);
fromIndex += z;
writeValue(x, positiveValue, fromIndex, p);
fromIndex += p;
writeValue(x, Float.NaN, fromIndex, a);
}
};
abstract void build(float[] x, int a, int g, int z, int n, int p, Random random);
}
private static enum DoubleBuilder {
SIMPLE {
void build(double[] x, int a, int g, int z, int n, int p, Random random) {
int fromIndex = 0;
double negativeValue = -random.nextFloat();
double positiveValue = random.nextFloat();
writeValue(x, negativeValue, fromIndex, n);
fromIndex += n;
writeValue(x, -0.0d, fromIndex, g);
fromIndex += g;
writeValue(x, 0.0d, fromIndex, z);
fromIndex += z;
writeValue(x, positiveValue, fromIndex, p);
fromIndex += p;
writeValue(x, Double.NaN, fromIndex, a);
}
};
abstract void build(double[] x, int a, int g, int z, int n, int p, Random random);
}
private static void writeValue(float[] a, float value, int fromIndex, int count) {
for (int i = fromIndex; i < fromIndex + count; i++) {
a[i] = value;
}
}
private static void compare(float[] a, float[] b, int numNaN, int numNeg, int numNegZero) {
for (int i = a.length - numNaN; i < a.length; i++) {
if (a[i] == a[i]) {
failed("On position " + i + " must be NaN instead of " + a[i]);
}
}
final int NEGATIVE_ZERO = Float.floatToIntBits(-0.0f);
for (int i = numNeg; i < numNeg + numNegZero; i++) {
if (NEGATIVE_ZERO != Float.floatToIntBits(a[i])) {
failed("On position " + i + " must be -0.0 instead of " + a[i]);
}
}
for (int i = 0; i < a.length - numNaN; i++) {
if (a[i] != b[i]) {
failedCompare(i, "" + a[i], "" + b[i]);
}
}
}
private static void writeValue(double[] a, double value, int fromIndex, int count) {
for (int i = fromIndex; i < fromIndex + count; i++) {
a[i] = value;
}
}
private static void compare(double[] a, double[] b, int numNaN, int numNeg, int numNegZero) {
for (int i = a.length - numNaN; i < a.length; i++) {
if (a[i] == a[i]) {
failed("On position " + i + " must be NaN instead of " + a[i]);
}
}
final long NEGATIVE_ZERO = Double.doubleToLongBits(-0.0d);
for (int i = numNeg; i < numNeg + numNegZero; i++) {
if (NEGATIVE_ZERO != Double.doubleToLongBits(a[i])) {
failed("On position " + i + " must be -0.0 instead of " + a[i]);
}
}
for (int i = 0; i < a.length - numNaN; i++) {
if (a[i] != b[i]) {
failedCompare(i, "" + a[i], "" + b[i]);
}
}
}
private static enum SortedBuilder {
REPEATED {
void build(int[] a, int m) {
int period = a.length / m;
int i = 0;
int k = 0;
while (true) {
for (int t = 1; t <= period; t++) {
if (i >= a.length) {
return;
}
a[i++] = k;
}
if (i >= a.length) {
return;
}
k++;
}
}
},
ORGAN_PIPES {
void build(int[] a, int m) {
int i = 0;
int k = m;
while (true) {
for (int t = 1; t <= m; t++) {
if (i >= a.length) {
return;
}
a[i++] = k;
}
}
}
};
abstract void build(int[] a, int m);
@Override public String toString() {
String name = name();
for (int i = name.length(); i < 12; i++) {
name += " ";
}
return name;
}
}
private static enum MergeBuilder {
ASCENDING {
void build(int[] a, int m) {
int period = a.length / m;
int v = 1, i = 0;
for (int k = 0; k < m; k++) {
v = 1;
for (int p = 0; p < period; p++) {
a[i++] = v++;
}
}
for (int j = i; j < a.length - 1; j++) {
a[j] = v++;
}
a[a.length - 1] = 0;
}
},
DESCENDING {
void build(int[] a, int m) {
int period = a.length / m;
int v = -1, i = 0;
for (int k = 0; k < m; k++) {
v = -1;
for (int p = 0; p < period; p++) {
a[i++] = v--;
}
}
for (int j = i; j < a.length - 1; j++) {
a[j] = v--;
}
a[a.length - 1] = 0;
}
};
abstract void build(int[] a, int m);
@Override public String toString() {
String name = name();
for (int i = name.length(); i < 12; i++) {
name += " ";
}
return name;
}
}
private static enum UnsortedBuilder {
RANDOM {
void build(int[] a, int m, Random random) {
for (int i = 0; i < a.length; i++) {
a[i] = random.nextInt();
}
}
},
ASCENDING {
void build(int[] a, int m, Random random) {
