/* * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved. * Copyright 2012, 2013 SAP AG. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "asm/macroAssembler.inline.hpp" #include "code/debugInfoRec.hpp" #include "code/icBuffer.hpp" #include "code/vtableStubs.hpp" #include "interpreter/interpreter.hpp" #include "oops/compiledICHolder.hpp" #include "prims/jvmtiRedefineClassesTrace.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/vframeArray.hpp" #include "vmreg_ppc.inline.hpp" #ifdef COMPILER1 #include "c1/c1_Runtime1.hpp" #endif #ifdef COMPILER2 #include "opto/runtime.hpp" #endif #define __ masm-> #ifdef PRODUCT #define BLOCK_COMMENT(str) // nothing #else #define BLOCK_COMMENT(str) __ block_comment(str) #endif #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") // Used by generate_deopt_blob. Defined in .ad file. extern uint size_deopt_handler(); class RegisterSaver { // Used for saving volatile registers. public: // Support different return pc locations. enum ReturnPCLocation { return_pc_is_lr, return_pc_is_r4, return_pc_is_thread_saved_exception_pc }; static OopMap* push_frame_reg_args_and_save_live_registers(MacroAssembler* masm, int* out_frame_size_in_bytes, bool generate_oop_map, int return_pc_adjustment, ReturnPCLocation return_pc_location); static void restore_live_registers_and_pop_frame(MacroAssembler* masm, int frame_size_in_bytes, bool restore_ctr); static void push_frame_and_save_argument_registers(MacroAssembler* masm, Register r_temp, int frame_size, int total_args, const VMRegPair *regs, const VMRegPair *regs2 = NULL); static void restore_argument_registers_and_pop_frame(MacroAssembler*masm, int frame_size, int total_args, const VMRegPair *regs, const VMRegPair *regs2 = NULL); // During deoptimization only the result registers need to be restored // all the other values have already been extracted. static void restore_result_registers(MacroAssembler* masm, int frame_size_in_bytes); // Constants and data structures: typedef enum { int_reg = 0, float_reg = 1, special_reg = 2 } RegisterType; typedef enum { reg_size = 8, half_reg_size = reg_size / 2, } RegisterConstants; typedef struct { RegisterType reg_type; int reg_num; VMReg vmreg; } LiveRegType; }; #define RegisterSaver_LiveSpecialReg(regname) \ { RegisterSaver::special_reg, regname->encoding(), regname->as_VMReg() } #define RegisterSaver_LiveIntReg(regname) \ { RegisterSaver::int_reg, regname->encoding(), regname->as_VMReg() } #define RegisterSaver_LiveFloatReg(regname) \ { RegisterSaver::float_reg, regname->encoding(), regname->as_VMReg() } static const RegisterSaver::LiveRegType RegisterSaver_LiveRegs[] = { // Live registers which get spilled to the stack. Register // positions in this array correspond directly to the stack layout. // // live special registers: // RegisterSaver_LiveSpecialReg(SR_CTR), // // live float registers: // RegisterSaver_LiveFloatReg( F0 ), RegisterSaver_LiveFloatReg( F1 ), RegisterSaver_LiveFloatReg( F2 ), RegisterSaver_LiveFloatReg( F3 ), RegisterSaver_LiveFloatReg( F4 ), RegisterSaver_LiveFloatReg( F5 ), RegisterSaver_LiveFloatReg( F6 ), RegisterSaver_LiveFloatReg( F7 ), RegisterSaver_LiveFloatReg( F8 ), RegisterSaver_LiveFloatReg( F9 ), RegisterSaver_LiveFloatReg( F10 ), RegisterSaver_LiveFloatReg( F11 ), RegisterSaver_LiveFloatReg( F12 ), RegisterSaver_LiveFloatReg( F13 ), RegisterSaver_LiveFloatReg( F14 ), RegisterSaver_LiveFloatReg( F15 ), RegisterSaver_LiveFloatReg( F16 ), RegisterSaver_LiveFloatReg( F17 ), RegisterSaver_LiveFloatReg( F18 ), RegisterSaver_LiveFloatReg( F19 ), RegisterSaver_LiveFloatReg( F20 ), RegisterSaver_LiveFloatReg( F21 ), RegisterSaver_LiveFloatReg( F22 ), RegisterSaver_LiveFloatReg( F23 ), RegisterSaver_LiveFloatReg( F24 ), RegisterSaver_LiveFloatReg( F25 ), RegisterSaver_LiveFloatReg( F26 ), RegisterSaver_LiveFloatReg( F27 ), RegisterSaver_LiveFloatReg( F28 ), RegisterSaver_LiveFloatReg( F29 ), RegisterSaver_LiveFloatReg( F30 ), RegisterSaver_LiveFloatReg( F31 ), // // live integer registers: // RegisterSaver_LiveIntReg( R0 ), //RegisterSaver_LiveIntReg( R1 ), // stack pointer RegisterSaver_LiveIntReg( R2 ), RegisterSaver_LiveIntReg( R3 ), RegisterSaver_LiveIntReg( R4 ), RegisterSaver_LiveIntReg( R5 ), RegisterSaver_LiveIntReg( R6 ), RegisterSaver_LiveIntReg( R7 ), RegisterSaver_LiveIntReg( R8 ), RegisterSaver_LiveIntReg( R9 ), RegisterSaver_LiveIntReg( R10 ), RegisterSaver_LiveIntReg( R11 ), RegisterSaver_LiveIntReg( R12 ), //RegisterSaver_LiveIntReg( R13 ), // system thread id RegisterSaver_LiveIntReg( R14 ), RegisterSaver_LiveIntReg( R15 ), RegisterSaver_LiveIntReg( R16 ), RegisterSaver_LiveIntReg( R17 ), RegisterSaver_LiveIntReg( R18 ), RegisterSaver_LiveIntReg( R19 ), RegisterSaver_LiveIntReg( R20 ), RegisterSaver_LiveIntReg( R21 ), RegisterSaver_LiveIntReg( R22 ), RegisterSaver_LiveIntReg( R23 ), RegisterSaver_LiveIntReg( R24 ), RegisterSaver_LiveIntReg( R25 ), RegisterSaver_LiveIntReg( R26 ), RegisterSaver_LiveIntReg( R27 ), RegisterSaver_LiveIntReg( R28 ), RegisterSaver_LiveIntReg( R29 ), RegisterSaver_LiveIntReg( R31 ), RegisterSaver_LiveIntReg( R30 ), // r30 must be the last register }; OopMap* RegisterSaver::push_frame_reg_args_and_save_live_registers(MacroAssembler* masm, int* out_frame_size_in_bytes, bool generate_oop_map, int return_pc_adjustment, ReturnPCLocation return_pc_location) { // Push an abi_reg_args-frame and store all registers which may be live. // If requested, create an OopMap: Record volatile registers as // callee-save values in an OopMap so their save locations will be // propagated to the RegisterMap of the caller frame during // StackFrameStream construction (needed for deoptimization; see // compiledVFrame::create_stack_value). // If return_pc_adjustment != 0 adjust the return pc by return_pc_adjustment. int i; int offset; // calcualte frame size const int regstosave_num = sizeof(RegisterSaver_LiveRegs) / sizeof(RegisterSaver::LiveRegType); const int register_save_size = regstosave_num * reg_size; const int frame_size_in_bytes = round_to(register_save_size, frame::alignment_in_bytes) + frame::abi_reg_args_size; *out_frame_size_in_bytes = frame_size_in_bytes; const int frame_size_in_slots = frame_size_in_bytes / sizeof(jint); const int register_save_offset = frame_size_in_bytes - register_save_size; // OopMap frame size is in c2 stack slots (sizeof(jint)) not bytes or words. OopMap* map = generate_oop_map ? new OopMap(frame_size_in_slots, 0) : NULL; BLOCK_COMMENT("push_frame_reg_args_and_save_live_registers {"); // Save r30 in the last slot of the not yet pushed frame so that we // can use it as scratch reg. __ std(R30, -reg_size, R1_SP); assert(-reg_size == register_save_offset - frame_size_in_bytes + ((regstosave_num-1)*reg_size), "consistency check"); // save the flags // Do the save_LR_CR by hand and adjust the return pc if requested. __ mfcr(R30); __ std(R30, _abi(cr), R1_SP); switch (return_pc_location) { case return_pc_is_lr: __ mflr(R30); break; case return_pc_is_r4: __ mr(R30, R4); break; case return_pc_is_thread_saved_exception_pc: __ ld(R30, thread_(saved_exception_pc)); break; default: ShouldNotReachHere(); } if (return_pc_adjustment != 0) __ addi(R30, R30, return_pc_adjustment); __ std(R30, _abi(lr), R1_SP); // push a new frame __ push_frame(frame_size_in_bytes, R30); // save all registers (ints and floats) offset = register_save_offset; for (int i = 0; i < regstosave_num; i++) { int reg_num = RegisterSaver_LiveRegs[i].reg_num; int reg_type = RegisterSaver_LiveRegs[i].reg_type; switch (reg_type) { case RegisterSaver::int_reg: { if (reg_num != 30) { // We spilled R30 right at the beginning. __ std(as_Register(reg_num), offset, R1_SP); } break; } case RegisterSaver::float_reg: { __ stfd(as_FloatRegister(reg_num), offset, R1_SP); break; } case RegisterSaver::special_reg: { if (reg_num == SR_CTR_SpecialRegisterEnumValue) { __ mfctr(R30); __ std(R30, offset, R1_SP); } else { Unimplemented(); } break; } default: ShouldNotReachHere(); } if (generate_oop_map) { map->set_callee_saved(VMRegImpl::stack2reg(offset>>2), RegisterSaver_LiveRegs[i].vmreg); map->set_callee_saved(VMRegImpl::stack2reg((offset + half_reg_size)>>2), RegisterSaver_LiveRegs[i].vmreg->next()); } offset += reg_size; } BLOCK_COMMENT("} push_frame_reg_args_and_save_live_registers"); // And we're done. return map; } // Pop the current frame and restore all the registers that we // saved. void RegisterSaver::restore_live_registers_and_pop_frame(MacroAssembler* masm, int frame_size_in_bytes, bool restore_ctr) { int i; int offset; const int regstosave_num = sizeof(RegisterSaver_LiveRegs) / sizeof(RegisterSaver::LiveRegType); const int register_save_size = regstosave_num * reg_size; const int register_save_offset = frame_size_in_bytes - register_save_size; BLOCK_COMMENT("restore_live_registers_and_pop_frame {"); // restore all registers (ints and floats) offset = register_save_offset; for (int i = 0; i < regstosave_num; i++) { int reg_num = RegisterSaver_LiveRegs[i].reg_num; int reg_type = RegisterSaver_LiveRegs[i].reg_type; switch (reg_type) { case RegisterSaver::int_reg: { if (reg_num != 30) // R30 restored at the end, it's the tmp reg! __ ld(as_Register(reg_num), offset, R1_SP); break; } case RegisterSaver::float_reg: { __ lfd(as_FloatRegister(reg_num), offset, R1_SP); break; } case RegisterSaver::special_reg: { if (reg_num == SR_CTR_SpecialRegisterEnumValue) { if (restore_ctr) { // Nothing to do here if ctr already contains the next address. __ ld(R30, offset, R1_SP); __ mtctr(R30); } } else { Unimplemented(); } break; } default: ShouldNotReachHere(); } offset += reg_size; } // pop the frame __ pop_frame(); // restore the flags __ restore_LR_CR(R30); // restore scratch register's value __ ld(R30, -reg_size, R1_SP); BLOCK_COMMENT("} restore_live_registers_and_pop_frame"); } void RegisterSaver::push_frame_and_save_argument_registers(MacroAssembler* masm, Register r_temp, int frame_size,int total_args, const VMRegPair *regs, const VMRegPair *regs2) { __ push_frame(frame_size, r_temp); int st_off = frame_size - wordSize; for (int i = 0; i < total_args; i++) { VMReg r_1 = regs[i].first(); VMReg r_2 = regs[i].second(); if (!r_1->is_valid()) { assert(!r_2->is_valid(), ""); continue; } if (r_1->is_Register()) { Register r = r_1->as_Register(); __ std(r, st_off, R1_SP); st_off -= wordSize; } else if (r_1->is_FloatRegister()) { FloatRegister f = r_1->as_FloatRegister(); __ stfd(f, st_off, R1_SP); st_off -= wordSize; } } if (regs2 != NULL) { for (int i = 0; i < total_args; i++) { VMReg r_1 = regs2[i].first(); VMReg r_2 = regs2[i].second(); if (!r_1->is_valid()) { assert(!r_2->is_valid(), ""); continue; } if (r_1->is_Register()) { Register r = r_1->as_Register(); __ std(r, st_off, R1_SP); st_off -= wordSize; } else if (r_1->is_FloatRegister()) { FloatRegister f = r_1->as_FloatRegister(); __ stfd(f, st_off, R1_SP); st_off -= wordSize; } } } } void RegisterSaver::restore_argument_registers_and_pop_frame(MacroAssembler*masm, int frame_size, int total_args, const VMRegPair *regs, const VMRegPair *regs2) { int st_off = frame_size - wordSize; for (int i = 0; i < total_args; i++) { VMReg r_1 = regs[i].first(); VMReg r_2 = regs[i].second(); if (r_1->is_Register()) { Register r = r_1->as_Register(); __ ld(r, st_off, R1_SP); st_off -= wordSize; } else if (r_1->is_FloatRegister()) { FloatRegister f = r_1->as_FloatRegister(); __ lfd(f, st_off, R1_SP); st_off -= wordSize; } } if (regs2 != NULL) for (int i = 0; i < total_args; i++) { VMReg r_1 = regs2[i].first(); VMReg r_2 = regs2[i].second(); if (r_1->is_Register()) { Register r = r_1->as_Register(); __ ld(r, st_off, R1_SP); st_off -= wordSize; } else if (r_1->is_FloatRegister()) { FloatRegister f = r_1->as_FloatRegister(); __ lfd(f, st_off, R1_SP); st_off -= wordSize; } } __ pop_frame(); } // Restore the registers that might be holding a result. void RegisterSaver::restore_result_registers(MacroAssembler* masm, int frame_size_in_bytes) { int i; int offset; const int regstosave_num = sizeof(RegisterSaver_LiveRegs) / sizeof(RegisterSaver::LiveRegType); const int register_save_size = regstosave_num * reg_size; const int register_save_offset = frame_size_in_bytes - register_save_size; // restore all result registers (ints and floats) offset = register_save_offset; for (int i = 0; i < regstosave_num; i++) { int reg_num = RegisterSaver_LiveRegs[i].reg_num; int reg_type = RegisterSaver_LiveRegs[i].reg_type; switch (reg_type) { case RegisterSaver::int_reg: { if (as_Register(reg_num)==R3_RET) // int result_reg __ ld(as_Register(reg_num), offset, R1_SP); break; } case RegisterSaver::float_reg: { if (as_FloatRegister(reg_num)==F1_RET) // float result_reg __ lfd(as_FloatRegister(reg_num), offset, R1_SP); break; } case RegisterSaver::special_reg: { // Special registers don't hold a result. break; } default: ShouldNotReachHere(); } offset += reg_size; } } // Is vector's size (in bytes) bigger than a size saved by default? bool SharedRuntime::is_wide_vector(int size) { ResourceMark rm; // Note, MaxVectorSize == 8 on PPC64. assert(size <= 8, err_msg_res("%d bytes vectors are not supported", size)); return size > 8; } #ifdef COMPILER2 static int reg2slot(VMReg r) { return r->reg2stack() + SharedRuntime::out_preserve_stack_slots(); } static int reg2offset(VMReg r) { return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; } #endif // --------------------------------------------------------------------------- // Read the array of BasicTypes from a signature, and compute where the // arguments should go. Values in the VMRegPair regs array refer to 4-byte // quantities. Values less than VMRegImpl::stack0 are registers, those above // refer to 4-byte stack slots. All stack slots are based off of the stack pointer // as framesizes are fixed. // VMRegImpl::stack0 refers to the first slot 0(sp). // and VMRegImpl::stack0+1 refers to the memory word 4-bytes higher. Register // up to RegisterImpl::number_of_registers) are the 64-bit // integer registers. // Note: the INPUTS in sig_bt are in units of Java argument words, which are // either 32-bit or 64-bit depending on the build. The OUTPUTS are in 32-bit // units regardless of build. Of course for i486 there is no 64 bit build // The Java calling convention is a "shifted" version of the C ABI. // By skipping the first C ABI register we can call non-static jni methods // with small numbers of arguments without having to shuffle the arguments // at all. Since we control the java ABI we ought to at least get some // advantage out of it. const VMReg java_iarg_reg[8] = { R3->as_VMReg(), R4->as_VMReg(), R5->as_VMReg(), R6->as_VMReg(), R7->as_VMReg(), R8->as_VMReg(), R9->as_VMReg(), R10->as_VMReg() }; const VMReg java_farg_reg[13] = { F1->as_VMReg(), F2->as_VMReg(), F3->as_VMReg(), F4->as_VMReg(), F5->as_VMReg(), F6->as_VMReg(), F7->as_VMReg(), F8->as_VMReg(), F9->as_VMReg(), F10->as_VMReg(), F11->as_VMReg(), F12->as_VMReg(), F13->as_VMReg() }; const int num_java_iarg_registers = sizeof(java_iarg_reg) / sizeof(java_iarg_reg[0]); const int num_java_farg_registers = sizeof(java_farg_reg) / sizeof(java_farg_reg[0]); int SharedRuntime::java_calling_convention(const BasicType *sig_bt, VMRegPair *regs, int total_args_passed, int is_outgoing) { // C2c calling conventions for compiled-compiled calls. // Put 8 ints/longs into registers _AND_ 13 float/doubles into // registers _AND_ put the rest on the stack. const int inc_stk_for_intfloat = 1; // 1 slots for ints and floats const int inc_stk_for_longdouble = 2; // 2 slots for longs and doubles int i; VMReg reg; int stk = 0; int ireg = 0; int freg = 0; // We put the first 8 arguments into registers and the rest on the // stack, float arguments are already in their argument registers // due to c2c calling conventions (see calling_convention). for (int i = 0; i < total_args_passed; ++i) { switch(sig_bt[i]) { case T_BOOLEAN: case T_CHAR: case T_BYTE: case T_SHORT: case T_INT: if (ireg < num_java_iarg_registers) { // Put int/ptr in register reg = java_iarg_reg[ireg]; ++ireg; } else { // Put int/ptr on stack. reg = VMRegImpl::stack2reg(stk); stk += inc_stk_for_intfloat; } regs[i].set1(reg); break; case T_LONG: assert(sig_bt[i+1] == T_VOID, "expecting half"); if (ireg < num_java_iarg_registers) { // Put long in register. reg = java_iarg_reg[ireg]; ++ireg; } else { // Put long on stack. They must be aligned to 2 slots. if (stk & 0x1) ++stk; reg = VMRegImpl::stack2reg(stk); stk += inc_stk_for_longdouble; } regs[i].set2(reg); break; case T_OBJECT: case T_ARRAY: case T_ADDRESS: if (ireg < num_java_iarg_registers) { // Put ptr in register. reg = java_iarg_reg[ireg]; ++ireg; } else { // Put ptr on stack. Objects must be aligned to 2 slots too, // because "64-bit pointers record oop-ishness on 2 aligned // adjacent registers." (see OopFlow::build_oop_map). if (stk & 0x1) ++stk; reg = VMRegImpl::stack2reg(stk); stk += inc_stk_for_longdouble; } regs[i].set2(reg); break; case T_FLOAT: if (freg < num_java_farg_registers) { // Put float in register. reg = java_farg_reg[freg]; ++freg; } else { // Put float on stack. reg = VMRegImpl::stack2reg(stk); stk += inc_stk_for_intfloat; } regs[i].set1(reg); break; case T_DOUBLE: assert(sig_bt[i+1] == T_VOID, "expecting half"); if (freg < num_java_farg_registers) { // Put double in register. reg = java_farg_reg[freg]; ++freg; } else { // Put double on stack. They must be aligned to 2 slots. if (stk & 0x1) ++stk; reg = VMRegImpl::stack2reg(stk); stk += inc_stk_for_longdouble; } regs[i].set2(reg); break; case T_VOID: // Do not count halves. regs[i].set_bad(); break; default: ShouldNotReachHere(); } } return round_to(stk, 2); } #ifdef COMPILER2 // Calling convention for calling C code. int SharedRuntime::c_calling_convention(const BasicType *sig_bt, VMRegPair *regs, VMRegPair *regs2, int total_args_passed) { // Calling conventions for C runtime calls and calls to JNI native methods. // // PPC64 convention: Hoist the first 8 int/ptr/long's in the first 8 // int regs, leaving int regs undefined if the arg is flt/dbl. Hoist // the first 13 flt/dbl's in the first 13 fp regs but additionally // copy flt/dbl to the stack if they are beyond the 8th argument. const VMReg iarg_reg[8] = { R3->as_VMReg(), R4->as_VMReg(), R5->as_VMReg(), R6->as_VMReg(), R7->as_VMReg(), R8->as_VMReg(), R9->as_VMReg(), R10->as_VMReg() }; const VMReg farg_reg[13] = { F1->as_VMReg(), F2->as_VMReg(), F3->as_VMReg(), F4->as_VMReg(), F5->as_VMReg(), F6->as_VMReg(), F7->as_VMReg(), F8->as_VMReg(), F9->as_VMReg(), F10->as_VMReg(), F11->as_VMReg(), F12->as_VMReg(), F13->as_VMReg() }; // Check calling conventions consistency. assert(sizeof(iarg_reg) / sizeof(iarg_reg[0]) == Argument::n_int_register_parameters_c && sizeof(farg_reg) / sizeof(farg_reg[0]) == Argument::n_float_register_parameters_c, "consistency"); // `Stk' counts stack slots. Due to alignment, 32 bit values occupy // 2 such slots, like 64 bit values do. const int inc_stk_for_intfloat = 2; // 2 slots for ints and floats const int inc_stk_for_longdouble = 2; // 2 slots for longs and doubles int i; VMReg reg; // Leave room for C-compatible ABI_REG_ARGS. int stk = (frame::abi_reg_args_size - frame::jit_out_preserve_size) / VMRegImpl::stack_slot_size; int arg = 0; int freg = 0; // Avoid passing C arguments in the