/* * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_GC_INTERFACE_COLLECTEDHEAP_INLINE_HPP #define SHARE_VM_GC_INTERFACE_COLLECTEDHEAP_INLINE_HPP #include "gc_interface/collectedHeap.hpp" #include "memory/threadLocalAllocBuffer.inline.hpp" #include "memory/universe.hpp" #include "oops/arrayOop.hpp" #include "prims/jvmtiExport.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/thread.hpp" #include "services/lowMemoryDetector.hpp" #include "utilities/copy.hpp" #ifdef TARGET_OS_FAMILY_linux # include "thread_linux.inline.hpp" #endif #ifdef TARGET_OS_FAMILY_solaris # include "thread_solaris.inline.hpp" #endif #ifdef TARGET_OS_FAMILY_windows # include "thread_windows.inline.hpp" #endif // Inline allocation implementations. void CollectedHeap::post_allocation_setup_common(KlassHandle klass, HeapWord* obj, size_t size) { post_allocation_setup_no_klass_install(klass, obj, size); post_allocation_install_obj_klass(klass, oop(obj), (int) size); } void CollectedHeap::post_allocation_setup_no_klass_install(KlassHandle klass, HeapWord* objPtr, size_t size) { oop obj = (oop)objPtr; assert(obj != NULL, "NULL object pointer"); if (UseBiasedLocking && (klass() != NULL)) { obj->set_mark(klass->prototype_header()); } else { // May be bootstrapping obj->set_mark(markOopDesc::prototype()); } } void CollectedHeap::post_allocation_install_obj_klass(KlassHandle klass, oop obj, int size) { // These asserts are kind of complicated because of klassKlass // and the beginning of the world. assert(klass() != NULL || !Universe::is_fully_initialized(), "NULL klass"); assert(klass() == NULL || klass()->is_klass(), "not a klass"); assert(klass() == NULL || klass()->klass_part() != NULL, "not a klass"); assert(obj != NULL, "NULL object pointer"); obj->set_klass(klass()); assert(!Universe::is_fully_initialized() || obj->blueprint() != NULL, "missing blueprint"); } // Support for jvmti and dtrace inline void post_allocation_notify(KlassHandle klass, oop obj) { // support low memory notifications (no-op if not enabled) LowMemoryDetector::detect_low_memory_for_collected_pools(); // support for JVMTI VMObjectAlloc event (no-op if not enabled) JvmtiExport::vm_object_alloc_event_collector(obj); if (DTraceAllocProbes) { // support for Dtrace object alloc event (no-op most of the time) if (klass() != NULL && klass()->klass_part()->name() != NULL) { SharedRuntime::dtrace_object_alloc(obj); } } } void CollectedHeap::post_allocation_setup_obj(KlassHandle klass, HeapWord* obj, size_t size) { post_allocation_setup_common(klass, obj, size); assert(Universe::is_bootstrapping() || !((oop)obj)->blueprint()->oop_is_array(), "must not be an array"); // notify jvmti and dtrace post_allocation_notify(klass, (oop)obj); } void CollectedHeap::post_allocation_setup_array(KlassHandle klass, HeapWord* obj, size_t size, int length) { // Set array length before setting the _klass field // in post_allocation_setup_common() because the klass field // indicates that the object is parsable by concurrent GC. assert(length >= 0, "length should be non-negative"); ((arrayOop)obj)->set_length(length); post_allocation_setup_common(klass, obj, size); assert(((oop)obj)->blueprint()->oop_is_array(), "must be an array"); // notify jvmti and dtrace (must be after length is set for dtrace) post_allocation_notify(klass, (oop)obj); } HeapWord* CollectedHeap::common_mem_allocate_noinit(size_t size, TRAPS) { // Clear unhandled oops for memory allocation. Memory allocation might // not take out a lock if from tlab, so clear here. CHECK_UNHANDLED_OOPS_ONLY(THREAD->clear_unhandled_oops();) if (HAS_PENDING_EXCEPTION) { NOT_PRODUCT(guarantee(false, "Should not allocate with exception pending")); return NULL; // caller does a CHECK_0 too } HeapWord* result = NULL; if (UseTLAB) { result = CollectedHeap::allocate_from_tlab(THREAD, size); if (result != NULL) { assert(!HAS_PENDING_EXCEPTION, "Unexpected exception, will result in uninitialized storage"); return result; } } bool