提交 0de4e06d 编写于 作者: S sherman

Merge

......@@ -92,9 +92,9 @@ ABS_TEMP_DIR = $(ABS_OUTPUTDIR)/tmp
dummy := $(shell $(MKDIR) -p $(TEMP_DIR))
# The language version we want for this jdk build
SOURCE_LANGUAGE_VERSION=5
SOURCE_LANGUAGE_VERSION=7
# The class version we want for this jdk build
TARGET_CLASS_VERSION=5
TARGET_CLASS_VERSION=7
# The MESSAGE, WARNING and ERROR files are used to store sanity check and
# source check messages, warnings and errors.
......
......@@ -122,13 +122,13 @@ ifeq ($(JAVAC_WARNINGS_FATAL), true)
JAVACFLAGS += -Werror
endif
# Add the source level (currently all source is 1.5, should this be 1.6?)
SOURCE_LANGUAGE_VERSION = 5
# Add the source level
SOURCE_LANGUAGE_VERSION = 7
LANGUAGE_VERSION = -source $(SOURCE_LANGUAGE_VERSION)
JAVACFLAGS += $(LANGUAGE_VERSION)
# Add the class version we want (currently this is 5, should it be 6 or even 7?)
TARGET_CLASS_VERSION = 5
# Add the class version we want
TARGET_CLASS_VERSION = 7
CLASS_VERSION = -target $(TARGET_CLASS_VERSION)
JAVACFLAGS += $(CLASS_VERSION)
JAVACFLAGS += -encoding ascii
......
......@@ -33,8 +33,8 @@ AUTO_FILES_JAVA_DIRS = java/dyn sun/dyn
# The sources built here use new language syntax to generate
# method handle calls. Let's be sure we are using that format.
#LANGUAGE_VERSION = -source 7
#CLASS_VERSION = -target 7
LANGUAGE_VERSION = -source 7
CLASS_VERSION = -target 7
# Actually, it will be less disruptive to compile with the same
# -target option as the rest of the system, and just turn on
......
......@@ -93,9 +93,7 @@ final class Filter {
int filtOffset[] = new int[1];
for (filtOffset[0] = filterStart;
filtOffset[0] < filterEnd;
filtOffset[0]++) {
for (filtOffset[0] = filterStart; filtOffset[0] < filterEnd;) {
switch (filter[filtOffset[0]]) {
case '(':
filtOffset[0]++;
......@@ -104,18 +102,21 @@ final class Filter {
case '&':
encodeComplexFilter(ber, filter,
LDAP_FILTER_AND, filtOffset, filterEnd);
// filtOffset[0] has pointed to char after right paren
parens--;
break;
case '|':
encodeComplexFilter(ber, filter,
LDAP_FILTER_OR, filtOffset, filterEnd);
// filtOffset[0] has pointed to char after right paren
parens--;
break;
case '!':
encodeComplexFilter(ber, filter,
LDAP_FILTER_NOT, filtOffset, filterEnd);
// filtOffset[0] has pointed to char after right paren
parens--;
break;
......@@ -143,8 +144,8 @@ final class Filter {
encodeSimpleFilter(ber, filter, filtOffset[0], nextOffset);
// points to right parens; for loop will increment beyond parens
filtOffset[0] = nextOffset;
// points to the char after right paren.
filtOffset[0] = nextOffset + 1;
parens--;
break;
......@@ -170,9 +171,14 @@ final class Filter {
filtOffset[0] = filterEnd; // force break from outer
break;
}
if (parens < 0) {
throw new InvalidSearchFilterException(
"Unbalanced parenthesis");
}
}
if (parens > 0) {
if (parens != 0) {
throw new InvalidSearchFilterException("Unbalanced parenthesis");
}
......
......@@ -2784,8 +2784,13 @@ class Character extends Object implements java.io.Serializable, Comparable<Chara
* @since 1.5
*/
public static int toCodePoint(char high, char low) {
return ((high - MIN_HIGH_SURROGATE) << 10)
+ (low - MIN_LOW_SURROGATE) + MIN_SUPPLEMENTARY_CODE_POINT;
// Optimized form of:
// return ((high - MIN_HIGH_SURROGATE) << 10)
// + (low - MIN_LOW_SURROGATE)
// + MIN_SUPPLEMENTARY_CODE_POINT;
return ((high << 10) + low) + (MIN_SUPPLEMENTARY_CODE_POINT
- (MIN_HIGH_SURROGATE << 10)
- MIN_LOW_SURROGATE);
}
/**
......@@ -3071,9 +3076,10 @@ class Character extends Object implements java.io.Serializable, Comparable<Chara
}
static void toSurrogates(int codePoint, char[] dst, int index) {
int offset = codePoint - MIN_SUPPLEMENTARY_CODE_POINT;
dst[index+1] = (char)((offset & 0x3ff) + MIN_LOW_SURROGATE);
dst[index] = (char)((offset >>> 10) + MIN_HIGH_SURROGATE);
// We write elements "backwards" to guarantee all-or-nothing
dst[index+1] = (char)((codePoint & 0x3ff) + MIN_LOW_SURROGATE);
dst[index] = (char)((codePoint >>> 10)
+ (MIN_HIGH_SURROGATE - (MIN_SUPPLEMENTARY_CODE_POINT >>> 10)));
}
/**
......
......@@ -34,9 +34,13 @@
*/
package java.util.concurrent;
import java.util.*;
import java.util.concurrent.atomic.*;
import java.util.AbstractQueue;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Iterator;
import java.util.NoSuchElementException;
import java.util.Queue;
/**
* An unbounded thread-safe {@linkplain Queue queue} based on linked nodes.
......@@ -47,9 +51,9 @@ import java.util.concurrent.atomic.*;
* queue the shortest time. New elements
* are inserted at the tail of the queue, and the queue retrieval
* operations obtain elements at the head of the queue.
* A <tt>ConcurrentLinkedQueue</tt> is an appropriate choice when
* A {@code ConcurrentLinkedQueue} is an appropriate choice when
* many threads will share access to a common collection.
* This queue does not permit <tt>null</tt> elements.
* This queue does not permit {@code null} elements.
*
* <p>This implementation employs an efficient &quot;wait-free&quot;
* algorithm based on one described in <a
......@@ -57,7 +61,7 @@ import java.util.concurrent.atomic.*;
* Fast, and Practical Non-Blocking and Blocking Concurrent Queue
* Algorithms</a> by Maged M. Michael and Michael L. Scott.
*
* <p>Beware that, unlike in most collections, the <tt>size</tt> method
* <p>Beware that, unlike in most collections, the {@code size} method
* is <em>NOT</em> a constant-time operation. Because of the
* asynchronous nature of these queues, determining the current number
* of elements requires a traversal of the elements.
......@@ -87,104 +91,158 @@ public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
private static final long serialVersionUID = 196745693267521676L;
/*
* This is a straight adaptation of Michael & Scott algorithm.
* For explanation, read the paper. The only (minor) algorithmic
* difference is that this version supports lazy deletion of
* internal nodes (method remove(Object)) -- remove CAS'es item
* fields to null. The normal queue operations unlink but then
* pass over nodes with null item fields. Similarly, iteration
* methods ignore those with nulls.
*
* Also note that like most non-blocking algorithms in this
* package, this implementation relies on the fact that in garbage
* This is a modification of the Michael & Scott algorithm,
* adapted for a garbage-collected environment, with support for
* interior node deletion (to support remove(Object)). For
* explanation, read the paper.
*
* Note that like most non-blocking algorithms in this package,
* this implementation relies on the fact that in garbage
* collected systems, there is no possibility of ABA problems due
* to recycled nodes, so there is no need to use "counted
* pointers" or related techniques seen in versions used in
* non-GC'ed settings.
*
* The fundamental invariants are:
* - There is exactly one (last) Node with a null next reference,
* which is CASed when enqueueing. This last Node can be
* reached in O(1) time from tail, but tail is merely an
* optimization - it can always be reached in O(N) time from
* head as well.
* - The elements contained in the queue are the non-null items in
* Nodes that are reachable from head. CASing the item
* reference of a Node to null atomically removes it from the
* queue. Reachability of all elements from head must remain
* true even in the case of concurrent modifications that cause
* head to advance. A dequeued Node may remain in use
* indefinitely due to creation of an Iterator or simply a
* poll() that has lost its time slice.
*
* The above might appear to imply that all Nodes are GC-reachable
* from a predecessor dequeued Node. That would cause two problems:
* - allow a rogue Iterator to cause unbounded memory retention
* - cause cross-generational linking of old Nodes to new Nodes if
* a Node was tenured while live, which generational GCs have a
* hard time dealing with, causing repeated major collections.
* However, only non-deleted Nodes need to be reachable from
* dequeued Nodes, and reachability does not necessarily have to
* be of the kind understood by the GC. We use the trick of
* linking a Node that has just been dequeued to itself. Such a
* self-link implicitly means to advance to head.
*
* Both head and tail are permitted to lag. In fact, failing to
* update them every time one could is a significant optimization
* (fewer CASes). This is controlled by local "hops" variables
* that only trigger helping-CASes after experiencing multiple
* lags.
*
* Since head and tail are updated concurrently and independently,
* it is possible for tail to lag behind head (why not)?
*
* CASing a Node's item reference to null atomically removes the
* element from the queue. Iterators skip over Nodes with null
* items. Prior implementations of this class had a race between
* poll() and remove(Object) where the same element would appear
* to be successfully removed by two concurrent operations. The
* method remove(Object) also lazily unlinks deleted Nodes, but
* this is merely an optimization.
*
* When constructing a Node (before enqueuing it) we avoid paying
* for a volatile write to item by using lazySet instead of a
* normal write. This allows the cost of enqueue to be
* "one-and-a-half" CASes.
*
* Both head and tail may or may not point to a Node with a
* non-null item. If the queue is empty, all items must of course
* be null. Upon creation, both head and tail refer to a dummy
* Node with null item. Both head and tail are only updated using
* CAS, so they never regress, although again this is merely an
* optimization.
*/
private static class Node<E> {
private volatile E item;
private volatile Node<E> next;
private static final
AtomicReferenceFieldUpdater<Node, Node>
nextUpdater =
AtomicReferenceFieldUpdater.newUpdater
(Node.class, Node.class, "next");
private static final
AtomicReferenceFieldUpdater<Node, Object>
itemUpdater =
AtomicReferenceFieldUpdater.newUpdater
(Node.class, Object.class, "item");
Node(E x) { item = x; }
Node(E x, Node<E> n) { item = x; next = n; }
Node(E item) {
// Piggyback on imminent casNext()
lazySetItem(item);
}
E getItem() {
return item;
}
boolean casItem(E cmp, E val) {
return itemUpdater.compareAndSet(this, cmp, val);
return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
}
void setItem(E val) {
itemUpdater.set(this, val);
item = val;
}
Node<E> getNext() {
return next;
void lazySetItem(E val) {
UNSAFE.putOrderedObject(this, itemOffset, val);
}
boolean casNext(Node<E> cmp, Node<E> val) {
return nextUpdater.compareAndSet(this, cmp, val);
void lazySetNext(Node<E> val) {
UNSAFE.putOrderedObject(this, nextOffset, val);
}
void setNext(Node<E> val) {
nextUpdater.set(this, val);
Node<E> getNext() {
return next;
}
boolean casNext(Node<E> cmp, Node<E> val) {
return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
}
private static final
AtomicReferenceFieldUpdater<ConcurrentLinkedQueue, Node>
tailUpdater =
AtomicReferenceFieldUpdater.newUpdater
(ConcurrentLinkedQueue.class, Node.class, "tail");
private static final
AtomicReferenceFieldUpdater<ConcurrentLinkedQueue, Node>
headUpdater =
AtomicReferenceFieldUpdater.newUpdater
(ConcurrentLinkedQueue.class, Node.class, "head");
// Unsafe mechanics
private boolean casTail(Node<E> cmp, Node<E> val) {
return tailUpdater.compareAndSet(this, cmp, val);
private static final sun.misc.Unsafe UNSAFE =
sun.misc.Unsafe.getUnsafe();
private static final long nextOffset =
objectFieldOffset(UNSAFE, "next", Node.class);
private static final long itemOffset =
objectFieldOffset(UNSAFE, "item", Node.class);
}
private boolean casHead(Node<E> cmp, Node<E> val) {
return headUpdater.compareAndSet(this, cmp, val);
}
/**
* Pointer to header node, initialized to a dummy node. The first
* actual node is at head.getNext().
* A node from which the first live (non-deleted) node (if any)
* can be reached in O(1) time.
* Invariants:
* - all live nodes are reachable from head via succ()
* - head != null
* - (tmp = head).next != tmp || tmp != head
* Non-invariants:
* - head.item may or may not be null.
* - it is permitted for tail to lag behind head, that is, for tail
* to not be reachable from head!
*/
private transient volatile Node<E> head = new Node<E>(null, null);
private transient volatile Node<E> head = new Node<E>(null);
/** Pointer to last node on list **/
/**
* A node from which the last node on list (that is, the unique
* node with node.next == null) can be reached in O(1) time.
* Invariants:
* - the last node is always reachable from tail via succ()
* - tail != null
* Non-invariants:
* - tail.item may or may not be null.
* - it is permitted for tail to lag behind head, that is, for tail
* to not be reachable from head!
* - tail.next may or may not be self-pointing to tail.
*/
private transient volatile Node<E> tail = head;
/**
* Creates a <tt>ConcurrentLinkedQueue</tt> that is initially empty.
* Creates a {@code ConcurrentLinkedQueue} that is initially empty.
*/
public ConcurrentLinkedQueue() {}
/**
* Creates a <tt>ConcurrentLinkedQueue</tt>
* Creates a {@code ConcurrentLinkedQueue}
* initially containing the elements of the given collection,
* added in traversal order of the collection's iterator.
* @param c the collection of elements to initially contain
......@@ -201,115 +259,143 @@ public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
/**
* Inserts the specified element at the tail of this queue.
*
* @return <tt>true</tt> (as specified by {@link Collection#add})
* @return {@code true} (as specified by {@link Collection#add})
* @throws NullPointerException if the specified element is null
*/
public boolean add(E e) {
return offer(e);
}
/**
* We don't bother to update head or tail pointers if fewer than
* HOPS links from "true" location. We assume that volatile
* writes are significantly more expensive than volatile reads.
*/
private static final int HOPS = 1;
/**
* Try to CAS head to p. If successful, repoint old head to itself
* as sentinel for succ(), below.
*/
final void updateHead(Node<E> h, Node<E> p) {
if (h != p && casHead(h, p))
h.lazySetNext(h);
}
/**
* Returns the successor of p, or the head node if p.next has been
* linked to self, which will only be true if traversing with a
* stale pointer that is now off the list.
*/
final Node<E> succ(Node<E> p) {
Node<E> next = p.getNext();
return (p == next) ? head : next;
}
/**
* Inserts the specified element at the tail of this queue.
*
* @return <tt>true</tt> (as specified by {@link Queue#offer})
* @return {@code true} (as specified by {@link Queue#offer})
* @throws NullPointerException if the specified element is null
*/
public boolean offer(E e) {
if (e == null) throw new NullPointerException();
Node<E> n = new Node<E>(e, null);
Node<E> n = new Node<E>(e);
retry:
for (;;) {
Node<E> t = tail;
Node<E> s = t.getNext();
if (t == tail) {
if (s == null) {
if (t.casNext(s, n)) {
casTail(t, n);
Node<E> p = t;
for (int hops = 0; ; hops++) {
Node<E> next = succ(p);
if (next != null) {
if (hops > HOPS && t != tail)
continue retry;
p = next;
} else if (p.casNext(null, n)) {
if (hops >= HOPS)
casTail(t, n); // Failure is OK.
return true;
}
} else {
casTail(t, s);
p = succ(p);
}
}
}
}
public E poll() {
for (;;) {
Node<E> h = head;
Node<E> t = tail;
Node<E> first = h.getNext();
if (h == head) {
if (h == t) {
if (first == null)
return null;
else
casTail(t, first);
} else if (casHead(h, first)) {
E item = first.getItem();
if (item != null) {
first.setItem(null);
return item;
Node<E> p = h;
for (int hops = 0; ; hops++) {
E item = p.getItem();
if (item != null && p.casItem(item, null)) {
if (hops >= HOPS) {
Node<E> q = p.getNext();
updateHead(h, (q != null) ? q : p);
}
// else skip over deleted item, continue loop,
return item;
}
Node<E> next = succ(p);
if (next == null) {
updateHead(h, p);
break;
}
p = next;
}
return null;
}
public E peek() { // same as poll except don't remove item
for (;;) {
public E peek() {
Node<E> h = head;
Node<E> t = tail;
Node<E> first = h.getNext();
if (h == head) {
if (h == t) {
if (first == null)
return null;
else
casTail(t, first);
} else {
E item = first.getItem();
Node<E> p = h;
E item;
for (;;) {
item = p.getItem();
if (item != null)
return item;
else // remove deleted node and continue
casHead(h, first);
}
break;
Node<E> next = succ(p);
if (next == null) {
break;
}
p = next;
}
updateHead(h, p);
return item;
}
/**
* Returns the first actual (non-header) node on list. This is yet
* another variant of poll/peek; here returning out the first
* node, not element (so we cannot collapse with peek() without
* introducing race.)