wrong stack slots. #if defined(ABI_ELFv2) assert((SharedRuntime::out_preserve_stack_slots() + stk) * VMRegImpl::stack_slot_size == 96, "passing C arguments in wrong stack slots"); #else assert((SharedRuntime::out_preserve_stack_slots() + stk) * VMRegImpl::stack_slot_size == 112, "passing C arguments in wrong stack slots"); #endif // We fill-out regs AND regs2 if an argument must be passed in a // register AND in a stack slot. If regs2 is NULL in such a // situation, we bail-out with a fatal error. for (int i = 0; i < total_args_passed; ++i, ++arg) { // Initialize regs2 to BAD. if (regs2 != NULL) regs2[i].set_bad(); switch(sig_bt[i]) { // // If arguments 0-7 are integers, they are passed in integer registers. // Argument i is placed in iarg_reg[i]. // case T_BOOLEAN: case T_CHAR: case T_BYTE: case T_SHORT: case T_INT: // We must cast ints to longs and use full 64 bit stack slots // here. We do the cast in GraphKit::gen_stub() and just guard // here against loosing that change. assert(CCallingConventionRequiresIntsAsLongs, "argument of type int should be promoted to type long"); guarantee(i > 0 && sig_bt[i-1] == T_LONG, "argument of type (bt) should have been promoted to type (T_LONG,bt) for bt in " "{T_BOOLEAN, T_CHAR, T_BYTE, T_SHORT, T_INT}"); // Do not count halves. regs[i].set_bad(); --arg; break; case T_LONG: guarantee(sig_bt[i+1] == T_VOID || sig_bt[i+1] == T_BOOLEAN || sig_bt[i+1] == T_CHAR || sig_bt[i+1] == T_BYTE || sig_bt[i+1] == T_SHORT || sig_bt[i+1] == T_INT, "expecting type (T_LONG,half) or type (T_LONG,bt) with bt in {T_BOOLEAN, T_CHAR, T_BYTE, T_SHORT, T_INT}"); case T_OBJECT: case T_ARRAY: case T_ADDRESS: case T_METADATA: // Oops are already boxed if required (JNI). if (arg < Argument::n_int_register_parameters_c) { reg = iarg_reg[arg]; } else { reg = VMRegImpl::stack2reg(stk); stk += inc_stk_for_longdouble; } regs[i].set2(reg); break; // // Floats are treated differently from int regs: The first 13 float arguments // are passed in registers (not the float args among the first 13 args). // Thus argument i is NOT passed in farg_reg[i] if it is float. It is passed // in farg_reg[j] if argument i is the j-th float argument of this call. // case T_FLOAT: if (freg < Argument::n_float_register_parameters_c) { // Put float in register ... reg = farg_reg[freg]; ++freg; // Argument i for i > 8 is placed on the stack even if it's // placed in a register (if it's a float arg). Aix disassembly // shows that xlC places these float args on the stack AND in // a register. This is not documented, but we follow this // convention, too. if (arg >= Argument::n_regs_not_on_stack_c) { // ... and on the stack. guarantee(regs2 != NULL, "must pass float in register and stack slot"); VMReg reg2 = VMRegImpl::stack2reg(stk LINUX_ONLY(+1)); regs2[i].set1(reg2); stk += inc_stk_for_intfloat; } } else { // Put float on stack. reg = VMRegImpl::stack2reg(stk LINUX_ONLY(+1)); stk += inc_stk_for_intfloat; } regs[i].set1(reg); break; case T_DOUBLE: assert(sig_bt[i+1] == T_VOID, "expecting half"); if (freg < Argument::n_float_register_parameters_c) { // Put double in register ... reg = farg_reg[freg]; ++freg; // Argument i for i > 8 is placed on the stack even if it's // placed in a register (if it's a double arg). Aix disassembly // shows that xlC places these float args on the stack AND in // a register. This is not documented, but we follow this // convention, too. if (arg >= Argument::n_regs_not_on_stack_c) { // ... and on the stack. guarantee(regs2 != NULL, "must pass float in register and stack slot"); VMReg reg2 = VMRegImpl::stack2reg(stk); regs2[i].set2(reg2); stk += inc_stk_for_longdouble; } } else { // Put double on stack. reg = VMRegImpl::stack2reg(stk); stk += inc_stk_for_longdouble; } regs[i].set2(reg); break; case T_VOID: // Do not count halves. regs[i].set_bad(); --arg; break; default: ShouldNotReachHere(); } } return round_to(stk, 2); } #endif // COMPILER2 static address gen_c2i_adapter(MacroAssembler *masm, int total_args_passed, int comp_args_on_stack, const BasicType *sig_bt, const VMRegPair *regs, Label& call_interpreter, const Register& ientry) { address c2i_entrypoint; const Register sender_SP = R21_sender_SP; // == R21_tmp1 const Register code = R22_tmp2; //const Register ientry = R23_tmp3; const Register value_regs[] = { R24_tmp4, R25_tmp5, R26_tmp6 }; const int num_value_regs = sizeof(value_regs) / sizeof(Register); int value_regs_index = 0; const Register return_pc = R27_tmp7; const Register tmp = R28_tmp8; assert_different_registers(sender_SP, code, ientry, return_pc, tmp); // Adapter needs TOP_IJAVA_FRAME_ABI. const int adapter_size = frame::top_ijava_frame_abi_size + round_to(total_args_passed * wordSize, frame::alignment_in_bytes); // regular (verified) c2i entry point c2i_entrypoint = __ pc(); // Does compiled code exists? If yes, patch the caller's callsite. __ ld(code, method_(code)); __ cmpdi(CCR0, code, 0); __ ld(ientry, method_(interpreter_entry)); // preloaded __ beq(CCR0, call_interpreter); // Patch caller's callsite, method_(code) was not NULL which means that // compiled code exists. __ mflr(return_pc); __ std(return_pc, _abi(lr), R1_SP); RegisterSaver::push_frame_and_save_argument_registers(masm, tmp, adapter_size, total_args_passed, regs); __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite), R19_method, return_pc); RegisterSaver::restore_argument_registers_and_pop_frame(masm, adapter_size, total_args_passed, regs); __ ld(return_pc, _abi(lr), R1_SP); __ ld(ientry, method_(interpreter_entry)); // preloaded __ mtlr(return_pc); // Call the interpreter. __ BIND(call_interpreter); __ mtctr(ientry); // Get a copy of the current SP for loading caller's arguments. __ mr(sender_SP, R1_SP); // Add space for the adapter. __ resize_frame(-adapter_size, R12_scratch2); int st_off = adapter_size - wordSize; // Write the args into the outgoing interpreter space. for (int i = 0; i < total_args_passed; i++) { VMReg r_1 = regs[i].first(); VMReg r_2 = regs[i].second(); if (!r_1->is_valid()) { assert(!r_2->is_valid(), ""); continue; } if (r_1->is_stack()) { Register tmp_reg = value_regs[value_regs_index]; value_regs_index = (value_regs_index + 1) % num_value_regs; // The calling convention produces OptoRegs that ignore the out // preserve area (JIT's ABI). We must account for it here. int ld_off = (r_1->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; if (!r_2->is_valid()) { __ lwz(tmp_reg, ld_off, sender_SP); } else { __ ld(tmp_reg, ld_off, sender_SP); } // Pretend stack targets were loaded into tmp_reg. r_1 = tmp_reg->as_VMReg(); } if (r_1->is_Register()) { Register r = r_1->as_Register(); if (!r_2->is_valid()) { __ stw(r, st_off, R1_SP); st_off-=wordSize; } else { // Longs are given 2 64-bit slots in the interpreter, but the // data is passed in only 1 slot. if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) { DEBUG_ONLY( __ li(tmp, 0); __ std(tmp, st_off, R1_SP); ) st_off-=wordSize; } __ std(r, st_off, R1_SP); st_off-=wordSize; } } else { assert(r_1->is_FloatRegister(), ""); FloatRegister f = r_1->as_FloatRegister(); if (!r_2->is_valid()) { __ stfs(f, st_off, R1_SP); st_off-=wordSize; } else { // In 64bit, doubles are given 2 64-bit slots in the interpreter, but the // data is passed in only 1 slot. // One of these should get known junk... DEBUG_ONLY( __ li(tmp, 0); __ std(tmp, st_off, R1_SP); ) st_off-=wordSize; __ stfd(f, st_off, R1_SP); st_off-=wordSize; } } } // Jump to the interpreter just as if interpreter was doing it. #ifdef CC_INTERP const Register tos = R17_tos; #endif // load TOS __ addi(tos, R1_SP, st_off); // Frame_manager expects initial_caller_sp (= SP without resize by c2i) in R21_tmp1. assert(sender_SP == R21_sender_SP, "passing initial caller's SP in wrong register"); __ bctr(); return c2i_entrypoint; } static void gen_i2c_adapter(MacroAssembler *masm, int total_args_passed, int comp_args_on_stack, const BasicType *sig_bt, const VMRegPair *regs) { // Load method's entry-point from methodOop. __ ld(R12_scratch2, in_bytes(Method::from_compiled_offset()), R19_method); __ mtctr(R12_scratch2); // We will only enter here from an interpreted frame and never from after // passing thru a c2i. Azul allowed this but we do not. If we lose the // race and use a c2i we will remain interpreted for the race loser(s). // This removes all sorts of headaches on the x86 side and also eliminates // the possibility of having c2i -> i2c -> c2i -> ... endless transitions. // Note: r13 contains the senderSP on entry. We must preserve it since // we may do a i2c -> c2i transition if we lose a race where compiled // code goes non-entrant while we get args ready. // In addition we use r13 to locate all the interpreter args as // we must align the stack to 16 bytes on an i2c entry else we // lose alignment we expect in all compiled code and register // save code can segv when fxsave instructions find improperly // aligned stack pointer. #ifdef CC_INTERP const Register ld_ptr = R17_tos; #endif const Register value_regs[] = { R22_tmp2, R23_tmp3, R24_tmp4, R25_tmp5, R26_tmp6 }; const int num_value_regs = sizeof(value_regs) / sizeof(Register); int value_regs_index = 0; int ld_offset = total_args_passed*wordSize; // Cut-out for having no stack args. Since up to 2 int/oop args are passed // in registers, we will occasionally have no stack args. int comp_words_on_stack = 0; if (comp_args_on_stack) { // Sig words on the stack are greater-than VMRegImpl::stack0. Those in // registers are below. By subtracting stack0, we either get a negative // number (all values in registers) or the maximum stack slot accessed. // Convert 4-byte c2 stack