for (int i = 0; i < a.length; i++) {
a[i] = m + i;
}
}
},
DESCENDING {
void build(int[] a, int m, Random random) {
for (int i = 0; i < a.length; i++) {
a[i] = a.length - m - i;
}
}
},
ALL_EQUAL {
void build(int[] a, int m, Random random) {
for (int i = 0; i < a.length; i++) {
a[i] = m;
}
}
},
SAW {
void build(int[] a, int m, Random random) {
int incCount = 1;
int decCount = a.length;
int i = 0;
int period = m--;
while (true) {
for (int k = 1; k <= period; k++) {
if (i >= a.length) {
return;
}
a[i++] = incCount++;
}
period += m;
for (int k = 1; k <= period; k++) {
if (i >= a.length) {
return;
}
a[i++] = decCount--;
}
period += m;
}
}
},
REPEATED {
void build(int[] a, int m, Random random) {
for (int i = 0; i < a.length; i++) {
a[i] = i % m;
}
}
},
DUPLICATED {
void build(int[] a, int m, Random random) {
for (int i = 0; i < a.length; i++) {
a[i] = random.nextInt(m);
}
}
},
ORGAN_PIPES {
void build(int[] a, int m, Random random) {
int middle = a.length / (m + 1);
for (int i = 0; i < middle; i++) {
a[i] = i;
}
for (int i = middle; i < a.length; i++) {
a[i] = a.length - i - 1;
}
}
},
STAGGER {
void build(int[] a, int m, Random random) {
for (int i = 0; i < a.length; i++) {
a[i] = (i * m + i) % a.length;
}
}
},
PLATEAU {
void build(int[] a, int m, Random random) {
for (int i = 0; i < a.length; i++) {
a[i] = Math.min(i, m);
}
}
},
SHUFFLE {
void build(int[] a, int m, Random random) {
int x = 0, y = 0;
for (int i = 0; i < a.length; i++) {
a[i] = random.nextBoolean() ? (x += 2) : (y += 2);
}
}
};
abstract void build(int[] a, int m, Random random);
@Override public String toString() {
String name = name();
for (int i = name.length(); i < 12; i++) {
name += " ";
}
return name;
}
}
private static void checkWithCheckSum(Object test, Object golden) {
checkSorted(test);
checkCheckSum(test, golden);
}
private static void failed(String message) {
err.format("\n*** TEST FAILED - %s.\n\n%s.\n\n", ourDescription, message);
throw new RuntimeException("Test failed - see log file for details");
}
private static void failedSort(int index, String value1, String value2) {
failed("Array is not sorted at " + index + "-th position: " +
value1 + " and " + value2);
}
private static void failedCompare(int index, String value1, String value2) {
failed("On position " + index + " must be " + value2 + " instead of " + value1);
}
private static void compare(Object test, Object golden) {
if (test instanceof int[]) {
compare((int[]) test, (int[]) golden);
} else if (test instanceof long[]) {
compare((long[]) test, (long[]) golden);
} else if (test instanceof short[]) {
compare((short[]) test, (short[]) golden);
} else if (test instanceof byte[]) {
compare((byte[]) test, (byte[]) golden);
} else if (test instanceof char[]) {
compare((char[]) test, (char[]) golden);
} else if (test instanceof float[]) {
compare((float[]) test, (float[]) golden);
} else if (test instanceof double[]) {
compare((double[]) test, (double[]) golden);
} else if (test instanceof Integer[]) {
compare((Integer[]) test, (Integer[]) golden);
} else {
failed("Unknow type of array: " + test + " of class " +
test.getClass().getName());
}
}
private static void compare(int[] a, int[] b) {
for (int i = 0; i < a.length; i++) {
if (a[i] != b[i]) {
failedCompare(i, "" + a[i], "" + b[i]);
}
}
}
private static void compare(long[] a, long[] b) {
for (int i = 0; i < a.length; i++) {
if (a[i] != b[i]) {
failedCompare(i, "" + a[i], "" + b[i]);
}
}
}
private static void compare(short[] a, short[] b) {
for (int i = 0; i < a.length; i++) {
if (a[i] != b[i]) {
failedCompare(i, "" + a[i], "" + b[i]);
}
}
}
private static void compare(byte[] a, byte[] b) {
for (int i = 0; i < a.length; i++) {
if (a[i] != b[i]) {
failedCompare(i, "" + a[i], "" + b[i]);
}
}
}
private static void compare(char[] a, char[] b) {
