/* * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "c1/c1_MacroAssembler.hpp" #include "c1/c1_Runtime1.hpp" #include "classfile/systemDictionary.hpp" #include "gc_interface/collectedHeap.hpp" #include "interpreter/interpreter.hpp" #include "oops/arrayOop.hpp" #include "oops/markOop.hpp" #include "runtime/basicLock.hpp" #include "runtime/biasedLocking.hpp" #include "runtime/os.hpp" #include "runtime/stubRoutines.hpp" void C1_MacroAssembler::inline_cache_check(Register receiver, Register iCache) { Label L; const Register temp_reg = G3_scratch; // Note: needs more testing of out-of-line vs. inline slow case verify_oop(receiver); load_klass(receiver, temp_reg); cmp(temp_reg, iCache); brx(Assembler::equal, true, Assembler::pt, L); delayed()->nop(); AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub()); jump_to(ic_miss, temp_reg); delayed()->nop(); align(CodeEntryAlignment); bind(L); } void C1_MacroAssembler::explicit_null_check(Register base) { Unimplemented(); } void C1_MacroAssembler::build_frame(int frame_size_in_bytes) { generate_stack_overflow_check(frame_size_in_bytes); // Create the frame. save_frame_c1(frame_size_in_bytes); } void C1_MacroAssembler::unverified_entry(Register receiver, Register ic_klass) { if (C1Breakpoint) breakpoint_trap(); inline_cache_check(receiver, ic_klass); } void C1_MacroAssembler::verified_entry() { if (C1Breakpoint) breakpoint_trap(); // build frame verify_FPU(0, "method_entry"); } void C1_MacroAssembler::lock_object(Register Rmark, Register Roop, Register Rbox, Register Rscratch, Label& slow_case) { assert_different_registers(Rmark, Roop, Rbox, Rscratch); Label done; Address mark_addr(Roop, oopDesc::mark_offset_in_bytes()); // The following move must be the first instruction of emitted since debug // information may be generated for it. // Load object header ld_ptr(mark_addr, Rmark); verify_oop(Roop); // save object being locked into the BasicObjectLock st_ptr(Roop, Rbox, BasicObjectLock::obj_offset_in_bytes()); if (UseBiasedLocking) { biased_locking_enter(Roop, Rmark, Rscratch, done, &slow_case); } // Save Rbox in Rscratch to be used for the cas operation mov(Rbox, Rscratch); // and mark it unlocked or3(Rmark, markOopDesc::unlocked_value, Rmark); // save unlocked object header into the displaced header location on the stack st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes()); // compare object markOop with Rmark and if equal exchange Rscratch with object markOop assert(mark_addr.disp() == 0, "cas must take a zero displacement"); casx_under_lock(mark_addr.base(), Rmark, Rscratch, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr()); // if compare/exchange succeeded we found an unlocked object and we now have locked it // hence we are done cmp(Rmark, Rscratch); brx(Assembler::equal, false, Assembler::pt, done); delayed()->sub(Rscratch, SP, Rscratch); //pull next instruction into delay slot // we did not find an unlocked object so see if this is a recursive case // sub(Rscratch, SP, Rscratch); assert(os::vm_page_size() > 0xfff, "page size too small - change the constant"); andcc(Rscratch, 0xfffff003, Rscratch); brx(Assembler::notZero, false, Assembler::pn, slow_case); delayed()->st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes()); bind(done); } void C1_MacroAssembler::unlock_object(Register Rmark, Register Roop, Register Rbox, Label& slow_case) { assert_different_registers(Rmark, Roop, Rbox); Label done; Address mark_addr(Roop, oopDesc::mark_offset_in_bytes()); assert(mark_addr.disp() == 0, "cas must take a zero displacement"); if (UseBiasedLocking) { // load the object out of the BasicObjectLock ld_ptr(Rbox, BasicObjectLock::obj_offset_in_bytes(), Roop); verify_oop(Roop); biased_locking_exit(mark_addr, Rmark, done); } // Test first it it is a fast recursive unlock ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark); br_null(Rmark, false, Assembler::pt, done); delayed()->nop(); if (!UseBiasedLocking) { // load object ld_ptr(Rbox, BasicObjectLock::obj_offset_in_bytes(), Roop); verify_oop(Roop); } // Check if it is still a light weight lock, this is is true if we see // the stack address of the basicLock in the markOop of the object