slots to words. comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord; // Round up to miminum stack alignment, in wordSize. comp_words_on_stack = round_to(comp_words_on_stack, 2); __ resize_frame(-comp_words_on_stack * wordSize, R11_scratch1); } // Now generate the shuffle code. Pick up all register args and move the // rest through register value=Z_R12. BLOCK_COMMENT("Shuffle arguments"); for (int i = 0; i < total_args_passed; i++) { if (sig_bt[i] == T_VOID) { assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half"); continue; } // Pick up 0, 1 or 2 words from ld_ptr. assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(), "scrambled load targets?"); VMReg r_1 = regs[i].first(); VMReg r_2 = regs[i].second(); if (!r_1->is_valid()) { assert(!r_2->is_valid(), ""); continue; } if (r_1->is_FloatRegister()) { if (!r_2->is_valid()) { __ lfs(r_1->as_FloatRegister(), ld_offset, ld_ptr); ld_offset-=wordSize; } else { // Skip the unused interpreter slot. __ lfd(r_1->as_FloatRegister(), ld_offset-wordSize, ld_ptr); ld_offset-=2*wordSize; } } else { Register r; if (r_1->is_stack()) { // Must do a memory to memory move thru "value". r = value_regs[value_regs_index]; value_regs_index = (value_regs_index + 1) % num_value_regs; } else { r = r_1->as_Register(); } if (!r_2->is_valid()) { // Not sure we need to do this but it shouldn't hurt. if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ADDRESS || sig_bt[i] == T_ARRAY) { __ ld(r, ld_offset, ld_ptr); ld_offset-=wordSize; } else { __ lwz(r, ld_offset, ld_ptr); ld_offset-=wordSize; } } else { // In 64bit, longs are given 2 64-bit slots in the interpreter, but the // data is passed in only 1 slot. if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) { ld_offset-=wordSize; } __ ld(r, ld_offset, ld_ptr); ld_offset-=wordSize; } if (r_1->is_stack()) { // Now store value where the compiler expects it int st_off = (r_1->reg2stack() + SharedRuntime::out_preserve_stack_slots())*VMRegImpl::stack_slot_size; if (sig_bt[i] == T_INT || sig_bt[i] == T_FLOAT ||sig_bt[i] == T_BOOLEAN || sig_bt[i] == T_SHORT || sig_bt[i] == T_CHAR || sig_bt[i] == T_BYTE) { __ stw(r, st_off, R1_SP); } else { __ std(r, st_off, R1_SP); } } } } BLOCK_COMMENT("Store method oop"); // Store method oop into thread->callee_target. // We might end up in handle_wrong_method if the callee is // deoptimized as we race thru here. If that happens we don't want // to take a safepoint because the caller frame will look // interpreted and arguments are now "compiled" so it is much better // to make this transition invisible to the stack walking // code. Unfortunately if we try and find the callee by normal means // a safepoint is possible. So we stash the desired callee in the // thread and the vm will find there should this case occur. __ std(R19_method, thread_(callee_target)); // Jump to the compiled code just as if compiled code was doing it. __ bctr(); } AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm, int total_args_passed, int comp_args_on_stack, const BasicType *sig_bt, const VMRegPair *regs, AdapterFingerPrint* fingerprint) { address i2c_entry; address c2i_unverified_entry; address c2i_entry; // entry: i2c __ align(CodeEntryAlignment); i2c_entry = __ pc(); gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs); // entry: c2i unverified __ align(CodeEntryAlignment); BLOCK_COMMENT("c2i unverified entry"); c2i_unverified_entry = __ pc(); // inline_cache contains a compiledICHolder const Register ic = R19_method; const Register ic_klass = R11_scratch1; const Register receiver_klass = R12_scratch2; const Register code = R21_tmp1; const Register ientry = R23_tmp3; assert_different_registers(ic, ic_klass, receiver_klass, R3_ARG1, code, ientry); assert(R11_scratch1 == R11, "need prologue scratch register"); Label call_interpreter; assert(!MacroAssembler::needs_explicit_null_check(oopDesc::klass_offset_in_bytes()), "klass offset should reach into any page"); // Check for NULL argument if we don't have implicit null checks. if (!ImplicitNullChecks || !os::zero_page_read_protected()) { if (TrapBasedNullChecks) { __ trap_null_check(R3_ARG1); } else { Label valid; __ cmpdi(CCR0, R3_ARG1, 0); __ bne_predict_taken(CCR0, valid); // We have a null argument, branch to ic_miss_stub. __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(), relocInfo::runtime_call_type); __ BIND(valid); } } // Assume argument is not NULL, load klass from receiver. __ load_klass(receiver_klass, R3_ARG1); __ ld(ic_klass, CompiledICHolder::holder_klass_offset(), ic); if (TrapBasedICMissChecks) { __ trap_ic_miss_check(receiver_klass, ic_klass); } else { Label valid; __ cmpd(CCR0, receiver_klass, ic_klass); __ beq_predict_taken(CCR0, valid); // We have an unexpected klass, branch to ic_miss_stub. __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(), relocInfo::runtime_call_type); __ BIND(valid); } // Argument is valid and klass is as expected, continue. // Extract method from inline cache, verified entry point needs it. __ ld(R19_method, CompiledICHolder::holder_method_offset(), ic); assert(R19_method == ic, "the inline cache register is dead here"); __ ld(code, method_(code)); __ cmpdi(CCR0, code, 0); __ ld(ientry, method_(interpreter_entry)); // preloaded __ beq_predict_taken(CCR0, call_interpreter); // Branch to ic_miss_stub. __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(), relocInfo::runtime_call_type); // entry: c2i c2i_entry = gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, call_interpreter, ientry); return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry); } #ifdef COMPILER2 // An oop arg. Must pass a handle not the oop itself. static void object_move(MacroAssembler* masm, int frame_size_in_slots, OopMap* oop_map, int oop_handle_offset, bool is_receiver, int* receiver_offset, VMRegPair src, VMRegPair dst, Register r_caller_sp, Register r_temp_1, Register r_temp_2) { assert(!is_receiver || (is_receiver && (*receiver_offset == -1)), "receiver has already been moved"); // We must pass a handle. First figure out the location we use as a handle. if (src.first()->is_stack()) { // stack to stack or reg const Register r_handle = dst.first()->is_stack() ? r_temp_1 : dst.first()->as_Register(); Label skip; const int oop_slot_in_callers_frame = reg2slot(src.first()); guarantee(!is_receiver, "expecting receiver in register"); oop_map->set_oop(VMRegImpl::stack2reg(oop_slot_in_callers_frame + frame_size_in_slots)); __ addi(r_handle, r_caller_sp, reg2offset(src.first())); __ ld( r_temp_2, reg2offset(src.first()), r_caller_sp); __ cmpdi(CCR0, r_temp_2, 0); __ bne(CCR0, skip); // Use a NULL handle if oop is NULL. __ li(r_handle, 0); __ bind(skip); if (dst.first()->is_stack()) { // stack to stack __ std(r_handle, reg2offset(dst.first()), R1_SP); } else { // stack to reg // Nothing to do, r_handle is already the dst register. } } else { // reg to stack or reg const Register r_oop = src.first()->as_Register(); const Register r_handle = dst.first()->is_stack() ? r_temp_1 : dst.first()->as_Register(); const int oop_slot = (r_oop->encoding()-R3_ARG1->encoding()) * VMRegImpl::slots_per_word + oop_handle_offset; // in slots const int oop_offset = oop_slot * VMRegImpl::stack_slot_size; Label skip; if (is_receiver) { *receiver_offset = oop_offset; } oop_map->set_oop(VMRegImpl::stack2reg(oop_slot)); __ std( r_oop, oop_offset, R1_SP); __ addi(r_handle, R1_SP, oop_offset); __ cmpdi(CCR0, r_oop, 0); __ bne(CCR0, skip); // Use a NULL handle if oop is NULL. __ li(r_handle, 0); __ bind(skip); if (dst.first()->is_stack()) { // reg to stack __ std(r_handle, reg2offset(dst.first()), R1_SP); } else { // reg to reg // Nothing to do, r_handle is already the dst register. } } } static void int_move(MacroAssembler*masm, VMRegPair src, VMRegPair dst, Register r_caller_sp, Register r_temp) { assert(src.first()->is_valid() && src.second() == src.first()->next(), "incoming must be long-int"); assert(dst.first()->is_valid() && dst.second() == dst.first()->next(), "outgoing must be long"); if (src.first()->is_stack()) { if (dst.first()->is_stack()) { // stack to stack __ lwa(r_temp, reg2offset(src.first()), r_caller_sp); __ std(r_temp, reg2offset(dst.first()), R1_SP); } else { // stack to reg __ lwa(dst.first()->as_Register(), reg2offset(src.first()), r_caller_sp); } } else if (dst.first()->is_stack()) { // reg to stack __ extsw(r_temp, src.first()->as_Register()); __ std(r_temp, reg2offset(dst.first()), R1_SP); } else { // reg to reg __ extsw(dst.first()->as_Register(), src.first()->as_Register()); } } static void long_move(MacroAssembler*masm, VMRegPair src, VMRegPair dst, Register r_caller_sp, Register r_temp) { assert(src.first()->is_valid() && src.second() == src.first()->next(), "incoming must be long"); assert(dst.first()->is_valid() && dst.second() == dst.first()->next(), "outgoing must be long"); if (src.first()->is_stack()) { if (dst.first()->is_stack()) { // stack to stack __ ld( r_temp, reg2offset(src.first()), r_caller_sp); __ std(r_temp, reg2offset(dst.first()), R1_SP); } else { // stack to reg __ ld(dst.first()->as_Register(), reg2offset(src.first()), r_caller_sp); } } else if (dst.first()->is_stack()) { // reg to stack __ std(src.first()->as_Register(), reg2offset(dst.first()), R1_SP); } else { // reg to reg if (dst.first()->as_Register() != src.first()->as_Register()) __ mr(dst.first()->as_Register(), src.first()->as_Register()); } } static void float_move(MacroAssembler*masm, VMRegPair src, VMRegPair dst, Register r_caller_sp, Register r_temp) { assert(src.first()->is_valid() && !src.second()->is_valid(), "incoming must be