for (int i = 0; i < a.length; i++) {
if (a[i] != b[i]) {
failedCompare(i, "" + a[i], "" + b[i]);
}
}
}
private static void compare(float[] a, float[] b) {
for (int i = 0; i < a.length; i++) {
if (a[i] != b[i]) {
failedCompare(i, "" + a[i], "" + b[i]);
}
}
}
private static void compare(double[] a, double[] b) {
for (int i = 0; i < a.length; i++) {
if (a[i] != b[i]) {
failedCompare(i, "" + a[i], "" + b[i]);
}
}
}
private static void compare(Integer[] a, Integer[] b) {
for (int i = 0; i < a.length; i++) {
if (a[i].compareTo(b[i]) != 0) {
failedCompare(i, "" + a[i], "" + b[i]);
}
}
}
private static void checkSorted(Object object) {
if (object instanceof int[]) {
checkSorted((int[]) object);
} else if (object instanceof long[]) {
checkSorted((long[]) object);
} else if (object instanceof short[]) {
checkSorted((short[]) object);
} else if (object instanceof byte[]) {
checkSorted((byte[]) object);
} else if (object instanceof char[]) {
checkSorted((char[]) object);
} else if (object instanceof float[]) {
checkSorted((float[]) object);
} else if (object instanceof double[]) {
checkSorted((double[]) object);
} else if (object instanceof Integer[]) {
checkSorted((Integer[]) object);
} else {
failed("Unknow type of array: " + object + " of class " +
object.getClass().getName());
}
}
private static void checkSorted(int[] a) {
for (int i = 0; i < a.length - 1; i++) {
if (a[i] > a[i + 1]) {
failedSort(i, "" + a[i], "" + a[i + 1]);
}
}
}
private static void checkSorted(long[] a) {
for (int i = 0; i < a.length - 1; i++) {
if (a[i] > a[i + 1]) {
failedSort(i, "" + a[i], "" + a[i + 1]);
}
}
}
private static void checkSorted(short[] a) {
for (int i = 0; i < a.length - 1; i++) {
if (a[i] > a[i + 1]) {
failedSort(i, "" + a[i], "" + a[i + 1]);
}
}
}
private static void checkSorted(byte[] a) {
for (int i = 0; i < a.length - 1; i++) {
if (a[i] > a[i + 1]) {
failedSort(i, "" + a[i], "" + a[i + 1]);
}
}
}
private static void checkSorted(char[] a) {
for (int i = 0; i < a.length - 1; i++) {
if (a[i] > a[i + 1]) {
failedSort(i, "" + a[i], "" + a[i + 1]);
}
}
}
private static void checkSorted(float[] a) {
for (int i = 0; i < a.length - 1; i++) {
if (a[i] > a[i + 1]) {
failedSort(i, "" + a[i], "" + a[i + 1]);
}
}
}
private static void checkSorted(double[] a) {
for (int i = 0; i < a.length - 1; i++) {
if (a[i] > a[i + 1]) {
failedSort(i, "" + a[i], "" + a[i + 1]);
}
}
}
private static void checkSorted(Integer[] a) {
for (int i = 0; i < a.length - 1; i++) {
if (a[i].intValue() > a[i + 1].intValue()) {
failedSort(i, "" + a[i], "" + a[i + 1]);
}
}
}
private static void checkCheckSum(Object test, Object golden) {
if (checkSumXor(test) != checkSumXor(golden)) {
failed("Original and sorted arrays are not identical [xor]");
}
if (checkSumPlus(test) != checkSumPlus(golden)) {
failed("Original and sorted arrays are not identical [plus]");
}
}
private static int checkSumXor(Object object) {
if (object instanceof int[]) {
return checkSumXor((int[]) object);
} else if (object instanceof long[]) {
return checkSumXor((long[]) object);
} else if (object instanceof short[]) {
return checkSumXor((short[]) object);
} else if (object instanceof byte[]) {
return checkSumXor((byte[]) object);
} else if (object instanceof char[]) {
return checkSumXor((char[]) object);
} else if (object instanceof float[]) {
return checkSumXor((float[]) object);
} else if (object instanceof double[]) {
return checkSumXor((double[]) object);
} else if (object instanceof Integer[]) {
return checkSumXor((Integer[]) object);
} else {
failed("Unknow type of array: " + object + " of class " +
object.getClass().getName());
return -1;
}
}
private static int checkSumXor(Integer[] a) {
int checkSum = 0;
for (Integer e : a) {
checkSum ^= e.intValue();
}
return checkSum;
}
