/* * Copyright 1998-2008 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * */ #include "incls/_precompiled.incl" #include "incls/_output.cpp.incl" extern uint size_java_to_interp(); extern uint reloc_java_to_interp(); extern uint size_exception_handler(); extern uint size_deopt_handler(); #ifndef PRODUCT #define DEBUG_ARG(x) , x #else #define DEBUG_ARG(x) #endif extern int emit_exception_handler(CodeBuffer &cbuf); extern int emit_deopt_handler(CodeBuffer &cbuf); //------------------------------Output----------------------------------------- // Convert Nodes to instruction bits and pass off to the VM void Compile::Output() { // RootNode goes assert( _cfg->_broot->_nodes.size() == 0, "" ); // Initialize the space for the BufferBlob used to find and verify // instruction size in MachNode::emit_size() init_scratch_buffer_blob(); if (failing()) return; // Out of memory // Make sure I can find the Start Node Block_Array& bbs = _cfg->_bbs; Block *entry = _cfg->_blocks[1]; Block *broot = _cfg->_broot; const StartNode *start = entry->_nodes[0]->as_Start(); // Replace StartNode with prolog MachPrologNode *prolog = new (this) MachPrologNode(); entry->_nodes.map( 0, prolog ); bbs.map( prolog->_idx, entry ); bbs.map( start->_idx, NULL ); // start is no longer in any block // Virtual methods need an unverified entry point if( is_osr_compilation() ) { if( PoisonOSREntry ) { // TODO: Should use a ShouldNotReachHereNode... _cfg->insert( broot, 0, new (this) MachBreakpointNode() ); } } else { if( _method && !_method->flags().is_static() ) { // Insert unvalidated entry point _cfg->insert( broot, 0, new (this) MachUEPNode() ); } } // Break before main entry point if( (_method && _method->break_at_execute()) #ifndef PRODUCT ||(OptoBreakpoint && is_method_compilation()) ||(OptoBreakpointOSR && is_osr_compilation()) ||(OptoBreakpointC2R && !_method) #endif ) { // checking for _method means that OptoBreakpoint does not apply to // runtime stubs or frame converters _cfg->insert( entry, 1, new (this) MachBreakpointNode() ); } // Insert epilogs before every return for( uint i=0; i<_cfg->_num_blocks; i++ ) { Block *b = _cfg->_blocks[i]; if( !b->is_connector() && b->non_connector_successor(0) == _cfg->_broot ) { // Found a program exit point? Node *m = b->end(); if( m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt ) { MachEpilogNode *epilog = new (this) MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return); b->add_inst( epilog ); bbs.map(epilog->_idx, b); //_regalloc->set_bad(epilog->_idx); // Already initialized this way. } } } # ifdef ENABLE_ZAP_DEAD_LOCALS if ( ZapDeadCompiledLocals ) Insert_zap_nodes(); # endif ScheduleAndBundle(); #ifndef PRODUCT if (trace_opto_output()) { tty->print("\n---- After ScheduleAndBundle ----\n"); for (uint i = 0; i < _cfg->_num_blocks; i++) { tty->print("\nBB#%03d:\n", i); Block *bb = _cfg->_blocks[i]; for (uint j = 0; j < bb->_nodes.size(); j++) { Node *n = bb->_nodes[j]; OptoReg::Name reg = _regalloc->get_reg_first(n); tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : ""); n->dump(); } } } #endif if (failing()) return; BuildOopMaps(); if (failing()) return; Fill_buffer(); } bool Compile::need_stack_bang(int frame_size_in_bytes) const { // Determine if we need to generate a stack overflow check. // Do it if the method is not a stub function and // has java calls or has frame size > vm_page_size/8. return (stub_function() == NULL && (has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3)); } bool Compile::need_register_stack_bang() const { // Determine if we need to generate a register stack overflow check. // This is only used on architectures which have split register // and memory stacks (ie. IA64). // Bang if the method is not a stub function and has java calls return (stub_function() == NULL && has_java_calls()); } # ifdef ENABLE_ZAP_DEAD_LOCALS // In order to catch compiler oop-map bugs, we have implemented // a debugging mode called ZapDeadCompilerLocals. // This mode causes the compiler to insert a call to a runtime routine, // "zap_dead_locals", right before each place in compiled code // that could potentially be a gc-point (i.e., a safepoint or oop map point). // The runtime routine checks that locations mapped as oops are really // oops, that locations mapped as values do not look like oops, // and that locations mapped as dead are not used later // (by zapping them to an invalid address). int Compile::_CompiledZap_count = 0; void Compile::Insert_zap_nodes() { bool skip = false; // Dink with static counts because code code without the extra // runtime calls is MUCH faster for debugging purposes if ( CompileZapFirst == 0 ) ; // nothing special else if ( CompileZapFirst > CompiledZap_count() ) skip = true; else if ( CompileZapFirst == CompiledZap_count() ) warning("starting zap compilation after skipping"); if ( CompileZapLast == -1 ) ; // nothing special else if ( CompileZapLast < CompiledZap_count() ) skip = true; else if ( CompileZapLast == CompiledZap_count() ) warning("about to compile last zap"); ++_CompiledZap_count; // counts skipped zaps, too if ( skip ) return; if ( _method == NULL ) return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care // Insert call to zap runtime stub before every node with an oop map for( uint i=0; i<_cfg->_num_blocks; i++ ) { Block *b = _cfg->_blocks[i]; for ( uint j = 0; j < b->_nodes.size(); ++j ) { Node *n = b->_nodes[j]; // Determining if we should insert a zap-a-lot node in output. // We do that for all nodes that has oopmap info, except for calls // to allocation. Calls to allocation passes in the old top-of-eden pointer // and expect the C code to reset it. Hence, there can be no safepoints between // the inlined-allocation and the call to new_Java, etc. // We also cannot zap monitor calls, as they must hold the microlock // during the call to Zap, which also wants to grab the microlock. bool insert = n->is_MachSafePoint() && (n->as_MachSafePoint()->oop_map() != NULL); if ( insert ) { // it is MachSafePoint if ( !n->is_MachCall() ) { insert = false; } else if ( n->is_MachCall() ) { MachCallNode* call = n->as_MachCall(); if (call->entry_point() == OptoRuntime::new_instance_Java() || call->entry_point() == OptoRuntime::new_array_Java() || call->entry_point() == OptoRuntime::multianewarray2_Java() || call->entry_point() == OptoRuntime::multianewarray3_Java() || call->entry_point() == OptoRuntime::multianewarray4_Java() || call->entry_point() == OptoRuntime::multianewarray5_Java() || call->entry_point() == OptoRuntime::slow_arraycopy_Java() || call->entry_point() == OptoRuntime::complete_monitor_locking_Java() ) { insert = false; } } if (insert) { Node *zap = call_zap_node(n->as_MachSafePoint(), i); b->_nodes.insert( j, zap ); _cfg->_bbs.map( zap->_idx, b ); ++j; } } } } } Node* Compile::call_zap_node(MachSafePointNode* node_to_check, int block_no) { const TypeFunc *tf = OptoRuntime::zap_dead_locals_Type(); CallStaticJavaNode* ideal_node = new (this, tf->domain()->cnt()) CallStaticJavaNode( tf, OptoRuntime::zap_dead_locals_stub(_method->flags().is_native()), "call zap dead locals stub", 0, TypePtr::BOTTOM); // We need to copy the OopMap from the site we're zapping at. // We have to make a copy, because the zap site might not be // a call site, and zap_dead is a call site. OopMap* clone = node_to_check->oop_map()->deep_copy(); // Add the cloned OopMap to the zap node ideal_node->set_oop_map(clone); return _matcher->match_sfpt(ideal_node); } //------------------------------is_node_getting_a_safepoint-------------------- bool Compile::is_node_getting_a_safepoint( Node* n) { // This code duplicates the logic prior to the call of add_safepoint // below in this file. if( n->is_MachSafePoint() ) return true; return false; } # endif // ENABLE_ZAP_DEAD_LOCALS //------------------------------compute_loop_first_inst_sizes------------------ // Compute the size of first NumberOfLoopInstrToAlign instructions at head // of a loop. When aligning a loop we need to provide enough instructions // in cpu's fetch buffer to feed decoders. The loop alignment could be // avoided if we have enough instructions in fetch buffer at the head of a loop. // By default, the size is set to 999999 by Block's constructor so that // a loop will be aligned if the size is not reset here. // // Note: Mach instructions could contain several HW instructions // so the size is estimated only. // void Compile::compute_loop_first_inst_sizes() { // The next condition is used to gate the loop alignment optimization. // Don't aligned a loop if there are enough instructions at the head of a loop // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is // equal to 11 bytes which is the largest address NOP instruction. if( MaxLoopPad < OptoLoopAlignment-1 ) { uint last_block = _cfg->_num_blocks-1; for( uint i=1; i <= last_block; i++ ) { Block *b = _cfg->_blocks[i]; // Check the first loop's block which requires an alignment. if( b->head()->is_Loop() && b->code_alignment() > (uint)relocInfo::addr_unit() ) { uint sum_size = 0; uint inst_cnt = NumberOfLoopInstrToAlign; inst_cnt = b->compute_first_inst_size(sum_size, inst_cnt, _regalloc); // Check the next fallthrough block if first loop's block does not have // enough instructions. if( inst_cnt > 0 && i < last_block ) { // First, check if the first loop's block contains whole loop. // LoopNode::LoopBackControl == 2. Block *bx = _cfg->_bbs[b->pred(2)->_idx]; // Skip connector blocks (with limit in case of irreducible loops). int search_limit = 16; while( bx->is_connector() && search_limit-- > 0) { bx = _cfg->_bbs[bx->pred(1)->_idx]; } if( bx != b ) { // loop body is in several blocks. Block *nb = NULL; while( inst_cnt > 0 && i < last_block && nb != bx && !