/* * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "c1/c1_Defs.hpp" #include "c1/c1_MacroAssembler.hpp" #include "c1/c1_Runtime1.hpp" #include "interpreter/interpreter.hpp" #include "nativeInst_sparc.hpp" #include "oops/compiledICHolder.hpp" #include "oops/oop.inline.hpp" #include "prims/jvmtiExport.hpp" #include "register_sparc.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/signature.hpp" #include "runtime/vframeArray.hpp" #include "utilities/macros.hpp" #include "vmreg_sparc.inline.hpp" // Implementation of StubAssembler int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry_point, int number_of_arguments) { // for sparc changing the number of arguments doesn't change // anything about the frame size so we'll always lie and claim that // we are only passing 1 argument. set_num_rt_args(1); assert_not_delayed(); // bang stack before going to runtime set(-os::vm_page_size() + STACK_BIAS, G3_scratch); st(G0, SP, G3_scratch); // debugging support assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); set_last_Java_frame(SP, noreg); if (VerifyThread) mov(G2_thread, O0); // about to be smashed; pass early save_thread(L7_thread_cache); // do the call call(entry_point, relocInfo::runtime_call_type); if (!VerifyThread) { delayed()->mov(G2_thread, O0); // pass thread as first argument } else { delayed()->nop(); // (thread already passed) } int call_offset = offset(); // offset of return address restore_thread(L7_thread_cache); reset_last_Java_frame(); // check for pending exceptions { Label L; Address exception_addr(G2_thread, Thread::pending_exception_offset()); ld_ptr(exception_addr, Gtemp); br_null_short(Gtemp, pt, L); Address vm_result_addr(G2_thread, JavaThread::vm_result_offset()); st_ptr(G0, vm_result_addr); Address vm_result_addr_2(G2_thread, JavaThread::vm_result_2_offset()); st_ptr(G0, vm_result_addr_2); if (frame_size() == no_frame_size) { // we use O7 linkage so that forward_exception_entry has the issuing PC call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type); delayed()->restore(); } else if (_stub_id == Runtime1::forward_exception_id) { should_not_reach_here(); } else { AddressLiteral exc(Runtime1::entry_for(Runtime1::forward_exception_id)); jump_to(exc, G4); delayed()->nop(); } bind(L); } // get oop result if there is one and reset the value in the thread if (oop_result1->is_valid()) { // get oop result if there is one and reset it in the thread get_vm_result (oop_result1); } else { // be a little paranoid and clear the result Address vm_result_addr(G2_thread, JavaThread::vm_result_offset()); st_ptr(G0, vm_result_addr); } // get second result if there is one and reset the value in the thread if (metadata_result->is_valid()) { get_vm_result_2 (metadata_result); } else { // be a little paranoid and clear the result Address vm_result_addr_2(G2_thread, JavaThread::vm_result_2_offset()); st_ptr(G0, vm_result_addr_2); } return call_offset; } int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1) { // O0 is reserved for the thread mov(arg1, O1); return call_RT(oop_result1, metadata_result, entry, 1); } int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2) { // O0 is reserved for the thread mov(arg1, O1); mov(arg2, O2); assert(arg2 != O1, "smashed argument"); return call_RT(oop_result1, metadata_result, entry, 2); } int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2, Register arg3) { // O0 is reserved for the thread mov(arg1, O1); mov(arg2, O2); assert(arg2 != O1, "smashed argument"); mov(arg3, O3); assert(arg3 != O1 && arg3 != O2, "smashed argument"); return call_RT(oop_result1, metadata_result, entry, 3); } // Implementation of Runtime1 #define __ sasm-> static int cpu_reg_save_offsets[FrameMap::nof_cpu_regs]; static int fpu_reg_save_offsets[FrameMap::nof_fpu_regs]; static int reg_save_size_in_words; static int frame_size_in_bytes = -1; static OopMap* generate_oop_map(StubAssembler* sasm, bool save_fpu_registers) { assert(frame_size_in_bytes == __ total_frame_size_in_bytes(reg_save_size_in_words), "mismatch in calculation"); sasm->set_frame_size(frame_size_in_bytes / BytesPerWord); int frame_size_in_slots = frame_size_in_bytes / sizeof(jint); OopMap* oop_map = new