private static int checkSumXor(int[] a) {
int checkSum = 0;
for (int e : a) {
checkSum ^= e;
}
return checkSum;
}
private static int checkSumXor(long[] a) {
long checkSum = 0;
for (long e : a) {
checkSum ^= e;
}
return (int) checkSum;
}
private static int checkSumXor(short[] a) {
short checkSum = 0;
for (short e : a) {
checkSum ^= e;
}
return (int) checkSum;
}
private static int checkSumXor(byte[] a) {
byte checkSum = 0;
for (byte e : a) {
checkSum ^= e;
}
return (int) checkSum;
}
private static int checkSumXor(char[] a) {
char checkSum = 0;
for (char e : a) {
checkSum ^= e;
}
return (int) checkSum;
}
private static int checkSumXor(float[] a) {
int checkSum = 0;
for (float e : a) {
checkSum ^= (int) e;
}
return checkSum;
}
private static int checkSumXor(double[] a) {
int checkSum = 0;
for (double e : a) {
checkSum ^= (int) e;
}
return checkSum;
}
private static int checkSumPlus(Object object) {
if (object instanceof int[]) {
return checkSumPlus((int[]) object);
} else if (object instanceof long[]) {
return checkSumPlus((long[]) object);
} else if (object instanceof short[]) {
return checkSumPlus((short[]) object);
} else if (object instanceof byte[]) {
return checkSumPlus((byte[]) object);
} else if (object instanceof char[]) {
return checkSumPlus((char[]) object);
} else if (object instanceof float[]) {
return checkSumPlus((float[]) object);
} else if (object instanceof double[]) {
return checkSumPlus((double[]) object);
} else if (object instanceof Integer[]) {
return checkSumPlus((Integer[]) object);
} else {
failed("Unknow type of array: " + object + " of class " +
object.getClass().getName());
return -1;
}
}
private static int checkSumPlus(int[] a) {
int checkSum = 0;
for (int e : a) {
checkSum += e;
}
return checkSum;
}
private static int checkSumPlus(long[] a) {
long checkSum = 0;
for (long e : a) {
checkSum += e;
}
return (int) checkSum;
}
private static int checkSumPlus(short[] a) {
short checkSum = 0;
for (short e : a) {
checkSum += e;
}
return (int) checkSum;
}
private static int checkSumPlus(byte[] a) {
byte checkSum = 0;
for (byte e : a) {
checkSum += e;
}
return (int) checkSum;
}
private static int checkSumPlus(char[] a) {
char checkSum = 0;
for (char e : a) {
checkSum += e;
}
return (int) checkSum;
}
private static int checkSumPlus(float[] a) {
int checkSum = 0;
for (float e : a) {
checkSum += (int) e;
}
return checkSum;
}
private static int checkSumPlus(double[] a) {
int checkSum = 0;
for (double e : a) {
checkSum += (int) e;
}
return checkSum;
}
private static int checkSumPlus(Integer[] a) {
int checkSum = 0;
for (Integer e : a) {
checkSum += e.intValue();
}
return checkSum;
}
private static void sortByInsertionSort(Object object) {
if (object instanceof int[]) {
sortByInsertionSort((int[]) object);
} else if (object instanceof long[]) {
sortByInsertionSort((long[]) object);
} else if (object instanceof short[]) {
sortByInsertionSort((short[]) object);
} else if (object instanceof byte[]) {
sortByInsertionSort((byte[]) object);
} else if (object instanceof char[]) {
sortByInsertionSort((char[]) object);
} else if (object instanceof float[]) {
sortByInsertionSort((float[]) object);
} else if (object instanceof double[]) {
sortByInsertionSort((double[]) object);
} else if (object instanceof Integer[]) {
sortByInsertionSort((Integer[]) object);
} else {
failed("Unknow type of array: " + object + " of class " +
object.getClass().getName());
}
}
private static void sortByInsertionSort(int[] a) {
for (int j, i = 1; i < a.length; i++) {
int ai = a[i];
for (j = i - 1; j >= 0 && ai < a[j]; j--) {
a[j + 1] = a[j];
}
a[j + 1] = ai;
}
}
private static void sortByInsertionSort(long[] a) {
for (int j, i = 1; i < a.length; i++) {
long ai = a[i];
for (j = i - 1; j >= 0 && ai < a[j]; j--) {
a[j + 1] = a[j];
}
a[j + 1] = ai;
}