_cfg->_blocks[i+1]->head()->is_Loop() ) { i++; nb = _cfg->_blocks[i]; inst_cnt = nb->compute_first_inst_size(sum_size, inst_cnt, _regalloc); } // while( inst_cnt > 0 && i < last_block ) } // if( bx != b ) } // if( inst_cnt > 0 && i < last_block ) b->set_first_inst_size(sum_size); } // f( b->head()->is_Loop() ) } // for( i <= last_block ) } // if( MaxLoopPad < OptoLoopAlignment-1 ) } //----------------------Shorten_branches--------------------------------------- // The architecture description provides short branch variants for some long // branch instructions. Replace eligible long branches with short branches. void Compile::Shorten_branches(Label *labels, int& code_size, int& reloc_size, int& stub_size, int& const_size) { // fill in the nop array for bundling computations MachNode *_nop_list[Bundle::_nop_count]; Bundle::initialize_nops(_nop_list, this); // ------------------ // Compute size of each block, method size, and relocation information size uint *jmp_end = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks); uint *blk_starts = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks+1); DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks); ) DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks); ) blk_starts[0] = 0; // Initialize the sizes to 0 code_size = 0; // Size in bytes of generated code stub_size = 0; // Size in bytes of all stub entries // Size in bytes of all relocation entries, including those in local stubs. // Start with 2-bytes of reloc info for the unvalidated entry point reloc_size = 1; // Number of relocation entries const_size = 0; // size of fp constants in words // Make three passes. The first computes pessimistic blk_starts, // relative jmp_end, reloc_size and const_size information. // The second performs short branch substitution using the pessimistic // sizing. The third inserts nops where needed. Node *nj; // tmp // Step one, perform a pessimistic sizing pass. uint i; uint min_offset_from_last_call = 1; // init to a positive value uint nop_size = (new (this) MachNopNode())->size(_regalloc); for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks Block *b = _cfg->_blocks[i]; // Sum all instruction sizes to compute block size uint last_inst = b->_nodes.size(); uint blk_size = 0; for( uint j = 0; j_nodes[j]; uint inst_size = nj->size(_regalloc); blk_size += inst_size; // Handle machine instruction nodes if( nj->is_Mach() ) { MachNode *mach = nj->as_Mach(); blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding reloc_size += mach->reloc(); const_size += mach->const_size(); if( mach->is_MachCall() ) { MachCallNode *mcall = mach->as_MachCall(); // This destination address is NOT PC-relative mcall->method_set((intptr_t)mcall->entry_point()); if( mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method ) { stub_size += size_java_to_interp(); reloc_size += reloc_java_to_interp(); } } else if (mach->is_MachSafePoint()) { // If call/safepoint are adjacent, account for possible // nop to disambiguate the two safepoints. if (min_offset_from_last_call == 0) { blk_size += nop_size; } } } min_offset_from_last_call += inst_size; // Remember end of call offset if (nj->is_MachCall() && nj->as_MachCall()->is_safepoint_node()) { min_offset_from_last_call = 0; } } // During short branch replacement, we store the relative (to blk_starts) // end of jump in jmp_end, rather than the absolute end of jump. This // is so that we do not need to recompute sizes of all nodes when we compute // correct blk_starts in our next sizing pass. jmp_end[i] = blk_size; DEBUG_ONLY( jmp_target[i] = 0; ) // When the next block starts a loop, we may insert pad NOP // instructions. Since we cannot know our future alignment, // assume the worst. if( i<_cfg->_num_blocks-1 ) { Block *nb = _cfg->_blocks[i+1]; int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit(); if( max_loop_pad > 0 ) { assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), ""); blk_size += max_loop_pad; } } // Save block size; update total method size blk_starts[i+1] = blk_starts[i]+blk_size; } // Step two, replace eligible long jumps. // Note: this will only get the long branches within short branch // range. Another pass might detect more branches that became // candidates because the shortening in the first pass exposed // more opportunities. Unfortunately, this would require // recomputing the starting and ending positions for the blocks for( i=0; i<_cfg->_num_blocks; i++ ) { Block *b = _cfg->_blocks[i]; int j; // Find the branch; ignore trailing NOPs. for( j = b->_nodes.size()-1; j>=0; j-- ) { nj = b->_nodes[j]; if( !nj->is_Mach() || nj->as_Mach()->ideal_Opcode() != Op_Con ) break; } if (j >= 0) { if( nj->is_Mach() && nj->as_Mach()->may_be_short_branch() ) { MachNode *mach = nj->as_Mach(); // This requires the TRUE branch target be in succs[0] uint bnum = b->non_connector_successor(0)->_pre_order; uintptr_t target = blk_starts[bnum]; if( mach->is_pc_relative() ) { int offset = target-(blk_starts[i] + jmp_end[i]); if (_matcher->is_short_branch_offset(mach->rule(), offset)) { // We've got a winner. Replace this branch. MachNode* replacement = mach->short_branch_version(this); b->_nodes.map(j, replacement); mach->subsume_by(replacement); // Update the jmp_end size to save time in our // next pass. jmp_end[i] -= (mach->size(_regalloc) - replacement->size(_regalloc)); DEBUG_ONLY( jmp_target[i] = bnum; ); DEBUG_ONLY( jmp_rule[i] = mach->rule(); ); } } else { #ifndef PRODUCT mach->dump(3); #endif Unimplemented(); } } } } // Compute the size of first NumberOfLoopInstrToAlign instructions at head // of a loop. It is used to determine the padding for loop alignment. compute_loop_first_inst_sizes(); // Step 3, compute the offsets of all the labels uint last_call_adr = max_uint; for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks // copy the offset of the beginning to the corresponding label assert(labels[i].is_unused(), "cannot patch at this point"); labels[i].bind_loc(blk_starts[i], CodeBuffer::SECT_INSTS); // insert padding for any instructions that need it Block *b = _cfg->_blocks[i]; uint last_inst = b->_nodes.size(); uint adr = blk_starts[i]; for( uint j = 0; j_nodes[j]; if( nj->is_Mach() ) { int padding = nj->as_Mach()->compute_padding(adr); // If call/safepoint are adjacent insert a nop (5010568) if (padding == 0 && nj->is_MachSafePoint() && !nj->is_MachCall() && adr == last_call_adr ) { padding = nop_size; } if(padding > 0) { assert((padding % nop_size) == 0, "padding is not a multiple of NOP size"); int nops_cnt = padding / nop_size; MachNode *nop = new (this) MachNopNode(nops_cnt); b->_nodes.insert(j++, nop); _cfg->_bbs.map( nop->_idx, b ); adr += padding; last_inst++; } } adr += nj->size(_regalloc); // Remember end of call offset if (nj->is_MachCall() && nj->as_MachCall()->is_safepoint_node()) { last_call_adr = adr; } } if ( i != _cfg->_num_blocks-1) { // Get the size of the block uint blk_size = adr - blk_starts[i]; // When the next block starts a loop, we may insert pad NOP // instructions. Block *nb = _cfg->_blocks[i+1]; int current_offset = blk_starts[i] + blk_size; current_offset += nb->alignment_padding(current_offset); // Save block size; update total method size blk_starts[i+1] = current_offset; } } #ifdef ASSERT for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks if( jmp_target[i] != 0 ) { int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_end[i]); if (!_matcher->is_short_branch_offset(jmp_rule[i], offset)) { tty->print_cr("target (%d) - jmp_end(%d) = offset (%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_end[i], offset, i, jmp_target[i]); } assert(_matcher->is_short_branch_offset(jmp_rule[i], offset), "Displacement too large for short jmp"); } } #endif // ------------------ // Compute size for code buffer code_size = blk_starts[i-1] + jmp_end[i-1]; // Relocation records reloc_size += 1; // Relo entry for exception handler // Adjust reloc_size to number of record of relocation info // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for // a relocation index. // The CodeBuffer will expand the locs array if this estimate is too low. reloc_size *= 10 / sizeof(relocInfo); // Adjust const_size to number of bytes const_size *= 2*jintSize; // both float and double take two words per entry } //------------------------------FillLocArray----------------------------------- // Create a bit of debug info and append it to the array. The mapping is from // Java local or expression stack to constant, register or stack-slot. For // doubles, insert 2 mappings and return 1 (to tell the caller that the next // entry has been taken care of and caller should skip it). static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) { // This should never have accepted Bad before assert(OptoReg::is_valid(regnum), "location must be valid"); return (OptoReg::is_reg(regnum)) ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) ) : new LocationValue(Location::new_stk_loc(l_type, ra->reg2offset(regnum))); } ObjectValue* Compile::sv_for_node_id(GrowableArray *objs, int id) { for (int i = 0; i < objs->length(); i++) { assert(objs->at(i)->is_object(), "corrupt object cache"); ObjectValue* sv = (ObjectValue*) objs->at(i); if (sv->id() == id) { return sv; } } // Otherwise.. return NULL; } void Compile::set_sv_for_object_node(GrowableArray *objs, ObjectValue* sv ) { assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition"); objs->append(sv); } void Compile::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local, GrowableArray *array, GrowableArray *objs ) { assert( local, "use _top instead of null" ); if (array->length() != idx) { assert(array->length() == idx + 1, "Unexpected array count"); // Old functionality: // return // New functionality: // Assert if the local is not top. In product mode let the new node // override the old entry. assert(local == top(), "LocArray collision"); if (local == top()) { return; } array->pop(); } const Type *t = local->bottom_type(); // Is it a safepoint scalar object node? if (local->is_SafePointScalarObject()) { SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject(); ObjectValue* sv = Compile::sv_for_node_id(objs, spobj->_idx); if (sv == NULL) { ciKlass* cik = t->is_oopptr()->klass(); assert(cik->is_instance_klass() || cik->is_array_klass(), "Not supported allocation."); sv = new ObjectValue(spobj->_idx, new ConstantOopWriteValue(cik->encoding())); Compile::set_sv_for_object_node(objs, sv); uint first_ind = spobj->first_index(); for (uint i = 0; i < spobj->n_fields(); i++) { Node* fld_node = sfpt->in(first_ind+i); (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs); } } array->append(sv); return; } // Grab the register number for the local OptoReg::Name regnum = _regalloc->get_reg_first(local); if( OptoReg::is_valid(regnum) ) {// Got a register/stack? // Record the double as two float registers. // The register mask for such a value always specifies two adjacent // float registers, with the lower register number even. // Normally, the allocation of high and low words to these registers // is irrelevant, because nearly all operations on register pairs // (e.g., StoreD) treat them as a single unit. // Here, we assume in addition that the words in these two registers // stored "naturally" (by operations like StoreD and double stores // within the interpreter) such that the lower-numbered register // is written to the lower memory address. This may seem like // a machine dependency, but it is not--it is a requirement on // the author of the .ad file to ensure that, for every // even/odd double-register pair to which a double may be allocated, // the word in the even single-register is stored to the first // memory word. (Note that register numbers are completely // arbitrary, and are not tied to any machine-level encodings.) #ifdef _LP64 if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) { array->append(new ConstantIntValue(0)); array->append(new_loc_value( _regalloc, regnum, Location::dbl )); } else if ( t->base() == Type::Long ) { array->append(new