* Returns the first live (non-deleted) node on list, or null if none.
* This is yet another variant of poll/peek; here returning the
* first node, not element. We could make peek() a wrapper around
* first(), but that would cost an extra volatile read of item,
* and the need to add a retry loop to deal with the possibility
* of losing a race to a concurrent poll().
*/
Node<E> first() {
for (;;) {
Node<E> h = head;
Node<E> t = tail;
Node<E> first = h.getNext();
if (h == head) {
if (h == t) {
if (first == null)
return null;
else
casTail(t, first);
} else {
if (first.getItem() != null)
return first;
else // remove deleted node and continue
casHead(h, first);
Node<E> p = h;
Node<E> result;
for (;;) {
E item = p.getItem();
if (item != null) {
result = p;
break;
}
Node<E> next = succ(p);
if (next == null) {
result = null;
break;
}
p = next;
}
updateHead(h, p);
return result;
}
/**
* Returns <tt>true</tt> if this queue contains no elements.
* Returns {@code true} if this queue contains no elements.
*
* @return <tt>true</tt> if this queue contains no elements
* @return {@code true} if this queue contains no elements
*/
public boolean isEmpty() {
return first() == null;
......@@ -317,8 +403,8 @@ public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
/**
* Returns the number of elements in this queue. If this queue
* contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
* <tt>Integer.MAX_VALUE</tt>.
* contains more than {@code Integer.MAX_VALUE} elements, returns
* {@code Integer.MAX_VALUE}.
*
* <p>Beware that, unlike in most collections, this method is
* <em>NOT</em> a constant-time operation. Because of the
......@@ -329,7 +415,7 @@ public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
*/
public int size() {
int count = 0;
for (Node<E> p = first(); p != null; p = p.getNext()) {
for (Node<E> p = first(); p != null; p = succ(p)) {
if (p.getItem() != null) {
// Collections.size() spec says to max out
if (++count == Integer.MAX_VALUE)
......@@ -340,16 +426,16 @@ public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
}
/**
* Returns <tt>true</tt> if this queue contains the specified element.
* More formally, returns <tt>true</tt> if and only if this queue contains
* at least one element <tt>e</tt> such that <tt>o.equals(e)</tt>.
* Returns {@code true} if this queue contains the specified element.
* More formally, returns {@code true} if and only if this queue contains
* at least one element {@code e} such that {@code o.equals(e)}.
*
* @param o object to be checked for containment in this queue
* @return <tt>true</tt> if this queue contains the specified element
* @return {@code true} if this queue contains the specified element
*/
public boolean contains(Object o) {
if (o == null) return false;
for (Node<E> p = first(); p != null; p = p.getNext()) {
for (Node<E> p = first(); p != null; p = succ(p)) {
E item = p.getItem();
if (item != null &&
o.equals(item))
......@@ -360,24 +446,30 @@ public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
/**
* Removes a single instance of the specified element from this queue,
* if it is present. More formally, removes an element <tt>e</tt> such
* that <tt>o.equals(e)</tt>, if this queue contains one or more such
* if it is present. More formally, removes an element {@code e} such
* that {@code o.equals(e)}, if this queue contains one or more such
* elements.
* Returns <tt>true</tt> if this queue contained the specified element
* Returns {@code true} if this queue contained the specified element
* (or equivalently, if this queue changed as a result of the call).
*
* @param o element to be removed from this queue, if present
* @return <tt>true</tt> if this queue changed as a result of the call
* @return {@code true} if this queue changed as a result of the call
*/
public boolean remove(Object o) {
if (o == null) return false;
for (Node<E> p = first(); p != null; p = p.getNext()) {
Node<E> pred = null;
for (Node<E> p = first(); p != null; p = succ(p)) {
E item = p.getItem();
if (item != null &&
o.equals(item) &&
p.casItem(item, null))
p.casItem(item, null)) {
Node<E> next = succ(p);
if (pred != null && next != null)
pred.casNext(p, next);
return true;
}
pred = p;
}
return false;
}
......@@ -397,7 +489,7 @@ public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
public Object[] toArray() {
// Use ArrayList to deal with resizing.
ArrayList<E> al = new ArrayList<E>();
for (Node<E> p = first(); p != null; p = p.getNext()) {
for (Node<E> p = first(); p != null; p = succ(p)) {
E item = p.getItem();
if (item != null)
al.add(item);
......@@ -415,22 +507,22 @@ public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
* <p>If this queue fits in the specified array with room to spare
* (i.e., the array has more elements than this queue), the element in
* the array immediately following the end of the queue is set to
* <tt>null</tt>.
* {@code null}.
*
* <p>Like the {@link #toArray()} method, this method acts as bridge between
* array-based and collection-based APIs. Further, this method allows
* precise control over the runtime type of the output array, and may,
* under certain circumstances, be used to save allocation costs.
*
* <p>Suppose <tt>x</tt> is a queue known to contain only strings.
* <p>Suppose {@code x} is a queue known to contain only strings.
* The following code can be used to dump the queue into a newly
* allocated array of <tt>String</tt>:
* allocated array of {@code String}:
*
* <pre>
* String[] y = x.toArray(new String[0]);</pre>
*
* Note that <tt>toArray(new Object[0])</tt> is identical in function to
* <tt>toArray()</tt>.
* Note that {@code toArray(new Object[0])} is identical in function to
* {@code toArray()}.
*
* @param a the array into which the elements of the queue are to
* be stored, if it is big enough; otherwise, a new array of the
......@@ -441,11 +533,12 @@ public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
* this queue
* @throws NullPointerException if the specified array is null
*/
@SuppressWarnings("unchecked")
public <T> T[] toArray(T[] a) {
// try to use sent-in array
int k = 0;
Node<E> p;
for (p = first(); p != null && k < a.length; p = p.getNext()) {
for (p = first(); p != null && k < a.length; p = succ(p)) {
E item = p.getItem();
if (item != null)
a[k++] = (T)item;
......@@ -458,7 +551,7 @@ public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
// If won't fit, use ArrayList version
ArrayList<E> al = new ArrayList<E>();
for (Node<E> q = first(); q != null; q = q.getNext()) {
for (Node<E> q = first(); q != null; q = succ(q)) {
E item = q.getItem();
if (item != null)
al.add(item);
......@@ -511,7 +604,15 @@ public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
lastRet = nextNode;
E x = nextItem;
Node<E> p = (nextNode == null)? first() : nextNode.getNext();
Node<E> pred, p;
if (nextNode == null) {
p = first();
pred = null;
} else {
pred = nextNode;
p = succ(nextNode);
}
for (;;) {
if (p == null) {
nextNode = null;
......@@ -523,8 +624,13 @@ public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
nextNode = p;
nextItem = item;
return x;
} else // skip over nulls
p = p.getNext();
} else {
// skip over nulls
Node<E> next = succ(p);
if (pred != null && next != null)
pred.casNext(p, next);
p = next;
}
}
}
......@@ -549,7 +655,7 @@ public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
/**
* Save the state to a stream (that is, serialize it).
*
* @serialData All of the elements (each an <tt>E</tt>) in
* @serialData All of the elements (each an {@code E}) in
* the proper order, followed by a null
* @param s the stream
*/
......@@ -560,7 +666,7 @@ public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
s.defaultWriteObject();
// Write out all elements in the proper order.
for (Node<E> p = first(); p != null; p = p.getNext()) {
for (Node<E> p = first(); p != null; p = succ(p)) {
Object item = p.getItem();
if (item != null)
s.writeObject(item);
......@@ -579,10 +685,11 @@ public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
throws java.io.IOException, ClassNotFoundException {
// Read in capacity, and any hidden stuff
s.defaultReadObject();
head = new Node<E>(null, null);
head = new Node<E>(null);
tail = head;
// Read in all elements and place in queue
for (;;) {
@SuppressWarnings("unchecked")
E item = (E)s.readObject();
if (item == null)
break;
......@@ -591,4 +698,35 @@ public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
}
}
// Unsafe mechanics
private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
private static final long headOffset =
objectFieldOffset(UNSAFE, "head", ConcurrentLinkedQueue.class);
private static final long tailOffset =
objectFieldOffset(UNSAFE, "tail", ConcurrentLinkedQueue.class);
private boolean casTail(Node<E> cmp, Node<E> val) {
return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
}
private boolean casHead(Node<E> cmp, Node<E> val) {
return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
}
private void lazySetHead(Node<E> val) {
UNSAFE.putOrderedObject(this, headOffset, val);
}
static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
String field, Class<?> klazz) {
try {
return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
} catch (NoSuchFieldException e) {
// Convert Exception to corresponding Error
NoSuchFieldError error = new NoSuchFieldError(field);
error.initCause(e);
throw error;
}
}
}
......@@ -34,8 +34,13 @@
*/
package java.util.concurrent;
import java.util.*;
import java.util.concurrent.locks.*;
import java.util.AbstractQueue;
import java.util.Collection;
import java.util.Iterator;
import java.util.NoSuchElementException;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock;
/**
* An optionally-bounded {@linkplain BlockingDeque blocking deque} based on
......@@ -73,6 +78,20 @@ public class LinkedBlockingDeque<E>
/*
* Implemented as a simple doubly-linked list protected by a
* single lock and using conditions to manage blocking.
*
* To implement weakly consistent iterators, it appears we need to
* keep all Nodes GC-reachable from a predecessor dequeued Node.
* That would cause two problems:
* - allow a rogue Iterator to cause unbounded memory retention
* - cause cross-generational linking of old Nodes to new Nodes if
* a Node was tenured while live, which generational GCs have a
* hard time dealing with, causing repeated major collections.
* However, only non-deleted Nodes need to be reachable from
* dequeued Nodes, and reachability does not necessarily have to
* be of the kind understood by the GC. We use the trick of
* linking a Node that has just been dequeued to itself. Such a
* self-link implicitly means to jump to "first" (for next links)
* or "last" (for prev links).
*/
/*
......@@ -86,9 +105,27 @@ public class LinkedBlockingDeque<E>
/** Doubly-linked list node class */
static final class Node<E> {
/**
* The item, or null if this node has been removed.
*/
E item;
/**
* One of:
* - the real predecessor Node
* - this Node, meaning the predecessor is tail
* - null, meaning there is no predecessor
*/
Node<E> prev;
/**
* One of:
* - the real successor Node
* - this Node, meaning the successor is head
* - null, meaning there is no successor
*/
Node<E> next;
Node(E x, Node<E> p, Node<E> n) {
item = x;
prev = p;
......@@ -96,23 +133,37 @@ public class LinkedBlockingDeque<E>
}
}
/** Pointer to first node */
private transient Node<E> first;
/** Pointer to last node */
private transient Node<E> last;
/**
* Pointer to first node.
* Invariant: (first == null && last == null) ||
* (first.prev == null && first.item != null)
*/
transient Node<E> first;
/**
* Pointer to last node.
* Invariant: (first == null && last == null) ||
* (last.next == null && last.item != null)
*/
transient Node<E> last;
/** Number of items in the deque */
private transient int count;
/** Maximum number of items in the deque */
private final int capacity;
/** Main lock guarding all access */
private final ReentrantLock lock = new ReentrantLock();
final ReentrantLock lock = new ReentrantLock();
/** Condition for waiting takes */
private final Condition notEmpty = lock.newCondition();
/** Condition for waiting puts */
private final Condition notFull = lock.newCondition();
/**
* Creates a <tt>LinkedBlockingDeque</tt> with a capacity of
* Creates a {@code LinkedBlockingDeque} with a capacity of
* {@link Integer#MAX_VALUE}.
*/
public LinkedBlockingDeque() {
......@@ -120,10 +171,10 @@ public class LinkedBlockingDeque<E>
}
/**
* Creates a <tt>LinkedBlockingDeque</tt> with the given (fixed) capacity.
* Creates a {@code LinkedBlockingDeque} with the given (fixed) capacity.
*
* @param capacity the capacity of this deque
* @throws IllegalArgumentException if <tt>capacity</tt> is less than 1
* @throws IllegalArgumentException if {@code capacity} is less than 1
*/
public LinkedBlockingDeque(int capacity) {
if (capacity <= 0) throw new IllegalArgumentException();
......@@ -131,7 +182,7 @@ public class LinkedBlockingDeque<E>
}
/**
* Creates a <tt>LinkedBlockingDeque</tt> with a capacity of
* Creates a {@code LinkedBlockingDeque} with a capacity of
* {@link Integer#MAX_VALUE}, initially containing the elements of
* the given collection, added in traversal order of the
* collection's iterator.
......@@ -142,8 +193,18 @@ public class LinkedBlockingDeque<E>
*/
public LinkedBlockingDeque(Collection<? extends E> c) {
this(Integer.MAX_VALUE);
for (E e : c)
add(e);
final ReentrantLock lock = this.lock;
lock.lock(); // Never contended, but necessary for visibility
try {
for (E e : c) {
if (e == null)
throw new NullPointerException();
if (!linkLast(e))
throw new IllegalStateException("Deque full");
}
} finally {
lock.unlock();
}
}
......@@ -153,9 +214,9 @@ public class LinkedBlockingDeque<E>
* Links e as first element, or returns false if full.
*/
private boolean linkFirst(E e) {
// assert lock.isHeldByCurrentThread();
if (count >= capacity)
return false;
++count;
Node<E> f = first;
Node<E> x = new Node<E>(e, null, f);
first = x;
......@@ -163,6 +224,7 @@ public class LinkedBlockingDeque<E>
last = x;
else
f.prev = x;
++count;
notEmpty.signal();
return true;
}
......@@ -171,9 +233,9 @@ public class LinkedBlockingDeque<E>
* Links e as last element, or returns false if full.
*/
private boolean linkLast(E e) {
// assert lock.isHeldByCurrentThread();
if (count >= capacity)
return false;
++count;
Node<E> l = last;
Node<E> x = new Node<E>(e, l, null);
last = x;
......@@ -181,6 +243,7 @@ public class LinkedBlockingDeque<E>
first = x;
else
l.next = x;
++count;
notEmpty.signal();
return true;
}
......@@ -189,10 +252,14 @@ public class LinkedBlockingDeque<E>
* Removes and returns first element, or null if empty.
*/
private E unlinkFirst() {
// assert lock.isHeldByCurrentThread();
Node<E> f = first;
if (f == null)
return null;
Node<E> n = f.next;
E item = f.item;
f.item = null;
f.next = f; // help GC
first = n;
if (n == null)
last = null;
......@@ -200,17 +267,21 @@ public class LinkedBlockingDeque<E>
n.prev = null;
--count;
notFull.signal();
return f.item;
return item;
}
/**
* Removes and returns last element, or null if empty.
*/
private E unlinkLast() {
// assert lock.isHeldByCurrentThread();
Node<E> l = last;
if (l == null)
return null;
Node<E> p = l.prev;
E item = l.item;
l.item = null;
l.prev = l; // help GC
last = p;
if (p == null)
first = null;
......@@ -218,31 +289,29 @@ public class LinkedBlockingDeque<E>
p.next = null;
--count;
notFull.signal();
return l.item;
return item;
}
/**
* Unlink e
* Unlinks x.
*/
private void unlink(Node<E> x) {
void unlink(Node<E> x) {
// assert lock.isHeldByCurrentThread();
Node<E> p = x.prev;
Node<E> n = x.next;
if (p == null) {
if (n == null)
first = last = null;
else {
n.prev = null;
first = n;
}
unlinkFirst();
} else if (n == null) {
p.next = null;
last = p;
unlinkLast();
} else {
p.next = n;
n.prev = p;
}
x.item = null;
// Don't mess with x's links. They may still be in use by
// an iterator.