}
private static void sortByInsertionSort(short[] a) {
for (int j, i = 1; i < a.length; i++) {
short ai = a[i];
for (j = i - 1; j >= 0 && ai < a[j]; j--) {
a[j + 1] = a[j];
}
a[j + 1] = ai;
}
}
private static void sortByInsertionSort(byte[] a) {
for (int j, i = 1; i < a.length; i++) {
byte ai = a[i];
for (j = i - 1; j >= 0 && ai < a[j]; j--) {
a[j + 1] = a[j];
}
a[j + 1] = ai;
}
}
private static void sortByInsertionSort(char[] a) {
for (int j, i = 1; i < a.length; i++) {
char ai = a[i];
for (j = i - 1; j >= 0 && ai < a[j]; j--) {
a[j + 1] = a[j];
}
a[j + 1] = ai;
}
}
private static void sortByInsertionSort(float[] a) {
for (int j, i = 1; i < a.length; i++) {
float ai = a[i];
for (j = i - 1; j >= 0 && ai < a[j]; j--) {
a[j + 1] = a[j];
}
a[j + 1] = ai;
}
}
private static void sortByInsertionSort(double[] a) {
for (int j, i = 1; i < a.length; i++) {
double ai = a[i];
for (j = i - 1; j >= 0 && ai < a[j]; j--) {
a[j + 1] = a[j];
}
a[j + 1] = ai;
}
}
private static void sortByInsertionSort(Integer[] a) {
for (int j, i = 1; i < a.length; i++) {
Integer ai = a[i];
for (j = i - 1; j >= 0 && ai < a[j]; j--) {
a[j + 1] = a[j];
}
a[j + 1] = ai;
}
}
private static void sort(Object object) {
if (object instanceof int[]) {
Arrays.parallelSort((int[]) object);
} else if (object instanceof long[]) {
Arrays.parallelSort((long[]) object);
} else if (object instanceof short[]) {
Arrays.parallelSort((short[]) object);
} else if (object instanceof byte[]) {
Arrays.parallelSort((byte[]) object);
} else if (object instanceof char[]) {
Arrays.parallelSort((char[]) object);
} else if (object instanceof float[]) {
Arrays.parallelSort((float[]) object);
} else if (object instanceof double[]) {
Arrays.parallelSort((double[]) object);
} else if (object instanceof Integer[]) {
Arrays.parallelSort((Integer[]) object);
} else {
failed("Unknow type of array: " + object + " of class " +
object.getClass().getName());
}
}
private static void sortSubArray(Object object, int fromIndex, int toIndex) {
if (object instanceof int[]) {
Arrays.parallelSort((int[]) object, fromIndex, toIndex);
} else if (object instanceof long[]) {
Arrays.parallelSort((long[]) object, fromIndex, toIndex);
} else if (object instanceof short[]) {
Arrays.parallelSort((short[]) object, fromIndex, toIndex);
} else if (object instanceof byte[]) {
Arrays.parallelSort((byte[]) object, fromIndex, toIndex);
} else if (object instanceof char[]) {
Arrays.parallelSort((char[]) object, fromIndex, toIndex);
} else if (object instanceof float[]) {
Arrays.parallelSort((float[]) object, fromIndex, toIndex);
} else if (object instanceof double[]) {
Arrays.parallelSort((double[]) object, fromIndex, toIndex);
} else if (object instanceof Integer[]) {
Arrays.parallelSort((Integer[]) object, fromIndex, toIndex);
} else {
failed("Unknow type of array: " + object + " of class " +
object.getClass().getName());
}
}
private static void checkSubArray(Object object, int fromIndex, int toIndex, int m) {
if (object instanceof int[]) {
checkSubArray((int[]) object, fromIndex, toIndex, m);
} else if (object instanceof long[]) {
checkSubArray((long[]) object, fromIndex, toIndex, m);
} else if (object instanceof short[]) {
checkSubArray((short[]) object, fromIndex, toIndex, m);
} else if (object instanceof byte[]) {
checkSubArray((byte[]) object, fromIndex, toIndex, m);
} else if (object instanceof char[]) {
checkSubArray((char[]) object, fromIndex, toIndex, m);
} else if (object instanceof float[]) {
checkSubArray((float[]) object, fromIndex, toIndex, m);
} else if (object instanceof double[]) {
checkSubArray((double[]) object, fromIndex, toIndex, m);
} else if (object instanceof Integer[]) {
checkSubArray((Integer[]) object, fromIndex, toIndex, m);
} else {
failed("Unknow type of array: " + object + " of class " +