ConstantIntValue(0)); array->append(new_loc_value( _regalloc, regnum, Location::lng )); } else if ( t->base() == Type::RawPtr ) { // jsr/ret return address which must be restored into a the full // width 64-bit stack slot. array->append(new_loc_value( _regalloc, regnum, Location::lng )); } #else //_LP64 #ifdef SPARC if (t->base() == Type::Long && OptoReg::is_reg(regnum)) { // For SPARC we have to swap high and low words for // long values stored in a single-register (g0-g7). array->append(new_loc_value( _regalloc, regnum , Location::normal )); array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal )); } else #endif //SPARC if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) { // Repack the double/long as two jints. // The convention the interpreter uses is that the second local // holds the first raw word of the native double representation. // This is actually reasonable, since locals and stack arrays // grow downwards in all implementations. // (If, on some machine, the interpreter's Java locals or stack // were to grow upwards, the embedded doubles would be word-swapped.) array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal )); array->append(new_loc_value( _regalloc, regnum , Location::normal )); } #endif //_LP64 else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) && OptoReg::is_reg(regnum) ) { array->append(new_loc_value( _regalloc, regnum, Matcher::float_in_double ? Location::float_in_dbl : Location::normal )); } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) { array->append(new_loc_value( _regalloc, regnum, Matcher::int_in_long ? Location::int_in_long : Location::normal )); } else if( t->base() == Type::NarrowOop ) { array->append(new_loc_value( _regalloc, regnum, Location::narrowoop )); } else { array->append(new_loc_value( _regalloc, regnum, _regalloc->is_oop(local) ? Location::oop : Location::normal )); } return; } // No register. It must be constant data. switch (t->base()) { case Type::Half: // Second half of a double ShouldNotReachHere(); // Caller should skip 2nd halves break; case Type::AnyPtr: array->append(new ConstantOopWriteValue(NULL)); break; case Type::AryPtr: case Type::InstPtr: case Type::KlassPtr: // fall through array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->encoding())); break; case Type::NarrowOop: if (t == TypeNarrowOop::NULL_PTR) { array->append(new ConstantOopWriteValue(NULL)); } else { array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->encoding())); } break; case Type::Int: array->append(new ConstantIntValue(t->is_int()->get_con())); break; case Type::RawPtr: // A return address (T_ADDRESS). assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI"); #ifdef _LP64 // Must be restored to the full-width 64-bit stack slot. array->append(new ConstantLongValue(t->is_ptr()->get_con())); #else array->append(new ConstantIntValue(t->is_ptr()->get_con())); #endif break; case Type::FloatCon: { float f = t->is_float_constant()->getf(); array->append(new ConstantIntValue(jint_cast(f))); break; } case Type::DoubleCon: { jdouble d = t->is_double_constant()->getd(); #ifdef _LP64 array->append(new ConstantIntValue(0)); array->append(new ConstantDoubleValue(d)); #else // Repack the double as two jints. // The convention the interpreter uses is that the second local // holds the first raw word of the native double representation. // This is actually reasonable, since locals and stack arrays // grow downwards in all implementations. // (If, on some machine, the interpreter's Java locals or stack // were to grow upwards, the embedded doubles would be word-swapped.) jint *dp = (jint*)&d; array->append(new ConstantIntValue(dp[1])); array->append(new ConstantIntValue(dp[0])); #endif break; } case Type::Long: { jlong d = t->is_long()->get_con(); #ifdef _LP64 array->append(new ConstantIntValue(0)); array->append(new ConstantLongValue(d)); #else // Repack the long as two jints. // The convention the interpreter uses is that the second local // holds the first raw word of the native double representation. // This is actually reasonable, since locals and stack arrays // grow downwards in all implementations. // (If, on some machine, the interpreter's Java locals or stack // were to grow upwards, the embedded doubles would be word-swapped.) jint *dp = (jint*)&d; array->append(new ConstantIntValue(dp[1])); array->append(new ConstantIntValue(dp[0])); #endif break; } case Type::Top: // Add an illegal value here array->append(new LocationValue(Location())); break; default: ShouldNotReachHere(); break; } } // Determine if this node starts a bundle bool Compile::starts_bundle(const Node *n) const { return (_node_bundling_limit > n->_idx && _node_bundling_base[n->_idx].starts_bundle()); } //--------------------------Process_OopMap_Node-------------------------------- void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) { // Handle special safepoint nodes for synchronization MachSafePointNode *sfn = mach->as_MachSafePoint(); MachCallNode *mcall; #ifdef ENABLE_ZAP_DEAD_LOCALS assert( is_node_getting_a_safepoint(mach), "logic does not match; false negative"); #endif int safepoint_pc_offset = current_offset; // Add the safepoint in the DebugInfoRecorder if( !mach->is_MachCall() ) { mcall = NULL; debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map); } else { mcall = mach->as_MachCall(); safepoint_pc_offset += mcall->ret_addr_offset(); debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map); } // Loop over the JVMState list to add scope information // Do not skip safepoints with a NULL method, they need monitor info JVMState* youngest_jvms = sfn->jvms(); int max_depth = youngest_jvms->depth(); // Allocate the object pool for scalar-replaced objects -- the map from // small-integer keys (which can be recorded in the local and ostack // arrays) to descriptions of the object state. GrowableArray *objs = new GrowableArray(); // Visit scopes from oldest to youngest. for (int depth = 1; depth <= max_depth; depth++) { JVMState* jvms = youngest_jvms->of_depth(depth); int idx; ciMethod* method = jvms->has_method() ? jvms->method() : NULL; // Safepoints that do not have method() set only provide oop-map and monitor info // to support GC; these do not support deoptimization. int num_locs = (method == NULL) ? 0 : jvms->loc_size(); int num_exps = (method == NULL) ? 0 : jvms->stk_size(); int num_mon = jvms->nof_monitors(); assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(), "JVMS local count must match that of the method"); // Add Local and Expression Stack Information // Insert locals into the locarray GrowableArray *locarray = new GrowableArray(num_locs); for( idx = 0; idx < num_locs; idx++ ) { FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs ); } // Insert expression stack entries into the exparray GrowableArray *exparray = new GrowableArray(num_exps); for( idx = 0; idx < num_exps; idx++ ) { FillLocArray( idx, sfn, sfn->stack(jvms, idx), exparray, objs ); } // Add in mappings of the monitors assert( !method || !method->is_synchronized() || method->is_native() || num_mon > 0 || !GenerateSynchronizationCode, "monitors must always exist for synchronized methods"); // Build the growable array of ScopeValues for exp stack GrowableArray *monarray = new GrowableArray(num_mon); // Loop over monitors and insert into array for(idx = 0; idx < num_mon; idx++) { // Grab the node that defines this monitor Node* box_node; Node* obj_node; box_node = sfn->monitor_box(jvms, idx); obj_node = sfn->monitor_obj(jvms, idx); // Create ScopeValue for object ScopeValue *scval = NULL; if( obj_node->is_SafePointScalarObject() ) { SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject(); scval = Compile::sv_for_node_id(objs, spobj->_idx); if (scval == NULL) { const Type *t = obj_node->bottom_type(); ciKlass* cik = t->is_oopptr()->klass(); assert(cik->is_instance_klass() || cik->is_array_klass(), "Not supported allocation."); ObjectValue* sv = new ObjectValue(spobj->_idx, new ConstantOopWriteValue(cik->encoding())); Compile::set_sv_for_object_node(objs, sv); uint first_ind = spobj->first_index(); for (uint i = 0; i < spobj->n_fields(); i++) { Node* fld_node = sfn->in(first_ind+i); (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs); } scval = sv; } } else if( !obj_node->is_Con() ) { OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node); if( obj_node->bottom_type()->base() == Type::NarrowOop ) { scval = new_loc_value( _regalloc, obj_reg, Location::narrowoop ); } else { scval = new_loc_value( _regalloc, obj_reg, Location::oop ); } } else { const TypePtr *tp = obj_node->bottom_type()->make_ptr(); scval = new ConstantOopWriteValue(tp->is_instptr()->const_oop()->encoding()); } OptoReg::Name box_reg = BoxLockNode::stack_slot(box_node); Location basic_lock = Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg)); monarray->append(new MonitorValue(scval, basic_lock, box_node->as_BoxLock()->is_eliminated())); } // We dump the object pool first, since deoptimization reads it in first. debug_info()->dump_object_pool(objs); // Build first class objects to pass to scope DebugToken *locvals = debug_info()->create_scope_values(locarray); DebugToken *expvals = debug_info()->create_scope_values(exparray); DebugToken *monvals = debug_info()->create_monitor_values(monarray); // Make method available for all Safepoints ciMethod* scope_method = method ? method : _method; // Describe the scope here assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI"); // Now we can describe the scope. debug_info()->describe_scope(safepoint_pc_offset,scope_method,jvms->bci(),locvals,expvals,monvals); } // End jvms loop // Mark the end of the scope set. debug_info()->end_safepoint(safepoint_pc_offset); } // A simplified version of Process_OopMap_Node, to handle non-safepoints. class NonSafepointEmitter { Compile* C; JVMState* _pending_jvms; int _pending_offset; void emit_non_safepoint(); public: NonSafepointEmitter(Compile* compile) { this->C = compile; _pending_jvms = NULL; _pending_offset = 0; } void observe_instruction(Node* n, int pc_offset) { if (!C->debug_info()->recording_non_safepoints()) return; Node_Notes* nn = C->node_notes_at(n->_idx); if (nn == NULL || nn->jvms() == NULL) return; if (_pending_jvms != NULL && _pending_jvms->same_calls_as(nn->jvms())) { // Repeated JVMS? Stretch it up here. _pending_offset = pc_offset; } else { if (_pending_jvms != NULL && _pending_offset < pc_offset) { emit_non_safepoint(); } _pending_jvms = NULL; if (pc_offset > C->debug_info()->last_pc_offset()) { // This is the only way _pending_jvms can become non-NULL: _pending_jvms = nn->jvms(); _pending_offset = pc_offset; } } } // Stay out of the way of real safepoints: void observe_safepoint(JVMState* jvms, int pc_offset) { if (_pending_jvms != NULL && !