casx_under_lock(mark_addr.base(), Rbox, Rmark, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr()); cmp(Rbox, Rmark); brx(Assembler::notEqual, false, Assembler::pn, slow_case); delayed()->nop(); // Done bind(done); } void C1_MacroAssembler::try_allocate( Register obj, // result: pointer to object after successful allocation Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise int con_size_in_bytes, // object size in bytes if known at compile time Register t1, // temp register, must be global register for incr_allocated_bytes Register t2, // temp register Label& slow_case // continuation point if fast allocation fails ) { RegisterOrConstant size_in_bytes = var_size_in_bytes->is_valid() ? RegisterOrConstant(var_size_in_bytes) : RegisterOrConstant(con_size_in_bytes); if (UseTLAB) { tlab_allocate(obj, var_size_in_bytes, con_size_in_bytes, t1, slow_case); } else { eden_allocate(obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); incr_allocated_bytes(size_in_bytes, t1, t2); } } void C1_MacroAssembler::initialize_header(Register obj, Register klass, Register len, Register t1, Register t2) { assert_different_registers(obj, klass, len, t1, t2); if (UseBiasedLocking && !len->is_valid()) { ld_ptr(klass, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes(), t1); } else { set((intx)markOopDesc::prototype(), t1); } st_ptr(t1, obj, oopDesc::mark_offset_in_bytes()); if (UseCompressedOops) { // Save klass mov(klass, t1); encode_heap_oop_not_null(t1); stw(t1, obj, oopDesc::klass_offset_in_bytes()); } else { st_ptr(klass, obj, oopDesc::klass_offset_in_bytes()); } if (len->is_valid()) st(len, obj, arrayOopDesc::length_offset_in_bytes()); else if (UseCompressedOops) { store_klass_gap(G0, obj); } } void C1_MacroAssembler::initialize_body(Register base, Register index) { assert_different_registers(base, index); Label loop; bind(loop); subcc(index, HeapWordSize, index); brx(Assembler::greaterEqual, true, Assembler::pt, loop); delayed()->st_ptr(G0, base, index); } void C1_MacroAssembler::allocate_object( Register obj, // result: pointer to object after successful allocation Register t1, // temp register Register t2, // temp register, must be a global register for try_allocate Register t3, // temp register int hdr_size, // object header size in words int obj_size, // object size in words Register klass, // object klass Label& slow_case // continuation point if fast allocation fails ) { assert_different_registers(obj, t1, t2, t3, klass); assert(klass == G5, "must be G5"); // allocate space & initialize header if (!is_simm13(obj_size * wordSize)) { // would need to use extra register to load // object size => go the slow case for now br(Assembler::always, false, Assembler::pt, slow_case); delayed()->nop(); return; } try_allocate(obj, noreg, obj_size * wordSize, t2, t3, slow_case); initialize_object(obj, klass, noreg, obj_size * HeapWordSize, t1, t2); } void C1_MacroAssembler::initialize_object( Register obj, // result: pointer to object after successful allocation Register klass, // object klass Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise int con_size_in_bytes, // object size in bytes if known at compile time Register t1, // temp register Register t2 // temp register ) { const int hdr_size_in_bytes = instanceOopDesc::header_size() * HeapWordSize; initialize_header(obj, klass, noreg, t1, t2); #ifdef ASSERT { Label ok; ld(klass, klassOopDesc::header_size() * HeapWordSize + Klass::layout_helper_offset_in_bytes(), t1); if (var_size_in_bytes != noreg) { cmp(t1, var_size_in_bytes); } else { cmp(t1, con_size_in_bytes); } brx(Assembler::equal, false, Assembler::pt, ok); delayed()->nop(); stop("bad size in initialize_object"); should_not_reach_here(); bind(ok); } #endif // initialize body const int threshold = 5 * HeapWordSize; // approximate break even point for code size if (var_size_in_bytes != noreg) { // use a loop add(obj, hdr_size_in_bytes, t1); // compute address of first element sub(var_size_in_bytes, hdr_size_in_bytes, t2); // compute size of body initialize_body(t1, t2); #ifndef _LP64 } else if (VM_Version::v9_instructions_work() && con_size_in_bytes < threshold * 2) { // on v9 we can do double word stores to fill twice as much space. assert(hdr_size_in_bytes % 8 == 0, "double word aligned"); assert(con_size_in_bytes % 8 == 0, "double word aligned"); for (int i = hdr_size_in_bytes; i < con_size_in_bytes; i += 2 * HeapWordSize) stx(G0, obj, i); #endif } else if (con_size_in_bytes <= threshold) { // use explicit NULL stores for (int i = hdr_size_in_bytes; i < con_size_in_bytes; i += HeapWordSize) st_ptr(G0, obj, i); } else if (con_size_in_bytes > hdr_size_in_bytes) { // use a loop const Register base = t1; const Register index = t2; add(obj, hdr_size_in_bytes, base); // compute address of first element // compute index = number of words to clear set(con_size_in_bytes - hdr_size_in_bytes, index); initialize_body(base, index); } if (CURRENT_ENV->dtrace_alloc_probes()) { assert(obj == O0, "must be"); call(CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::dtrace_object_alloc_id)), relocInfo::runtime_call_type); delayed()->nop(); } verify_oop(obj); } void C1_MacroAssembler::allocate_array( Register obj, // result: pointer to array after successful allocation Register len, // array length Register t1, // temp register Register t2, // temp register Register t3, // temp register int hdr_size, // object header size in words int elt_size, // element size in bytes Register klass, // object klass Label& slow_case // continuation point if fast allocation fails ) { assert_different_registers(obj, len, t1, t2, t3, klass); assert(klass == G5, "must be G5"); assert(t1 == G1, "must be G1"); // determine alignment mask assert(!(BytesPerWord & 1), "must be a multiple of 2 for masking code to work"); // check for negative or excessive length // note: the maximum length allowed is chosen so that arrays of any // element size with this length are always smaller or equal // to the largest integer (i.e., array size computation will // not overflow) set(max_array_allocation_length, t1); cmp(len, t1); br(Assembler::greaterUnsigned, false, Assembler::pn, slow_case); // compute array size // note: if 0 <= len <= max_length, len*elt_size + header + alignment is // smaller or equal to the largest integer; also, since top is always // aligned, we can do the alignment here instead of at the end address // computation const Register arr_size = t1; switch (elt_size) { case 1: delayed()->mov(len, arr_size); break; case 2: delayed()->sll(len, 1, arr_size); break; case 4: delayed()->sll(len, 2, arr_size); break; case 8: delayed()->sll(len, 3, arr_size); break; default: ShouldNotReachHere(); } add(arr_size, hdr_size * wordSize + MinObjAlignmentInBytesMask, arr_size); // add space for header & alignment and3(arr_size, ~MinObjAlignmentInBytesMask, arr_size); // align array size // allocate space & initialize header if (UseTLAB) { tlab_allocate(obj, arr_size, 0, t2, slow_case); } else { eden_allocate(obj, arr_size, 0, t2, t3, slow_case); } initialize_header(obj, klass, len, t2, t3); // initialize body const Register base = t2; const Register index = t3; add(obj, hdr_size * wordSize, base); // compute address of first element sub(arr_size, hdr_size * wordSize, index); // compute index = number of words to clear initialize_body(base, index); if (CURRENT_ENV->dtrace_alloc_probes()) { assert(obj == O0, "must be"); call(CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::dtrace_object_alloc_id)), relocInfo::runtime_call_type); delayed()->nop(); } verify_oop(obj); } #ifndef PRODUCT void C1_MacroAssembler::verify_stack_oop(int stack_offset) { if (!VerifyOops) return; verify_oop_addr(Address(SP, stack_offset + STACK_BIAS)); } void C1_MacroAssembler::verify_not_null_oop(Register r) { Label not_null; br_zero(Assembler::notEqual, false, Assembler::pt, r, not_null); delayed()->nop(); stop("non-null oop required"); bind(not_null); if (!VerifyOops) return; verify_oop(r); } void C1_MacroAssembler::invalidate_registers(bool iregisters, bool lregisters, bool oregisters, Register preserve1, Register preserve2) { if (iregisters) { for (int i = 0; i < 6; i++) { Register r = as_iRegister(i); if (r != preserve1 && r != preserve2) set(0xdead, r); } } if (oregisters) { for (int i = 0; i < 6; i++) { Register r = as_oRegister(i); if (r != preserve1 && r != preserve2) set(0xdead, r); } } if (lregisters) { for (int i = 0; i < 8; i++) { Register r = as_lRegister(i); if (r != preserve1 && r != preserve2) set(0xdead, r); } } } #endif