float"); assert(dst.first()->is_valid() && !dst.second()->is_valid(), "outgoing must be float"); if (src.first()->is_stack()) { if (dst.first()->is_stack()) { // stack to stack __ lwz(r_temp, reg2offset(src.first()), r_caller_sp); __ stw(r_temp, reg2offset(dst.first()), R1_SP); } else { // stack to reg __ lfs(dst.first()->as_FloatRegister(), reg2offset(src.first()), r_caller_sp); } } else if (dst.first()->is_stack()) { // reg to stack __ stfs(src.first()->as_FloatRegister(), reg2offset(dst.first()), R1_SP); } else { // reg to reg if (dst.first()->as_FloatRegister() != src.first()->as_FloatRegister()) __ fmr(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); } } static void double_move(MacroAssembler*masm, VMRegPair src, VMRegPair dst, Register r_caller_sp, Register r_temp) { assert(src.first()->is_valid() && src.second() == src.first()->next(), "incoming must be double"); assert(dst.first()->is_valid() && dst.second() == dst.first()->next(), "outgoing must be double"); if (src.first()->is_stack()) { if (dst.first()->is_stack()) { // stack to stack __ ld( r_temp, reg2offset(src.first()), r_caller_sp); __ std(r_temp, reg2offset(dst.first()), R1_SP); } else { // stack to reg __ lfd(dst.first()->as_FloatRegister(), reg2offset(src.first()), r_caller_sp); } } else if (dst.first()->is_stack()) { // reg to stack __ stfd(src.first()->as_FloatRegister(), reg2offset(dst.first()), R1_SP); } else { // reg to reg if (dst.first()->as_FloatRegister() != src.first()->as_FloatRegister()) __ fmr(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); } } void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { switch (ret_type) { case T_BOOLEAN: case T_CHAR: case T_BYTE: case T_SHORT: case T_INT: __ stw (R3_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP); break; case T_ARRAY: case T_OBJECT: case T_LONG: __ std (R3_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP); break; case T_FLOAT: __ stfs(F1_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP); break; case T_DOUBLE: __ stfd(F1_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP); break; case T_VOID: break; default: ShouldNotReachHere(); break; } } void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { switch (ret_type) { case T_BOOLEAN: case T_CHAR: case T_BYTE: case T_SHORT: case T_INT: __ lwz(R3_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP); break; case T_ARRAY: case T_OBJECT: case T_LONG: __ ld (R3_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP); break; case T_FLOAT: __ lfs(F1_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP); break; case T_DOUBLE: __ lfd(F1_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP); break; case T_VOID: break; default: ShouldNotReachHere(); break; } } static void save_or_restore_arguments(MacroAssembler* masm, const int stack_slots, const int total_in_args, const int arg_save_area, OopMap* map, VMRegPair* in_regs, BasicType* in_sig_bt) { // If map is non-NULL then the code should store the values, // otherwise it should load them. int slot = arg_save_area; // Save down double word first. for (int i = 0; i < total_in_args; i++) { if (in_regs[i].first()->is_FloatRegister() && in_sig_bt[i] == T_DOUBLE) { int offset = slot * VMRegImpl::stack_slot_size; slot += VMRegImpl::slots_per_word; assert(slot <= stack_slots, "overflow (after DOUBLE stack slot)"); if (map != NULL) { __ stfd(in_regs[i].first()->as_FloatRegister(), offset, R1_SP); } else { __ lfd(in_regs[i].first()->as_FloatRegister(), offset, R1_SP); } } else if (in_regs[i].first()->is_Register() && (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_ARRAY)) { int offset = slot * VMRegImpl::stack_slot_size; if (map != NULL) { __ std(in_regs[i].first()->as_Register(), offset, R1_SP); if (in_sig_bt[i] == T_ARRAY) { map->set_oop(VMRegImpl::stack2reg(slot)); } } else { __ ld(in_regs[i].first()->as_Register(), offset, R1_SP); } slot += VMRegImpl::slots_per_word; assert(slot <= stack_slots, "overflow (after LONG/ARRAY stack slot)"); } } // Save or restore single word registers. for (int i = 0; i < total_in_args; i++) { // PPC64: pass ints as longs: must only deal with floats here. if (in_regs[i].first()->is_FloatRegister()) { if (in_sig_bt[i] == T_FLOAT) { int offset = slot * VMRegImpl::stack_slot_size; slot++; assert(slot <= stack_slots, "overflow (after FLOAT stack slot)"); if (map != NULL) { __ stfs(in_regs[i].first()->as_FloatRegister(), offset, R1_SP); } else { __ lfs(in_regs[i].first()->as_FloatRegister(), offset, R1_SP); } } } else if (in_regs[i].first()->is_stack()) { if (in_sig_bt[i] == T_ARRAY && map != NULL) { int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots)); } } } } // Check GC_locker::needs_gc and enter the runtime if it's true. This // keeps a new JNI critical region from starting until a GC has been // forced. Save down any oops in registers and describe them in an // OopMap. static void check_needs_gc_for_critical_native(MacroAssembler* masm, const int stack_slots, const int total_in_args, const int arg_save_area, OopMapSet* oop_maps, VMRegPair* in_regs, BasicType* in_sig_bt, Register tmp_reg ) { __ block_comment("check GC_locker::needs_gc"); Label cont; __ lbz(tmp_reg, (RegisterOrConstant)(intptr_t)GC_locker::needs_gc_address()); __ cmplwi(CCR0, tmp_reg, 0); __ beq(CCR0, cont); // Save down any values that are live in registers and call into the // runtime to halt for a GC. OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/); save_or_restore_arguments(masm, stack_slots, total_in_args, arg_save_area, map, in_regs, in_sig_bt); __ mr(R3_ARG1, R16_thread); __ set_last_Java_frame(R1_SP, noreg); __ block_comment("block_for_jni_critical"); address entry_point = CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical); #if defined(ABI_ELFv2) __ call_c(entry_point, relocInfo::runtime_call_type); #else __ call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, entry_point), relocInfo::runtime_call_type); #endif address start = __ pc() - __ offset(), calls_return_pc = __ last_calls_return_pc(); oop_maps->add_gc_map(calls_return_pc - start, map); __ reset_last_Java_frame(); // Reload all the register arguments. save_or_restore_arguments(masm, stack_slots, total_in_args, arg_save_area, NULL, in_regs, in_sig_bt); __ BIND(cont); #ifdef ASSERT if (StressCriticalJNINatives) { // Stress register saving. OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/); save_or_restore_arguments(masm, stack_slots, total_in_args, arg_save_area, map, in_regs, in_sig_bt); // Destroy argument registers. for (int i = 0; i < total_in_args; i++) { if (in_regs[i].first()->is_Register()) { const Register reg = in_regs[i].first()->as_Register(); __ neg(reg, reg); } else if (in_regs[i].first()->is_FloatRegister()) { __ fneg(in_regs[i].first()->as_FloatRegister(), in_regs[i].first()->as_FloatRegister()); } } save_or_restore_arguments(masm, stack_slots, total_in_args, arg_save_area, NULL, in_regs, in_sig_bt); } #endif } static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst, Register r_caller_sp, Register r_temp) { if (src.first()->is_stack()) { if (dst.first()->is_stack()) { // stack to stack __ ld(r_temp, reg2offset(src.first()), r_caller_sp); __ std(r_temp, reg2offset(dst.first()), R1_SP); } else { // stack to reg __ ld(dst.first()->as_Register(), reg2offset(src.first()), r_caller_sp); } } else if (dst.first()->is_stack()) { // reg to stack __ std(src.first()->as_Register(), reg2offset(dst.first()), R1_SP); } else { if (dst.first() != src.first()) { __ mr(dst.first()->as_Register(), src.first()->as_Register()); } } } // Unpack an array argument into a pointer to the body and the length // if the array is non-null, otherwise pass 0 for both. static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg, Register r_caller_sp, Register tmp_reg, Register tmp2_reg) { assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg, "possible collision"); assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg, "possible collision"); // Pass the length, ptr pair. Label set_out_args; VMRegPair tmp, tmp2; tmp.set_ptr(tmp_reg->as_VMReg()); tmp2.set_ptr(tmp2_reg->as_VMReg()); if (reg.first()->is_stack()) { // Load the arg up from the stack. move_ptr(masm, reg, tmp, r_caller_sp, /*unused*/ R0); reg = tmp; } __ li(tmp2_reg, 0); // Pass zeros if Array=null. if (tmp_reg != reg.first()->as_Register()) __ li(tmp_reg, 0); __ cmpdi(CCR0, reg.first()->as_Register(), 0); __ beq(CCR0, set_out_args); __ lwa(tmp2_reg, arrayOopDesc::length_offset_in_bytes(), reg.first()->as_Register()); __ addi(tmp_reg, reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)); __ bind(set_out_args); move_ptr(masm, tmp, body_arg, r_caller_sp, /*unused*/ R0); move_ptr(masm, tmp2, length_arg, r_caller_sp, /*unused*/ R0); // Same as move32_64 on PPC64. } static void verify_oop_args(MacroAssembler* masm, methodHandle method, const BasicType* sig_bt, const VMRegPair* regs) { Register temp_reg = R19_method; // not part of any compiled calling seq if (VerifyOops) { for (int i = 0; i < method->size_of_parameters(); i++) { if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) { VMReg r = regs[i].first(); assert(r->is_valid(), "bad oop arg"); if (r->is_stack()) { __ ld(temp_reg, reg2offset(r), R1_SP); __ verify_oop(temp_reg); } else { __ verify_oop(r->as_Register()); } } } } } static void gen_special_dispatch(MacroAssembler* masm, methodHandle method, const BasicType* sig_bt, const VMRegPair* regs) { verify_oop_args(masm, method, sig_bt, regs); vmIntrinsics::ID iid = method->intrinsic_id(); // Now write the args into the outgoing interpreter space bool has_receiver = false; Register receiver_reg = noreg; int member_arg_pos = -1; Register member_reg = noreg; int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid); if (ref_kind != 0) { member_arg_pos = method->size_of_parameters() - 1; // trailing MemberName argument member_reg = R19_method; // known to be free at this point has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind); } else if (iid == vmIntrinsics::_invokeBasic) { has_receiver = true; } else { fatal(err_msg_res("unexpected intrinsic id %d", iid)); } if (member_reg != noreg) { // Load the member_arg into register, if necessary. SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs); VMReg r = regs[member_arg_pos].first(); if (r->is_stack()) { __ ld(member_reg, reg2offset(r), R1_SP); } else { // no data motion is needed member_reg = r->as_Register(); } } if (has_receiver) { // Make sure the receiver is loaded into a register. assert(method->size_of_parameters() > 0, "oob"); assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object"); VMReg r = regs[0].first(); assert(r->is_valid(), "bad receiver arg"); if (r->is_stack()) { // Porting note: This assumes that compiled calling conventions always // pass the receiver oop in a register. If this is not true on some // platform, pick a temp and load the receiver from stack. fatal("receiver always in a register"); receiver_reg = R11_scratch1; // TODO (hs24): is R11_scratch1 really free at this point? __ ld(receiver_reg, reg2offset(r), R1_SP); } else { // no data motion is needed receiver_reg = r->as_Register(); } } // Figure out which address we are really jumping to: MethodHandles::generate_method_handle_dispatch(masm, iid, receiver_reg, member_reg, /*for_compiler_entry:*/ true); } #endif // COMPILER2 // --------------------------------------------------------------------------- // Generate a native wrapper for a given method. The method takes arguments // in the Java compiled code convention, marshals them to the native // convention (handlizes oops, etc), transitions to native, makes the call, // returns to java state (possibly blocking), unhandlizes any result and // returns. // // Critical native functions are a shorthand for the use of // GetPrimtiveArrayCritical and disallow the use of any other JNI // functions. The wrapper is expected to unpack the arguments before // passing them to the callee and perform checks before and after the // native call to ensure that they GC_locker // lock_critical/unlock_critical semantics are followed. Some other // parts of JNI setup are skipped like the tear down of the JNI handle // block and the check for pending exceptions it's impossible for them // to be thrown. // // They are roughly structured like this: // if (GC_locker::needs_gc()) // SharedRuntime::block_for_jni_critical(); // tranistion to thread_in_native // unpack arrray arguments and call native entry point // check for safepoint in progress // check if any thread suspend flags are set // call into JVM and possible unlock the JNI critical // if a GC was suppressed while in the critical native. // transition back to thread_in_Java // return to caller // nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm, methodHandle method, int compile_id, BasicType *in_sig_bt, VMRegPair *in_regs, BasicType ret_type) { #ifdef COMPILER2 if (method->is_method_handle_intrinsic()) { vmIntrinsics::ID iid = method->intrinsic_id(); intptr_t start = (intptr_t)__ pc(); int vep_offset = ((intptr_t)__ pc()) - start; gen_special_dispatch(masm, method, in_sig_bt, in_regs); int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period __ flush(); int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually return nmethod::new_native_nmethod(method, compile_id, masm->code(), vep_offset, frame_complete, stack_slots / VMRegImpl::slots_per_word, in_ByteSize(-1), in_ByteSize(-1), (OopMapSet*)NULL); } bool is_critical_native = true; address native_func = method->critical_native_function(); if (native_func == NULL) { native_func = method->native_function(); is_critical_native = false; } assert(native_func != NULL, "must have function"); // First, create signature for outgoing C call // -------------------------------------------------------------------------- int total_in_args = method->size_of_parameters(); // We have received a description of where all the java args are located // on entry to the wrapper. We need to convert these args to where // the jni function will expect them. To figure out where they go // we convert the java signature to a C signature by inserting // the hidden arguments as arg[0] and possibly arg[1] (static method) // // Additionally, on ppc64 we must convert integers to longs in the C // signature. We do this in advance in order to have no trouble with // indexes into the bt-arrays. // So convert the signature and registers now, and adjust the total number // of in-arguments accordingly. int i2l_argcnt = convert_ints_to_longints_argcnt(total_in_args, in_sig_bt); // PPC64: pass ints as longs. // Calculate the total number of C arguments and create arrays for the // signature and the outgoing registers. // On ppc64, we have two arrays for the outgoing registers, because // some floating-point arguments must be passed in registers _and_ // in stack locations. bool method_is_static = method->is_static(); int total_c_args = i2l_argcnt; if (!is_critical_native) { int n_hidden_args = method_is_static ? 2 : 1; total_c_args += n_hidden_args; } else { // No JNIEnv*, no this*, but unpacked arrays (base+length). for (int i = 0; i < total_in_args; i++) { if (in_sig_bt[i] == T_ARRAY) { total_c_args += 2; // PPC64: T_LONG, T_INT, T_ADDRESS (see convert_ints_to_longints and c_calling_convention) } } } BasicType *out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args); VMRegPair *out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args); VMRegPair *out_regs2 = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args); BasicType* in_elem_bt = NULL; // Create the signature for the C call: // 1) add the JNIEnv* // 2) add the class if the method is static // 3) copy the rest of the incoming signature (shifted by the number of // hidden arguments). int argc = 0; if (!is_critical_native) { convert_ints_to_longints(i2l_argcnt, total_in_args, in_sig_bt, in_regs); // PPC64: pass ints as longs. out_sig_bt[argc++] = T_ADDRESS; if (method->is_static()) { out_sig_bt[argc++] = T_OBJECT; } for (int i = 0; i < total_in_args ; i++ ) { out_sig_bt[argc++] = in_sig_bt[i]; } } else { Thread* THREAD = Thread::current(); in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, i2l_argcnt); SignatureStream ss(method->signature()); int o = 0; for (int i = 0; i < total_in_args ; i++, o++) { if (in_sig_bt[i] == T_ARRAY) { // Arrays are passed as int, elem* pair Symbol* atype = ss.as_symbol(CHECK_NULL); const char* at = atype->as_C_string(); if (strlen(at) == 2) { assert(at[0] == '[', "must be"); switch (at[1]) { case 'B': in_elem_bt[o] = T_BYTE; break; case 'C': in_elem_bt[o] = T_CHAR; break; case 'D': in_elem_bt[o] = T_DOUBLE; break; case 'F': in_elem_bt[o] = T_FLOAT; break; case 'I': in_elem_bt[o] = T_INT; break; case 'J': in_elem_bt[o] = T_LONG; break; case 'S': in_elem_bt[o] = T_SHORT; break; case 'Z': in_elem_bt[o] = T_BOOLEAN; break; default: ShouldNotReachHere(); } } } else { in_elem_bt[o] = T_VOID; switch(in_sig_bt[i]) { // PPC64: pass ints as longs. case T_BOOLEAN: case T_CHAR: case T_BYTE: case T_SHORT: case T_INT: in_elem_bt[++o] = T_VOID; break; default: break; } } if (in_sig_bt[i] != T_VOID) { assert(in_sig_bt[i] == ss.type(), "must match"); ss.next(); } } assert(i2l_argcnt==o, "must match"); convert_ints_to_longints(i2l_argcnt, total_in_args, in_sig_bt, in_regs); // PPC64: pass ints as longs. for (int i = 0; i < total_in_args ; i++ ) { if (in_sig_bt[i] == T_ARRAY) { // Arrays are passed as int, elem* pair. out_sig_bt[argc++] = T_LONG; // PPC64: pass ints as longs. out_sig_bt[argc++] = T_INT; out_sig_bt[argc++] = T_ADDRESS; } else { out_sig_bt[argc++] = in_sig_bt[i]; } } } // Compute the wrapper's frame size. // -------------------------------------------------------------------------- // Now figure out where the args must be stored and how much stack space // they require. // // Compute framesize for the wrapper. We need to handlize all oops in // incoming registers. // // Calculate the total number of stack slots we will need: // 1) abi requirements // 2) outgoing arguments // 3) space for inbound oop handle area // 4) space for handlizing a klass if static method // 5) space for a lock if synchronized method // 6) workspace for saving return values, int <-> float reg moves, etc. // 7) alignment // // Layout of the native wrapper frame: // (stack grows upwards, memory grows downwards) // // NW [ABI_REG_ARGS] <-- 1) R1_SP // [outgoing arguments] <-- 2) R1_SP + out_arg_slot_offset // [oopHandle area] <-- 3) R1_SP + oop_handle_offset (save area for critical natives) // klass <-- 4) R1_SP + klass_offset // lock <-- 5) R1_SP + lock_offset // [workspace] <-- 6) R1_SP + workspace_offset // [alignment] (optional) <-- 7) // caller [JIT_TOP_ABI_48] <-- r_callers_sp // // - *_slot_offset Indicates offset from SP in number of stack slots. // - *_offset Indicates offset from SP in bytes. int stack_slots = c_calling_convention(out_sig_bt, out_regs, out_regs2, total_c_args) // 1+2) + SharedRuntime::out_preserve_stack_slots(); // See c_calling_convention. // Now the space for the inbound oop handle area. int total_save_slots = num_java_iarg_registers * VMRegImpl::slots_per_word; if (is_critical_native) { // Critical natives may have to call out so they need a save area // for register arguments. int double_slots = 0; int single_slots = 0; for (int