_pending_jvms->same_calls_as(jvms) && _pending_offset < pc_offset) { emit_non_safepoint(); } _pending_jvms = NULL; } void flush_at_end() { if (_pending_jvms != NULL) { emit_non_safepoint(); } _pending_jvms = NULL; } }; void NonSafepointEmitter::emit_non_safepoint() { JVMState* youngest_jvms = _pending_jvms; int pc_offset = _pending_offset; // Clear it now: _pending_jvms = NULL; DebugInformationRecorder* debug_info = C->debug_info(); assert(debug_info->recording_non_safepoints(), "sanity"); debug_info->add_non_safepoint(pc_offset); int max_depth = youngest_jvms->depth(); // Visit scopes from oldest to youngest. for (int depth = 1; depth <= max_depth; depth++) { JVMState* jvms = youngest_jvms->of_depth(depth); ciMethod* method = jvms->has_method() ? jvms->method() : NULL; debug_info->describe_scope(pc_offset, method, jvms->bci()); } // Mark the end of the scope set. debug_info->end_non_safepoint(pc_offset); } // helper for Fill_buffer bailout logic static void turn_off_compiler(Compile* C) { if (CodeCache::unallocated_capacity() >= CodeCacheMinimumFreeSpace*10) { // Do not turn off compilation if a single giant method has // blown the code cache size. C->record_failure("excessive request to CodeCache"); } else { // Let CompilerBroker disable further compilations. C->record_failure("CodeCache is full"); } } //------------------------------Fill_buffer------------------------------------ void Compile::Fill_buffer() { // Set the initially allocated size int code_req = initial_code_capacity; int locs_req = initial_locs_capacity; int stub_req = TraceJumps ? initial_stub_capacity * 10 : initial_stub_capacity; int const_req = initial_const_capacity; bool labels_not_set = true; int pad_req = NativeCall::instruction_size; // The extra spacing after the code is necessary on some platforms. // Sometimes we need to patch in a jump after the last instruction, // if the nmethod has been deoptimized. (See 4932387, 4894843.) uint i; // Compute the byte offset where we can store the deopt pc. if (fixed_slots() != 0) { _orig_pc_slot_offset_in_bytes = _regalloc->reg2offset(OptoReg::stack2reg(_orig_pc_slot)); } // Compute prolog code size _method_size = 0; _frame_slots = OptoReg::reg2stack(_matcher->_old_SP)+_regalloc->_framesize; #ifdef IA64 if (save_argument_registers()) { // 4815101: this is a stub with implicit and unknown precision fp args. // The usual spill mechanism can only generate stfd's in this case, which // doesn't work if the fp reg to spill contains a single-precision denorm. // Instead, we hack around the normal spill mechanism using stfspill's and // ldffill's in the MachProlog and MachEpilog emit methods. We allocate // space here for the fp arg regs (f8-f15) we're going to thusly spill. // // If we ever implement 16-byte 'registers' == stack slots, we can // get rid of this hack and have SpillCopy generate stfspill/ldffill // instead of stfd/stfs/ldfd/ldfs. _frame_slots += 8*(16/BytesPerInt); } #endif assert( _frame_slots >= 0 && _frame_slots < 1000000, "sanity check" ); // Create an array of unused labels, one for each basic block Label *blk_labels = NEW_RESOURCE_ARRAY(Label, _cfg->_num_blocks+1); for( i=0; i <= _cfg->_num_blocks; i++ ) { blk_labels[i].init(); } // If this machine supports different size branch offsets, then pre-compute // the length of the blocks if( _matcher->is_short_branch_offset(-1, 0) ) { Shorten_branches(blk_labels, code_req, locs_req, stub_req, const_req); labels_not_set = false; } // nmethod and CodeBuffer count stubs & constants as part of method's code. int exception_handler_req = size_exception_handler(); int deopt_handler_req = size_deopt_handler(); exception_handler_req += MAX_stubs_size; // add marginal slop for handler deopt_handler_req += MAX_stubs_size; // add marginal slop for handler stub_req += MAX_stubs_size; // ensure per-stub margin code_req += MAX_inst_size; // ensure per-instruction margin if (StressCodeBuffers) code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10; // force expansion int total_req = code_req + pad_req + stub_req + exception_handler_req + deopt_handler_req + const_req; CodeBuffer* cb = code_buffer(); cb->initialize(total_req, locs_req); // Have we run out of code space? if (cb->blob() == NULL) { turn_off_compiler(this); return; } // Configure the code buffer. cb->initialize_consts_size(const_req); cb->initialize_stubs_size(stub_req); cb->initialize_oop_recorder(env()->oop_recorder()); // fill in the nop array for bundling computations MachNode *_nop_list[Bundle::_nop_count]; Bundle::initialize_nops(_nop_list, this); // Create oopmap set. _oop_map_set = new OopMapSet(); // !!!!! This preserves old handling of oopmaps for now debug_info()->set_oopmaps(_oop_map_set); // Count and start of implicit null check instructions uint inct_cnt = 0; uint *inct_starts = NEW_RESOURCE_ARRAY(uint, _cfg->_num_blocks+1); // Count and start of calls uint *call_returns = NEW_RESOURCE_ARRAY(uint, _cfg->_num_blocks+1); uint return_offset = 0; MachNode *nop = new (this) MachNopNode(); int previous_offset = 0; int current_offset = 0; int last_call_offset = -1; // Create an array of unused labels, one for each basic block, if printing is enabled #ifndef PRODUCT int *node_offsets = NULL; uint node_offset_limit = unique(); if ( print_assembly() ) node_offsets = NEW_RESOURCE_ARRAY(int, node_offset_limit); #endif NonSafepointEmitter non_safepoints(this); // emit non-safepoints lazily // ------------------ // Now fill in the code buffer Node *delay_slot = NULL; for( i=0; i < _cfg->_num_blocks; i++ ) { Block *b = _cfg->_blocks[i]; Node *head = b->head(); // If this block needs to start aligned (i.e, can be reached other // than by falling-thru from the previous block), then force the // start of a new bundle. if( Pipeline::requires_bundling() && starts_bundle(head) ) cb->flush_bundle(true); // Define the label at the beginning of the basic block if( labels_not_set ) MacroAssembler(cb).bind( blk_labels[b->_pre_order] ); else assert( blk_labels[b->_pre_order].loc_pos() == cb->code_size(), "label position does not match code offset" ); uint last_inst = b->_nodes.size(); // Emit block normally, except for last instruction. // Emit means "dump code bits into code buffer". for( uint j = 0; j_nodes[j]; // See if delay slots are supported if (valid_bundle_info(n) && node_bundling(n)->used_in_unconditional_delay()) { assert(delay_slot == NULL, "no use of delay slot node"); assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size"); delay_slot = n; continue; } // If this starts a new instruction group, then flush the current one // (but allow split bundles) if( Pipeline::requires_bundling() && starts_bundle(n) ) cb->flush_bundle(false); // The following logic is duplicated in the code ifdeffed for // ENABLE_ZAP_DEAD_LOCALS which apppears above in this file. It // should be factored out. Or maybe dispersed to the nodes? // Special handling for SafePoint/Call Nodes bool is_mcall = false; if( n->is_Mach() ) { MachNode *mach = n->as_Mach(); is_mcall = n->is_MachCall(); bool is_sfn = n->is_MachSafePoint(); // If this requires all previous instructions be flushed, then do so if( is_sfn || is_mcall || mach->alignment_required() != 1) { cb->flush_bundle(true); current_offset = cb->code_size(); } // align the instruction if necessary int nop_size = nop->size(_regalloc); int padding = mach->compute_padding(current_offset); // Make sure safepoint node for polling is distinct from a call's // return by adding a nop if needed. if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset ) { padding = nop_size; } assert( labels_not_set || padding == 0, "instruction should already be aligned") if(padding > 0) { assert((padding % nop_size) == 0, "padding is not a multiple of NOP size"); int nops_cnt = padding / nop_size; MachNode *nop = new (this) MachNopNode(nops_cnt); b->_nodes.insert(j++, nop); last_inst++; _cfg->_bbs.map( nop->_idx, b ); nop->emit(*cb, _regalloc); cb->flush_bundle(true); current_offset = cb->code_size(); } // Remember the start of the last call in a basic block if (is_mcall) { MachCallNode *mcall = mach->as_MachCall(); // This destination address is NOT PC-relative mcall->method_set((intptr_t)mcall->entry_point()); // Save the return address call_returns[b->_pre_order] = current_offset + mcall->ret_addr_offset(); if (!mcall->is_safepoint_node()) { is_mcall = false; is_sfn = false; } } // sfn will be valid whenever mcall is valid now because of inheritance if( is_sfn || is_mcall ) { // Handle special safepoint nodes for synchronization if( !is_mcall ) { MachSafePointNode *sfn = mach->as_MachSafePoint(); // !!!!! Stubs only need an oopmap right now, so bail out if( sfn->jvms()->method() == NULL) { // Write the oopmap directly to the code blob??!! # ifdef ENABLE_ZAP_DEAD_LOCALS assert( !is_node_getting_a_safepoint(sfn), "logic does not match; false positive"); # endif continue; } } // End synchronization non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(), current_offset); Process_OopMap_Node(mach, current_offset); } // End if safepoint // If this is a null check, then add the start of the previous instruction to the list else if( mach->is_MachNullCheck() ) { inct_starts[inct_cnt++] = previous_offset; } // If this is a branch, then fill in the label with the target BB's label else if ( mach->is_Branch() ) { if ( mach->ideal_Opcode() == Op_Jump ) { for (uint h = 0; h < b->_num_succs; h++ ) { Block* succs_block = b->_succs[h]; for (uint j = 1; j < succs_block->num_preds(); j++) { Node* jpn = succs_block->pred(j); if ( jpn->is_JumpProj() && jpn->in(0) == mach ) { uint block_num = succs_block->non_connector()->_pre_order; Label *blkLabel = &blk_labels[block_num]; mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel); } } } } else { // For Branchs // This requires the TRUE branch target be in succs[0] uint block_num = b->non_connector_successor(0)->_pre_order; mach->label_set( blk_labels[block_num], block_num ); } } #ifdef ASSERT // Check that oop-store preceeds the card-mark else if( mach->ideal_Opcode() == Op_StoreCM ) { uint storeCM_idx = j; Node *oop_store = mach->in(mach->_cnt); // First precedence edge assert( oop_store != NULL, "storeCM expects a precedence edge"); uint i4; for( i4 = 0; i4 < last_inst; ++i4 ) { if( b->_nodes[i4] == oop_store ) break; } // Note: This test can provide a false failure if other precedence // edges have been added to the storeCMNode. assert( i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store"); } #endif else if( !n->is_Proj() ) { // Remember the begining of the previous instruction, in case // it's followed by a flag-kill and a null-check. Happens on // Intel all the time, with add-to-memory kind of opcodes. previous_offset = current_offset; } } // Verify that there is sufficient space remaining cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size); if (cb->blob() == NULL) { turn_off_compiler(this); return; } // Save the offset for the listing #ifndef PRODUCT if( node_offsets && n->_idx < node_offset_limit ) node_offsets[n->_idx] = cb->code_size(); #endif // "Normal" instruction case n->emit(*cb, _regalloc); current_offset = cb->code_size(); non_safepoints.observe_instruction(n, current_offset); // mcall is last "call" that can be a safepoint // record it so we can see if a poll will directly follow it // in which case we'll need a pad to make the PcDesc sites unique // see 5010568. This can be slightly inaccurate but conservative // in the case that return address is not actually at current_offset. // This is a small price to pay. if (is_mcall) { last_call_offset = current_offset; } // See if this instruction has a delay slot if ( valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) { assert(delay_slot != NULL, "expecting delay slot node"); // Back up 1 instruction cb->set_code_end( cb->code_end()-Pipeline::instr_unit_size()); // Save the offset for the listing #ifndef PRODUCT if( node_offsets && delay_slot->_idx < node_offset_limit ) node_offsets[delay_slot->_idx] = cb->code_size(); #endif // Support a SafePoint in the delay slot if( delay_slot->is_MachSafePoint() ) { MachNode *mach = delay_slot->as_Mach(); // !!!!! Stubs only need an oopmap right now, so bail out if( !mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL ) { // Write the oopmap directly to the code blob??!! # ifdef ENABLE_ZAP_DEAD_LOCALS assert( !is_node_getting_a_safepoint(mach), "logic does not match; false positive"); # endif delay_slot = NULL; continue; } int adjusted_offset = current_offset - Pipeline::instr_unit_size(); non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(), adjusted_offset); // Generate an OopMap entry Process_OopMap_Node(mach, adjusted_offset); } // Insert the delay slot instruction delay_slot->emit(*cb, _regalloc); // Don't reuse it delay_slot = NULL; } } // End for all instructions in block // If the next block _starts_ a loop, pad this block out to align // the loop start a little. Helps prevent pipe stalls at loop starts int nop_size = (new (this) MachNopNode())->size(_regalloc); if( i<_cfg->_num_blocks-1 ) { Block *nb = _cfg->_blocks[i+1]; uint padding = nb->alignment_padding(current_offset); if( padding > 0 ) { MachNode *nop = new (this) MachNopNode(padding / nop_size); b->_nodes.insert( b->_nodes.size(), nop ); _cfg->_bbs.map( nop->_idx, b ); nop->emit(*cb, _regalloc); current_offset = cb->code_size(); } } } // End of for all blocks non_safepoints.flush_at_end(); // Offset too large? if (failing()) return; // Define a pseudo-label at the end of the code MacroAssembler(cb).bind( blk_labels[_cfg->_num_blocks] ); // Compute the size of the first block _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos(); assert(cb->code_size() < 500000, "method is unreasonably large"); // ------------------ #ifndef PRODUCT // Information on the size of the method, without the extraneous code Scheduling::increment_method_size(cb->code_size()); #endif // ------------------ // Fill in exception table entries. FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels); // Only java methods have exception handlers and deopt handlers if (_method) { // Emit the exception handler code. _code_offsets.set_value(CodeOffsets::Exceptions, emit_exception_handler(*cb)); // Emit the deopt handler code. _code_offsets.set_value(CodeOffsets::Deopt, emit_deopt_handler(*cb)); } // One last check for failed CodeBuffer::expand: if (cb->blob() == NULL) { turn_off_compiler(this); return; } #ifndef PRODUCT // Dump the assembly code, including basic-block numbers if (print_assembly()) { ttyLocker ttyl; // keep the following output all in one block if (!VMThread::should_terminate()) { // test this under the tty lock // This output goes directly to the tty, not the compiler log. // To enable tools to match it up with the compilation activity, // be sure to tag this tty output with the compile ID. if (xtty != NULL) { xtty->head("opto_assembly compile_id='%d'%s", compile_id(), is_osr_compilation() ? " compile_kind='osr'" : ""); } if (method() != NULL) { method()->print_oop(); print_codes(); } dump_asm(node_offsets, node_offset_limit); if (xtty != NULL) { xtty->tail("opto_assembly"); } } } #endif } void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) { _inc_table.set_size(cnt); uint inct_cnt = 0; for( uint i=0; i<_cfg->_num_blocks; i++ ) { Block *b = _cfg->_blocks[i]; Node *n = NULL; int j; // Find the branch; ignore trailing NOPs. for( j = b->_nodes.size()-1; j>=0; j-- ) { n = b->_nodes[j]; if( !n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con ) break; } // If we didn't find anything, continue if( j < 0 ) continue; // Compute ExceptionHandlerTable subtable entry and add it // (skip empty blocks) if( n->is_Catch() ) { // Get the offset of the return from the call uint call_return = call_returns[b->_pre_order]; #ifdef ASSERT assert( call_return > 0, "no call seen for this basic block" ); while( b->_nodes[--j]->Opcode() == Op_MachProj ) ; assert( b->_nodes[j]->is_Call(), "CatchProj must follow call" ); #endif // last instruction is a CatchNode, find it's CatchProjNodes int nof_succs = b->_num_succs; // allocate space GrowableArray handler_bcis(nof_succs); GrowableArray handler_pcos(nof_succs); // iterate through all successors for (int j = 0; j < nof_succs; j++) { Block* s = b->_succs[j]; bool found_p = false; for( uint k = 1; k < s->num_preds(); k++ ) { Node *pk = s->pred(k); if( pk->is_CatchProj() && pk->in(0) == n ) { const CatchProjNode* p = pk->as_CatchProj(); found_p = true; // add the corresponding handler bci & pco information if( p->_con != CatchProjNode::fall_through_index ) { // p leads to an exception handler (and is not fall through) assert(s == _cfg->_blocks[s->_pre_order],"bad numbering"); // no duplicates, please if( !handler_bcis.contains(p->handler_bci()) ) { uint block_num = s->non_connector()->_pre_order; handler_bcis.append(p->handler_bci()); handler_pcos.append(blk_labels[block_num].loc_pos()); } } } } assert(found_p, "no matching predecessor found"); // Note: Due to empty block removal, one block may have // several CatchProj inputs, from the same Catch. } // Set the offset of the return from the call _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos); continue; } // Handle implicit null exception table updates if( n->is_MachNullCheck() ) { uint block_num = b->non_connector_successor(0)->_pre_order; _inc_table.append( inct_starts[inct_cnt++], blk_labels[block_num].loc_pos() ); continue; } } // End of for all blocks fill in exception table entries } // Static Variables #ifndef PRODUCT uint Scheduling::_total_nop_size = 0; uint Scheduling::_total_method_size = 0; uint Scheduling::_total_branches = 0; uint Scheduling::_total_unconditional_delays = 0; uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1]; #endif // Initializer for class Scheduling Scheduling::Scheduling(Arena *arena, Compile &compile) : _arena(arena), _cfg(compile.cfg()), _bbs(compile.cfg()->_bbs), _regalloc(compile.regalloc()), _reg_node(arena), _bundle_instr_count(0), _bundle_cycle_number(0), _scheduled(arena), _available(arena), _next_node(NULL), _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]), _pinch_free_list(arena) #ifndef PRODUCT , _branches(0) , _unconditional_delays(0) #endif { // Create a MachNopNode _nop = new (&compile) MachNopNode(); // Now that the nops are in the array, save the count // (but allow entries for the nops) _node_bundling_limit = compile.unique(); uint node_max = _regalloc->node_regs_max_index(); compile.set_node_bundling_limit(_node_bundling_limit); // This one is persistant within the Compile class _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max); // Allocate space for fixed-size arrays _node_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max); _uses = NEW_ARENA_ARRAY(arena, short, node_max); _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max); // Clear the arrays memset(_node_bundling_base, 0, node_max * sizeof(Bundle)); memset(_node_latency, 0, node_max * sizeof(unsigned short)); memset(_uses, 0, node_max * sizeof(short)); memset(_current_latency, 0, node_max * sizeof(unsigned short)); // Clear the bundling information memcpy(_bundle_use_elements, Pipeline_Use::elaborated_elements, sizeof(Pipeline_Use::elaborated_elements)); // Get the last node Block *bb = _cfg->_blocks[_cfg->_blocks.size()-1]; _next_node = bb->_nodes[bb->_nodes.size()-1]; } #ifndef PRODUCT // Scheduling destructor Scheduling::~Scheduling() { _total_branches += _branches; _total_unconditional_delays += _unconditional_delays; } #endif // Step ahead "i" cycles void Scheduling::step(uint i) { Bundle *bundle = node_bundling(_next_node); bundle->set_starts_bundle(); // Update the bundle record, but leave the flags information alone if (_bundle_instr_count > 0) { bundle->set_instr_count(_bundle_instr_count); bundle->set_resources_used(_bundle_use.resourcesUsed()); } // Update the state information _bundle_instr_count = 0; _bundle_cycle_number += i; _bundle_use.step(i); } void Scheduling::step_and_clear() { Bundle *bundle = node_bundling(_next_node); bundle->set_starts_bundle(); // Update the bundle record if (_bundle_instr_count > 0) { bundle->set_instr_count(_bundle_instr_count); bundle->set_resources_used(_bundle_use.resourcesUsed()); _bundle_cycle_number += 1; } // Clear the bundling information _bundle_instr_count = 0; _bundle_use.reset(); memcpy(_bundle_use_elements, Pipeline_Use::elaborated_elements, sizeof(Pipeline_Use::elaborated_elements)); } //------------------------------ScheduleAndBundle------------------------------ // Perform instruction scheduling and bundling over the sequence of // instructions in backwards order. void Compile::ScheduleAndBundle() { // Don't optimize this if it isn't a method if (!