--count;
notFull.signalAll();
notFull.signal();
}
}
// BlockingDeque methods
......@@ -270,6 +339,7 @@ public class LinkedBlockingDeque<E>
*/
public boolean offerFirst(E e) {
if (e == null) throw new NullPointerException();
final ReentrantLock lock = this.lock;
lock.lock();
try {
return linkFirst(e);
......@@ -283,6 +353,7 @@ public class LinkedBlockingDeque<E>
*/
public boolean offerLast(E e) {
if (e == null) throw new NullPointerException();
final ReentrantLock lock = this.lock;
lock.lock();
try {
return linkLast(e);
......@@ -297,6 +368,7 @@ public class LinkedBlockingDeque<E>
*/
public void putFirst(E e) throws InterruptedException {
if (e == null) throw new NullPointerException();
final ReentrantLock lock = this.lock;
lock.lock();
try {
while (!linkFirst(e))
......@@ -312,6 +384,7 @@ public class LinkedBlockingDeque<E>
*/
public void putLast(E e) throws InterruptedException {
if (e == null) throw new NullPointerException();
final ReentrantLock lock = this.lock;
lock.lock();
try {
while (!linkLast(e))
......@@ -329,15 +402,15 @@ public class LinkedBlockingDeque<E>
throws InterruptedException {
if (e == null) throw new NullPointerException();
long nanos = unit.toNanos(timeout);
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
for (;;) {
if (linkFirst(e))
return true;
while (!linkFirst(e)) {
if (nanos <= 0)
return false;
nanos = notFull.awaitNanos(nanos);
}
return true;
} finally {
lock.unlock();
}
......@@ -351,15 +424,15 @@ public class LinkedBlockingDeque<E>
throws InterruptedException {
if (e == null) throw new NullPointerException();
long nanos = unit.toNanos(timeout);
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
for (;;) {
if (linkLast(e))
return true;
while (!linkLast(e)) {
if (nanos <= 0)
return false;
nanos = notFull.awaitNanos(nanos);
}
return true;
} finally {
lock.unlock();
}
......@@ -384,6 +457,7 @@ public class LinkedBlockingDeque<E>
}
public E pollFirst() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
return unlinkFirst();
......@@ -393,6 +467,7 @@ public class LinkedBlockingDeque<E>
}
public E pollLast() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
return unlinkLast();
......@@ -402,6 +477,7 @@ public class LinkedBlockingDeque<E>
}
public E takeFirst() throws InterruptedException {
final ReentrantLock lock = this.lock;
lock.lock();
try {
E x;
......@@ -414,6 +490,7 @@ public class LinkedBlockingDeque<E>
}
public E takeLast() throws InterruptedException {
final ReentrantLock lock = this.lock;
lock.lock();
try {
E x;
......@@ -428,16 +505,16 @@ public class LinkedBlockingDeque<E>
public E pollFirst(long timeout, TimeUnit unit)
throws InterruptedException {
long nanos = unit.toNanos(timeout);
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
for (;;) {
E x = unlinkFirst();
if (x != null)
return x;
E x;
while ( (x = unlinkFirst()) == null) {
if (nanos <= 0)
return null;
nanos = notEmpty.awaitNanos(nanos);
}
return x;
} finally {
lock.unlock();
}
......@@ -446,16 +523,16 @@ public class LinkedBlockingDeque<E>
public E pollLast(long timeout, TimeUnit unit)
throws InterruptedException {
long nanos = unit.toNanos(timeout);
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
for (;;) {
E x = unlinkLast();
if (x != null)
return x;
E x;
while ( (x = unlinkLast()) == null) {
if (nanos <= 0)
return null;
nanos = notEmpty.awaitNanos(nanos);
}
return x;
} finally {
lock.unlock();
}
......@@ -480,6 +557,7 @@ public class LinkedBlockingDeque<E>
}
public E peekFirst() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
return (first == null) ? null : first.item;
......@@ -489,6 +567,7 @@ public class LinkedBlockingDeque<E>
}
public E peekLast() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
return (last == null) ? null : last.item;
......@@ -499,6 +578,7 @@ public class LinkedBlockingDeque<E>
public boolean removeFirstOccurrence(Object o) {
if (o == null) return false;
final ReentrantLock lock = this.lock;
lock.lock();
try {
for (Node<E> p = first; p != null; p = p.next) {
......@@ -515,6 +595,7 @@ public class LinkedBlockingDeque<E>
public boolean removeLastOccurrence(Object o) {
if (o == null) return false;
final ReentrantLock lock = this.lock;
lock.lock();
try {
for (Node<E> p = last; p != null; p = p.prev) {
......@@ -619,14 +700,15 @@ public class LinkedBlockingDeque<E>
* Returns the number of additional elements that this deque can ideally
* (in the absence of memory or resource constraints) accept without
* blocking. This is always equal to the initial capacity of this deque
* less the current <tt>size</tt> of this deque.
* less the current {@code size} of this deque.
*
* <p>Note that you <em>cannot</em> always tell if an attempt to insert
* an element will succeed by inspecting <tt>remainingCapacity</tt>
* an element will succeed by inspecting {@code remainingCapacity}
* because it may be the case that another thread is about to
* insert or remove an element.
*/
public int remainingCapacity() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
return capacity - count;
......@@ -642,22 +724,7 @@ public class LinkedBlockingDeque<E>
* @throws IllegalArgumentException {@inheritDoc}
*/
public int drainTo(Collection<? super E> c) {
if (c == null)
throw new NullPointerException();
if (c == this)
throw new IllegalArgumentException();
lock.lock();
try {
for (Node<E> p = first; p != null; p = p.next)
c.add(p.item);
int n = count;
count = 0;
first = last = null;
notFull.signalAll();
return n;
} finally {
lock.unlock();
}
return drainTo(c, Integer.MAX_VALUE);
}
/**
......@@ -671,19 +738,14 @@ public class LinkedBlockingDeque<E>
throw new NullPointerException();
if (c == this)
throw new IllegalArgumentException();
final ReentrantLock lock = this.lock;
lock.lock();
try {
int n = 0;
while (n < maxElements && first != null) {
c.add(first.item);
first.prev = null;
first = first.next;
--count;
++n;
int n = Math.min(maxElements, count);
for (int i = 0; i < n; i++) {
c.add(first.item); // In this order, in case add() throws.
unlinkFirst();
}
if (first == null)
last = null;
notFull.signalAll();
return n;
} finally {
lock.unlock();
......@@ -712,16 +774,16 @@ public class LinkedBlockingDeque<E>
/**
* Removes the first occurrence of the specified element from this deque.
* If the deque does not contain the element, it is unchanged.
* More formally, removes the first element <tt>e</tt> such that
* <tt>o.equals(e)</tt> (if such an element exists).
* Returns <tt>true</tt> if this deque contained the specified element
* More formally, removes the first element {@code e} such that
* {@code o.equals(e)} (if such an element exists).
* Returns {@code true} if this deque contained the specified element
* (or equivalently, if this deque changed as a result of the call).
*
* <p>This method is equivalent to
* {@link #removeFirstOccurrence(Object) removeFirstOccurrence}.
*
* @param o element to be removed from this deque, if present
* @return <tt>true</tt> if this deque changed as a result of the call
* @return {@code true} if this deque changed as a result of the call
*/
public boolean remove(Object o) {
return removeFirstOccurrence(o);
......@@ -733,6 +795,7 @@ public class LinkedBlockingDeque<E>
* @return the number of elements in this deque
*/
public int size() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
return count;
......@@ -742,15 +805,16 @@ public class LinkedBlockingDeque<E>
}
/**
* Returns <tt>true</tt> if this deque contains the specified element.
* More formally, returns <tt>true</tt> if and only if this deque contains
* at least one element <tt>e</tt> such that <tt>o.equals(e)</tt>.
* Returns {@code true} if this deque contains the specified element.
* More formally, returns {@code true} if and only if this deque contains
* at least one element {@code e} such that {@code o.equals(e)}.
*
* @param o object to be checked for containment in this deque
* @return <tt>true</tt> if this deque contains the specified element
* @return {@code true} if this deque contains the specified element
*/
public boolean contains(Object o) {
if (o == null) return false;
final ReentrantLock lock = this.lock;
lock.lock();
try {
for (Node<E> p = first; p != null; p = p.next)
......@@ -762,24 +826,46 @@ public class LinkedBlockingDeque<E>
}
}
/**
* Variant of removeFirstOccurrence needed by iterator.remove.
* Searches for the node, not its contents.
/*
* TODO: Add support for more efficient bulk operations.
*
* We don't want to acquire the lock for every iteration, but we
* also want other threads a chance to interact with the
* collection, especially when count is close to capacity.
*/
boolean removeNode(Node<E> e) {
lock.lock();
try {
for (Node<E> p = first; p != null; p = p.next) {
if (p == e) {
unlink(p);
return true;
}
}
return false;
} finally {
lock.unlock();
}
}
// /**
// * Adds all of the elements in the specified collection to this
// * queue. Attempts to addAll of a queue to itself result in
// * {@code IllegalArgumentException}. Further, the behavior of
// * this operation is undefined if the specified collection is
// * modified while the operation is in progress.
// *
// * @param c collection containing elements to be added to this queue
// * @return {@code true} if this queue changed as a result of the call
// * @throws ClassCastException {@inheritDoc}
// * @throws NullPointerException {@inheritDoc}
// * @throws IllegalArgumentException {@inheritDoc}
// * @throws IllegalStateException {@inheritDoc}
// * @see #add(Object)
// */
// public boolean addAll(Collection<? extends E> c) {
// if (c == null)
// throw new NullPointerException();
// if (c == this)
// throw new IllegalArgumentException();
// final ReentrantLock lock = this.lock;
// lock.lock();
// try {
// boolean modified = false;
// for (E e : c)
// if (linkLast(e))
// modified = true;
// return modified;
// } finally {
// lock.unlock();
// }
// }
/**
* Returns an array containing all of the elements in this deque, in
......@@ -794,7 +880,9 @@ public class LinkedBlockingDeque<E>
*
* @return an array containing all of the elements in this deque
*/
@SuppressWarnings("unchecked")
public Object[] toArray() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
Object[] a = new Object[count];
......@@ -817,22 +905,22 @@ public class LinkedBlockingDeque<E>
* <p>If this deque fits in the specified array with room to spare
* (i.e., the array has more elements than this deque), the element in
* the array immediately following the end of the deque is set to
* <tt>null</tt>.
* {@code null}.
*
* <p>Like the {@link #toArray()} method, this method acts as bridge between
* array-based and collection-based APIs. Further, this method allows
* precise control over the runtime type of the output array, and may,
* under certain circumstances, be used to save allocation costs.
*
* <p>Suppose <tt>x</tt> is a deque known to contain only strings.
* <p>Suppose {@code x} is a deque known to contain only strings.
* The following code can be used to dump the deque into a newly
* allocated array of <tt>String</tt>:
* allocated array of {@code String}:
*
* <pre>
* String[] y = x.toArray(new String[0]);</pre>
*
* Note that <tt>toArray(new Object[0])</tt> is identical in function to
* <tt>toArray()</tt>.
* Note that {@code toArray(new Object[0])} is identical in function to
* {@code toArray()}.
*
* @param a the array into which the elements of the deque are to
* be stored, if it is big enough; otherwise, a new array of the
......@@ -843,14 +931,14 @@ public class LinkedBlockingDeque<E>
* this deque
* @throws NullPointerException if the specified array is null
*/
@SuppressWarnings("unchecked")
public <T> T[] toArray(T[] a) {
final ReentrantLock lock = this.lock;
lock.lock();
try {
if (a.length < count)
a = (T[])java.lang.reflect.Array.newInstance(
a.getClass().getComponentType(),
count
);
a = (T[])java.lang.reflect.Array.newInstance
(a.getClass().getComponentType(), count);
int k = 0;
for (Node<E> p = first; p != null; p = p.next)
......@@ -864,6 +952,7 @@ public class LinkedBlockingDeque<E>
}
public String toString() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
return super.toString();
......@@ -877,8 +966,16 @@ public class LinkedBlockingDeque<E>
* The deque will be empty after this call returns.
*/
public void clear() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
for (Node<E> f = first; f != null; ) {
f.item = null;
Node<E> n = f.next;
f.prev = null;
f.next = null;
f = n;
}
first = last = null;
count = 0;
notFull.signalAll();
......@@ -890,7 +987,7 @@ public class LinkedBlockingDeque<E>
/**
* Returns an iterator over the elements in this deque in proper sequence.
* The elements will be returned in order from first (head) to last (tail).
* The returned <tt>Iterator</tt> is a "weakly consistent" iterator that
* The returned {@code Iterator} is a "weakly consistent" iterator that
* will never throw {@link ConcurrentModificationException},
* and guarantees to traverse elements as they existed upon
* construction of the iterator, and may (but is not guaranteed to)
......@@ -906,7 +1003,7 @@ public class LinkedBlockingDeque<E>
* Returns an iterator over the elements in this deque in reverse
* sequential order. The elements will be returned in order from
* last (tail) to first (head).
* The returned <tt>Iterator</tt> is a "weakly consistent" iterator that
* The returned {@code Iterator} is a "weakly consistent" iterator that
* will never throw {@link ConcurrentModificationException},
* and guarantees to traverse elements as they existed upon
* construction of the iterator, and may (but is not guaranteed to)
......@@ -921,7 +1018,7 @@ public class LinkedBlockingDeque<E>
*/
private abstract class AbstractItr implements Iterator<E> {
/**
* The next node to return in next
* The next node to return in next()
*/
Node<E> next;
......@@ -939,15 +1036,44 @@ public class LinkedBlockingDeque<E>
*/
private Node<E> lastRet;
abstract Node<E> firstNode();
abstract Node<E> nextNode(Node<E> n);
AbstractItr() {
advance(); // set to initial position
// set to initial position
final ReentrantLock lock = LinkedBlockingDeque.this.lock;
lock.lock();
try {
next = firstNode();
nextItem = (next == null) ? null : next.item;
} finally {
lock.unlock();
}
}
/**
* Advances next, or if not yet initialized, sets to first node.
* Implemented to move forward vs backward in the two subclasses.
* Advances next.
*/
abstract void advance();
void advance() {
final ReentrantLock lock = LinkedBlockingDeque.this.lock;
lock.lock();
try {
// assert next != null;
Node<E> s = nextNode(next);
if (s == next) {
next = firstNode();
} else {
// Skip over removed nodes.
// May be necessary if multiple interior Nodes are removed.
while (s != null && s.item == null)
s = nextNode(s);
next = s;
}
nextItem = (next == null) ? null : next.item;
} finally {
lock.unlock();
}
}
public boolean hasNext() {
return next != null;
......@@ -967,52 +1093,39 @@ public class LinkedBlockingDeque<E>
if (n == null)
throw new IllegalStateException();
lastRet = null;
// Note: removeNode rescans looking for this node to make
// sure it was not already removed. Otherwise, trying to
// re-remove could corrupt list.
removeNode(n);
}
}
/** Forward iterator */
private class Itr extends AbstractItr {
void advance() {
final ReentrantLock lock = LinkedBlockingDeque.this.lock;
lock.lock();
try {
next = (next == null)? first : next.next;
nextItem = (next == null)? null : next.item;
if (n.item != null)
unlink(n);
} finally {
lock.unlock();
}
}
}
/**
* Descending iterator for LinkedBlockingDeque
*/
private class DescendingItr extends AbstractItr {
void advance() {
final ReentrantLock lock = LinkedBlockingDeque.this.lock;
lock.lock();
try {
next = (next == null)? last : next.prev;
nextItem = (next == null)? null : next.item;
} finally {
lock.unlock();
}
/** Forward iterator */
private class Itr extends AbstractItr {
Node<E> firstNode() { return first; }
Node<E> nextNode(Node<E> n) { return n.next; }
}
/** Descending iterator */
private class DescendingItr extends AbstractItr {
Node<E> firstNode() { return last; }
Node<E> nextNode(Node<E> n) { return n.prev; }
}
/**
* Save the state of this deque to a stream (that is, serialize it).
*
* @serialData The capacity (int), followed by elements (each an
* <tt>Object</tt>) in the proper order, followed by a null
* {@code Object}) in the proper order, followed by a null
* @param s the stream
*/
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
final ReentrantLock lock = this.lock;
lock.lock();
try {
// Write out capacity and any hidden stuff
......@@ -1040,6 +1153,7 @@ public class LinkedBlockingDeque<E>
last = null;
// Read in all elements and place in queue
for (;;) {
@SuppressWarnings("unchecked")
E item = (E)s.readObject();
if (item == null)
break;
......
......@@ -34,9 +34,14 @@
*/
package java.util.concurrent;
import java.util.concurrent.atomic.*;
import java.util.concurrent.locks.*;
import java.util.*;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock;
import java.util.AbstractQueue;
import java.util.Collection;
import java.util.Iterator;
import java.util.NoSuchElementException;
/**
* An optionally-bounded {@linkplain BlockingQueue blocking queue} based on
......@@ -86,15 +91,43 @@ public class LinkedBlockingQueue<E> extends AbstractQueue<E>
* items have been entered since the signal. And symmetrically for
* takes signalling puts. Operations such as remove(Object) and
* iterators acquire both locks.