i = 0; i < total_in_args; i++) { if (in_regs[i].first()->is_Register()) { const Register reg = in_regs[i].first()->as_Register(); switch (in_sig_bt[i]) { case T_BOOLEAN: case T_BYTE: case T_SHORT: case T_CHAR: case T_INT: /*single_slots++;*/ break; // PPC64: pass ints as longs. case T_ARRAY: case T_LONG: double_slots++; break; default: ShouldNotReachHere(); } } else if (in_regs[i].first()->is_FloatRegister()) { switch (in_sig_bt[i]) { case T_FLOAT: single_slots++; break; case T_DOUBLE: double_slots++; break; default: ShouldNotReachHere(); } } } total_save_slots = double_slots * 2 + round_to(single_slots, 2); // round to even } int oop_handle_slot_offset = stack_slots; stack_slots += total_save_slots; // 3) int klass_slot_offset = 0; int klass_offset = -1; if (method_is_static && !is_critical_native) { // 4) klass_slot_offset = stack_slots; klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size; stack_slots += VMRegImpl::slots_per_word; } int lock_slot_offset = 0; int lock_offset = -1; if (method->is_synchronized()) { // 5) lock_slot_offset = stack_slots; lock_offset = lock_slot_offset * VMRegImpl::stack_slot_size; stack_slots += VMRegImpl::slots_per_word; } int workspace_slot_offset = stack_slots; // 6) stack_slots += 2; // Now compute actual number of stack words we need. // Rounding to make stack properly aligned. stack_slots = round_to(stack_slots, // 7) frame::alignment_in_bytes / VMRegImpl::stack_slot_size); int frame_size_in_bytes = stack_slots * VMRegImpl::stack_slot_size; // Now we can start generating code. // -------------------------------------------------------------------------- intptr_t start_pc = (intptr_t)__ pc(); intptr_t vep_start_pc; intptr_t frame_done_pc; intptr_t oopmap_pc; Label ic_miss; Label handle_pending_exception; Register r_callers_sp = R21; Register r_temp_1 = R22; Register r_temp_2 = R23; Register r_temp_3 = R24; Register r_temp_4 = R25; Register r_temp_5 = R26; Register r_temp_6 = R27; Register r_return_pc = R28; Register r_carg1_jnienv = noreg; Register r_carg2_classorobject = noreg; if (!is_critical_native) { r_carg1_jnienv = out_regs[0].first()->as_Register(); r_carg2_classorobject = out_regs[1].first()->as_Register(); } // Generate the Unverified Entry Point (UEP). // -------------------------------------------------------------------------- assert(start_pc == (intptr_t)__ pc(), "uep must be at start"); // Check ic: object class == cached class? if (!method_is_static) { Register ic = as_Register(Matcher::inline_cache_reg_encode()); Register receiver_klass = r_temp_1; __ cmpdi(CCR0, R3_ARG1, 0); __ beq(CCR0, ic_miss); __ verify_oop(R3_ARG1); __ load_klass(receiver_klass, R3_ARG1); __ cmpd(CCR0, receiver_klass, ic); __ bne(CCR0, ic_miss); } // Generate the Verified Entry Point (VEP). // -------------------------------------------------------------------------- vep_start_pc = (intptr_t)__ pc(); __ save_LR_CR(r_temp_1); __ generate_stack_overflow_check(frame_size_in_bytes); // Check before creating frame. __ mr(r_callers_sp, R1_SP); // Remember frame pointer. __ push_frame(frame_size_in_bytes, r_temp_1); // Push the c2n adapter's frame. frame_done_pc = (intptr_t)__ pc(); // Native nmethod wrappers never take possesion of the oop arguments. // So the caller will gc the arguments. // The only thing we need an oopMap for is if the call is static. // // An OopMap for lock (and class if static), and one for the VM call itself. OopMapSet *oop_maps = new OopMapSet(); OopMap *oop_map = new OopMap(stack_slots * 2, 0 /* arg_slots*/); if (is_critical_native) { check_needs_gc_for_critical_native(masm, stack_slots, total_in_args, oop_handle_slot_offset, oop_maps, in_regs, in_sig_bt, r_temp_1); } // Move arguments from register/stack to register/stack. // -------------------------------------------------------------------------- // // We immediately shuffle the arguments so that for any vm call we have // to make from here on out (sync slow path, jvmti, etc.) we will have // captured the oops from our caller and have a valid oopMap for them. // // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv* // (derived from JavaThread* which is in R16_thread) and, if static, // the class mirror instead of a receiver. This pretty much guarantees that // register layout will not match. We ignore these extra arguments during // the shuffle. The shuffle is described by the two calling convention // vectors we have in our possession. We simply walk the java vector to // get the source locations and the c vector to get the destinations. // Record sp-based slot for receiver on stack for non-static methods. int receiver_offset = -1; // We move the arguments backward because the floating point registers // destination will always be to a register with a greater or equal // register number or the stack. // in is the index of the incoming Java arguments // out is the index of the outgoing C arguments #ifdef ASSERT bool reg_destroyed[RegisterImpl::number_of_registers]; bool freg_destroyed[FloatRegisterImpl::number_of_registers]; for (int r = 0 ; r < RegisterImpl::number_of_registers ; r++) { reg_destroyed[r] = false; } for (int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++) { freg_destroyed[f] = false; } #endif // ASSERT for (int in = total_in_args - 1, out = total_c_args - 1; in >= 0 ; in--, out--) { #ifdef ASSERT if (in_regs[in].first()->is_Register()) { assert(!reg_destroyed[in_regs[in].first()->as_Register()->encoding()], "ack!"); } else if (in_regs[in].first()->is_FloatRegister()) { assert(!freg_destroyed[in_regs[in].first()->as_FloatRegister()->encoding()], "ack!"); } if (out_regs[out].first()->is_Register()) { reg_destroyed[out_regs[out].first()->as_Register()->encoding()] = true; } else if (out_regs[out].first()->is_FloatRegister()) { freg_destroyed[out_regs[out].first()->as_FloatRegister()->encoding()] = true; } if (out_regs2[out].first()->is_Register()) { reg_destroyed[out_regs2[out].first()->as_Register()->encoding()] = true; } else if (out_regs2[out].first()->is_FloatRegister()) { freg_destroyed[out_regs2[out].first()->as_FloatRegister()->encoding()] = true; } #endif // ASSERT switch (in_sig_bt[in]) { case T_BOOLEAN: case T_CHAR: case T_BYTE: case T_SHORT: case T_INT: guarantee(in > 0 && in_sig_bt[in-1] == T_LONG, "expecting type (T_LONG,bt) for bt in {T_BOOLEAN, T_CHAR, T_BYTE, T_SHORT, T_INT}"); break; case T_LONG: if (in_sig_bt[in+1] == T_VOID) { long_move(masm, in_regs[in], out_regs[out], r_callers_sp, r_temp_1); } else { guarantee(in_sig_bt[in+1] == T_BOOLEAN || in_sig_bt[in+1] == T_CHAR || in_sig_bt[in+1] == T_BYTE || in_sig_bt[in+1] == T_SHORT || in_sig_bt[in+1] == T_INT, "expecting type (T_LONG,bt) for bt in {T_BOOLEAN, T_CHAR, T_BYTE, T_SHORT, T_INT}"); int_move(masm, in_regs[in], out_regs[out], r_callers_sp, r_temp_1); } break; case T_ARRAY: if (is_critical_native) { int body_arg = out; out -= 2; // Point to length arg. PPC64: pass ints as longs. unpack_array_argument(masm, in_regs[in], in_elem_bt[in], out_regs[body_arg], out_regs[out], r_callers_sp, r_temp_1, r_temp_2); break; } case T_OBJECT: assert(!is_critical_native, "no oop arguments"); object_move(masm, stack_slots, oop_map, oop_handle_slot_offset, ((in == 0) && (!method_is_static)), &receiver_offset, in_regs[in], out_regs[out], r_callers_sp, r_temp_1, r_temp_2); break; case T_VOID: break; case T_FLOAT: float_move(masm, in_regs[in], out_regs[out], r_callers_sp, r_temp_1); if (out_regs2[out].first()->is_valid()) { float_move(masm, in_regs[in], out_regs2[out], r_callers_sp, r_temp_1); } break; case T_DOUBLE: double_move(masm, in_regs[in], out_regs[out], r_callers_sp, r_temp_1); if (out_regs2[out].first()->is_valid()) { double_move(masm, in_regs[in], out_regs2[out], r_callers_sp, r_temp_1); } break; case T_ADDRESS: fatal("found type (T_ADDRESS) in java args"); break; default: ShouldNotReachHere(); break; } } // Pre-load a static method's oop into ARG2. // Used both by locking code and the normal JNI call code. if (method_is_static && !is_critical_native) { __ set_oop_constant(JNIHandles::make_local(method->method_holder()->java_mirror()), r_carg2_classorobject); // Now handlize the static class mirror in carg2. It's known not-null. __ std(r_carg2_classorobject, klass_offset, R1_SP); oop_map->set_oop(VMRegImpl::stack2reg(klass_slot_offset)); __ addi(r_carg2_classorobject, R1_SP, klass_offset); } // Get JNIEnv* which is first argument to native. if (!is_critical_native) { __ addi(r_carg1_jnienv, R16_thread, in_bytes(JavaThread::jni_environment_offset())); } // NOTE: // // We have all of the arguments setup at this point. // We MUST NOT touch any outgoing regs from this point on. // So if we must call out we must push a new frame. // Get current pc for oopmap, and load it patchable relative to global toc. oopmap_pc = (intptr_t) __ pc(); __ calculate_address_from_global_toc(r_return_pc, (address)oopmap_pc, true, true, true, true); // We use the same pc/oopMap repeatedly when we call out. oop_maps->add_gc_map(oopmap_pc - start_pc, oop_map); // r_return_pc now has the pc loaded that we will use when we finally call // to native. // Make sure that thread is non-volatile; it crosses a bunch of VM calls below. assert(R16_thread->is_nonvolatile(), "thread must be in non-volatile register"); # if 0 // DTrace method entry # endif // Lock a synchronized method. // -------------------------------------------------------------------------- if (method->is_synchronized()) { assert(!is_critical_native, "unhandled"); ConditionRegister r_flag = CCR1; Register r_oop = r_temp_4; const Register r_box = r_temp_5; Label done, locked; // Load the oop for the object or