object.getClass().getName());
}
}
private static void checkSubArray(Integer[] a, int fromIndex, int toIndex, int m) {
for (int i = 0; i < fromIndex; i++) {
if (a[i].intValue() != 0xDEDA) {
failed("Range sort changes left element on position " + i +
": " + a[i] + ", must be " + 0xDEDA);
}
}
for (int i = fromIndex; i < toIndex - 1; i++) {
if (a[i].intValue() > a[i + 1].intValue()) {
failedSort(i, "" + a[i], "" + a[i + 1]);
}
}
for (int i = toIndex; i < a.length; i++) {
if (a[i].intValue() != 0xBABA) {
failed("Range sort changes right element on position " + i +
": " + a[i] + ", must be " + 0xBABA);
}
}
}
private static void checkSubArray(int[] a, int fromIndex, int toIndex, int m) {
for (int i = 0; i < fromIndex; i++) {
if (a[i] != 0xDEDA) {
failed("Range sort changes left element on position " + i +
": " + a[i] + ", must be " + 0xDEDA);
}
}
for (int i = fromIndex; i < toIndex - 1; i++) {
if (a[i] > a[i + 1]) {
failedSort(i, "" + a[i], "" + a[i + 1]);
}
}
for (int i = toIndex; i < a.length; i++) {
if (a[i] != 0xBABA) {
failed("Range sort changes right element on position " + i +
": " + a[i] + ", must be " + 0xBABA);
}
}
}
private static void checkSubArray(byte[] a, int fromIndex, int toIndex, int m) {
for (int i = 0; i < fromIndex; i++) {
if (a[i] != (byte) 0xDEDA) {
failed("Range sort changes left element on position " + i +
": " + a[i] + ", must be " + 0xDEDA);
}
}
for (int i = fromIndex; i < toIndex - 1; i++) {
if (a[i] > a[i + 1]) {
failedSort(i, "" + a[i], "" + a[i + 1]);
}
}
for (int i = toIndex; i < a.length; i++) {
if (a[i] != (byte) 0xBABA) {
failed("Range sort changes right element on position " + i +
": " + a[i] + ", must be " + 0xBABA);
}
}
}
private static void checkSubArray(long[] a, int fromIndex, int toIndex, int m) {
for (int i = 0; i < fromIndex; i++) {
if (a[i] != (long) 0xDEDA) {
failed("Range sort changes left element on position " + i +
": " + a[i] + ", must be " + 0xDEDA);
}
}
for (int i = fromIndex; i < toIndex - 1; i++) {
if (a[i] > a[i + 1]) {
failedSort(i, "" + a[i], "" + a[i + 1]);
}
}
for (int i = toIndex; i < a.length; i++) {
if (a[i] != (long) 0xBABA) {
failed("Range sort changes right element on position " + i +
": " + a[i] + ", must be " + 0xBABA);
}
}
}
private static void checkSubArray(char[] a, int fromIndex, int toIndex, int m) {
for (int i = 0; i < fromIndex; i++) {
if (a[i] != (char) 0xDEDA) {
failed("Range sort changes left element on position " + i +
": " + a[i] + ", must be " + 0xDEDA);
}
}
for (int i = fromIndex; i < toIndex - 1; i++) {
if (a[i] > a[i + 1]) {
failedSort(i, "" + a[i], "" + a[i + 1]);
}
}
for (int i = toIndex; i < a.length; i++) {
if (a[i] != (char) 0xBABA) {
failed("Range sort changes right element on position " + i +
": " + a[i] + ", must be " + 0xBABA);
}
}
}
private static void checkSubArray(short[] a, int fromIndex, int toIndex, int m) {
for (int i = 0; i < fromIndex; i++) {
if (a[i] != (short) 0xDEDA) {
failed("Range sort changes left element on position " + i +
": " + a[i] + ", must be " + 0xDEDA);
}
}
for (int i = fromIndex; i < toIndex - 1; i++) {
if (a[i] > a[i + 1]) {
failedSort(i, "" + a[i], "" + a[i + 1]);
}
}
for (int i = toIndex; i < a.length; i++) {
if (a[i] != (short) 0xBABA) {
failed("Range sort changes right element on position " + i +
": " + a[i] + ", must be " + 0xBABA);
}
}
}
private static void checkSubArray(float[] a, int fromIndex, int toIndex, int m) {
for (int i = 0; i < fromIndex; i++) {
if (a[i] != (float) 0xDEDA) {
failed("Range sort changes left element on position " + i +
": " + a[i] + ", must be " + 0xDEDA);
}
}
for (int i = fromIndex; i < toIndex - 1; i++) {
if (a[i] > a[i + 1]) {
failedSort(i, "" + a[i], "" + a[i + 1]);
}
}
for (int i = toIndex; i < a.length; i++) {
if (a[i] != (float) 0xBABA) {