_method) return; // Don't optimize this if scheduling is disabled if (!do_scheduling()) return; NOT_PRODUCT( TracePhase t2("isched", &_t_instrSched, TimeCompiler); ) // Create a data structure for all the scheduling information Scheduling scheduling(Thread::current()->resource_area(), *this); // Walk backwards over each basic block, computing the needed alignment // Walk over all the basic blocks scheduling.DoScheduling(); } //------------------------------ComputeLocalLatenciesForward------------------- // Compute the latency of all the instructions. This is fairly simple, // because we already have a legal ordering. Walk over the instructions // from first to last, and compute the latency of the instruction based // on the latency of the preceeding instruction(s). void Scheduling::ComputeLocalLatenciesForward(const Block *bb) { #ifndef PRODUCT if (_cfg->C->trace_opto_output()) tty->print("# -> ComputeLocalLatenciesForward\n"); #endif // Walk over all the schedulable instructions for( uint j=_bb_start; j < _bb_end; j++ ) { // This is a kludge, forcing all latency calculations to start at 1. // Used to allow latency 0 to force an instruction to the beginning // of the bb uint latency = 1; Node *use = bb->_nodes[j]; uint nlen = use->len(); // Walk over all the inputs for ( uint k=0; k < nlen; k++ ) { Node *def = use->in(k); if (!def) continue; uint l = _node_latency[def->_idx] + use->latency(k); if (latency < l) latency = l; } _node_latency[use->_idx] = latency; #ifndef PRODUCT if (_cfg->C->trace_opto_output()) { tty->print("# latency %4d: ", latency); use->dump(); } #endif } #ifndef PRODUCT if (_cfg->C->trace_opto_output()) tty->print("# <- ComputeLocalLatenciesForward\n"); #endif } // end ComputeLocalLatenciesForward // See if this node fits into the present instruction bundle bool Scheduling::NodeFitsInBundle(Node *n) { uint n_idx = n->_idx; // If this is the unconditional delay instruction, then it fits if (n == _unconditional_delay_slot) { #ifndef PRODUCT if (_cfg->C->trace_opto_output()) tty->print("# NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx); #endif return (true); } // If the node cannot be scheduled this cycle, skip it if (_current_latency[n_idx] > _bundle_cycle_number) { #ifndef PRODUCT if (_cfg->C->trace_opto_output()) tty->print("# NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n", n->_idx, _current_latency[n_idx], _bundle_cycle_number); #endif return (false); } const Pipeline *node_pipeline = n->pipeline(); uint instruction_count = node_pipeline->instructionCount(); if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0) instruction_count = 0; else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot) instruction_count++; if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) { #ifndef PRODUCT if (_cfg->C->trace_opto_output()) tty->print("# NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n", n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle); #endif return (false); } // Don't allow non-machine nodes to be handled this way if (!n->is_Mach() && instruction_count == 0) return (false); // See if there is any overlap uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse()); if (delay > 0) { #ifndef PRODUCT if (_cfg->C->trace_opto_output()) tty->print("# NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx); #endif return false; } #ifndef PRODUCT if (_cfg->C->trace_opto_output()) tty->print("# NodeFitsInBundle [%4d]: TRUE\n", n_idx); #endif return true; } Node * Scheduling::ChooseNodeToBundle() { uint siz = _available.size(); if (siz == 0) { #ifndef PRODUCT if (_cfg->C->trace_opto_output()) tty->print("# ChooseNodeToBundle: NULL\n"); #endif return (NULL); } // Fast path, if only 1 instruction in the bundle if (siz == 1) { #ifndef PRODUCT if (_cfg->C->trace_opto_output()) { tty->print("# ChooseNodeToBundle (only 1): "); _available[0]->dump(); } #endif return (_available[0]); } // Don't bother, if the bundle is already full if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) { for ( uint i = 0; i < siz; i++ ) { Node *n = _available[i]; // Skip projections, we'll handle them another way if (n->is_Proj()) continue; // This presupposed that instructions are inserted into the // available list in a legality order; i.e. instructions that // must be inserted first are at the head of the list if (NodeFitsInBundle(n)) { #ifndef PRODUCT if (_cfg->C->trace_opto_output()) { tty->print("# ChooseNodeToBundle: "); n->dump(); } #endif return (n); } } } // Nothing fits in this bundle, choose the highest priority #ifndef PRODUCT if (_cfg->C->trace_opto_output()) { tty->print("# ChooseNodeToBundle: "); _available[0]->dump(); } #endif return _available[0]; } //------------------------------AddNodeToAvailableList------------------------- void Scheduling::AddNodeToAvailableList(Node *n) { assert( !n->is_Proj(), "projections never directly made available" ); #ifndef PRODUCT if (_cfg->C->trace_opto_output()) { tty->print("# AddNodeToAvailableList: "); n->dump(); } #endif int latency = _current_latency[n->_idx]; // Insert in latency order (insertion sort) uint i; for ( i=0; i < _available.size(); i++ ) if (_current_latency[_available[i]->_idx] > latency) break; // Special Check for compares following branches if( n->is_Mach() && _scheduled.size() > 0 ) { int op = n->as_Mach()->ideal_Opcode(); Node *last = _scheduled[0]; if( last->is_MachIf() && last->in(1) == n && ( op == Op_CmpI || op == Op_CmpU || op == Op_CmpP || op == Op_CmpF || op == Op_CmpD || op == Op_CmpL ) ) { // Recalculate position, moving to front of same latency for ( i=0 ; i < _available.size(); i++ ) if (_current_latency[_available[i]->_idx] >= latency) break; } } // Insert the node in the available list _available.insert(i, n); #ifndef PRODUCT if (_cfg->C->trace_opto_output()) dump_available(); #endif } //------------------------------DecrementUseCounts----------------------------- void Scheduling::DecrementUseCounts(Node *n, const Block *bb) { for ( uint i=0; i < n->len(); i++ ) { Node *def = n->in(i); if (!def) continue; if( def->is_Proj() ) // If this is a machine projection, then def = def->in(0); // propagate usage thru to the base instruction if( _bbs[def->_idx] != bb ) // Ignore if not block-local continue; // Compute the latency uint l = _bundle_cycle_number + n->latency(i); if (_current_latency[def->_idx] < l) _current_latency[def->_idx] = l; // If this does not have uses then schedule it if ((--_uses[def->_idx]) == 0) AddNodeToAvailableList(def); } } //------------------------------AddNodeToBundle-------------------------------- void Scheduling::AddNodeToBundle(Node *n, const Block *bb) { #ifndef PRODUCT if (_cfg->C->trace_opto_output()) { tty->print("# AddNodeToBundle: "); n->dump(); } #endif // Remove this from the available list uint i; for (i = 0; i < _available.size(); i++) if (_available[i] == n) break; assert(i < _available.size(), "entry in _available list not found"); _available.remove(i); // See if this fits in the current bundle const Pipeline *node_pipeline = n->pipeline(); const Pipeline_Use& node_usage = node_pipeline->resourceUse(); // Check for instructions to be placed in the delay slot. We // do this before we actually schedule the current instruction, // because the delay slot follows the current instruction. if (Pipeline::_branch_has_delay_slot && node_pipeline->hasBranchDelay() && !_unconditional_delay_slot) { uint siz = _available.size(); // Conditional branches can support an instruction that // is unconditionally executed and not dependant by the // branch, OR a conditionally executed instruction if // the branch is taken. In practice, this means that // the first instruction at the branch target is // copied to the delay slot, and the branch goes to // the instruction after that at the branch target if ( n->is_Mach() && n->is_Branch() ) { assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" ); assert( !n->is_Catch(), "should not look for delay slot for Catch" ); #ifndef PRODUCT _branches++; #endif // At least 1 instruction is on the available list // that is not dependant on the branch for (uint i = 0; i < siz; i++) { Node *d = _available[i]; const Pipeline *avail_pipeline = d->pipeline(); // Don't allow safepoints in the branch shadow, that will // cause a number of difficulties if ( avail_pipeline->instructionCount() == 1 && !avail_pipeline->hasMultipleBundles() && !avail_pipeline->hasBranchDelay() && Pipeline::instr_has_unit_size() && d->size(_regalloc) == Pipeline::instr_unit_size() && NodeFitsInBundle(d) && !node_bundling(d)->used_in_delay()) { if (d->is_Mach() && !d->is_MachSafePoint()) { // A node that fits in the delay slot was found, so we need to // set the appropriate bits in the bundle pipeline information so // that it correctly indicates resource usage. Later, when we // attempt to add this instruction to the bundle, we will skip // setting the resource usage. _unconditional_delay_slot = d; node_bundling(n)->set_use_unconditional_delay(); node_bundling(d)->set_used_in_unconditional_delay(); _bundle_use.add_usage(avail_pipeline->resourceUse()); _current_latency[d->_idx] = _bundle_cycle_number; _next_node = d; ++_bundle_instr_count; #ifndef PRODUCT _unconditional_delays++; #endif break; } } } } // No delay slot, add a nop to the usage if (!_unconditional_delay_slot) { // See if adding an instruction in the delay slot will overflow // the bundle. if (!NodeFitsInBundle(_nop)) { #ifndef PRODUCT if (_cfg->C->trace_opto_output()) tty->print("# *** STEP(1 instruction for delay slot) ***\n"); #endif step(1); } _bundle_use.add_usage(_nop->pipeline()->resourceUse()); _next_node = _nop; ++_bundle_instr_count; } // See if the instruction in the delay slot requires a // step of the bundles if (!NodeFitsInBundle(n)) { #ifndef PRODUCT if (_cfg->C->trace_opto_output()) tty->print("# *** STEP(branch won't fit) ***\n"); #endif // Update the state information _bundle_instr_count = 0; _bundle_cycle_number += 1; _bundle_use.step(1); } } // Get the number of instructions uint instruction_count = node_pipeline->instructionCount(); if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0) instruction_count = 0; // Compute the latency information uint delay = 0; if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) { int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number; if (relative_latency < 0) relative_latency = 0; delay = _bundle_use.full_latency(relative_latency, node_usage); // Does not fit in this bundle, start a new one if (delay > 0) { step(delay); #ifndef PRODUCT if (_cfg->C->trace_opto_output()) tty->print("# *** STEP(%d) ***\n", delay); #endif } } // If this was placed in the delay slot, ignore it if (n != _unconditional_delay_slot) { if (delay == 0) { if (node_pipeline->hasMultipleBundles()) { #ifndef PRODUCT if (_cfg->C->trace_opto_output()) tty->print("# *** STEP(multiple instructions) ***\n"); #endif step(1); } else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) { #ifndef PRODUCT if (_cfg->C->trace_opto_output()) tty->print("# *** STEP(%d >= %d instructions) ***\n", instruction_count + _bundle_instr_count, Pipeline::_max_instrs_per_cycle); #endif step(1); } } if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot) _bundle_instr_count++; // Set the node's latency _current_latency[n->_idx] = _bundle_cycle_number; // Now merge the functional unit information if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) _bundle_use.add_usage(node_usage); // Increment the number of instructions in this bundle _bundle_instr_count += instruction_count; // Remember this node for later if (n->is_Mach()) _next_node = n; } // It's possible to have a BoxLock in the graph and in the _bbs mapping but // not in the bb->_nodes array. This happens for debug-info-only BoxLocks. // 'Schedule' them (basically ignore in the schedule) but do not insert them // into the block. All other scheduled nodes get put in the schedule here. int op = n->Opcode(); if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR (op != Op_Node && // Not an unused antidepedence node and // not an unallocated boxlock (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) { // Push any trailing projections if( bb->_nodes[bb->_nodes.size()-1] != n ) { for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { Node *foi = n->fast_out(i); if( foi->is_Proj() ) _scheduled.push(foi); } } // Put the instruction in the schedule list _scheduled.push(n); } #ifndef PRODUCT if (_cfg->C->trace_opto_output()) dump_available(); #endif // Walk all the definitions, decrementing use counts, and // if a definition has a 0 use count, place it in the available list. DecrementUseCounts(n,bb); } //------------------------------ComputeUseCount-------------------------------- // This method sets the use count within a basic block. We will ignore all // uses outside the current basic block. As we are doing a backwards walk, // any node we reach that has a use count of 0 may be scheduled. This also // avoids the problem of cyclic references from phi nodes, as long as phi // nodes are at the front of the basic block. This method also initializes // the available list to the set of instructions that have no uses within this // basic block. void Scheduling::ComputeUseCount(const Block *bb) { #ifndef PRODUCT if (_cfg->C->trace_opto_output()) tty->print("# -> ComputeUseCount\n"); #endif // Clear the list of available and scheduled instructions, just in case _available.clear(); _scheduled.clear(); // No delay slot specified _unconditional_delay_slot = NULL; #ifdef ASSERT for( uint i=0; i < bb->_nodes.size(); i++ ) assert( _uses[bb->_nodes[i]->_idx] == 0, "_use array not clean" ); #endif // Force the _uses count to never go to zero for unscheduable pieces // of the block for( uint k = 0; k < _bb_start; k++ ) _uses[bb->_nodes[k]->_idx] = 1; for( uint l = _bb_end; l < bb->_nodes.size(); l++ ) _uses[bb->_nodes[l]->_idx] = 1; // Iterate backwards over the instructions in the block. Don't count the // branch projections at end or the block header instructions. for( uint j = _bb_end-1; j >= _bb_start; j-- ) { Node *n = bb->_nodes[j]; if( n->is_Proj() ) continue; // Projections handled another way // Account for all uses for ( uint k = 0; k < n->len(); k++ ) { Node *inp = n->in(k); if (!inp) continue; assert(inp != n, "no cycles allowed" ); if( _bbs[inp->_idx] == bb ) { // Block-local use? if( inp->is_Proj() ) // Skip through Proj's inp = inp->in(0); ++_uses[inp->_idx]; // Count 1 block-local use } } // If this instruction has a 0 use count, then it is available if (!_uses[n->_idx]) { _current_latency[n->_idx] = _bundle_cycle_number; AddNodeToAvailableList(n); } #ifndef PRODUCT if (_cfg->C->trace_opto_output()) { tty->print("# uses: %3d: ", _uses[n->_idx]); n->dump(); } #endif } #ifndef PRODUCT if (_cfg->C->trace_opto_output()) tty->print("# <- ComputeUseCount\n"); #endif } // This routine performs scheduling on each basic block in reverse order, // using instruction latencies and taking into account function unit // availability. void Scheduling::DoScheduling() { #ifndef PRODUCT if (_cfg->C->trace_opto_output()) tty->print("# -> DoScheduling\n"); #endif Block *succ_bb = NULL; Block *bb; // Walk over all the basic blocks in reverse order for( int i=_cfg->_num_blocks-1; i >= 0; succ_bb = bb, i-- ) { bb = _cfg->_blocks[i]; #ifndef PRODUCT if (_cfg->C->trace_opto_output()) { tty->print("# Schedule BB#%03d (initial)\n", i); for (uint j = 0; j < bb->_nodes.size(); j++) bb->_nodes[j]->dump(); } #endif // On the head node, skip processing if( bb == _cfg->_broot ) continue; // Skip empty, connector blocks if (bb->is_connector()) continue; // If the following block is not the sole successor of // this one, then reset the pipeline information if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) { #ifndef PRODUCT if (_cfg->C->trace_opto_output()) { tty->print("*** bundle start of next BB, node %d, for %d instructions\n", _next_node->_idx, _bundle_instr_count); } #endif step_and_clear(); } // Leave untouched the starting instruction, any Phis, a CreateEx node // or Top. bb->_nodes[_bb_start] is the first schedulable instruction. _bb_end = bb->_nodes.size()-1; for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) { Node *n = bb->_nodes[_bb_start]; // Things not matched, like Phinodes and ProjNodes don't get scheduled. // Also, MachIdealNodes do not get scheduled if( !n->is_Mach() ) continue; // Skip non-machine nodes MachNode *mach = n->as_Mach(); int iop = mach->ideal_Opcode(); if( iop == Op_CreateEx ) continue; // CreateEx is pinned if( iop == Op_Con ) continue; // Do not schedule Top if( iop == Op_Node && // Do not schedule PhiNodes, ProjNodes mach->pipeline() == MachNode::pipeline_class() && !n->is_SpillCopy() ) // Breakpoints, Prolog, etc continue; break; // Funny loop structure to be sure... } // Compute last "interesting" instruction in block - last instruction we // might schedule. _bb_end points just after last schedulable inst. We // normally schedule conditional branches (despite them being forced last // in the block), because they have delay slots we can fill. Calls all // have their delay slots filled in the template expansions, so we don't // bother scheduling them. Node *last = bb->_nodes[_bb_end]; if( last->is_Catch() || (last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) { // There must be a prior call. Skip it. while( !bb->_nodes[--_bb_end]->is_Call() ) { assert( bb->_nodes[_bb_end]->is_Proj(), "skipping projections after expected call" ); } } else if( last->is_MachNullCheck() ) { // Backup so the last null-checked memory instruction is // outside the schedulable range. Skip over the nullcheck, // projection, and the memory nodes. Node *mem = last->in(1); do { _bb_end--; } while (mem != bb->_nodes[_bb_end]); } else { // Set _bb_end to point after last schedulable inst. _bb_end++; } assert( _bb_start <= _bb_end, "inverted block ends" ); // Compute the register antidependencies for the basic block ComputeRegisterAntidependencies(bb); if (_cfg->C->failing()) return; // too many D-U pinch points // Compute intra-bb latencies for the nodes ComputeLocalLatenciesForward(bb); // Compute the usage within the block, and set the list of all nodes // in the block that have no uses within the block. ComputeUseCount(bb); // Schedule the remaining instructions in the block while ( _available.size() > 0 ) { Node *n = ChooseNodeToBundle(); AddNodeToBundle(n,bb); } assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" ); #ifdef ASSERT for( uint l = _bb_start; l < _bb_end; l++ ) { Node *n = bb->_nodes[l]; uint m; for( m = 0; m < _bb_end-_bb_start; m++ ) if( _scheduled[m] == n ) break; assert( m < _bb_end-_bb_start, "instruction missing in schedule" ); } #endif // Now copy the instructions (in reverse order) back to the block for ( uint k = _bb_start; k < _bb_end; k++ ) bb->_nodes.map(k, _scheduled[_bb_end-k-1]); #ifndef PRODUCT if (_cfg->C->trace_opto_output()) { tty->print("# Schedule BB#%03d (final)\n", i); uint current = 0; for (uint j = 0; j < bb->_nodes.size(); j++) { Node *n = bb->_nodes[j]; if( valid_bundle_info(n) ) { Bundle *bundle = node_bundling(n); if (bundle->instr_count() > 0 || bundle->flags() > 0) { tty->print("*** Bundle: "); bundle->dump(); } n->dump(); } } } #endif #ifdef ASSERT verify_good_schedule(bb,"after block local scheduling"); #endif } #ifndef PRODUCT if (_cfg->C->trace_opto_output()) tty->print("# <- DoScheduling\n"); #endif // Record final node-bundling array location _regalloc->C->set_node_bundling_base(_node_bundling_base); } // end DoScheduling //------------------------------verify_good_schedule--------------------------- // Verify that no live-range used in the block is killed in the block by a // wrong DEF. This doesn't verify live-ranges that span blocks. // Check for edge existence. Used to avoid adding redundant precedence edges. static bool edge_from_to( Node *from, Node *to ) { for( uint i=0; ilen(); i++ ) if( from->in(i) == to ) return true; return false; } #ifdef ASSERT //------------------------------verify_do_def---------------------------------- void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) { // Check for bad kills if( OptoReg::is_valid(def) ) { // Ignore stores & control flow Node *prior_use = _reg_node[def]; if( prior_use && !edge_from_to(prior_use,n) ) { tty->print("%s = ",OptoReg::as_VMReg(def)->name()); n->dump(); tty->print_cr("..."); prior_use->dump(); assert_msg(edge_from_to(prior_use,n),msg); } _reg_node.map(def,NULL); // Kill live USEs } } //------------------------------verify_good_schedule--------------------------- void Scheduling::verify_good_schedule( Block *b, const char *msg ) { // Zap to something reasonable for the verify code _reg_node.clear(); // Walk over the block backwards. Check to make sure each DEF doesn't // kill a live value (other than the one it's supposed to). Add each // USE to the live set. for( uint i = b->_nodes.size()-1; i >= _bb_start; i-- ) { Node *n = b->_nodes[i]; int n_op = n->Opcode(); if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) { // Fat-proj kills a slew of registers RegMask rm = n->out_RegMask();// Make local copy while( rm.is_NotEmpty() ) { OptoReg::Name kill = rm.find_first_elem(); rm.Remove(kill); verify_do_def( n, kill, msg ); } } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes // Get DEF'd registers the normal way verify_do_def( n, _regalloc->get_reg_first(n), msg ); verify_do_def( n, _regalloc->get_reg_second(n), msg ); } // Now make all USEs live for( uint i=1; ireq(); i++ ) { Node *def = n->in(i); assert(def != 0, "input edge required"); OptoReg::Name reg_lo = _regalloc->get_reg_first(def); OptoReg::Name reg_hi = _regalloc->get_reg_second(def); if( OptoReg::is_valid(reg_lo) ) { assert_msg(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), msg ); _reg_node.map(reg_lo,n); } if( OptoReg::is_valid(reg_hi) ) { assert_msg(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), msg ); _reg_node.map(reg_hi,n); } } } // Zap to something reasonable for the Antidependence code _reg_node.clear(); } #endif // Conditionally add precedence edges. Avoid putting edges on Projs. static void add_prec_edge_from_to( Node *from, Node *to ) { if( from->is_Proj() ) { // Put precedence edge on Proj's input assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" ); from = from->in(0); } if( from != to && // No cycles (for things like LD L0,[L0+4] ) !edge_from_to( from, to ) ) // Avoid duplicate edge from->add_prec(to); } //------------------------------anti_do_def------------------------------------ void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) { if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow return; Node *pinch = _reg_node[def_reg]; // Get pinch point if( !pinch || _bbs[pinch->_idx] != b || // No pinch-point yet? is_def ) { // Check for a true def (not a kill) _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point return; } Node *kill = def; // Rename 'def' to more descriptive 'kill' debug_only( def = (Node*)0xdeadbeef; ) // After some number of kills there _may_ be a later def Node *later_def = NULL; // Finding a kill requires a real pinch-point. // Check for not already having a pinch-point. // Pinch points are Op_Node's. if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point? later_def = pinch; // Must be def/kill as optimistic pinch-point if ( _pinch_free_list.size() > 0) { pinch = _pinch_free_list.pop(); } else { pinch = new (_cfg->C, 1) Node(1); // Pinch point to-be } if (pinch->_idx >= _regalloc->node_regs_max_index()) { _cfg->C->record_method_not_compilable("too many D-U pinch points"); return; } _bbs.map(pinch->_idx,b); // Pretend it's valid in this block (lazy init) _reg_node.map(def_reg,pinch); // Record pinch-point //_regalloc->set_bad(pinch->_idx); // Already initialized this way. if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill pinch->init_req(0, _cfg->C->top()); // set not NULL for the next call add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch later_def = NULL; // and no later def } pinch->set_req(0,later_def); // Hook later def so we can find it } else { // Else have valid pinch point if( pinch->in(0) ) // If there is a later-def later_def = pinch->in(0); // Get it } // Add output-dependence edge from later def to kill if( later_def ) // If there is some original def add_prec_edge_from_to(later_def,kill); // Add edge from def to kill // See if current kill is also a use, and so is forced to be the pinch-point. if( pinch->Opcode() == Op_Node ) { Node *uses = kill->is_Proj() ? kill->in(0) : kill; for( uint i=1; ireq(); i++ ) { if( _regalloc->get_reg_first(uses->in(i)) == def_reg || _regalloc->get_reg_second(uses->in(i)) == def_reg ) { // Yes, found a use/kill pinch-point pinch->set_req(0,NULL); // pinch->replace_by(kill); // Move anti-dep edges up pinch = kill; _reg_node.map(def_reg,pinch); return; } } } // Add edge from kill to pinch-point add_prec_edge_from_to(kill,pinch); } //------------------------------anti_do_use------------------------------------ void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) { if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow return; Node *pinch = _reg_node[use_reg]; // Get pinch point // Check for no later def_reg/kill in block if( pinch && _bbs[pinch->_idx] == b && // Use has to be block-local as well _bbs[use->_idx] == b ) { if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?) pinch->req() == 1 ) { // pinch not yet in block? pinch->del_req(0); // yank pointer to later-def, also set flag // Insert the pinch-point in the block just after the last use b->_nodes.insert(b->find_node(use)+1,pinch); _bb_end++; // Increase size scheduled region in block } add_prec_edge_from_to(pinch,use); } } //------------------------------ComputeRegisterAntidependences----------------- // We insert antidependences between the reads and following write of // allocated registers to prevent illegal code motion. Hopefully, the // number of added references should be fairly small, especially as we // are only adding references within the current basic block. void Scheduling::ComputeRegisterAntidependencies(Block *b) { #ifdef ASSERT verify_good_schedule(b,"before block local scheduling"); #endif // A valid schedule, for each register independently, is an endless cycle // of: a def, then some uses (connected to the def by true dependencies), // then some kills (defs with no uses), finally the cycle repeats with a new // def. The uses are allowed to float relative to each other, as are the // kills. No use is allowed to slide past a kill (or def). This requires // antidependencies between all uses of a single def and all kills that // follow, up to the next def. More edges are redundant, because later defs // & kills are already serialized with true or antidependencies. To keep // the edge count down, we add a 'pinch point' node if there's more than // one use or more than one kill/def. // We add dependencies in one bottom-up pass. // For each instruction we handle it's DEFs/KILLs, then it's USEs. // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this // register. If not, we record the DEF/KILL in _reg_node, the // register-to-def mapping. If there is a prior DEF/KILL, we insert a // "pinch point", a new Node that's in the graph but not in the block. // We put edges from the prior and current DEF/KILLs to the pinch point. // We put the pinch point in _reg_node. If there's already a pinch point // we merely add an edge from the current DEF/KILL to the pinch point. // After doing the DEF/KILLs, we handle USEs. For each used register, we // put an edge from the pinch point to the USE. // To be expedient, the _reg_node array is pre-allocated for the whole // compilation. _reg_node is lazily initialized; it either contains a NULL, // or a valid def/kill/pinch-point, or a leftover node from some prior // block. Leftover node from some prior block is treated like a NULL (no // prior def, so no anti-dependence needed). Valid def is distinguished by // it being in the current block. bool fat_proj_seen = false; uint last_safept = _bb_end-1; Node* end_node = (_bb_end-1 >= _bb_start) ? b->_nodes[last_safept] : NULL; Node* last_safept_node = end_node; for( uint i = _bb_end-1; i >= _bb_start; i-- ) { Node *n = b->_nodes[i]; int is_def = n->outcnt(); // def if some uses prior to adding precedence edges if( n->Opcode() == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) { // Fat-proj kills a slew of registers // This can add edges to 'n' and obscure whether or not it was a def, // hence the is_def flag. fat_proj_seen = true; RegMask rm = n->out_RegMask();// Make local copy while( rm.is_NotEmpty() ) { OptoReg::Name kill = rm.find_first_elem(); rm.Remove(kill); anti_do_def( b, n, kill, is_def ); } } else { // Get DEF'd registers the normal way anti_do_def( b, n, _regalloc->get_reg_first(n), is_def ); anti_do_def( b, n, _regalloc->get_reg_second(n), is_def ); } // Check each register used by this instruction for a following DEF/KILL // that must occur afterward and requires an anti-dependence edge. for( uint j=0; jreq(); j++ ) { Node *def = n->in(j); if( def ) { assert( def->Opcode() != Op_MachProj || def->ideal_reg() != MachProjNode::fat_proj, "" ); anti_do_use( b, n, _regalloc->get_reg_first(def) ); anti_do_use( b, n, _regalloc->get_reg_second(def) ); } } // Do not allow defs of new derived values to float above GC // points unless the base is definitely available at the GC point. Node *m = b->_nodes[i]; // Add precedence edge from following safepoint to use of derived pointer if( last_safept_node != end_node && m != last_safept_node) { for (uint k = 1; k < m->req(); k++) { const Type *t = m->in(k)->bottom_type(); if( t->isa_oop_ptr() && t->is_ptr()->offset() != 0 ) { last_safept_node->add_prec( m ); break; } } } if( n->jvms() ) { // Precedence edge from derived to safept // Check if last_safept_node was moved by pinch-point insertion in anti_do_use() if( b->_nodes[last_safept] != last_safept_node ) { last_safept = b->find_node(last_safept_node); } for( uint j=last_safept; j > i; j-- ) { Node *mach = b->_nodes[j]; if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP ) mach->add_prec( n ); } last_safept = i; last_safept_node = m; } } if (fat_proj_seen) { // Garbage collect pinch nodes that were not consumed. // They are usually created by a fat kill MachProj for a call. garbage_collect_pinch_nodes(); } } //------------------------------garbage_collect_pinch_nodes------------------------------- // Garbage collect pinch nodes for reuse by other blocks. // // The block scheduler's insertion of anti-dependence // edges creates many pinch nodes when the block contains // 2 or more Calls. A pinch node is used to prevent a // combinatorial explosion of edges. If a set of kills for a // register is anti-dependent on a set of uses (or defs), rather // than adding an edge in the graph between each pair of kill // and use (or def), a pinch is inserted between them: // // use1 use2 use3 // \ | / // \ | / // pinch // / | \ // / | \ // kill1 kill2 kill3 // // One pinch node is created per register killed when // the second call is encountered during a backwards pass // over the block. Most of these pinch nodes are never // wired into the graph because the register is never // used or def'ed in the block. // void Scheduling::garbage_collect_pinch_nodes() { #ifndef PRODUCT if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:"); #endif int trace_cnt = 0; for (uint k = 0; k < _reg_node.Size(); k++) { Node* pinch = _reg_node[k]; if (pinch != NULL && pinch->Opcode() == Op_Node && // no predecence input edges (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) { cleanup_pinch(pinch); _pinch_free_list.push(pinch); _reg_node.map(k, NULL); #ifndef PRODUCT if (_cfg->C->trace_opto_output()) { trace_cnt++; if (trace_cnt > 40) { tty->print("\n"); trace_cnt = 0; } tty->print(" %d", pinch->_idx); } #endif } } #ifndef PRODUCT if (_cfg->C->trace_opto_output()) tty->print("\n"); #endif } // Clean up a pinch node for reuse. void Scheduling::cleanup_pinch( Node *pinch ) { assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking"); for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) { Node* use = pinch->last_out(i); uint uses_found = 0; for (uint j = use->req(); j < use->len(); j++) { if (use->in(j) == pinch) { use->rm_prec(j); uses_found++; } } assert(uses_found > 0, "must be a precedence edge"); i -= uses_found; // we deleted 1 or more copies of this edge } // May have a later_def entry pinch->set_req(0, NULL); } //------------------------------print_statistics------------------------------- #ifndef PRODUCT void Scheduling::dump_available() const { tty->print("#Availist "); for (uint i = 0; i < _available.size(); i++) tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]); tty->cr(); } // Print Scheduling Statistics void Scheduling::print_statistics() { // Print the size added by nops for bundling tty->print("Nops added %d bytes to total of %d bytes", _total_nop_size, _total_method_size); if (_total_method_size > 0) tty->print(", for %.2f%%", ((double)_total_nop_size) / ((double) _total_method_size) * 100.0); tty->print("\n"); // Print the number of branch shadows filled if (Pipeline::_branch_has_delay_slot) { tty->print("Of %d branches, %d had unconditional delay slots filled", _total_branches, _total_unconditional_delays); if (_total_branches > 0) tty->print(", for %.2f%%", ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0); tty->print("\n"); } uint total_instructions = 0, total_bundles = 0; for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) { uint bundle_count = _total_instructions_per_bundle[i]; total_instructions += bundle_count * i; total_bundles += bundle_count; } if (total_bundles > 0) tty->print("Average ILP (excluding nops) is %.2f\n", ((double)total_instructions) / ((double)total_bundles)); } #endif