gc_overhead_limit_was_exceeded = false; result = Universe::heap()->mem_allocate(size, &gc_overhead_limit_was_exceeded); if (result != NULL) { NOT_PRODUCT(Universe::heap()-> check_for_non_bad_heap_word_value(result, size)); assert(!HAS_PENDING_EXCEPTION, "Unexpected exception, will result in uninitialized storage"); THREAD->incr_allocated_bytes(size * HeapWordSize); return result; } if (!gc_overhead_limit_was_exceeded) { // -XX:+HeapDumpOnOutOfMemoryError and -XX:OnOutOfMemoryError support report_java_out_of_memory("Java heap space"); if (JvmtiExport::should_post_resource_exhausted()) { JvmtiExport::post_resource_exhausted( JVMTI_RESOURCE_EXHAUSTED_OOM_ERROR | JVMTI_RESOURCE_EXHAUSTED_JAVA_HEAP, "Java heap space"); } THROW_OOP_0(Universe::out_of_memory_error_java_heap()); } else { // -XX:+HeapDumpOnOutOfMemoryError and -XX:OnOutOfMemoryError support report_java_out_of_memory("GC overhead limit exceeded"); if (JvmtiExport::should_post_resource_exhausted()) { JvmtiExport::post_resource_exhausted( JVMTI_RESOURCE_EXHAUSTED_OOM_ERROR | JVMTI_RESOURCE_EXHAUSTED_JAVA_HEAP, "GC overhead limit exceeded"); } THROW_OOP_0(Universe::out_of_memory_error_gc_overhead_limit()); } } HeapWord* CollectedHeap::common_mem_allocate_init(size_t size, TRAPS) { HeapWord* obj = common_mem_allocate_noinit(size, CHECK_NULL); init_obj(obj, size); return obj; } // Need to investigate, do we really want to throw OOM exception here? HeapWord* CollectedHeap::common_permanent_mem_allocate_noinit(size_t size, TRAPS) { if (HAS_PENDING_EXCEPTION) { NOT_PRODUCT(guarantee(false, "Should not allocate with exception pending")); return NULL; // caller does a CHECK_NULL too } #ifdef ASSERT if (CIFireOOMAt > 0 && THREAD->is_Compiler_thread() && ++_fire_out_of_memory_count >= CIFireOOMAt) { // For testing of OOM handling in the CI throw an OOM and see how // it does. Historically improper handling of these has resulted // in crashes which we really don't want to have in the CI. THROW_OOP_0(Universe::out_of_memory_error_perm_gen()); } #endif HeapWord* result = Universe::heap()->permanent_mem_allocate(size); if (result != NULL) { NOT_PRODUCT(Universe::heap()-> check_for_non_bad_heap_word_value(result, size)); assert(!HAS_PENDING_EXCEPTION, "Unexpected exception, will result in uninitialized storage"); return result; } // -XX:+HeapDumpOnOutOfMemoryError and -XX:OnOutOfMemoryError support report_java_out_of_memory("PermGen space"); if (JvmtiExport::should_post_resource_exhausted()) { JvmtiExport::post_resource_exhausted( JVMTI_RESOURCE_EXHAUSTED_OOM_ERROR, "PermGen space"); } THROW_OOP_0(Universe::out_of_memory_error_perm_gen()); } HeapWord* CollectedHeap::common_permanent_mem_allocate_init(size_t size, TRAPS) { HeapWord* obj = common_permanent_mem_allocate_noinit(size, CHECK_NULL); init_obj(obj, size); return obj; } HeapWord* CollectedHeap::allocate_from_tlab(Thread* thread, size_t size) { assert(UseTLAB, "should use UseTLAB"); HeapWord* obj = thread->tlab().allocate(size); if (obj != NULL) { return obj; } // Otherwise... return allocate_from_tlab_slow(thread, size); } void CollectedHeap::init_obj(HeapWord* obj, size_t size) { assert(obj != NULL, "cannot initialize NULL object"); const size_t hs = oopDesc::header_size(); assert(size >= hs, "unexpected object size"); ((oop)obj)->set_klass_gap(0); Copy::fill_to_aligned_words(obj + hs, size - hs); } oop CollectedHeap::obj_allocate(KlassHandle klass, int size, TRAPS) { debug_only(check_for_valid_allocation_state()); assert(!Universe::heap()->is_gc_active(), "Allocation during gc not allowed"); assert(size >= 0, "int won't convert to size_t"); HeapWord* obj = common_mem_allocate_init(size, CHECK_NULL); post_allocation_setup_obj(klass, obj, size); NOT_PRODUCT(Universe::heap()->check_for_bad_heap_word_value(obj, size)); return (oop)obj; } oop CollectedHeap::array_allocate(KlassHandle klass, int size, int length, TRAPS) { debug_only(check_for_valid_allocation_state()); assert(!Universe::heap()->is_gc_active(), "Allocation