*
* Visibility between writers and readers is provided as follows:
*
* Whenever an element is enqueued, the putLock is acquired and
* count updated. A subsequent reader guarantees visibility to the
* enqueued Node by either acquiring the putLock (via fullyLock)
* or by acquiring the takeLock, and then reading n = count.get();
* this gives visibility to the first n items.
*
* To implement weakly consistent iterators, it appears we need to
* keep all Nodes GC-reachable from a predecessor dequeued Node.
* That would cause two problems:
* - allow a rogue Iterator to cause unbounded memory retention
* - cause cross-generational linking of old Nodes to new Nodes if
* a Node was tenured while live, which generational GCs have a
* hard time dealing with, causing repeated major collections.
* However, only non-deleted Nodes need to be reachable from
* dequeued Nodes, and reachability does not necessarily have to
* be of the kind understood by the GC. We use the trick of
* linking a Node that has just been dequeued to itself. Such a
* self-link implicitly means to advance to head.next.
*/
/**
* Linked list node class
*/
static class Node<E> {
/** The item, volatile to ensure barrier separating write and read */
volatile E item;
E item;
/**
* One of:
* - the real successor Node
* - this Node, meaning the successor is head.next
* - null, meaning there is no successor (this is the last node)
*/
Node<E> next;
Node(E x) { item = x; }
}
......@@ -104,10 +137,16 @@ public class LinkedBlockingQueue<E> extends AbstractQueue<E>
/** Current number of elements */
private final AtomicInteger count = new AtomicInteger(0);
/** Head of linked list */
/**
* Head of linked list.
* Invariant: head.item == null
*/
private transient Node<E> head;
/** Tail of linked list */
/**
* Tail of linked list.
* Invariant: last.next == null
*/
private transient Node<E> last;
/** Lock held by take, poll, etc */
......@@ -151,18 +190,26 @@ public class LinkedBlockingQueue<E> extends AbstractQueue<E>
/**
* Creates a node and links it at end of queue.
*
* @param x the item
*/
private void insert(E x) {
private void enqueue(E x) {
// assert putLock.isHeldByCurrentThread();
// assert last.next == null;
last = last.next = new Node<E>(x);
}
/**
* Removes a node from head of queue,
* Removes a node from head of queue.
*
* @return the node
*/
private E extract() {
Node<E> first = head.next;
private E dequeue() {
// assert takeLock.isHeldByCurrentThread();
// assert head.item == null;
Node<E> h = head;
Node<E> first = h.next;
h.next = h; // help GC
head = first;
E x = first.item;
first.item = null;
......@@ -172,7 +219,7 @@ public class LinkedBlockingQueue<E> extends AbstractQueue<E>
/**
* Lock to prevent both puts and takes.
*/
private void fullyLock() {
void fullyLock() {
putLock.lock();
takeLock.lock();
}
......@@ -180,14 +227,21 @@ public class LinkedBlockingQueue<E> extends AbstractQueue<E>
/**
* Unlock to allow both puts and takes.
*/
private void fullyUnlock() {
void fullyUnlock() {
takeLock.unlock();
putLock.unlock();
}
// /**
// * Tells whether both locks are held by current thread.
// */
// boolean isFullyLocked() {
// return (putLock.isHeldByCurrentThread() &&
// takeLock.isHeldByCurrentThread());
// }
/**
* Creates a <tt>LinkedBlockingQueue</tt> with a capacity of
* Creates a {@code LinkedBlockingQueue} with a capacity of
* {@link Integer#MAX_VALUE}.
*/
public LinkedBlockingQueue() {
......@@ -195,10 +249,10 @@ public class LinkedBlockingQueue<E> extends AbstractQueue<E>
}
/**
* Creates a <tt>LinkedBlockingQueue</tt> with the given (fixed) capacity.
* Creates a {@code LinkedBlockingQueue} with the given (fixed) capacity.
*
* @param capacity the capacity of this queue
* @throws IllegalArgumentException if <tt>capacity</tt> is not greater
* @throws IllegalArgumentException if {@code capacity} is not greater
* than zero
*/
public LinkedBlockingQueue(int capacity) {
......@@ -208,7 +262,7 @@ public class LinkedBlockingQueue<E> extends AbstractQueue<E>
}
/**
* Creates a <tt>LinkedBlockingQueue</tt> with a capacity of
* Creates a {@code LinkedBlockingQueue} with a capacity of
* {@link Integer#MAX_VALUE}, initially containing the elements of the
* given collection,
* added in traversal order of the collection's iterator.
......@@ -219,8 +273,22 @@ public class LinkedBlockingQueue<E> extends AbstractQueue<E>
*/
public LinkedBlockingQueue(Collection<? extends E> c) {
this(Integer.MAX_VALUE);
for (E e : c)
add(e);
final ReentrantLock putLock = this.putLock;
putLock.lock(); // Never contended, but necessary for visibility
try {
int n = 0;
for (E e : c) {
if (e == null)
throw new NullPointerException();
if (n == capacity)
throw new IllegalStateException("Queue full");
enqueue(e);
++n;
}
count.set(n);
} finally {
putLock.unlock();
}
}
......@@ -241,10 +309,10 @@ public class LinkedBlockingQueue<E> extends AbstractQueue<E>
* Returns the number of additional elements that this queue can ideally
* (in the absence of memory or resource constraints) accept without
* blocking. This is always equal to the initial capacity of this queue
* less the current <tt>size</tt> of this queue.
* less the current {@code size} of this queue.
*
* <p>Note that you <em>cannot</em> always tell if an attempt to insert
* an element will succeed by inspecting <tt>remainingCapacity</tt>
* an element will succeed by inspecting {@code remainingCapacity}
* because it may be the case that another thread is about to
* insert or remove an element.
*/
......@@ -261,8 +329,8 @@ public class LinkedBlockingQueue<E> extends AbstractQueue<E>
*/
public void put(E e) throws InterruptedException {
if (e == null) throw new NullPointerException();
// Note: convention in all put/take/etc is to preset
// local var holding count negative to indicate failure unless set.
// Note: convention in all put/take/etc is to preset local var
// holding count negative to indicate failure unless set.
int c = -1;
final ReentrantLock putLock = this.putLock;
final AtomicInteger count = this.count;
......@@ -273,18 +341,13 @@ public class LinkedBlockingQueue<E> extends AbstractQueue<E>
* not protected by lock. This works because count can
* only decrease at this point (all other puts are shut
* out by lock), and we (or some other waiting put) are
* signalled if it ever changes from
* capacity. Similarly for all other uses of count in
* other wait guards.
* signalled if it ever changes from capacity. Similarly
* for all other uses of count in other wait guards.
*/
try {
while (count.get() == capacity)
while (count.get() == capacity) {
notFull.await();
} catch (InterruptedException ie) {
notFull.signal(); // propagate to a non-interrupted thread
throw ie;
}
insert(e);
enqueue(e);
c = count.getAndIncrement();
if (c + 1 < capacity)
notFull.signal();
......@@ -299,7 +362,7 @@ public class LinkedBlockingQueue<E> extends AbstractQueue<E>
* Inserts the specified element at the tail of this queue, waiting if
* necessary up to the specified wait time for space to become available.
*
* @return <tt>true</tt> if successful, or <tt>false</tt> if
* @return {@code true} if successful, or {@code false} if
* the specified waiting time elapses before space is available.
* @throws InterruptedException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
......@@ -314,23 +377,15 @@ public class LinkedBlockingQueue<E> extends AbstractQueue<E>
final AtomicInteger count = this.count;
putLock.lockInterruptibly();
try {
for (;;) {
if (count.get() < capacity) {
insert(e);
c = count.getAndIncrement();
if (c + 1 < capacity)
notFull.signal();
break;
}
while (count.get() == capacity) {
if (nanos <= 0)
return false;
try {
nanos = notFull.awaitNanos(nanos);
} catch (InterruptedException ie) {
notFull.signal(); // propagate to a non-interrupted thread
throw ie;
}
}
enqueue(e);
c = count.getAndIncrement();
if (c + 1 < capacity)
notFull.signal();
} finally {
putLock.unlock();
}
......@@ -342,7 +397,7 @@ public class LinkedBlockingQueue<E> extends AbstractQueue<E>
/**
* Inserts the specified element at the tail of this queue if it is
* possible to do so immediately without exceeding the queue's capacity,
* returning <tt>true</tt> upon success and <tt>false</tt> if this queue
* returning {@code true} upon success and {@code false} if this queue
* is full.
* When using a capacity-restricted queue, this method is generally
* preferable to method {@link BlockingQueue#add add}, which can fail to
......@@ -360,7 +415,7 @@ public class LinkedBlockingQueue<E> extends AbstractQueue<E>
putLock.lock();
try {
if (count.get() < capacity) {
insert(e);
enqueue(e);
c = count.getAndIncrement();
if (c + 1 < capacity)
notFull.signal();
......@@ -381,15 +436,10 @@ public class LinkedBlockingQueue<E> extends AbstractQueue<E>
final ReentrantLock takeLock = this.takeLock;
takeLock.lockInterruptibly();
try {
try {
while (count.get() == 0)
while (count.get() == 0) {
notEmpty.await();
} catch (InterruptedException ie) {
notEmpty.signal(); // propagate to a non-interrupted thread
throw ie;
}
x = extract();
x = dequeue();
c = count.getAndDecrement();
if (c > 1)
notEmpty.signal();
......@@ -409,23 +459,15 @@ public class LinkedBlockingQueue<E> extends AbstractQueue<E>
final ReentrantLock takeLock = this.takeLock;
takeLock.lockInterruptibly();
try {
for (;;) {
if (count.get() > 0) {
x = extract();
c = count.getAndDecrement();
if (c > 1)
notEmpty.signal();
break;
}
while (count.get() == 0) {
if (nanos <= 0)
return null;
try {
nanos = notEmpty.awaitNanos(nanos);
} catch (InterruptedException ie) {
notEmpty.signal(); // propagate to a non-interrupted thread
throw ie;
}
}
x = dequeue();
c = count.getAndDecrement();
if (c > 1)
notEmpty.signal();
} finally {
takeLock.unlock();
}
......@@ -444,7 +486,7 @@ public class LinkedBlockingQueue<E> extends AbstractQueue<E>
takeLock.lock();
try {
if (count.get() > 0) {
x = extract();
x = dequeue();
c = count.getAndDecrement();
if (c > 1)
notEmpty.signal();
......@@ -457,7 +499,6 @@ public class LinkedBlockingQueue<E> extends AbstractQueue<E>
return x;
}
public E peek() {
if (count.get() == 0)
return null;
......@@ -474,44 +515,48 @@ public class LinkedBlockingQueue<E> extends AbstractQueue<E>
}
}
/**
* Unlinks interior Node p with predecessor trail.
*/
void unlink(Node<E> p, Node<E> trail) {
// assert isFullyLocked();
// p.next is not changed, to allow iterators that are
// traversing p to maintain their weak-consistency guarantee.
p.item = null;
trail.next = p.next;
if (last == p)
last = trail;
if (count.getAndDecrement() == capacity)
notFull.signal();
}
/**
* Removes a single instance of the specified element from this queue,
* if it is present. More formally, removes an element <tt>e</tt> such
* that <tt>o.equals(e)</tt>, if this queue contains one or more such
* if it is present. More formally, removes an element {@code e} such
* that {@code o.equals(e)}, if this queue contains one or more such
* elements.
* Returns <tt>true</tt> if this queue contained the specified element
* Returns {@code true} if this queue contained the specified element
* (or equivalently, if this queue changed as a result of the call).
*
* @param o element to be removed from this queue, if present
* @return <tt>true</tt> if this queue changed as a result of the call
* @return {@code true} if this queue changed as a result of the call
*/
public boolean remove(Object o) {
if (o == null) return false;
boolean removed = false;
fullyLock();
try {
Node<E> trail = head;
Node<E> p = head.next;
while (p != null) {
for (Node<E> trail = head, p = trail.next;
p != null;
trail = p, p = p.next) {
if (o.equals(p.item)) {
removed = true;
break;
unlink(p, trail);
return true;
}
trail = p;
p = p.next;
}
if (removed) {
p.item = null;
trail.next = p.next;
if (last == p)
last = trail;
if (count.getAndDecrement() == capacity)
notFull.signalAll();
}
return false;
} finally {
fullyUnlock();
}
return removed;
}
/**
......@@ -551,22 +596,22 @@ public class LinkedBlockingQueue<E> extends AbstractQueue<E>
* <p>If this queue fits in the specified array with room to spare
* (i.e., the array has more elements than this queue), the element in
* the array immediately following the end of the queue is set to
* <tt>null</tt>.
* {@code null}.
*
* <p>Like the {@link #toArray()} method, this method acts as bridge between
* array-based and collection-based APIs. Further, this method allows
* precise control over the runtime type of the output array, and may,
* under certain circumstances, be used to save allocation costs.
*
* <p>Suppose <tt>x</tt> is a queue known to contain only strings.
* <p>Suppose {@code x} is a queue known to contain only strings.
* The following code can be used to dump the queue into a newly
* allocated array of <tt>String</tt>:
* allocated array of {@code String}:
*
* <pre>
* String[] y = x.toArray(new String[0]);</pre>
*
* Note that <tt>toArray(new Object[0])</tt> is identical in function to
* <tt>toArray()</tt>.
* Note that {@code toArray(new Object[0])} is identical in function to
* {@code toArray()}.
*
* @param a the array into which the elements of the queue are to
* be stored, if it is big enough; otherwise, a new array of the
......@@ -577,6 +622,7 @@ public class LinkedBlockingQueue<E> extends AbstractQueue<E>
* this queue
* @throws NullPointerException if the specified array is null
*/
@SuppressWarnings("unchecked")
public <T> T[] toArray(T[] a) {
fullyLock();
try {
......@@ -586,7 +632,7 @@ public class LinkedBlockingQueue<E> extends AbstractQueue<E>
(a.getClass().getComponentType(), size);
int k = 0;
for (Node p = head.next; p != null; p = p.next)
for (Node<E> p = head.next; p != null; p = p.next)
a[k++] = (T)p.item;
if (a.length > k)
a[k] = null;
......@@ -612,11 +658,14 @@ public class LinkedBlockingQueue<E> extends AbstractQueue<E>
public void clear() {
fullyLock();
try {
head.next = null;
assert head.item == null;
last = head;
for (Node<E> p, h = head; (p = h.next) != null; h = p) {
h.next = h;
p.item = null;
}
head = last;
// assert head.item == null && head.next == null;
if (count.getAndSet(0) == capacity)
notFull.signalAll();
notFull.signal();
} finally {
fullyUnlock();
}
......@@ -629,30 +678,7 @@ public class LinkedBlockingQueue<E> extends AbstractQueue<E>
* @throws IllegalArgumentException {@inheritDoc}
*/
public int drainTo(Collection<? super E> c) {
if (c == null)
throw new NullPointerException();
if (c == this)
throw new IllegalArgumentException();
Node<E> first;
fullyLock();
try {
first = head.next;
head.next = null;
assert head.item == null;
last = head;
if (count.getAndSet(0) == capacity)
notFull.signalAll();
} finally {
fullyUnlock();
}
// Transfer the elements outside of locks
int n = 0;
for (Node<E> p = first; p != null; p = p.next) {
c.add(p.item);
p.item = null;
++n;
}
return n;
return drainTo(c, Integer.MAX_VALUE);
}
/**
......@@ -666,33 +692,42 @@ public class LinkedBlockingQueue<E> extends AbstractQueue<E>
throw new NullPointerException();
if (c == this)
throw new IllegalArgumentException();
fullyLock();
boolean signalNotFull = false;
final ReentrantLock takeLock = this.takeLock;
takeLock.lock();
try {
int n = 0;
Node<E> p = head.next;
while (p != null && n < maxElements) {
int n = Math.min(maxElements, count.get());
// count.get provides visibility to first n Nodes
Node<E> h = head;
int i = 0;
try {
while (i < n) {
Node<E> p = h.next;
c.add(p.item);
p.item = null;
p = p.next;
++n;
}
if (n != 0) {
head.next = p;
assert head.item == null;
if (p == null)
last = head;
if (count.getAndAdd(-n) == capacity)
notFull.signalAll();
h.next = h;
h = p;
++i;
}
return n;
} finally {
fullyUnlock();
// Restore invariants even if c.add() threw
if (i > 0) {
// assert h.item == null;
head = h;
signalNotFull = (count.getAndAdd(-i) == capacity);
}
}
} finally {
takeLock.unlock();
if (signalNotFull)
signalNotFull();
}
}
/**
* Returns an iterator over the elements in this queue in proper sequence.