failed("Range sort changes right element on position " + i +
": " + a[i] + ", must be " + 0xBABA);
}
}
}
private static void checkSubArray(double[] a, int fromIndex, int toIndex, int m) {
for (int i = 0; i < fromIndex; i++) {
if (a[i] != (double) 0xDEDA) {
failed("Range sort changes left element on position " + i +
": " + a[i] + ", must be " + 0xDEDA);
}
}
for (int i = fromIndex; i < toIndex - 1; i++) {
if (a[i] > a[i + 1]) {
failedSort(i, "" + a[i], "" + a[i + 1]);
}
}
for (int i = toIndex; i < a.length; i++) {
if (a[i] != (double) 0xBABA) {
failed("Range sort changes right element on position " + i +
": " + a[i] + ", must be " + 0xBABA);
}
}
}
private static void checkRange(Object object, int m) {
if (object instanceof int[]) {
checkRange((int[]) object, m);
} else if (object instanceof long[]) {
checkRange((long[]) object, m);
} else if (object instanceof short[]) {
checkRange((short[]) object, m);
} else if (object instanceof byte[]) {
checkRange((byte[]) object, m);
} else if (object instanceof char[]) {
checkRange((char[]) object, m);
} else if (object instanceof float[]) {
checkRange((float[]) object, m);
} else if (object instanceof double[]) {
checkRange((double[]) object, m);
} else if (object instanceof Integer[]) {
checkRange((Integer[]) object, m);
} else {
failed("Unknow type of array: " + object + " of class " +
object.getClass().getName());
}
}
private static void checkRange(Integer[] a, int m) {
try {
Arrays.parallelSort(a, m + 1, m);
failed("ParallelSort does not throw IllegalArgumentException " +
" as expected: fromIndex = " + (m + 1) +
" toIndex = " + m);
}
catch (IllegalArgumentException iae) {
try {
Arrays.parallelSort(a, -m, a.length);
failed("ParallelSort does not throw ArrayIndexOutOfBoundsException " +
" as expected: fromIndex = " + (-m));
}
catch (ArrayIndexOutOfBoundsException aoe) {
try {
Arrays.parallelSort(a, 0, a.length + m);
failed("ParallelSort does not throw ArrayIndexOutOfBoundsException " +
" as expected: toIndex = " + (a.length + m));
}
catch (ArrayIndexOutOfBoundsException aie) {
return;
}
}
}
}
private static void checkRange(int[] a, int m) {
try {
Arrays.parallelSort(a, m + 1, m);
failed("ParallelSort does not throw IllegalArgumentException " +
" as expected: fromIndex = " + (m + 1) +
" toIndex = " + m);
}
catch (IllegalArgumentException iae) {
try {
Arrays.parallelSort(a, -m, a.length);
failed("ParallelSort does not throw ArrayIndexOutOfBoundsException " +
" as expected: fromIndex = " + (-m));
}
catch (ArrayIndexOutOfBoundsException aoe) {
try {
Arrays.parallelSort(a, 0, a.length + m);
failed("ParallelSort does not throw ArrayIndexOutOfBoundsException " +
" as expected: toIndex = " + (a.length + m));
}
catch (ArrayIndexOutOfBoundsException aie) {
return;
}
}
}
}
private static void checkRange(long[] a, int m) {
try {
Arrays.parallelSort(a, m + 1, m);
failed("ParallelSort does not throw IllegalArgumentException " +
" as expected: fromIndex = " + (m + 1) +
" toIndex = " + m);
}
catch (IllegalArgumentException iae) {
try {
Arrays.parallelSort(a, -m, a.length);
failed("ParallelSort does not throw ArrayIndexOutOfBoundsException " +
" as expected: fromIndex = " + (-m));
}
catch (ArrayIndexOutOfBoundsException aoe) {
try {
Arrays.parallelSort(a, 0, a.length + m);
failed("ParallelSort does not throw ArrayIndexOutOfBoundsException " +
" as expected: toIndex = " + (a.length + m));
}
catch (ArrayIndexOutOfBoundsException aie) {
return;
}
}
}
}
private static void checkRange(byte[] a, int m) {
try {
Arrays.parallelSort(a, m + 1, m);
failed("ParallelSort does not throw IllegalArgumentException " +
" as expected: fromIndex = " + (m + 1) +
" toIndex = " + m);
}
catch (IllegalArgumentException iae) {
try {
Arrays.parallelSort(a, -m, a.length);
failed("ParallelSort does not throw ArrayIndexOutOfBoundsException " +