OopMap(frame_size_in_slots, 0); int i; for (i = 0; i < FrameMap::nof_cpu_regs; i++) { Register r = as_Register(i); if (r == G1 || r == G3 || r == G4 || r == G5) { int sp_offset = cpu_reg_save_offsets[i]; oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset), r->as_VMReg()); } } if (save_fpu_registers) { for (i = 0; i < FrameMap::nof_fpu_regs; i++) { FloatRegister r = as_FloatRegister(i); int sp_offset = fpu_reg_save_offsets[i]; oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset), r->as_VMReg()); } } return oop_map; } static OopMap* save_live_registers(StubAssembler* sasm, bool save_fpu_registers = true) { assert(frame_size_in_bytes == __ total_frame_size_in_bytes(reg_save_size_in_words), "mismatch in calculation"); __ save_frame_c1(frame_size_in_bytes); // Record volatile registers as callee-save values in an OopMap so their save locations will be // propagated to the caller frame's RegisterMap during StackFrameStream construction (needed for // deoptimization; see compiledVFrame::create_stack_value). The caller's I, L and O registers // are saved in register windows - I's and L's in the caller's frame and O's in the stub frame // (as the stub's I's) when the runtime routine called by the stub creates its frame. // OopMap frame sizes are in c2 stack slot sizes (sizeof(jint)) int i; for (i = 0; i < FrameMap::nof_cpu_regs; i++) { Register r = as_Register(i); if (r == G1 || r == G3 || r == G4 || r == G5) { int sp_offset = cpu_reg_save_offsets[i]; __ st_ptr(r, SP, (sp_offset * BytesPerWord) + STACK_BIAS); } } if (save_fpu_registers) { for (i = 0; i < FrameMap::nof_fpu_regs; i++) { FloatRegister r = as_FloatRegister(i); int sp_offset = fpu_reg_save_offsets[i]; __ stf(FloatRegisterImpl::S, r, SP, (sp_offset * BytesPerWord) + STACK_BIAS); } } return generate_oop_map(sasm, save_fpu_registers); } static void restore_live_registers(StubAssembler* sasm, bool restore_fpu_registers = true) { for (int i = 0; i < FrameMap::nof_cpu_regs; i++) { Register r = as_Register(i); if (r == G1 || r == G3 || r == G4 || r == G5) { __ ld_ptr(SP, (cpu_reg_save_offsets[i] * BytesPerWord) + STACK_BIAS, r); } } if (restore_fpu_registers) { for (int i = 0; i < FrameMap::nof_fpu_regs; i++) { FloatRegister r = as_FloatRegister(i); __ ldf(FloatRegisterImpl::S, SP, (fpu_reg_save_offsets[i] * BytesPerWord) + STACK_BIAS, r); } } } void Runtime1::initialize_pd() { // compute word offsets from SP at which live (non-windowed) registers are captured by stub routines // // A stub routine will have a frame that is at least large enough to hold // a register window save area (obviously) and the volatile g registers // and floating registers. A user of save_live_registers can have a frame // that has more scratch area in it (although typically they will use L-regs). // in that case the frame will look like this (stack growing down) // // FP -> | | // | scratch mem | // | " " | // -------------- // | float regs | // | " " | // --------------- // | G regs | // | " " | // --------------- // | abi reg. | // | window save | // | area | // SP -> --------------- // int i; int sp_offset = round_to(frame::register_save_words, 2); // start doubleword aligned // only G int registers are saved explicitly; others are found in register windows for (i = 0; i < FrameMap::nof_cpu_regs; i++) { Register r = as_Register(i); if (r == G1 || r == G3 || r == G4 || r == G5) { cpu_reg_save_offsets[i] = sp_offset; sp_offset++; } } // all float registers are saved explicitly assert(FrameMap::nof_fpu_regs == 32, "double registers not handled here"); for (i = 0; i < FrameMap::nof_fpu_regs; i++) { fpu_reg_save_offsets[i] = sp_offset; sp_offset++; } reg_save_size_in_words = sp_offset - frame::memory_parameter_word_sp_offset; // this should match assembler::total_frame_size_in_bytes, which // isn't callable from this context. It's checked by an assert when // it's used though. frame_size_in_bytes = align_size_up(sp_offset * wordSize, 8); } OopMapSet* Runtime1::generate_exception_throw(StubAssembler* sasm, address target, bool has_argument) { // make a frame and preserve the caller's caller-save registers OopMap* oop_map = save_live_registers(sasm); int call_offset; if (!has_argument) { call_offset = __ call_RT(noreg, noreg, target); } else { call_offset = __ call_RT(noreg, noreg, target, G4); } OopMapSet* oop_maps = new OopMapSet(); oop_maps->add_gc_map(call_offset, oop_map); __ should_not_reach_here(); return oop_maps; } OopMapSet* Runtime1::generate_stub_call(StubAssembler* sasm, Register result, address target, Register arg1, Register arg2, Register arg3) { // make a frame and preserve the caller's caller-save registers OopMap* oop_map = save_live_registers(sasm); int call_offset; if (arg1 == noreg) { call_offset = __ call_RT(result, noreg, target); } else if (arg2 == noreg) { call_offset = __ call_RT(result, noreg, target, arg1); } else if (arg3 == noreg) { call_offset = __ call_RT(result, noreg, target, arg1, arg2); } else { call_offset = __ call_RT(result, noreg, target, arg1, arg2, arg3); } OopMapSet* oop_maps = NULL; oop_maps = new OopMapSet(); oop_maps->add_gc_map(call_offset, oop_map); restore_live_registers(sasm); __ ret(); __ delayed()->restore(); return oop_maps; } OopMapSet* Runtime1::generate_patching(StubAssembler* sasm, address target) { // make a frame and preserve the caller's caller-save registers OopMap* oop_map = save_live_registers(sasm); // call the runtime patching routine, returns non-zero if nmethod got deopted. int call_offset = __ call_RT(noreg, noreg, target); OopMapSet* oop_maps = new OopMapSet(); oop_maps->add_gc_map(call_offset, oop_map); // re-execute the patched instruction or, if the nmethod was deoptmized, return to the // deoptimization handler entry that will cause re-execution of the current bytecode DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob(); assert(deopt_blob != NULL, "deoptimization blob must have been created"); Label no_deopt; __ br_null_short(O0, Assembler::pt, no_deopt); // return to the deoptimization handler entry for unpacking and rexecute // if we simply returned the we'd deopt as if any call we patched had just // returned. restore_live_registers(sasm); AddressLiteral dest(deopt_blob->unpack_with_reexecution()); __ jump_to(dest, O0); __ delayed()->restore(); __ bind(no_deopt); restore_live_registers(sasm); __ ret(); __ delayed()->restore(); return oop_maps; } OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) { OopMapSet* oop_maps = NULL; // for better readability const bool must_gc_arguments = true; const bool dont_gc_arguments = false; // stub code & info for the different stubs switch (id) { case forward_exception_id: { oop_maps = generate_handle_exception(id, sasm); } break; case new_instance_id: case fast_new_instance_id: case fast_new_instance_init_check_id: { Register G5_klass = G5; // Incoming Register O0_obj = O0; // Outgoing if (id == new_instance_id) { __ set_info("new_instance", dont_gc_arguments); } else if (id == fast_new_instance_id) { __ set_info("fast new_instance", dont_gc_arguments); } else { assert(id == fast_new_instance_init_check_id, "bad StubID"); __ set_info("fast new_instance init check", dont_gc_arguments); } if ((id == fast_new_instance_id || id == fast_new_instance_init_check_id) && UseTLAB && FastTLABRefill) { Label slow_path; Register G1_obj_size = G1; Register G3_t1 = G3; Register G4_t2 = G4; assert_different_registers(G5_klass, G1_obj_size, G3_t1, G4_t2); // Push a frame since we may do dtrace notification for the // allocation which requires calling out and we don't want // to stomp the real return address. __ save_frame(0); if (id == fast_new_instance_init_check_id) { // make sure the klass is initialized __ ldub(G5_klass, in_bytes(InstanceKlass::init_state_offset()), G3_t1); __ cmp_and_br_short(G3_t1, InstanceKlass::fully_initialized, Assembler::notEqual, Assembler::pn, slow_path); } #ifdef ASSERT // assert object can be fast path allocated { Label ok, not_ok; __ ld(G5_klass, in_bytes(Klass::layout_helper_offset()), G1_obj_size); // make sure it's an instance (LH > 0) __ cmp_and_br_short(G1_obj_size, 0, Assembler::lessEqual, Assembler::pn, not_ok); __ btst(Klass::_lh_instance_slow_path_bit, G1_obj_size); __ br(Assembler::zero, false, Assembler::pn, ok); __ delayed()->nop(); __ bind(not_ok); __ stop("assert(can be fast path allocated)"); __ should_not_reach_here(); __ bind(ok); } #endif // ASSERT // if we got here then the TLAB allocation failed, so try // refilling the TLAB or allocating directly from eden. Label retry_tlab, try_eden; __ tlab_refill(retry_tlab, try_eden, slow_path); // preserves G5_klass __ bind(retry_tlab); // get the instance size __ ld(G5_klass, in_bytes(Klass::layout_helper_offset()), G1_obj_size); __ tlab_allocate(O0_obj, G1_obj_size, 0, G3_t1, slow_path); __ initialize_object(O0_obj, G5_klass, G1_obj_size, 0, G3_t1, G4_t2); __ verify_oop(O0_obj); __ mov(O0, I0); __ ret(); __ delayed()->restore(); __ bind(try_eden); // get the instance size __ ld(G5_klass, in_bytes(Klass::layout_helper_offset()), G1_obj_size); __ eden_allocate(O0_obj, G1_obj_size, 0, G3_t1, G4_t2, slow_path); __ incr_allocated_bytes(G1_obj_size, G3_t1, G4_t2); __ initialize_object(O0_obj, G5_klass, G1_obj_size, 0, G3_t1, G4_t2); __ verify_oop(O0_obj); __ mov(O0, I0); __ ret(); __ delayed()->restore(); __ bind(slow_path); // pop this frame so generate_stub_call can push it's own __ restore(); } oop_maps = generate_stub_call(sasm, I0, CAST_FROM_FN_PTR(address, new_instance), G5_klass); // I0->O0: new instance } break; case counter_overflow_id: // G4 contains bci, G5 contains method oop_maps = generate_stub_call(sasm, noreg, CAST_FROM_FN_PTR(address, counter_overflow), G4, G5); break; case new_type_array_id: case new_object_array_id: { Register G5_klass = G5; // Incoming Register G4_length = G4; // Incoming Register O0_obj = O0; // Outgoing Address klass_lh(G5_klass, Klass::layout_helper_offset()); assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise"); assert(Klass::_lh_header_size_mask == 0xFF, "bytewise"); // Use this offset to pick out an individual byte of the layout_helper: const int klass_lh_header_size_offset = ((BytesPerInt - 1) // 3 - 2 selects byte {0,1,0,0} - Klass::_lh_header_size_shift / BitsPerByte); if (id == new_type_array_id) { __ set_info("new_type_array", dont_gc_arguments); } else { __ set_info("new_object_array", dont_gc_arguments); } #ifdef ASSERT // assert object type is really an array of the proper kind { Label ok; Register G3_t1 = G3; __ ld(klass_lh, G3_t1); __ sra(G3_t1, Klass::_lh_array_tag_shift, G3_t1); int tag = ((id == new_type_array_id) ? Klass::_lh_array_tag_type_value : Klass::_lh_array_tag_obj_value); __ cmp_and_brx_short(G3_t1, tag, Assembler::equal, Assembler::pt, ok); __ stop("assert(is an array klass)"); __ should_not_reach_here(); __ bind(ok); } #endif // ASSERT if (UseTLAB && FastTLABRefill) { Label slow_path; Register G1_arr_size = G1; Register G3_t1 = G3; Register O1_t2 = O1; assert_different_registers(G5_klass, G4_length, G1_arr_size, G3_t1, O1_t2); // check that array length is small enough for fast path __ set(C1_MacroAssembler::max_array_allocation_length, G3_t1); __ cmp_and_br_short(G4_length, G3_t1, Assembler::greaterUnsigned, Assembler::pn, slow_path); // if we got here then the TLAB allocation failed, so try // refilling the TLAB or allocating directly from eden. Label retry_tlab, try_eden; __ tlab_refill(retry_tlab, try_eden, slow_path); // preserves G4_length and G5_klass __ bind(retry_tlab); // get the allocation size: (length << (layout_helper & 0x1F)) + header_size __ ld(klass_lh, G3_t1); __ sll(G4_length, G3_t1, G1_arr_size); __ srl(G3_t1, Klass::_lh_header_size_shift, G3_t1); __ and3(G3_t1, Klass::_lh_header_size_mask, G3_t1); __ add(G1_arr_size, G3_t1, G1_arr_size); __ add(G1_arr_size, MinObjAlignmentInBytesMask, G1_arr_size); // align up __ and3(G1_arr_size, ~MinObjAlignmentInBytesMask, G1_arr_size); __ tlab_allocate(O0_obj, G1_arr_size, 0, G3_t1, slow_path); // preserves G1_arr_size __ initialize_header(O0_obj, G5_klass, G4_length, G3_t1, O1_t2); __ ldub(klass_lh, G3_t1, klass_lh_header_size_offset); __ sub(G1_arr_size, G3_t1, O1_t2); // body length __ add(O0_obj, G3_t1, G3_t1); // body start __ initialize_body(G3_t1, O1_t2); __ verify_oop(O0_obj); __ retl(); __ delayed()->nop(); __ bind(try_eden); // get the allocation size: (length << (layout_helper & 0x1F)) + header_size __ ld(klass_lh, G3_t1); __ sll(G4_length, G3_t1, G1_arr_size); __ srl(G3_t1, Klass::_lh_header_size_shift, G3_t1); __ and3(G3_t1, Klass::_lh_header_size_mask, G3_t1); __ add(G1_arr_size, G3_t1, G1_arr_size); __ add(G1_arr_size, MinObjAlignmentInBytesMask, G1_arr_size); __ and3(G1_arr_size, ~MinObjAlignmentInBytesMask, G1_arr_size); __ eden_allocate(O0_obj, G1_arr_size, 0, G3_t1, O1_t2, slow_path); // preserves G1_arr_size __ incr_allocated_bytes(G1_arr_size, G3_t1, O1_t2); __ initialize_header(O0_obj, G5_klass, G4_length, G3_t1, O1_t2); __ ldub(klass_lh, G3_t1, klass_lh_header_size_offset); __ sub(G1_arr_size, G3_t1, O1_t2); // body length __ add(O0_obj, G3_t1, G3_t1); // body start __ initialize_body(G3_t1, O1_t2); __ verify_oop(O0_obj); __ retl(); __ delayed()->nop(); __ bind(slow_path); } if (id == new_type_array_id) { oop_maps = generate_stub_call(sasm, I0, CAST_FROM_FN_PTR(address, new_type_array), G5_klass, G4_length); } else { oop_maps = generate_stub_call(sasm, I0, CAST_FROM_FN_PTR(address, new_object_array), G5_klass, G4_length); } // I0 -> O0: new array } break; case new_multi_array_id: { // O0: klass // O1: rank // O2: address of 1st dimension __ set_info("new_multi_array", dont_gc_arguments); oop_maps = generate_stub_call(sasm, I0, CAST_FROM_FN_PTR(address, new_multi_array), I0, I1, I2); // I0 -> O0: new multi array } break; case register_finalizer_id: { __ set_info("register_finalizer", dont_gc_arguments); // load the klass and check the has finalizer flag Label register_finalizer; Register t = O1; __ load_klass(O0, t); __ ld(t, in_bytes(Klass::access_flags_offset()), t); __ set(JVM_ACC_HAS_FINALIZER, G3); __ andcc(G3, t, G0); __ br(Assembler::notZero, false, Assembler::pt, register_finalizer); __ delayed()->nop(); // do a leaf return __ retl(); __ delayed()->nop(); __ bind(register_finalizer); OopMap* oop_map = save_live_registers(sasm); int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, SharedRuntime::register_finalizer), I0); oop_maps = new OopMapSet(); oop_maps->add_gc_map(call_offset, oop_map); // Now restore all the live registers restore_live_registers(sasm); __ ret(); __ delayed()->restore(); } break; case throw_range_check_failed_id: { __ set_info("range_check_failed", dont_gc_arguments); // arguments will be discarded // G4: index oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_range_check_exception), true); } break; case throw_index_exception_id: { __ set_info("index_range_check_failed", dont_gc_arguments); // arguments will be discarded // G4: index oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_index_exception), true); } break; case throw_div0_exception_id: { __ set_info("throw_div0_exception", dont_gc_arguments); oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_div0_exception), false); } break; case throw_null_pointer_exception_id: { __ set_info("throw_null_pointer_exception", dont_gc_arguments); oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_null_pointer_exception), false); } break; case handle_exception_id: { __ set_info("handle_exception", dont_gc_arguments); oop_maps = generate_handle_exception(id, sasm); } break; case handle_exception_from_callee_id: { __ set_info("handle_exception_from_callee", dont_gc_arguments); oop_maps = generate_handle_exception(id, sasm); } break; case unwind_exception_id: { // O0: exception // I7: address of call to this method __ set_info("unwind_exception", dont_gc_arguments); __ mov(Oexception, Oexception->after_save()); __ add(I7, frame::pc_return_offset, Oissuing_pc->after_save()); __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), G2_thread, Oissuing_pc->after_save()); __ verify_not_null_oop(Oexception->after_save()); // Restore SP from L7 if the exception PC is a method handle call site. __ mov(O0, G5); // Save the target address. __ lduw(Address(G2_thread, JavaThread::is_method_handle_return_offset()), L0); __ tst(L0); // Condition codes are preserved over the restore. __ restore(); __ jmp(G5, 0); __ delayed()->movcc(Assembler::notZero, false, Assembler::icc, L7_mh_SP_save, SP); // Restore SP if required. } break; case throw_array_store_exception_id: { __ set_info("throw_array_store_exception", dont_gc_arguments); oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_array_store_exception), true); } break; case throw_class_cast_exception_id: { // G4: object __ set_info("throw_class_cast_exception", dont_gc_arguments); oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_class_cast_exception), true); } break; case throw_incompatible_class_change_error_id: { __ set_info("throw_incompatible_class_cast_exception", dont_gc_arguments); oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_incompatible_class_change_error), false); } break; case slow_subtype_check_id: { // Support for uint StubRoutine::partial_subtype_check( Klass sub, Klass super ); // Arguments : // // ret : G3 // sub : G3, argument, destroyed // super: G1, argument, not changed // raddr: O7, blown by call Label miss; __ save_frame(0); // Blow no registers! __ check_klass_subtype_slow_path(G3, G1, L0, L1, L2, L4, NULL, &miss); __ mov(1, G3); __ ret(); // Result in G5 is 'true' __ delayed()->restore(); // free copy or add can go here __ bind(miss); __ mov(0, G3); __ ret(); // Result in G5 is 'false' __ delayed()->restore(); // free copy or add can go here } case monitorenter_nofpu_id: case monitorenter_id: { // G4: object // G5: lock address __ set_info("monitorenter", dont_gc_arguments); int save_fpu_registers = (id == monitorenter_id); // make a frame and preserve the caller's caller-save registers OopMap* oop_map = save_live_registers(sasm, save_fpu_registers); int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorenter), G4, G5); oop_maps = new OopMapSet(); oop_maps->add_gc_map(call_offset, oop_map); restore_live_registers(sasm, save_fpu_registers); __ ret(); __ delayed()->restore(); } break; case monitorexit_nofpu_id: case monitorexit_id: { // G4: lock address // note: really a leaf routine but must setup last java sp // => use call_RT for now (speed can be improved by // doing last java sp setup manually) __ set_info("monitorexit", dont_gc_arguments); int save_fpu_registers = (id == monitorexit_id); // make a frame and preserve the caller's caller-save registers OopMap* oop_map = save_live_registers(sasm, save_fpu_registers); int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorexit), G4); oop_maps = new OopMapSet(); oop_maps->add_gc_map(call_offset, oop_map); restore_live_registers(sasm, save_fpu_registers); __ ret(); __ delayed()->restore(); } break; case deoptimize_id: { __ set_info("deoptimize", dont_gc_arguments); OopMap* oop_map = save_live_registers(sasm); int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, deoptimize)); oop_maps = new OopMapSet(); oop_maps->add_gc_map(call_offset, oop_map); restore_live_registers(sasm); DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob(); assert(deopt_blob != NULL, "deoptimization blob must have been created"); AddressLiteral dest(deopt_blob->unpack_with_reexecution()); __ jump_to(dest, O0); __ delayed()->restore(); } break; case access_field_patching_id: { __ set_info("access_field_patching", dont_gc_arguments); oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, access_field_patching)); } break; case load_klass_patching_id: { __ set_info("load_klass_patching", dont_gc_arguments); oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_klass_patching)); } break; case load_mirror_patching_id: { __ set_info("load_mirror_patching", dont_gc_arguments); oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_mirror_patching)); } break; case load_appendix_patching_id: { __ set_info("load_appendix_patching", dont_gc_arguments); oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_appendix_patching)); } break; case dtrace_object_alloc_id: { // O0: object __ set_info("dtrace_object_alloc", dont_gc_arguments); // we can't gc here so skip the oopmap but make sure that all // the live registers get saved. save_live_registers(sasm); __ save_thread(L7_thread_cache); __ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), relocInfo::runtime_call_type); __ delayed()->mov(I0, O0); __ restore_thread(L7_thread_cache); restore_live_registers(sasm); __ ret(); __ delayed()->restore(); } break; #if INCLUDE_ALL_GCS case g1_pre_barrier_slow_id: { // G4: previous value of memory BarrierSet* bs = Universe::heap()->barrier_set(); if (bs->kind() != BarrierSet::G1SATBCTLogging) { __ save_frame(0); __ set((int)id, O1); __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), I0); __ should_not_reach_here(); break; } __ set_info("g1_pre_barrier_slow_id", dont_gc_arguments); Register pre_val = G4; Register tmp = G1_scratch; Register tmp2 = G3_scratch; Label refill, restart; bool with_frame = false; // I don't know if we can do with-frame. int satb_q_index_byte_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_index()); int satb_q_buf_byte_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_buf()); __ bind(restart); // Load the index into the SATB buffer. PtrQueue::_index is a // size_t so ld_ptr is appropriate __ ld_ptr(G2_thread, satb_q_index_byte_offset, tmp); // index == 0? __ cmp_and_brx_short(tmp, G0, Assembler::equal, Assembler::pn, refill); __ ld_ptr(G2_thread, satb_q_buf_byte_offset, tmp2); __ sub(tmp, oopSize, tmp); __ st_ptr(pre_val, tmp2, tmp); // [_buf + index] := // Use return-from-leaf __ retl(); __ delayed()->st_ptr(tmp, G2_thread, satb_q_index_byte_offset); __ bind(refill); __ save_frame(0); __ mov(pre_val, L0); __ mov(tmp, L1); __ mov(tmp2, L2); __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, SATBMarkQueueSet::handle_zero_index_for_thread), G2_thread); __ mov(L0, pre_val); __ mov(L1, tmp); __ mov(L2, tmp2); __ br(Assembler::always, /*annul*/false, Assembler::pt, restart); __ delayed()->restore(); } break; case g1_post_barrier_slow_id: { BarrierSet* bs = Universe::heap()->barrier_set(); if (bs->kind() != BarrierSet::G1SATBCTLogging) { __ save_frame(0); __ set((int)id, O1); __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), I0); __ should_not_reach_here(); break; } __ set_info("g1_post_barrier_slow_id", dont_gc_arguments); Register addr = G4; Register cardtable = G5; Register tmp = G1_scratch; Register tmp2 = G3_scratch; jbyte* byte_map_base = ((CardTableModRefBS*)bs)->byte_map_base; Label not_already_dirty, restart, refill; #ifdef _LP64 __ srlx(addr, CardTableModRefBS::card_shift, addr); #else __ srl(addr, CardTableModRefBS::card_shift, addr); #endif AddressLiteral rs(byte_map_base); __ set(rs, cardtable); // cardtable := __ ldub(addr, cardtable, tmp); // tmp := [addr + cardtable] assert(CardTableModRefBS::dirty_card_val() == 0, "otherwise check this code"); __ cmp_and_br_short(tmp, G0, Assembler::notEqual, Assembler::pt, not_already_dirty); // We didn't take the branch, so we're already dirty: return. // Use return-from-leaf __ retl(); __ delayed()->nop(); // Not dirty. __ bind(not_already_dirty); // Get cardtable + tmp into a reg by itself __ add(addr, cardtable, tmp2); // First, dirty it. __ stb(G0, tmp2, 0); // [cardPtr] := 0 (i.e., dirty). Register tmp3 = cardtable; Register tmp4 = tmp; // these registers are now dead addr = cardtable = tmp = noreg; int dirty_card_q_index_byte_offset = in_bytes(JavaThread::dirty_card_queue_offset() + PtrQueue::byte_offset_of_index()); int dirty_card_q_buf_byte_offset = in_bytes(JavaThread::dirty_card_queue_offset() + PtrQueue::byte_offset_of_buf()); __ bind(restart); // Get the index into the update buffer. PtrQueue::_index is // a size_t so ld_ptr is appropriate here. __ ld_ptr(G2_thread, dirty_card_q_index_byte_offset, tmp3); // index == 0? __ cmp_and_brx_short(tmp3, G0, Assembler::equal, Assembler::pn, refill); __ ld_ptr(G2_thread, dirty_card_q_buf_byte_offset, tmp4); __ sub(tmp3, oopSize, tmp3); __ st_ptr(tmp2, tmp4, tmp3); // [_buf + index] := // Use return-from-leaf __ retl(); __ delayed()->st_ptr(tmp3, G2_thread, dirty_card_q_index_byte_offset); __ bind(refill); __ save_frame(0); __ mov(tmp2, L0); __ mov(tmp3, L1); __ mov(tmp4, L2); __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, DirtyCardQueueSet::handle_zero_index_for_thread), G2_thread); __ mov(L0, tmp2); __ mov(L1, tmp3); __ mov(L2, tmp4); __ br(Assembler::always, /*annul*/false, Assembler::pt, restart); __ delayed()->restore(); } break; #endif // INCLUDE_ALL_GCS case predicate_failed_trap_id: { __ set_info("predicate_failed_trap", dont_gc_arguments); OopMap* oop_map = save_live_registers(sasm); int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, predicate_failed_trap)); oop_maps = new OopMapSet(); oop_maps->add_gc_map(call_offset, oop_map); DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob(); assert(deopt_blob != NULL, "deoptimization blob must have been created"); restore_live_registers(sasm); AddressLiteral dest(deopt_blob->unpack_with_reexecution()); __ jump_to(dest, O0); __ delayed()->restore(); } break; default: { __ set_info("unimplemented entry", dont_gc_arguments); __ save_frame(0); __ set((int)id, O1); __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), O1); __ should_not_reach_here(); } break; } return oop_maps; } OopMapSet* Runtime1::generate_handle_exception(StubID id, StubAssembler* sasm) { __ block_comment("generate_handle_exception"); // Save registers, if required. OopMapSet* oop_maps = new OopMapSet(); OopMap* oop_map = NULL; switch (id) { case forward_exception_id: // We're handling an exception in the context of a compiled frame. // The registers have been saved in the standard places. Perform // an exception lookup in the caller and dispatch to the handler // if found. Otherwise unwind and dispatch to the callers // exception handler. oop_map = generate_oop_map(sasm, true); // transfer the pending exception to the exception_oop __ ld_ptr(G2_thread, in_bytes(JavaThread::pending_exception_offset()), Oexception); __ ld_ptr(Oexception, 0, G0); __ st_ptr(G0, G2_thread, in_bytes(JavaThread::pending_exception_offset())); __ add(I7, frame::pc_return_offset, Oissuing_pc); break; case handle_exception_id: // At this point all registers MAY be live. oop_map = save_live_registers(sasm); __ mov(Oexception->after_save(), Oexception); __ mov(Oissuing_pc->after_save(), Oissuing_pc); break; case handle_exception_from_callee_id: // At this point all registers except exception oop (Oexception) // and exception pc (Oissuing_pc) are dead. oop_map = new OopMap(frame_size_in_bytes / sizeof(jint), 0); sasm->set_frame_size(frame_size_in_bytes / BytesPerWord); __ save_frame_c1(frame_size_in_bytes); __ mov(Oexception->after_save(), Oexception); __ mov(Oissuing_pc->after_save(), Oissuing_pc); break; default: ShouldNotReachHere(); } __ verify_not_null_oop(Oexception); #ifdef ASSERT // check that fields in JavaThread for exception oop and issuing pc are // empty before writing to them Label oop_empty; Register scratch = I7; // We can use I7 here because it's overwritten later anyway. __ ld_ptr(Address(G2_thread, JavaThread::exception_oop_offset()), scratch); __ br_null(scratch, false, Assembler::pt, oop_empty); __ delayed()->nop(); __ stop("exception oop already set"); __ bind(oop_empty); Label pc_empty; __ ld_ptr(Address(G2_thread, JavaThread::exception_pc_offset()), scratch); __ br_null(scratch, false, Assembler::pt, pc_empty); __ delayed()->nop(); __ stop("exception pc already set"); __ bind(pc_empty); #endif // save the exception and issuing pc in the thread __ st_ptr(Oexception, G2_thread, in_bytes(JavaThread::exception_oop_offset())); __ st_ptr(Oissuing_pc, G2_thread, in_bytes(JavaThread::exception_pc_offset())); // use the throwing pc as the return address to lookup (has bci & oop map) __ mov(Oissuing_pc, I7); __ sub(I7, frame::pc_return_offset, I7); int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, exception_handler_for_pc)); oop_maps->add_gc_map(call_offset, oop_map); // Note: if nmethod has been deoptimized then regardless of // whether it had a handler or not we will deoptimize // by entering the deopt blob with a pending exception. // Restore the registers that were saved at the beginning, remove // the frame and jump to the exception handler. switch (id) { case forward_exception_id: case handle_exception_id: restore_live_registers(sasm); __ jmp(O0, 0); __ delayed()->restore(); break; case handle_exception_from_callee_id: // Restore SP from L7 if the exception PC is a method handle call site. __ mov(O0, G5); // Save the target address. __ lduw(Address(G2_thread, JavaThread::is_method_handle_return_offset()), L0); __ tst(L0); // Condition codes are preserved over the restore. __ restore(); __ jmp(G5, 0); // jump to the exception handler __ delayed()->movcc(Assembler::notZero, false, Assembler::icc, L7_mh_SP_save, SP); // Restore SP if required. break; default: ShouldNotReachHere(); } return oop_maps; } #undef __ const char *Runtime1::pd_name_for_address(address entry) { return ""; }