* The returned <tt>Iterator</tt> is a "weakly consistent" iterator that
* The returned {@code Iterator} is a "weakly consistent" iterator that
* will never throw {@link ConcurrentModificationException},
* and guarantees to traverse elements as they existed upon
* construction of the iterator, and may (but is not guaranteed to)
......@@ -706,7 +741,7 @@ public class LinkedBlockingQueue<E> extends AbstractQueue<E>
private class Itr implements Iterator<E> {
/*
* Basic weak-consistent iterator. At all times hold the next
* Basic weakly-consistent iterator. At all times hold the next
* item to hand out so that if hasNext() reports true, we will
* still have it to return even if lost race with a take etc.
*/
......@@ -715,17 +750,13 @@ public class LinkedBlockingQueue<E> extends AbstractQueue<E>
private E currentElement;
Itr() {
final ReentrantLock putLock = LinkedBlockingQueue.this.putLock;
final ReentrantLock takeLock = LinkedBlockingQueue.this.takeLock;
putLock.lock();
takeLock.lock();
fullyLock();
try {
current = head.next;
if (current != null)
currentElement = current.item;
} finally {
takeLock.unlock();
putLock.unlock();
fullyUnlock();
}
}
......@@ -733,54 +764,54 @@ public class LinkedBlockingQueue<E> extends AbstractQueue<E>
return current != null;
}
/**
* Unlike other traversal methods, iterators need to handle:
* - dequeued nodes (p.next == p)
* - interior removed nodes (p.item == null)
*/
private Node<E> nextNode(Node<E> p) {
Node<E> s = p.next;
if (p == s)
return head.next;
// Skip over removed nodes.
// May be necessary if multiple interior Nodes are removed.
while (s != null && s.item == null)
s = s.next;
return s;
}
public E next() {
final ReentrantLock putLock = LinkedBlockingQueue.this.putLock;
final ReentrantLock takeLock = LinkedBlockingQueue.this.takeLock;
putLock.lock();
takeLock.lock();
fullyLock();
try {
if (current == null)
throw new NoSuchElementException();
E x = currentElement;
lastRet = current;
current = current.next;
if (current != null)
currentElement = current.item;
current = nextNode(current);
currentElement = (current == null) ? null : current.item;
return x;
} finally {
takeLock.unlock();
putLock.unlock();
fullyUnlock();
}
}
public void remove() {
if (lastRet == null)
throw new IllegalStateException();
final ReentrantLock putLock = LinkedBlockingQueue.this.putLock;
final ReentrantLock takeLock = LinkedBlockingQueue.this.takeLock;
putLock.lock();
takeLock.lock();
fullyLock();
try {
Node<E> node = lastRet;
lastRet = null;
Node<E> trail = head;
Node<E> p = head.next;
while (p != null && p != node) {
trail = p;
p = p.next;
}
for (Node<E> trail = head, p = trail.next;
p != null;
trail = p, p = p.next) {
if (p == node) {
p.item = null;
trail.next = p.next;
if (last == p)
last = trail;
int c = count.getAndDecrement();
if (c == capacity)
notFull.signalAll();
unlink(p, trail);
break;
}
}
} finally {
takeLock.unlock();
putLock.unlock();
fullyUnlock();
}
}
}
......@@ -789,7 +820,7 @@ public class LinkedBlockingQueue<E> extends AbstractQueue<E>
* Save the state to a stream (that is, serialize it).
*
* @serialData The capacity is emitted (int), followed by all of
* its elements (each an <tt>Object</tt>) in the proper order,
* its elements (each an {@code Object}) in the proper order,
* followed by a null
* @param s the stream
*/
......@@ -815,6 +846,7 @@ public class LinkedBlockingQueue<E> extends AbstractQueue<E>
/**
* Reconstitute this queue instance from a stream (that is,
* deserialize it).
*
* @param s the stream
*/
private void readObject(java.io.ObjectInputStream s)
......@@ -827,6 +859,7 @@ public class LinkedBlockingQueue<E> extends AbstractQueue<E>
// Read in all elements and place in queue
for (;;) {
@SuppressWarnings("unchecked")
E item = (E)s.readObject();
if (item == null)
break;
......
......@@ -30,7 +30,6 @@ import java.nio.charset.CoderResult;
import java.nio.charset.MalformedInputException;
import java.nio.charset.UnmappableCharacterException;
/**
* Utility class for dealing with surrogates.
*
......@@ -41,19 +40,15 @@ public class Surrogate {
private Surrogate() { }
// UTF-16 surrogate-character ranges
//
public static final char MIN_HIGH = '\uD800';
public static final char MAX_HIGH = '\uDBFF';
public static final char MIN_LOW = '\uDC00';
public static final char MAX_LOW = '\uDFFF';
public static final char MIN = MIN_HIGH;
public static final char MAX = MAX_LOW;
// Range of UCS-4 values that need surrogates in UTF-16
//
public static final int UCS4_MIN = 0x10000;
public static final int UCS4_MAX = (1 << 20) + UCS4_MIN - 1;
// TODO: Deprecate/remove the following redundant definitions
public static final char MIN_HIGH = Character.MIN_HIGH_SURROGATE;
public static final char MAX_HIGH = Character.MAX_HIGH_SURROGATE;
public static final char MIN_LOW = Character.MIN_LOW_SURROGATE;
public static final char MAX_LOW = Character.MAX_LOW_SURROGATE;
public static final char MIN = Character.MIN_SURROGATE;
public static final char MAX = Character.MAX_SURROGATE;
public static final int UCS4_MIN = Character.MIN_SUPPLEMENTARY_CODE_POINT;
public static final int UCS4_MAX = Character.MAX_CODE_POINT;
/**
* Tells whether or not the given UTF-16 value is a high surrogate.
......@@ -76,36 +71,46 @@ public class Surrogate {
return (MIN <= c) && (c <= MAX);
}
/**
* Tells whether or not the given UCS-4 character is in the Basic
* Multilingual Plane, and can be represented using a single char.
*/
public static boolean isBMP(int uc) {
return (int) (char) uc == uc;
}
/**
* Tells whether or not the given UCS-4 character must be represented as a
* surrogate pair in UTF-16.
*/
public static boolean neededFor(int uc) {
return (uc >= UCS4_MIN) && (uc <= UCS4_MAX);
return Character.isSupplementaryCodePoint(uc);
}
/**
* Returns the high UTF-16 surrogate for the given UCS-4 character.
*/
public static char high(int uc) {
assert neededFor(uc);
return (char)(0xd800 | (((uc - UCS4_MIN) >> 10) & 0x3ff));
assert Character.isSupplementaryCodePoint(uc);
return (char)((uc >> 10)
+ (Character.MIN_HIGH_SURROGATE
- (Character.MIN_SUPPLEMENTARY_CODE_POINT >> 10)));
}
/**
* Returns the low UTF-16 surrogate for the given UCS-4 character.
*/
public static char low(int uc) {
assert neededFor(uc);
return (char)(0xdc00 | ((uc - UCS4_MIN) & 0x3ff));
assert Character.isSupplementaryCodePoint(uc);
return (char)((uc & 0x3ff) + Character.MIN_LOW_SURROGATE);
}
/**
* Converts the given surrogate pair into a 32-bit UCS-4 character.
*/
public static int toUCS4(char c, char d) {
assert isHigh(c) && isLow(d);
return (((c & 0x3ff) << 10) | (d & 0x3ff)) + 0x10000;
assert Character.isHighSurrogate(c) && Character.isLowSurrogate(d);
return Character.toCodePoint(c, d);
}
/**
......@@ -178,14 +183,14 @@ public class Surrogate {
* object
*/
public int parse(char c, CharBuffer in) {
if (Surrogate.isHigh(c)) {
if (Character.isHighSurrogate(c)) {
if (!in.hasRemaining()) {
error = CoderResult.UNDERFLOW;
return -1;
}
char d = in.get();
if (Surrogate.isLow(d)) {
character = toUCS4(c, d);
if (Character.isLowSurrogate(d)) {
character = Character.toCodePoint(c, d);
isPair = true;
error = null;
return character;
......@@ -193,7 +198,7 @@ public class Surrogate {
error = CoderResult.malformedForLength(1);
return -1;
}
if (Surrogate.isLow(c)) {
if (Character.isLowSurrogate(c)) {
error = CoderResult.malformedForLength(1);
return -1;
}
......@@ -220,14 +225,14 @@ public class Surrogate {
*/
public int parse(char c, char[] ia, int ip, int il) {
assert (ia[ip] == c);
if (Surrogate.isHigh(c)) {
if (Character.isHighSurrogate(c)) {
if (il - ip < 2) {
error = CoderResult.UNDERFLOW;
return -1;
}
char d = ia[ip + 1];
if (Surrogate.isLow(d)) {
character = toUCS4(c, d);
if (Character.isLowSurrogate(d)) {
character = Character.toCodePoint(c, d);
isPair = true;
error = null;
return character;
......@@ -235,7 +240,7 @@ public class Surrogate {
error = CoderResult.malformedForLength(1);
return -1;
}
if (Surrogate.isLow(c)) {
if (Character.isLowSurrogate(c)) {
error = CoderResult.malformedForLength(1);
return -1;
}
......@@ -282,7 +287,7 @@ public class Surrogate {
* error() will return a descriptive result object
*/
public int generate(int uc, int len, CharBuffer dst) {
if (uc <= 0xffff) {
if (Surrogate.isBMP(uc)) {
if (Surrogate.is(uc)) {
error = CoderResult.malformedForLength(len);
return -1;
......@@ -294,12 +299,7 @@ public class Surrogate {
dst.put((char)uc);
error = null;
return 1;
}
if (uc < Surrogate.UCS4_MIN) {
error = CoderResult.malformedForLength(len);
return -1;
}
if (uc <= Surrogate.UCS4_MAX) {
} else if (Character.isSupplementaryCodePoint(uc)) {
if (dst.remaining() < 2) {
error = CoderResult.OVERFLOW;
return -1;
......@@ -308,10 +308,11 @@ public class Surrogate {
dst.put(Surrogate.low(uc));
error = null;
return 2;
}
} else {
error = CoderResult.unmappableForLength(len);
return -1;
}
}
/**
* Generates one or two UTF-16 characters to represent the given UCS-4
......@@ -330,7 +331,7 @@ public class Surrogate {
* error() will return a descriptive result object
*/
public int generate(int uc, int len, char[] da, int dp, int dl) {
if (uc <= 0xffff) {
if (Surrogate.isBMP(uc)) {
if (Surrogate.is(uc)) {
error = CoderResult.malformedForLength(len);
return -1;
......@@ -342,12 +343,7 @@ public class Surrogate {
da[dp] = (char)uc;
error = null;
return 1;
}
if (uc < Surrogate.UCS4_MIN) {
error = CoderResult.malformedForLength(len);
return -1;
}
if (uc <= Surrogate.UCS4_MAX) {
} else if (Character.isSupplementaryCodePoint(uc)) {
if (dl - dp < 2) {
error = CoderResult.OVERFLOW;
return -1;
......@@ -356,11 +352,11 @@ public class Surrogate {
da[dp + 1] = Surrogate.low(uc);
error = null;
return 2;
}
} else {
error = CoderResult.unmappableForLength(len);
return -1;
}
}
}
}
......@@ -85,19 +85,21 @@ static jfieldID entry_options;
static jfieldID entry_dev;
/**
* System calls that may not be available at build time.
* System calls that may not be available at run time.
*/
typedef int openat64_func(int, const char *, int, ...);
typedef int fstatat64_func(int, const char *, struct stat64 *, int);
typedef int unlinkat_func(int, const char*, int);
typedef int renameat_func(int, const char*, int, const char*);
typedef int futimesat_func(int, const char *, const struct timeval *);
typedef DIR* fdopendir_func(int);
static openat64_func* my_openat64_func = NULL;
static fstatat64_func* my_fstatat64_func = NULL;
static unlinkat_func* my_unlinkat_func = NULL;
static renameat_func* my_renameat_func = NULL;
static futimesat_func* my_futimesat_func = NULL;
static fdopendir_func* my_fdopendir_func = NULL;
/**
* fstatat missing from glibc on Linux. Temporary workaround
......@@ -183,7 +185,7 @@ Java_sun_nio_fs_UnixNativeDispatcher_init(JNIEnv* env, jclass this)
entry_options = (*env)->GetFieldID(env, clazz, "opts", "[B");
entry_dev = (*env)->GetFieldID(env, clazz, "dev", "J");
/* system calls that might not be available at build time */
/* system calls that might not be available at run time */
#if defined(__solaris__) && defined(_LP64)
/* Solaris 64-bit does not have openat64/fstatat64 */
......@@ -196,6 +198,7 @@ Java_sun_nio_fs_UnixNativeDispatcher_init(JNIEnv* env, jclass this)
my_unlinkat_func = (unlinkat_func*) dlsym(RTLD_DEFAULT, "unlinkat");
my_renameat_func = (renameat_func*) dlsym(RTLD_DEFAULT, "renameat");
my_futimesat_func = (futimesat_func*) dlsym(RTLD_DEFAULT, "futimesat");
my_fdopendir_func = (fdopendir_func*) dlsym(RTLD_DEFAULT, "fdopendir");
#if defined(FSTATAT64_SYSCALL_AVAILABLE)
/* fstatat64 missing from glibc */
......@@ -205,7 +208,7 @@ Java_sun_nio_fs_UnixNativeDispatcher_init(JNIEnv* env, jclass this)
if (my_openat64_func != NULL && my_fstatat64_func != NULL &&
my_unlinkat_func != NULL && my_renameat_func != NULL &&
my_futimesat_func != NULL)
my_futimesat_func != NULL && my_fdopendir_func != NULL)
{
flags |= sun_nio_fs_UnixNativeDispatcher_HAS_AT_SYSCALLS;
}
......@@ -565,8 +568,13 @@ JNIEXPORT jlong JNICALL
Java_sun_nio_fs_UnixNativeDispatcher_fdopendir(JNIEnv* env, jclass this, int dfd) {
DIR* dir;
if (my_fdopendir_func == NULL) {
JNU_ThrowInternalError(env, "should not reach here");
return (jlong)-1;
}
/* EINTR not listed as a possible error */
dir = fdopendir((int)dfd);
dir = (*my_fdopendir_func)((int)dfd);
if (dir == NULL) {
throwUnixException(env, errno);
}
......
......@@ -1177,14 +1177,20 @@ class WindowsPath extends AbstractPath {
/*
* Windows treates symbolic links to directories differently than it
* does to other file types. For that reason we check if the exists and
* is a directory.
* does to other file types. For that reason we need to check if the
* target is a directory (or a directory junction).
*/
WindowsPath resolvedTarget;
if (target.type == WindowsPathType.RELATIVE) {
WindowsPath parent = getParent();
resolvedTarget = (parent == null) ? target : parent.resolve(target);
} else {
resolvedTarget = resolve(target);
}
int flags = 0;
WindowsPath resolvedTarget =
WindowsPath.createFromNormalizedPath(getFileSystem(), resolve(target).path);
try {
if (WindowsFileAttributes.get(resolvedTarget, true).isDirectory())
WindowsFileAttributes wattrs = WindowsFileAttributes.get(resolvedTarget, false);
if (wattrs.isDirectory() || wattrs.isDirectoryLink())
flags |= SYMBOLIC_LINK_FLAG_DIRECTORY;
} catch (WindowsException x) {
// unable to access target so assume target is not a directory
......
/*
* Copyright 2009 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*/
/**
* @test
* @bug 6449574
* @summary Invalid ldap filter is accepted and processed
*/
import java.io.*;
import javax.naming.*;
import javax.naming.directory.*;
import java.util.Properties;
import java.util.Hashtable;
import java.net.Socket;
import java.net.ServerSocket;
public class BalancedParentheses {
// Should we run the client or server in a separate thread?
//
// Both sides can throw exceptions, but do you have a preference
// as to which side should be the main thread.
static boolean separateServerThread = true;
// use any free port by default
volatile int serverPort = 0;
// Is the server ready to serve?
volatile static boolean serverReady = false;
// Define the server side of the test.