" as expected: fromIndex = " + (-m));
}
catch (ArrayIndexOutOfBoundsException aoe) {
try {
Arrays.parallelSort(a, 0, a.length + m);
failed("ParallelSort does not throw ArrayIndexOutOfBoundsException " +
" as expected: toIndex = " + (a.length + m));
}
catch (ArrayIndexOutOfBoundsException aie) {
return;
}
}
}
}
private static void checkRange(short[] a, int m) {
try {
Arrays.parallelSort(a, m + 1, m);
failed("ParallelSort does not throw IllegalArgumentException " +
" as expected: fromIndex = " + (m + 1) +
" toIndex = " + m);
}
catch (IllegalArgumentException iae) {
try {
Arrays.parallelSort(a, -m, a.length);
failed("ParallelSort does not throw ArrayIndexOutOfBoundsException " +
" as expected: fromIndex = " + (-m));
}
catch (ArrayIndexOutOfBoundsException aoe) {
try {
Arrays.parallelSort(a, 0, a.length + m);
failed("ParallelSort does not throw ArrayIndexOutOfBoundsException " +
" as expected: toIndex = " + (a.length + m));
}
catch (ArrayIndexOutOfBoundsException aie) {
return;
}
}
}
}
private static void checkRange(char[] a, int m) {
try {
Arrays.parallelSort(a, m + 1, m);
failed("ParallelSort does not throw IllegalArgumentException " +
" as expected: fromIndex = " + (m + 1) +
" toIndex = " + m);
}
catch (IllegalArgumentException iae) {
try {
Arrays.parallelSort(a, -m, a.length);
failed("ParallelSort does not throw ArrayIndexOutOfBoundsException " +
" as expected: fromIndex = " + (-m));
}
catch (ArrayIndexOutOfBoundsException aoe) {
try {
Arrays.parallelSort(a, 0, a.length + m);
failed("ParallelSort does not throw ArrayIndexOutOfBoundsException " +
" as expected: toIndex = " + (a.length + m));
}
catch (ArrayIndexOutOfBoundsException aie) {
return;
}
}
}
}
private static void checkRange(float[] a, int m) {
try {
Arrays.parallelSort(a, m + 1, m);
failed("ParallelSort does not throw IllegalArgumentException " +
" as expected: fromIndex = " + (m + 1) +
" toIndex = " + m);
}
catch (IllegalArgumentException iae) {
try {
Arrays.parallelSort(a, -m, a.length);
failed("ParallelSort does not throw ArrayIndexOutOfBoundsException " +
" as expected: fromIndex = " + (-m));
}
catch (ArrayIndexOutOfBoundsException aoe) {
try {
Arrays.parallelSort(a, 0, a.length + m);
failed("ParallelSort does not throw ArrayIndexOutOfBoundsException " +
" as expected: toIndex = " + (a.length + m));
}
catch (ArrayIndexOutOfBoundsException aie) {
return;
}
}
}
}
private static void checkRange(double[] a, int m) {
try {
Arrays.parallelSort(a, m + 1, m);
failed("ParallelSort does not throw IllegalArgumentException " +
" as expected: fromIndex = " + (m + 1) +
" toIndex = " + m);
}
catch (IllegalArgumentException iae) {
try {
Arrays.parallelSort(a, -m, a.length);
failed("ParallelSort does not throw ArrayIndexOutOfBoundsException " +
" as expected: fromIndex = " + (-m));
}
catch (ArrayIndexOutOfBoundsException aoe) {
try {
Arrays.parallelSort(a, 0, a.length + m);
failed("ParallelSort does not throw ArrayIndexOutOfBoundsException " +
" as expected: toIndex = " + (a.length + m));
}
catch (ArrayIndexOutOfBoundsException aie) {
return;
}
}
}
}
private static void outArray(Object[] a) {
for (int i = 0; i < a.length; i++) {
out.print(a[i] + " ");
}
out.println();
}
private static void outArray(int[] a) {
for (int i = 0; i < a.length; i++) {
out.print(a[i] + " ");
}
out.println();
}
private static void outArray(float[] a) {
for (int i = 0; i < a.length; i++) {
out.print(a[i] + " ");
}
out.println();
}
private static void outArray(double[] a) {
for (int i = 0; i < a.length; i++) {
out.print(a[i] + " ");
}
out.println();
}
private static class MyRandom extends Random {
MyRandom(long seed) {
super(seed);
mySeed = seed;
}
long getSeed() {
return mySeed;
}
private long mySeed;
}
private static String ourDescription;
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册