during gc not allowed"); assert(size >= 0, "int won't convert to size_t"); HeapWord* obj = common_mem_allocate_init(size, CHECK_NULL); post_allocation_setup_array(klass, obj, size, length); NOT_PRODUCT(Universe::heap()->check_for_bad_heap_word_value(obj, size)); return (oop)obj; } oop CollectedHeap::permanent_obj_allocate(KlassHandle klass, int size, TRAPS) { oop obj = permanent_obj_allocate_no_klass_install(klass, size, CHECK_NULL); post_allocation_install_obj_klass(klass, obj, size); NOT_PRODUCT(Universe::heap()->check_for_bad_heap_word_value((HeapWord*) obj, size)); return obj; } oop CollectedHeap::permanent_obj_allocate_no_klass_install(KlassHandle klass, int size, TRAPS) { debug_only(check_for_valid_allocation_state()); assert(!Universe::heap()->is_gc_active(), "Allocation during gc not allowed"); assert(size >= 0, "int won't convert to size_t"); HeapWord* obj = common_permanent_mem_allocate_init(size, CHECK_NULL); post_allocation_setup_no_klass_install(klass, obj, size); #ifndef PRODUCT const size_t hs = oopDesc::header_size(); Universe::heap()->check_for_bad_heap_word_value(obj+hs, size-hs); #endif return (oop)obj; } oop CollectedHeap::permanent_array_allocate(KlassHandle klass, int size, int length, TRAPS) { debug_only(check_for_valid_allocation_state()); assert(!Universe::heap()->is_gc_active(), "Allocation during gc not allowed"); assert(size >= 0, "int won't convert to size_t"); HeapWord* obj = common_permanent_mem_allocate_init(size, CHECK_NULL); post_allocation_setup_array(klass, obj, size, length); NOT_PRODUCT(Universe::heap()->check_for_bad_heap_word_value(obj, size)); return (oop)obj; } // Returns "TRUE" if "p" is a method oop in the // current heap with high probability. NOTE: The main // current consumers of this interface are Forte:: // and ThreadProfiler::. In these cases, the // interpreter frame from which "p" came, may be // under construction when sampled asynchronously, so // the clients want to check that it represents a // valid method before using it. Nonetheless since // the clients do not typically lock out GC, the // predicate is_valid_method() is not stable, so // it is possible that by the time "p" is used, it // is no longer valid. inline bool CollectedHeap::is_valid_method(oop p) const { return p != NULL && // Check whether it is aligned at a HeapWord boundary. Space::is_aligned(p) && // Check whether "method" is in the allocated part of the // permanent generation -- this needs to be checked before // p->klass() below to avoid a SEGV (but see below // for a potential window of vulnerability). is_permanent((void*)p) && // See if GC is active; however, there is still an // apparently unavoidable window after this call // and before the client of this interface uses "p". // If the client chooses not to lock out GC, then // it's a risk the client must accept. !is_gc_active() && // Check that p is a methodOop. p->klass() == Universe::methodKlassObj(); } #ifndef PRODUCT inline bool CollectedHeap::promotion_should_fail(volatile size_t* count) { // Access to count is not atomic; the value does not have to be exact. if (PromotionFailureALot) { const size_t gc_num = total_collections(); const size_t elapsed_gcs = gc_num - _promotion_failure_alot_gc_number; if (elapsed_gcs >= PromotionFailureALotInterval) { // Test for unsigned arithmetic wrap-around. if (++*count >= PromotionFailureALotCount) { *count = 0; return true; } } } return false; } inline bool CollectedHeap::promotion_should_fail() { return promotion_should_fail(&_promotion_failure_alot_count); } inline void CollectedHeap::reset_promotion_should_fail(volatile size_t* count) { if (PromotionFailureALot) { _promotion_failure_alot_gc_number = total_collections(); *count = 0; } } inline void CollectedHeap::reset_promotion_should_fail() { reset_promotion_should_fail(&_promotion_failure_alot_count); } #endif // #ifndef PRODUCT #endif // SHARE_VM_GC_INTERFACE_COLLECTEDHEAP_INLINE_HPP