//
// If the server prematurely exits, serverReady will be set to true
// to avoid infinite hangs.
void doServerSide() throws Exception {
ServerSocket serverSock = new ServerSocket(serverPort);
// signal client, it's ready to accecpt connection
serverPort = serverSock.getLocalPort();
serverReady = true;
// accept a connection
Socket socket = serverSock.accept();
System.out.println("Server: Connection accepted");
InputStream is = socket.getInputStream();
OutputStream os = socket.getOutputStream();
// read the bindRequest
while (is.read() != -1) {
// ignore
is.skip(is.available());
break;
}
byte[] bindResponse = {0x30, 0x0C, 0x02, 0x01, 0x01, 0x61, 0x07, 0x0A,
0x01, 0x00, 0x04, 0x00, 0x04, 0x00};
// write bindResponse
os.write(bindResponse);
os.flush();
// ignore any more request.
while (is.read() != -1) {
// ignore
is.skip(is.available());
}
is.close();
os.close();
socket.close();
serverSock.close();
}
// Define the client side of the test.
//
// If the server prematurely exits, serverReady will be set to true
// to avoid infinite hangs.
void doClientSide() throws Exception {
// Wait for server to get started.
while (!serverReady) {
Thread.sleep(50);
}
// set up the environment for creating the initial context
Hashtable<Object, Object> env = new Hashtable<Object, Object>();
env.put(Context.INITIAL_CONTEXT_FACTORY,
"com.sun.jndi.ldap.LdapCtxFactory");
env.put(Context.PROVIDER_URL, "ldap://localhost:" + serverPort);
env.put("com.sun.jndi.ldap.read.timeout", "1000");
// env.put(Context.SECURITY_AUTHENTICATION, "simple");
// env.put(Context.SECURITY_PRINCIPAL,"cn=root");
// env.put(Context.SECURITY_CREDENTIALS,"root");
// create initial context
DirContext context = new InitialDirContext(env);
// searching
SearchControls scs = new SearchControls();
scs.setSearchScope(SearchControls.SUBTREE_SCOPE);
try {
NamingEnumeration answer = context.search(
"o=sun,c=us", "(&(cn=Bob)))", scs);
} catch (InvalidSearchFilterException isfe) {
// ignore, it is the expected filter exception.
System.out.println("Expected exception: " + isfe.getMessage());
} catch (NamingException ne) {
// maybe a read timeout exception, as the server does not response.
throw new Exception("Expect a InvalidSearchFilterException", ne);
}
try {
NamingEnumeration answer = context.search(
"o=sun,c=us", ")(&(cn=Bob)", scs);
} catch (InvalidSearchFilterException isfe) {
// ignore, it is the expected filter exception.
System.out.println("Expected exception: " + isfe.getMessage());
} catch (NamingException ne) {
// maybe a read timeout exception, as the server does not response.
throw new Exception("Expect a InvalidSearchFilterException", ne);
}
try {
NamingEnumeration answer = context.search(
"o=sun,c=us", "(&(cn=Bob))", scs);
} catch (InvalidSearchFilterException isfe) {
// ignore, it is the expected filter exception.
throw new Exception("Unexpected ISFE", isfe);
} catch (NamingException ne) {
// maybe a read timeout exception, as the server does not response.
System.out.println("Expected exception: " + ne.getMessage());
}
context.close();
}
/*
* ============================================================
* The remainder is just support stuff
*/
// client and server thread
Thread clientThread = null;
Thread serverThread = null;
// client and server exceptions
volatile Exception serverException = null;
volatile Exception clientException = null;
void startServer(boolean newThread) throws Exception {
if (newThread) {
serverThread = new Thread() {
public void run() {
try {
doServerSide();
} catch (Exception e) {
/*
* Our server thread just died.
*
* Release the client, if not active already...
*/
System.err.println("Server died...");
System.err.println(e);
serverReady = true;
serverException = e;
}
}
};
serverThread.start();
} else {
doServerSide();
}
}
void startClient(boolean newThread) throws Exception {
if (newThread) {
clientThread = new Thread() {
public void run() {
try {
doClientSide();
} catch (Exception e) {
/*
* Our client thread just died.
*/
System.err.println("Client died...");
clientException = e;
}
}
};
clientThread.start();
} else {
doClientSide();
}
}
// Primary constructor, used to drive remainder of the test.
BalancedParentheses() throws Exception {
if (separateServerThread) {
startServer(true);
startClient(false);
} else {
startClient(true);
startServer(false);
}
/*
* Wait for other side to close down.
*/
if (separateServerThread) {
serverThread.join();
} else {
clientThread.join();
}
/*
* When we get here, the test is pretty much over.
*
* If the main thread excepted, that propagates back
* immediately. If the other thread threw an exception, we
* should report back.
*/
if (serverException != null) {
System.out.print("Server Exception:");
throw serverException;
}
if (clientException != null) {
System.out.print("Client Exception:");
throw clientException;
}
}
public static void main(String[] args) throws Exception {
// start the test
new BalancedParentheses();
}
}
......@@ -44,9 +44,9 @@ public class GroupOfOne {
final AsynchronousServerSocketChannel listener =
AsynchronousServerSocketChannel.open()
.bind(new InetSocketAddress(0));
listener.accept(null, new CompletionHandler<AsynchronousSocketChannel,Void>() {
listener.accept((Void)null, new CompletionHandler<AsynchronousSocketChannel,Void>() {
public void completed(AsynchronousSocketChannel ch, Void att) {
listener.accept(null, this);
listener.accept((Void)null, this);
}
public void failed(Throwable exc, Void att) {
}
......@@ -81,13 +81,13 @@ public class GroupOfOne {
// 2. the close/shutdown completes
final CountDownLatch latch = new CountDownLatch(2);
ch.connect(sa, null, new CompletionHandler<Void,Void>() {
ch.connect(sa, (Void)null, new CompletionHandler<Void,Void>() {
public void completed(Void result, Void att) {
System.out.println("Connected");
// initiate I/O operation that does not complete (successfully)
ByteBuffer buf = ByteBuffer.allocate(100);
ch.read(buf, null, new CompletionHandler<Integer,Void>() {
ch.read(buf, (Void)null, new CompletionHandler<Integer,Void>() {
public void completed(Integer bytesRead, Void att) {
throw new RuntimeException();
}
......
......@@ -78,15 +78,15 @@ public class Identity {
final AsynchronousServerSocketChannel listener =
AsynchronousServerSocketChannel.open()
.bind(new InetSocketAddress(0));
listener.accept(null, new CompletionHandler<AsynchronousSocketChannel,Void>() {
listener.accept((Void)null, new CompletionHandler<AsynchronousSocketChannel,Void>() {
public void completed(final AsynchronousSocketChannel ch, Void att) {
listener.accept(null, this);
listener.accept((Void)null, this);
final ByteBuffer buf = ByteBuffer.allocate(100);
ch.read(buf, null, new CompletionHandler<Integer,Void>() {
ch.read(buf, (Void)null, new CompletionHandler<Integer,Void>() {
public void completed(Integer bytesRead, Void att) {
buf.clear();
ch.read(buf, null, this);
ch.read(buf, (Void)null, this);
}
public void failed(Throwable exc, Void att) {
}
......
......@@ -94,7 +94,7 @@ public class Restart {
for (int i=0; i<count; i++) {
final CountDownLatch latch = new CountDownLatch(1);
listener.accept(null, new CompletionHandler<AsynchronousSocketChannel,Void>() {
listener.accept((Void)null, new CompletionHandler<AsynchronousSocketChannel,Void>() {
public void completed(AsynchronousSocketChannel ch, Void att) {
try {
ch.close();
......
......@@ -45,10 +45,10 @@ public class Unbounded {
final AsynchronousServerSocketChannel listener =
AsynchronousServerSocketChannel.open()
.bind(new InetSocketAddress(0));
listener.accept(null, new CompletionHandler<AsynchronousSocketChannel,Void>() {
listener.accept((Void)null, new CompletionHandler<AsynchronousSocketChannel,Void>() {
public void completed(AsynchronousSocketChannel ch, Void att) {
queue.add(ch);
listener.accept(null, this);
listener.accept((Void)null, this);
}
public void failed(Throwable exc, Void att) {
}
......
......@@ -66,7 +66,7 @@ public class Basic {
// Test: datagram packet not received immediately
dst.clear();
final CountDownLatch latch = new CountDownLatch(1);
ch.receive(dst, null, new CompletionHandler<SocketAddress,Void>() {
ch.receive(dst, (Void)null, new CompletionHandler<SocketAddress,Void>() {
public void completed(SocketAddress source, Void att) {
latch.countDown();
}
......@@ -82,7 +82,7 @@ public class Basic {
// Test: timeout
dst.clear();
final AtomicReference<Throwable> exception = new AtomicReference<Throwable>();
ch.receive(dst, 2, TimeUnit.SECONDS, null, new CompletionHandler<SocketAddress,Void>() {
ch.receive(dst, 2, TimeUnit.SECONDS, (Void)null, new CompletionHandler<SocketAddress,Void>() {
public void completed(SocketAddress source, Void att) {
}
public void failed (Throwable exc, Void att) {
......@@ -101,7 +101,7 @@ public class Basic {
// AsynchronousCloseException
dst = ByteBuffer.allocateDirect(100);
exception.set(null);
ch.receive(dst, null, new CompletionHandler<SocketAddress,Void>() {
ch.receive(dst, (Void)null, new CompletionHandler<SocketAddress,Void>() {
public void completed(SocketAddress source, Void att) {
}
public void failed (Throwable exc, Void att) {
......@@ -156,7 +156,7 @@ public class Basic {
// Test: datagram packet not received immediately
dst.clear();
final CountDownLatch l1 = new CountDownLatch(1);
ch.read(dst, null, new CompletionHandler<Integer,Void>() {
ch.read(dst, (Void)null, new CompletionHandler<Integer,Void>() {
public void completed(Integer bytesRead, Void att) {
l1.countDown();
}
......@@ -172,7 +172,7 @@ public class Basic {
// Test: timeout
dst.clear();
final AtomicReference<Throwable> exception = new AtomicReference<Throwable>();
ch.read(dst, 2, TimeUnit.SECONDS, null, new CompletionHandler<Integer,Void>() {
ch.read(dst, 2, TimeUnit.SECONDS, (Void)null, new CompletionHandler<Integer,Void>() {
public void completed(Integer bytesRead, Void att) {
}
public void failed (Throwable exc, Void att) {
......@@ -191,7 +191,7 @@ public class Basic {
// AsynchronousCloseException
dst.clear();
exception.set(null);
ch.read(dst, null, new CompletionHandler<Integer,Void>() {
ch.read(dst, (Void)null, new CompletionHandler<Integer,Void>() {
public void completed(Integer bytesRead, Void att) {
}
public void failed (Throwable exc, Void att) {
......@@ -238,7 +238,7 @@ public class Basic {
// Test: send datagram packet to reader and check completion handler
// is invoked
final CountDownLatch l2 = new CountDownLatch(1);
ch.send(ByteBuffer.wrap(msg), sa, null, new CompletionHandler<Integer,Void>() {
ch.send(ByteBuffer.wrap(msg), sa, (Void)null, new CompletionHandler<Integer,Void>() {
public void completed(Integer bytesSent, Void att) {
if (bytesSent != msg.length)
throw new RuntimeException("Unexpected number of bytes received");
......@@ -261,7 +261,7 @@ public class Basic {
// Test: check that failed method is invoked
ch.close();
final CountDownLatch l3 = new CountDownLatch(1);
ch.send(ByteBuffer.wrap(msg), sa, null, new CompletionHandler<Integer,Void>() {
ch.send(ByteBuffer.wrap(msg), sa, (Void)null, new CompletionHandler<Integer,Void>() {
public void completed(Integer bytesSent, Void att) {
throw new RuntimeException("completed method invoked");
}
......@@ -315,7 +315,7 @@ public class Basic {
// Test: write datagram and check completion handler is invoked
final CountDownLatch l2 = new CountDownLatch(1);
ch.write(ByteBuffer.wrap(msg), null, new CompletionHandler<Integer,Void>() {
ch.write(ByteBuffer.wrap(msg), (Void)null, new CompletionHandler<Integer,Void>() {
public void completed(Integer bytesSent, Void att) {
if (bytesSent != msg.length)
throw new RuntimeException("Unexpected number of bytes received");
......@@ -372,7 +372,7 @@ public class Basic {
final CountDownLatch latch = new CountDownLatch(1);
long timeout = (i == 0) ? 0L : 60L;
Future<SocketAddress> remote = ch
.receive(ByteBuffer.allocate(100), timeout, TimeUnit.SECONDS, null,
.receive(ByteBuffer.allocate(100), timeout, TimeUnit.SECONDS, (Void)null,
new CompletionHandler<SocketAddress,Void>() {
public void completed(SocketAddress source, Void att) {
}
......@@ -395,7 +395,7 @@ public class Basic {
final CountDownLatch latch = new CountDownLatch(1);
long timeout = (i == 0) ? 0L : 60L;
Future<Integer> result = ch
.read(ByteBuffer.allocate(100), timeout, TimeUnit.SECONDS, null,
.read(ByteBuffer.allocate(100), timeout, TimeUnit.SECONDS, (Void)null,
new CompletionHandler<Integer,Void>() {
public void completed(Integer bytesRead, Void att) {
}
......
......@@ -190,7 +190,7 @@ public class Basic {
if (fl == null)
throw new RuntimeException("Unable to acquire lock");
try {
ch.lock(null, new CompletionHandler<FileLock,Void> () {
ch.lock((Void)null, new CompletionHandler<FileLock,Void> () {
public void completed(FileLock result, Void att) {
}
public void failed(Throwable exc, Void att) {
......@@ -217,7 +217,7 @@ public class Basic {
ByteBuffer buf = ByteBuffer.allocateDirect(100);
final CountDownLatch latch = new CountDownLatch(1);
ch.read(buf, 0L, null, new CompletionHandler<Integer,Void>() {
ch.read(buf, 0L, (Void)null, new CompletionHandler<Integer,Void>() {
public void completed(Integer result, Void att) {
try {
Thread.currentThread().interrupt();
......@@ -311,7 +311,7 @@ public class Basic {
final AtomicReference<Thread> invoker = new AtomicReference<Thread>();
final CountDownLatch latch = new CountDownLatch(1);
ch.write(genBuffer(), 0L, null, new CompletionHandler<Integer,Void>() {
ch.write(genBuffer(), 0L, (Void)null, new CompletionHandler<Integer,Void>() {
public void completed(Integer result, Void att) {
invoker.set(Thread.currentThread());
latch.countDown();
......@@ -410,7 +410,7 @@ public class Basic {
// start write operation
final CountDownLatch latch = new CountDownLatch(1);
Future<Integer> res = ch.write(genBuffer(), 0L, null,
Future<Integer> res = ch.write(genBuffer(), 0L, (Void)null,
new CompletionHandler<Integer,Void>() {
public void completed(Integer result, Void att) {
}
......
......@@ -95,7 +95,7 @@ public class Basic {
final AtomicReference<Throwable> exception = new AtomicReference<Throwable>();
// start accepting
listener.accept(null, new CompletionHandler<AsynchronousSocketChannel,Void>() {
listener.accept((Void)null, new CompletionHandler<AsynchronousSocketChannel,Void>() {
public void completed(AsynchronousSocketChannel ch, Void att) {
try {
ch.close();
......
......@@ -181,7 +181,7 @@ public class Basic {
}
final AtomicReference<Throwable> connectException =
new AtomicReference<Throwable>();
ch.connect(server.address(), null, new CompletionHandler<Void,Void>() {
ch.connect(server.address(), (Void)null, new CompletionHandler<Void,Void>() {
public void completed(Void result, Void att) {
}
public void failed(Throwable exc, Void att) {
......@@ -332,7 +332,7 @@ public class Basic {
// start read operation
final CountDownLatch latch = new CountDownLatch(1);
ByteBuffer buf = ByteBuffer.allocate(1);
Future<Integer> res = ch.read(buf, null,
Future<Integer> res = ch.read(buf, (Void)null,
new CompletionHandler<Integer,Void>() {
public void completed(Integer result, Void att) {
}
......@@ -397,11 +397,11 @@ public class Basic {
// reads should complete immediately
final ByteBuffer dst = ByteBuffer.allocateDirect(src.capacity() + 100);
final CountDownLatch latch = new CountDownLatch(1);
ch.read(dst, null, new CompletionHandler<Integer,Void>() {
ch.read(dst, (Void)null, new CompletionHandler<Integer,Void>() {
public void completed(Integer result, Void att) {
int n = result;
if (n > 0) {
ch.read(dst, null, this);
ch.read(dst, (Void)null, this);
} else {
latch.countDown();
}
......@@ -450,10 +450,10 @@ public class Basic {
// read until the buffer is full
final ByteBuffer dst = ByteBuffer.allocateDirect(src.capacity());
final CountDownLatch latch = new CountDownLatch(1);
ch.read(dst, null, new CompletionHandler<Integer,Void>() {
ch.read(dst, (Void)null, new CompletionHandler<Integer,Void>() {
public void completed(Integer result, Void att) {
if (dst.hasRemaining()) {
ch.read(dst, null, this);
ch.read(dst, (Void)null, this);
} else {
latch.countDown();
}
......@@ -508,7 +508,7 @@ public class Basic {
// scattering read that completes ascynhronously
final CountDownLatch latch = new CountDownLatch(1);
ch.read(dsts, 0, dsts.length, 0L, TimeUnit.SECONDS, null,
ch.read(dsts, 0, dsts.length, 0L, TimeUnit.SECONDS, (Void)null,
new CompletionHandler<Long,Void>() {
public void completed(Long result, Void att) {
long n = result;
......@@ -536,7 +536,7 @@ public class Basic {
dsts[i].rewind();
}
long n = ch
.read(dsts, 0, dsts.length, 0L, TimeUnit.SECONDS, null, null).get();
.read(dsts, 0, dsts.length, 0L, TimeUnit.SECONDS, (Void)null, null).get();
if (n <= 0)
throw new RuntimeException("No bytes read");
......@@ -562,10 +562,10 @@ public class Basic {
// write all bytes and close connection when done
final ByteBuffer src = genBuffer();
ch.write(src, null, new CompletionHandler<Integer,Void>() {
ch.write(src, (Void)null, new CompletionHandler<Integer,Void>() {
public void completed(Integer result, Void att) {
if (src.hasRemaining()) {
ch.write(src, null, this);
ch.write(src, (Void)null, this);
} else {
try {
ch.close();
......@@ -616,7 +616,7 @@ public class Basic {
// write buffers (should complete immediately)
ByteBuffer[] srcs = genBuffers(1);
long n = ch
.write(srcs, 0, srcs.length, 0L, TimeUnit.SECONDS, null, null).get();
.write(srcs, 0, srcs.length, 0L, TimeUnit.SECONDS, (Void)null, null).get();
if (n <= 0)
throw new RuntimeException("No bytes written");
......@@ -629,7 +629,7 @@ public class Basic {
// write until socket buffer is full so as to create the conditions
// for when a write does not complete immediately
srcs = genBuffers(1);
ch.write(srcs, 0, srcs.length, 0L, TimeUnit.SECONDS, null,
ch.write(srcs, 0, srcs.length, 0L, TimeUnit.SECONDS, (Void)null,
new CompletionHandler<Long,Void>() {
public void completed(Long result, Void att) {
long n = result;
......@@ -639,7 +639,7 @@ public class Basic {
if (continueWriting.get()) {
ByteBuffer[] srcs = genBuffers(8);
ch.write(srcs, 0, srcs.length, 0L, TimeUnit.SECONDS,
null, this);
(Void)null, this);
}
}
public void failed(Throwable exc, Void att) {
......@@ -717,7 +717,7 @@ public class Basic {
// this read should timeout
ByteBuffer dst = ByteBuffer.allocate(512);
try {
ch.read(dst, 3, TimeUnit.SECONDS, null, null).get();
ch.read(dst, 3, TimeUnit.SECONDS, (Void)null, null).get();
throw new RuntimeException("Read did not timeout");
} catch (ExecutionException x) {
if (!(x.getCause() instanceof InterruptedByTimeoutException))
......
......@@ -99,7 +99,7 @@ public class StressLoopback {
void start() {
sentBuffer.position(0);
sentBuffer.limit(sentBuffer.capacity());
channel.write(sentBuffer, null, new CompletionHandler<Integer,Void> () {
channel.write(sentBuffer, (Void)null, new CompletionHandler<Integer,Void> () {
public void completed(Integer nwrote, Void att) {
bytesSent += nwrote;
if (finished) {
......@@ -107,7 +107,7 @@ public class StressLoopback {
} else {
sentBuffer.position(0);
sentBuffer.limit(sentBuffer.capacity());
channel.write(sentBuffer, null, this);
channel.write(sentBuffer, (Void)null, this);
}
}
public void failed(Throwable exc, Void att) {
......@@ -142,14 +142,14 @@ public class StressLoopback {
}
void start() {
channel.read(readBuffer, null, new CompletionHandler<Integer,Void> () {
channel.read(readBuffer, (Void)null, new CompletionHandler<Integer,Void> () {
public void completed(Integer nread, Void att) {
if (nread < 0) {
closeUnchecked(channel);
} else {
bytesRead += nread;
readBuffer.clear();
channel.read(readBuffer, null, this);
channel.read(readBuffer, (Void)null, this);
}
}
public void failed(Throwable exc, Void att) {
......
......@@ -22,7 +22,7 @@
*/
/* @test
* @bug 4313887 6838333
* @bug 4313887 6838333 6863864
* @summary Unit test for java.nio.file.Path createSymbolicLink,
* readSymbolicLink, and createLink methods
* @library ..
......@@ -31,7 +31,6 @@
import java.nio.file.*;
import java.nio.file.attribute.*;
import java.io.*;
import java.util.*;
public class Links {
......@@ -47,7 +46,7 @@ public class Links {
* Exercise createSymbolicLink and readLink methods
*/
static void testSymLinks(Path dir) throws IOException {
Path link = dir.resolve("link");
final Path link = dir.resolve("link");
// Check if sym links are supported
try {
......@@ -76,6 +75,63 @@ public class Links {
link.delete();
}
}
// Test links to directory
Path mydir = dir.resolve("mydir");
Path myfile = mydir.resolve("myfile");
try {
mydir.createDirectory();
myfile.createFile();
// link -> "mydir"
link.createSymbolicLink(mydir.getName());
assertTrue(link.readSymbolicLink().equals(mydir.getName()));
// Test access to directory via link
DirectoryStream<Path> stream = link.newDirectoryStream();
try {
boolean found = false;
for (Path entry: stream) {
if (entry.getName().equals(myfile.getName())) {
found = true;
break;
}
}
assertTrue(found);
} finally {
stream.close();
}
// Test link2 -> link -> mydir
final Path link2 = dir.resolve("link2");
Path target2 = link.getName();
link2.createSymbolicLink(target2);
try {
assertTrue(link2.readSymbolicLink().equals(target2));
link2.newDirectoryStream().close();
} finally {
link2.delete();
}
// Remove mydir and re-create link2 before re-creating mydir
// (This is a useful test on Windows to ensure that creating a
// sym link to a directory sym link creates the right type of link).
myfile.delete();
mydir.delete();
link2.createSymbolicLink(target2);
try {
assertTrue(link2.readSymbolicLink().equals(target2));
mydir.createDirectory();
link2.newDirectoryStream().close();
} finally {
link2.delete();
}
} finally {
myfile.deleteIfExists();
mydir.deleteIfExists();
link.deleteIfExists();
}
}
/**
......
......@@ -426,6 +426,36 @@ public class MOAT {
q.poll();
equal(q.size(), 4);
checkFunctionalInvariants(q);
if ((q instanceof LinkedBlockingQueue) ||
(q instanceof LinkedBlockingDeque) ||
(q instanceof ConcurrentLinkedQueue)) {
testQueueIteratorRemove(q);
}
}
private static void testQueueIteratorRemove(Queue<Integer> q) {
System.err.printf("testQueueIteratorRemove %s%n",
q.getClass().getSimpleName());
q.clear();
for (int i = 0; i < 5; i++)
q.add(i);
Iterator<Integer> it = q.iterator();
check(it.hasNext());
for (int i = 3; i >= 0; i--)
q.remove(i);
equal(it.next(), 0);
equal(it.next(), 4);
q.clear();
for (int i = 0; i < 5; i++)
q.add(i);
it = q.iterator();
equal(it.next(), 0);
check(it.hasNext());
for (int i = 1; i < 4; i++)
q.remove(i);
equal(it.next(), 1);
equal(it.next(), 4);
}
private static void testList(final List<Integer> l) {
......@@ -451,6 +481,11 @@ public class MOAT {
}
private static void testCollection(Collection<Integer> c) {
try { testCollection1(c); }
catch (Throwable t) { unexpected(t); }
}
private static void testCollection1(Collection<Integer> c) {
System.out.println("\n==> " + c.getClass().getName());
......
/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*/
/*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file:
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/licenses/publicdomain
*/
/*
* @test
* @bug 6805775 6815766
* @summary Test concurrent offer vs. drainTo
*/
import java.util.*;
import java.util.concurrent.*;
@SuppressWarnings({"unchecked", "rawtypes"})
public class OfferDrainToLoops {
void checkNotContainsNull(Iterable it) {
for (Object x : it)
check(x != null);
}
abstract class CheckedThread extends Thread {
abstract protected void realRun();
public void run() {
try { realRun(); } catch (Throwable t) { unexpected(t); }
}
{
setDaemon(true);
start();
}
}
void test(String[] args) throws Throwable {
test(new LinkedBlockingQueue());
test(new LinkedBlockingQueue(2000));
test(new LinkedBlockingDeque());
test(new LinkedBlockingDeque(2000));
test(new ArrayBlockingQueue(2000));
}
void test(final BlockingQueue q) throws Throwable {
System.out.println(q.getClass().getSimpleName());
final long testDurationSeconds = 1L;
final long testDurationMillis = testDurationSeconds * 1000L;
final long quittingTimeNanos
= System.nanoTime() + testDurationSeconds * 1000L * 1000L * 1000L;
Thread offerer = new CheckedThread() {
protected void realRun() {
for (long i = 0; ; i++) {
if ((i % 1024) == 0 &&
System.nanoTime() - quittingTimeNanos > 0)
break;
while (! q.offer(i))
Thread.yield();
}}};
Thread drainer = new CheckedThread() {
protected void realRun() {
for (long i = 0; ; i++) {
if (System.nanoTime() - quittingTimeNanos > 0)
break;
List list = new ArrayList();
int n = q.drainTo(list);
equal(list.size(), n);
for (int j = 0; j < n - 1; j++)
equal((Long) list.get(j) + 1L, list.get(j + 1));
Thread.yield();
}}};
Thread scanner = new CheckedThread() {
protected void realRun() {
for (long i = 0; ; i++) {
if (System.nanoTime() - quittingTimeNanos > 0)
break;
checkNotContainsNull(q);
Thread.yield();
}}};
offerer.join(10 * testDurationMillis);
drainer.join(10 * testDurationMillis);
check(! offerer.isAlive());
check(! drainer.isAlive());
}
//--------------------- Infrastructure ---------------------------
volatile int passed = 0, failed = 0;
void pass() {passed++;}
void fail() {failed++; Thread.dumpStack();}
void fail(String msg) {System.err.println(msg); fail();}
void unexpected(Throwable t) {failed++; t.printStackTrace();}
void check(boolean cond) {if (cond) pass(); else fail();}
void equal(Object x, Object y) {
if (x == null ? y == null : x.equals(y)) pass();
else fail(x + " not equal to " + y);}
public static void main(String[] args) throws Throwable {
new OfferDrainToLoops().instanceMain(args);}
public void instanceMain(String[] args) throws Throwable {
try {test(args);} catch (Throwable t) {unexpected(t);}
System.out.printf("%nPassed = %d, failed = %d%n%n", passed, failed);
if (failed > 0) throw new AssertionError("Some tests failed");}
}
......@@ -33,9 +33,8 @@
/*
* @test
* @bug 4486658
* @compile -source 1.5 ConcurrentQueueLoops.java
* @run main/timeout=230 ConcurrentQueueLoops
* @bug 4486658 6785442
* @run main ConcurrentQueueLoops 8 123456
* @summary Checks that a set of threads can repeatedly get and modify items
*/
......@@ -44,34 +43,75 @@ import java.util.concurrent.*;
import java.util.concurrent.atomic.*;
public class ConcurrentQueueLoops {
static final ExecutorService pool = Executors.newCachedThreadPool();
static AtomicInteger totalItems;
static boolean print = false;
ExecutorService pool;
AtomicInteger totalItems;
boolean print;
public static void main(String[] args) throws Exception {
int maxStages = 8;
int items = 100000;
// Suitable for benchmarking. Overriden by args[0] for testing.
int maxStages = 20;
// Suitable for benchmarking. Overriden by args[1] for testing.
int items = 1024 * 1024;
Collection<Queue<Integer>> concurrentQueues() {
List<Queue<Integer>> queues = new ArrayList<Queue<Integer>>();
queues.add(new ConcurrentLinkedQueue<Integer>());
queues.add(new ArrayBlockingQueue<Integer>(items, false));
//queues.add(new ArrayBlockingQueue<Integer>(count, true));
queues.add(new LinkedBlockingQueue<Integer>());
queues.add(new LinkedBlockingDeque<Integer>());
try {
queues.add((Queue<Integer>)
Class.forName("java.util.concurrent.LinkedTransferQueue")
.newInstance());
} catch (IllegalAccessException e) {
} catch (InstantiationException e) {
} catch (ClassNotFoundException e) {
// OK; not yet added to JDK
}
// Following additional implementations are available from:
// http://gee.cs.oswego.edu/dl/concurrency-interest/index.html
// queues.add(new LinkedTransferQueue<Integer>());
// queues.add(new SynchronizedLinkedListQueue<Integer>());
// Avoid "first fast, second slow" benchmark effect.
Collections.shuffle(queues);
return queues;
}
void test(String[] args) throws Throwable {
if (args.length > 0)
maxStages = Integer.parseInt(args[0]);
if (args.length > 1)
items = Integer.parseInt(args[1]);
for (Queue<Integer> queue : concurrentQueues())
test(queue);
}
void test(final Queue<Integer> q) throws Throwable {
System.out.println(q.getClass().getSimpleName());
pool = Executors.newCachedThreadPool();
print = false;
print = false;
System.out.println("Warmup...");
oneRun(1, items);
Thread.sleep(100);
oneRun(1, items);
oneRun(1, items, q);
//Thread.sleep(100);
oneRun(3, items, q);
Thread.sleep(100);
print = true;
for (int i = 1; i <= maxStages; i += (i+1) >>> 1) {
oneRun(i, items);
oneRun(i, items, q);
}
pool.shutdown();
if (! pool.awaitTermination(Long.MAX_VALUE, TimeUnit.NANOSECONDS))
throw new Error();
check(pool.awaitTermination(Long.MAX_VALUE, TimeUnit.NANOSECONDS));
}
static class Stage implements Callable<Integer> {
class Stage implements Callable<Integer> {
final Queue<Integer> queue;
final CyclicBarrier barrier;
int items;
......@@ -110,15 +150,11 @@ public class ConcurrentQueueLoops {
}
return new Integer(l);
}
catch (Exception ie) {
ie.printStackTrace();
throw new Error("Call loop failed");
}
catch (Throwable t) { unexpected(t); return null; }
}
}
static void oneRun(int n, int items) throws Exception {
Queue<Integer> q = new ConcurrentLinkedQueue<Integer>();
void oneRun(int n, int items, final Queue<Integer> q) throws Exception {
LoopHelpers.BarrierTimer timer = new LoopHelpers.BarrierTimer();
CyclicBarrier barrier = new CyclicBarrier(n + 1, timer);
totalItems = new AtomicInteger(n * items);
......@@ -141,6 +177,22 @@ public class ConcurrentQueueLoops {
System.out.println(LoopHelpers.rightJustify(time / (items * n)) + " ns per item");
if (total == 0) // avoid overoptimization
System.out.println("useless result: " + total);
}
//--------------------- Infrastructure ---------------------------
volatile int passed = 0, failed = 0;
void pass() {passed++;}
void fail() {failed++; Thread.dumpStack();}
void fail(String msg) {System.err.println(msg); fail();}
void unexpected(Throwable t) {failed++; t.printStackTrace();}
void check(boolean cond) {if (cond) pass(); else fail();}
void equal(Object x, Object y) {
if (x == null ? y == null : x.equals(y)) pass();
else fail(x + " not equal to " + y);}
public static void main(String[] args) throws Throwable {
new ConcurrentQueueLoops().instanceMain(args);}
public void instanceMain(String[] args) throws Throwable {
try {test(args);} catch (Throwable t) {unexpected(t);}
System.out.printf("%nPassed = %d, failed = %d%n%n", passed, failed);
if (failed > 0) throw new AssertionError("Some tests failed");}
}
/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*/
/*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file:
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/licenses/publicdomain
*/
/*
* @test
* @bug 6785442
* @summary Benchmark that tries to GC-tenure head, followed by
* many add/remove operations.
* @run main GCRetention 12345
*/
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentLinkedQueue;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.LinkedBlockingDeque;
import java.util.concurrent.PriorityBlockingQueue;
import java.util.LinkedList;
import java.util.PriorityQueue;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.List;
import java.util.Queue;
import java.util.Map;
public class GCRetention {
// Suitable for benchmarking. Overriden by args[0] for testing.
int count = 1024 * 1024;
final Map<String,String> results = new ConcurrentHashMap<String,String>();
Collection<Queue<Boolean>> queues() {
List<Queue<Boolean>> queues = new ArrayList<Queue<Boolean>>();
queues.add(new ConcurrentLinkedQueue<Boolean>());
queues.add(new ArrayBlockingQueue<Boolean>(count, false));
queues.add(new ArrayBlockingQueue<Boolean>(count, true));
queues.add(new LinkedBlockingQueue<Boolean>());
queues.add(new LinkedBlockingDeque<Boolean>());
queues.add(new PriorityBlockingQueue<Boolean>());
queues.add(new PriorityQueue<Boolean>());
queues.add(new LinkedList<Boolean>());
try {
queues.add((Queue<Boolean>)
Class.forName("java.util.concurrent.LinkedTransferQueue")
.newInstance());
} catch (IllegalAccessException e) {
} catch (InstantiationException e) {
} catch (ClassNotFoundException e) {
// OK; not yet added to JDK
}
// Following additional implementations are available from:
// http://gee.cs.oswego.edu/dl/concurrency-interest/index.html
// queues.add(new LinkedTransferQueue<Boolean>());
// queues.add(new SynchronizedLinkedListQueue<Boolean>());
// Avoid "first fast, second slow" benchmark effect.
Collections.shuffle(queues);
return queues;
}
void prettyPrintResults() {
List<String> classNames = new ArrayList<String>(results.keySet());
Collections.sort(classNames);
int maxClassNameLength = 0;
int maxNanosLength = 0;
for (String name : classNames) {
if (maxClassNameLength < name.length())
maxClassNameLength = name.length();
if (maxNanosLength < results.get(name).length())
maxNanosLength = results.get(name).length();
}
String format = String.format("%%%ds %%%ds nanos/item%%n",
maxClassNameLength, maxNanosLength);
for (String name : classNames)
System.out.printf(format, name, results.get(name));
}
void test(String[] args) {
if (args.length > 0)
count = Integer.valueOf(args[0]);
// Warmup
for (Queue<Boolean> queue : queues())
test(queue);
results.clear();
for (Queue<Boolean> queue : queues())
test(queue);
prettyPrintResults();
}
void test(Queue<Boolean> q) {
long t0 = System.nanoTime();
for (int i = 0; i < count; i++)
check(q.add(Boolean.TRUE));
System.gc();
System.gc();
Boolean x;
while ((x = q.poll()) != null)
equal(x, Boolean.TRUE);
check(q.isEmpty());
for (int i = 0; i < 10 * count; i++) {
for (int k = 0; k < 3; k++)
check(q.add(Boolean.TRUE));
for (int k = 0; k < 3; k++)
if (q.poll() != Boolean.TRUE)
fail();
}
check(q.isEmpty());
String className = q.getClass().getSimpleName();
long elapsed = System.nanoTime() - t0;
int nanos = (int) ((double) elapsed / (10 * 3 * count));
results.put(className, String.valueOf(nanos));
}
//--------------------- Infrastructure ---------------------------
volatile int passed = 0, failed = 0;
void pass() {passed++;}
void fail() {failed++; Thread.dumpStack();}
void fail(String msg) {System.err.println(msg); fail();}
void unexpected(Throwable t) {failed++; t.printStackTrace();}
void check(boolean cond) {if (cond) pass(); else fail();}
void equal(Object x, Object y) {
if (x == null ? y == null : x.equals(y)) pass();
else fail(x + " not equal to " + y);}
public static void main(String[] args) throws Throwable {
new GCRetention().instanceMain(args);}
public void instanceMain(String[] args) throws Throwable {
try {test(args);} catch (Throwable t) {unexpected(t);}
System.out.printf("%nPassed = %d, failed = %d%n%n", passed, failed);
if (failed > 0) throw new AssertionError("Some tests failed");}
}
/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*/
/*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file:
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/licenses/publicdomain
*/
import java.util.*;
import java.util.concurrent.*;
/*
* @test
* @bug 6805775 6815766
* @summary Check weak consistency of concurrent queue iterators
*/
@SuppressWarnings({"unchecked", "rawtypes"})
public class IteratorWeakConsistency {
void test(String[] args) throws Throwable {
test(new LinkedBlockingQueue());
test(new LinkedBlockingQueue(20));
test(new LinkedBlockingDeque());
test(new LinkedBlockingDeque(20));
test(new ConcurrentLinkedQueue());
// Other concurrent queues (e.g. ArrayBlockingQueue) do not
// currently have weakly consistent iterators.
// test(new ArrayBlockingQueue(20));
}
void test(Queue q) throws Throwable {
// TODO: make this more general
for (int i = 0; i < 10; i++)
q.add(i);
Iterator it = q.iterator();
q.poll();
q.poll();
q.poll();
q.remove(7);
List list = new ArrayList();
while (it.hasNext())
list.add(it.next());
equal(list, Arrays.asList(0, 3, 4, 5, 6, 8, 9));
check(! list.contains(null));
System.out.printf("%s: %s%n",
q.getClass().getSimpleName(),
list);
}
//--------------------- Infrastructure ---------------------------
volatile int passed = 0, failed = 0;
void pass() {passed++;}
void fail() {failed++; Thread.dumpStack();}
void fail(String msg) {System.err.println(msg); fail();}
void unexpected(Throwable t) {failed++; t.printStackTrace();}
void check(boolean cond) {if (cond) pass(); else fail();}
void equal(Object x, Object y) {
if (x == null ? y == null : x.equals(y)) pass();
else fail(x + " not equal to " + y);}
static Class<?> thisClass = new Object(){}.getClass().getEnclosingClass();
public static void main(String[] args) throws Throwable {
new IteratorWeakConsistency().instanceMain(args);}
public void instanceMain(String[] args) throws Throwable {
try {test(args);} catch (Throwable t) {unexpected(t);}
System.out.printf("%nPassed = %d, failed = %d%n%n", passed, failed);
if (failed > 0) throw new AssertionError("Some tests failed");}
}
/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*/
/*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file:
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/licenses/publicdomain
*/
/*
* @test
* @bug 6785442
* @summary Checks race between poll and remove(Object), while
* occasionally moonlighting as a microbenchmark.
* @run main RemovePollRace 12345
*/
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentLinkedQueue;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.LinkedBlockingDeque;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.atomic.AtomicLong;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.List;
import java.util.Queue;
import java.util.Map;
public class RemovePollRace {
// Suitable for benchmarking. Overriden by args[0] for testing.
int count = 1024 * 1024;
final Map<String,String> results = new ConcurrentHashMap<String,String>();
Collection<Queue<Boolean>> concurrentQueues() {
List<Queue<Boolean>> queues = new ArrayList<Queue<Boolean>>();
queues.add(new ConcurrentLinkedQueue<Boolean>());
queues.add(new ArrayBlockingQueue<Boolean>(count, false));
queues.add(new ArrayBlockingQueue<Boolean>(count, true));
queues.add(new LinkedBlockingQueue<Boolean>());
queues.add(new LinkedBlockingDeque<Boolean>());
try {
queues.add((Queue<Boolean>)
Class.forName("java.util.concurrent.LinkedTransferQueue")
.newInstance());
} catch (IllegalAccessException e) {
} catch (InstantiationException e) {
} catch (ClassNotFoundException e) {
// OK; not yet added to JDK
}
// Following additional implementations are available from:
// http://gee.cs.oswego.edu/dl/concurrency-interest/index.html
// queues.add(new LinkedTransferQueue<Boolean>());
// queues.add(new SynchronizedLinkedListQueue<Boolean>());
// Avoid "first fast, second slow" benchmark effect.
Collections.shuffle(queues);
return queues;
}
void prettyPrintResults() {
List<String> classNames = new ArrayList<String>(results.keySet());
Collections.sort(classNames);
int maxClassNameLength = 0;
int maxNanosLength = 0;
for (String name : classNames) {
if (maxClassNameLength < name.length())
maxClassNameLength = name.length();
if (maxNanosLength < results.get(name).length())
maxNanosLength = results.get(name).length();
}
String format = String.format("%%%ds %%%ds nanos/item%%n",
maxClassNameLength, maxNanosLength);
for (String name : classNames)
System.out.printf(format, name, results.get(name));
}
void test(String[] args) throws Throwable {
if (args.length > 0)
count = Integer.valueOf(args[0]);
// Warmup
for (Queue<Boolean> queue : concurrentQueues())
test(queue);
results.clear();
for (Queue<Boolean> queue : concurrentQueues())
test(queue);
prettyPrintResults();
}
void await(CountDownLatch latch) {
try { latch.await(); }
catch (InterruptedException e) { unexpected(e); }
}
void test(final Queue<Boolean> q) throws Throwable {
long t0 = System.nanoTime();
final int SPINS = 5;
final AtomicLong removes = new AtomicLong(0);
final AtomicLong polls = new AtomicLong(0);
final int adderCount =
Math.max(1, Runtime.getRuntime().availableProcessors() / 4);
final int removerCount =
Math.max(1, Runtime.getRuntime().availableProcessors() / 4);
final int pollerCount = removerCount;
final int threadCount = adderCount + removerCount + pollerCount;
final CountDownLatch startingGate = new CountDownLatch(1);
final CountDownLatch addersDone = new CountDownLatch(adderCount);
final Runnable remover = new Runnable() {
public void run() {
await(startingGate);
int spins = 0;
for (;;) {
boolean quittingTime = (addersDone.getCount() == 0);
if (q.remove(Boolean.TRUE))
removes.getAndIncrement();
else if (quittingTime)
break;
else if (++spins > SPINS) {
Thread.yield();
spins = 0;
}}}};
final Runnable poller = new Runnable() {
public void run() {
await(startingGate);
int spins = 0;
for (;;) {
boolean quittingTime = (addersDone.getCount() == 0);
if (q.poll() == Boolean.TRUE)
polls.getAndIncrement();
else if (quittingTime)
break;
else if (++spins > SPINS) {
Thread.yield();
spins = 0;
}}}};
final Runnable adder = new Runnable() {
public void run() {
await(startingGate);
for (int i = 0; i < count; i++) {
for (;;) {
try { q.add(Boolean.TRUE); break; }
catch (IllegalStateException e) { Thread.yield(); }
}
}
addersDone.countDown();
}};
final List<Thread> adders = new ArrayList<Thread>();
final List<Thread> removers = new ArrayList<Thread>();
final List<Thread> pollers = new ArrayList<Thread>();
for (int i = 0; i < adderCount; i++)
adders.add(checkedThread(adder));
for (int i = 0; i < removerCount; i++)
removers.add(checkedThread(remover));
for (int i = 0; i < pollerCount; i++)
pollers.add(checkedThread(poller));
final List<Thread> allThreads = new ArrayList<Thread>();
allThreads.addAll(removers);
allThreads.addAll(pollers);
allThreads.addAll(adders);
for (Thread t : allThreads)
t.start();
startingGate.countDown();
for (Thread t : allThreads)
t.join();
String className = q.getClass().getSimpleName();
long elapsed = System.nanoTime() - t0;
int nanos = (int) ((double) elapsed / (adderCount * count));
results.put(className, String.valueOf(nanos));
if (removes.get() + polls.get() != adderCount * count) {
String msg = String.format
("class=%s removes=%s polls=%d count=%d",
className, removes.get(), polls.get(), count);
fail(msg);
}
}
//--------------------- Infrastructure ---------------------------
volatile int passed = 0, failed = 0;
void pass() {passed++;}
void fail() {failed++; Thread.dumpStack();}
void fail(String msg) {System.err.println(msg); fail();}
void unexpected(Throwable t) {failed++; t.printStackTrace();}
void check(boolean cond) {if (cond) pass(); else fail();}
void equal(Object x, Object y) {
if (x == null ? y == null : x.equals(y)) pass();
else fail(x + " not equal to " + y);}
public static void main(String[] args) throws Throwable {
new RemovePollRace().instanceMain(args);}
public void instanceMain(String[] args) throws Throwable {
try {test(args);} catch (Throwable t) {unexpected(t);}
System.out.printf("%nPassed = %d, failed = %d%n%n", passed, failed);
if (failed > 0) throw new AssertionError("Some tests failed");}
Thread checkedThread(final Runnable r) {
return new Thread() {public void run() {
try {r.run();} catch (Throwable t) {unexpected(t);}}};}
}
......@@ -28,62 +28,74 @@
* @author Martin Buchholz
*/
import java.util.*;
import java.util.concurrent.*;
public class OfferRemoveLoops {
private static void realMain(String[] args) throws Throwable {
void test(String[] args) throws Throwable {
testQueue(new LinkedBlockingQueue<String>(10));
testQueue(new LinkedBlockingQueue<String>());
testQueue(new LinkedBlockingDeque<String>(10));
testQueue(new LinkedBlockingDeque<String>());
testQueue(new ArrayBlockingQueue<String>(10));
testQueue(new PriorityBlockingQueue<String>(10));
testQueue(new ConcurrentLinkedQueue<String>());
}
private abstract static class ControlledThread extends Thread {
abstract class CheckedThread extends Thread {
abstract protected void realRun();
public void run() {
try { realRun(); } catch (Throwable t) { unexpected(t); }
}
}
private static void testQueue(final BlockingQueue<String> q) throws Throwable {
System.out.println(q.getClass());
final int count = 10000;
final long quittingTime = System.nanoTime() + 1L * 1000L * 1000L * 1000L;
Thread t1 = new ControlledThread() {
void testQueue(final Queue<String> q) throws Throwable {
System.out.println(q.getClass().getSimpleName());
final int count = 1000 * 1000;
final long testDurationSeconds = 1L;
final long testDurationMillis = testDurationSeconds * 1000L;
final long quittingTimeNanos
= System.nanoTime() + testDurationSeconds * 1000L * 1000L * 1000L;
Thread t1 = new CheckedThread() {
protected void realRun() {
for (int i = 0, j = 0; i < count; i++)
while (! q.remove(String.valueOf(i))
&& System.nanoTime() - quittingTime < 0)
Thread.yield();}};
Thread t2 = new ControlledThread() {
for (int i = 0; i < count; i++) {
if ((i % 1024) == 0 &&
System.nanoTime() - quittingTimeNanos > 0)
return;
while (! q.remove(String.valueOf(i)))
Thread.yield();
}}};
Thread t2 = new CheckedThread() {
protected void realRun() {
for (int i = 0, j = 0; i < count; i++)
while (! q.offer(String.valueOf(i))
&& System.nanoTime() - quittingTime < 0)
Thread.yield();}};
for (int i = 0; i < count; i++) {
if ((i % 1024) == 0 &&
System.nanoTime() - quittingTimeNanos > 0)
return;
while (! q.offer(String.valueOf(i)))
Thread.yield();
}}};
t1.setDaemon(true); t2.setDaemon(true);
t1.start(); t2.start();
t1.join(10000); t2.join(10000);
t1.join(10 * testDurationMillis);
t2.join(10 * testDurationMillis);
check(! t1.isAlive());
check(! t2.isAlive());
}
//--------------------- Infrastructure ---------------------------
static volatile int passed = 0, failed = 0;
static void pass() { passed++; }
static void fail() { failed++; Thread.dumpStack(); }
static void unexpected(Throwable t) { failed++; t.printStackTrace(); }
static void check(boolean cond) { if (cond) pass(); else fail(); }
static void equal(Object x, Object y) {
volatile int passed = 0, failed = 0;
void pass() {passed++;}
void fail() {failed++; Thread.dumpStack();}
void fail(String msg) {System.err.println(msg); fail();}
void unexpected(Throwable t) {failed++; t.printStackTrace();}
void check(boolean cond) {if (cond) pass(); else fail();}
void equal(Object x, Object y) {
if (x == null ? y == null : x.equals(y)) pass();
else {System.out.println(x + " not equal to " + y); fail(); }}
else fail(x + " not equal to " + y);}
public static void main(String[] args) throws Throwable {
try { realMain(args); } catch (Throwable t) { unexpected(t); }
new OfferRemoveLoops().instanceMain(args);}
public void instanceMain(String[] args) throws Throwable {
try {test(args);} catch (Throwable t) {unexpected(t);}
System.out.printf("%nPassed = %d, failed = %d%n%n", passed, failed);
if (failed > 0) throw new Exception("Some tests failed");
}
if (failed > 0) throw new AssertionError("Some tests failed");}
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册