class. r_carg2_classorobject contains // either the handlized oop from the incoming arguments or the handlized // class mirror (if the method is static). __ ld(r_oop, 0, r_carg2_classorobject); // Get the lock box slot's address. __ addi(r_box, R1_SP, lock_offset); # ifdef ASSERT if (UseBiasedLocking) { // Making the box point to itself will make it clear it went unused // but also be obviously invalid. __ std(r_box, 0, r_box); } # endif // ASSERT // Try fastpath for locking. // fast_lock kills r_temp_1, r_temp_2, r_temp_3. __ compiler_fast_lock_object(r_flag, r_oop, r_box, r_temp_1, r_temp_2, r_temp_3); __ beq(r_flag, locked); // None of the above fast optimizations worked so we have to get into the // slow case of monitor enter. Inline a special case of call_VM that // disallows any pending_exception. // Save argument registers and leave room for C-compatible ABI_REG_ARGS. int frame_size = frame::abi_reg_args_size + round_to(total_c_args * wordSize, frame::alignment_in_bytes); __ mr(R11_scratch1, R1_SP); RegisterSaver::push_frame_and_save_argument_registers(masm, R12_scratch2, frame_size, total_c_args, out_regs, out_regs2); // Do the call. __ set_last_Java_frame(R11_scratch1, r_return_pc); assert(r_return_pc->is_nonvolatile(), "expecting return pc to be in non-volatile register"); __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), r_oop, r_box, R16_thread); __ reset_last_Java_frame(); RegisterSaver::restore_argument_registers_and_pop_frame(masm, frame_size, total_c_args, out_regs, out_regs2); __ asm_assert_mem8_is_zero(thread_(pending_exception), "no pending exception allowed on exit from SharedRuntime::complete_monitor_locking_C", 0); __ bind(locked); } // Publish thread state // -------------------------------------------------------------------------- // Use that pc we placed in r_return_pc a while back as the current frame anchor. __ set_last_Java_frame(R1_SP, r_return_pc); // Transition from _thread_in_Java to _thread_in_native. __ li(R0, _thread_in_native); __ release(); // TODO: PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size"); __ stw(R0, thread_(thread_state)); if (UseMembar) { __ fence(); } // The JNI call // -------------------------------------------------------------------------- #if defined(ABI_ELFv2) __ call_c(native_func, relocInfo::runtime_call_type); #else FunctionDescriptor* fd_native_method = (FunctionDescriptor*) native_func; __ call_c(fd_native_method, relocInfo::runtime_call_type); #endif // Now, we are back from the native code. // Unpack the native result. // -------------------------------------------------------------------------- // For int-types, we do any needed sign-extension required. // Care must be taken that the return values (R3_RET and F1_RET) // will survive any VM calls for blocking or unlocking. // An OOP result (handle) is done specially in the slow-path code. switch (ret_type) { case T_VOID: break; // Nothing to do! case T_FLOAT: break; // Got it where we want it (unless slow-path). case T_DOUBLE: break; // Got it where we want it (unless slow-path). case T_LONG: break; // Got it where we want it (unless slow-path). case T_OBJECT: break; // Really a handle. // Cannot de-handlize until after reclaiming jvm_lock. case T_ARRAY: break; case T_BOOLEAN: { // 0 -> false(0); !0 -> true(1) Label skip_modify; __ cmpwi(CCR0, R3_RET, 0); __ beq(CCR0, skip_modify); __ li(R3_RET, 1); __ bind(skip_modify); break; } case T_BYTE: { // sign extension __ extsb(R3_RET, R3_RET); break; } case T_CHAR: { // unsigned result __ andi(R3_RET, R3_RET, 0xffff); break; } case T_SHORT: { // sign extension __ extsh(R3_RET, R3_RET); break; } case T_INT: // nothing to do break; default: ShouldNotReachHere(); break; } // Publish thread state // -------------------------------------------------------------------------- // Switch thread to "native transition" state before reading the // synchronization state. This additional state is necessary because reading // and testing the synchronization state is not atomic w.r.t. GC, as this // scenario demonstrates: // - Java thread A, in _thread_in_native state, loads _not_synchronized // and is preempted. // - VM thread changes sync state to synchronizing and suspends threads // for GC. // - Thread A is resumed to finish this native method, but doesn't block // here since it didn't see any synchronization in progress, and escapes. // Transition from _thread_in_native to _thread_in_native_trans. __ li(R0, _thread_in_native_trans); __ release(); // TODO: PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size"); __ stw(R0, thread_(thread_state)); // Must we block? // -------------------------------------------------------------------------- // Block, if necessary, before resuming in _thread_in_Java state. // In order for GC to work, don't clear the last_Java_sp until after blocking. Label after_transition; { Label no_block, sync; if (os::is_MP()) { if (UseMembar) { // Force this write out before the read below. __ fence(); } else { // Write serialization page so VM thread can do a pseudo remote membar. // We use the current thread pointer to calculate a thread specific // offset to write to within the page. This minimizes bus traffic // due to cache line collision. __ serialize_memory(R16_thread, r_temp_4, r_temp_5); } } Register sync_state_addr = r_temp_4; Register sync_state = r_temp_5; Register suspend_flags = r_temp_6; __ load_const(sync_state_addr, SafepointSynchronize::address_of_state(), /*temp*/ sync_state); // TODO: PPC port assert(4 == SafepointSynchronize::sz_state(), "unexpected field size"); __ lwz(sync_state, 0, sync_state_addr); // TODO: PPC port assert(4 == Thread::sz_suspend_flags(), "unexpected field size"); __ lwz(suspend_flags, thread_(suspend_flags)); __ acquire(); Label do_safepoint; // No synchronization in progress nor yet synchronized. __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized); // Not suspended. __ cmpwi(CCR1, suspend_flags, 0); __ bne(CCR0, sync); __ beq(CCR1, no_block); // Block. Save any potential method result value before the operation and // use a leaf call to leave the last_Java_frame setup undisturbed. Doing this // lets us share the oopMap we used when we went native rather than create // a distinct one for this pc. __ bind(sync); address entry_point = is_critical_native ? CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition) : CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans); save_native_result(masm, ret_type, workspace_slot_offset); __ call_VM_leaf(entry_point, R16_thread); restore_native_result(masm, ret_type, workspace_slot_offset); if (is_critical_native) { __ b(after_transition); // No thread state transition here. } __ bind(no_block); } // Publish thread state. // -------------------------------------------------------------------------- // Thread state is thread_in_native_trans. Any safepoint blocking has // already happened so we can now change state to _thread_in_Java. // Transition from _thread_in_native_trans to _thread_in_Java. __ li(R0, _thread_in_Java); __ release(); // TODO: PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size"); __ stw(R0, thread_(thread_state)); if (UseMembar) { __ fence(); } __ bind(after_transition); // Reguard any pages if necessary. // -------------------------------------------------------------------------- Label no_reguard; __ lwz(r_temp_1, thread_(stack_guard_state)); __ cmpwi(CCR0, r_temp_1, JavaThread::stack_guard_yellow_disabled); __ bne(CCR0, no_reguard); save_native_result(masm, ret_type, workspace_slot_offset); __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)); restore_native_result(masm, ret_type, workspace_slot_offset); __ bind(no_reguard); // Unlock // -------------------------------------------------------------------------- if (method->is_synchronized()) { ConditionRegister r_flag = CCR1; const Register r_oop = r_temp_4; const Register r_box = r_temp_5; const Register r_exception = r_temp_6; Label done; // Get oop and address of lock object box. if (method_is_static) { assert(klass_offset != -1, ""); __ ld(r_oop, klass_offset, R1_SP); } else { assert(receiver_offset != -1, ""); __ ld(r_oop, receiver_offset, R1_SP); } __ addi(r_box, R1_SP, lock_offset); // Try fastpath for unlocking. __ compiler_fast_unlock_object(r_flag, r_oop, r_box, r_temp_1, r_temp_2, r_temp_3); __ beq(r_flag, done); // Save and restore any potential method result value around the unlocking operation. save_native_result(masm, ret_type, workspace_slot_offset); // Must save pending exception around the slow-path VM call. Since it's a // leaf call, the pending exception (if any) can be kept in a register. __ ld(r_exception, thread_(pending_exception)); assert(r_exception->is_nonvolatile(), "exception register must be non-volatile"); __ li(R0, 0); __ std(R0, thread_(pending_exception)); // Slow case of monitor enter. // Inline a special case of call_VM that disallows any pending_exception. __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), r_oop, r_box); __ asm_assert_mem8_is_zero(thread_(pending_exception), "no pending exception allowed on exit from SharedRuntime::complete_monitor_unlocking_C", 0); restore_native_result(masm, ret_type, workspace_slot_offset); // Check_forward_pending_exception jump to forward_exception if any pending // exception is set. The forward_exception routine expects to see the // exception in pending_exception and not in a register. Kind of clumsy, // since all folks who branch to forward_exception must have tested // pending_exception first and hence have it in a register already. __ std(r_exception, thread_(pending_exception)); __ bind(done); } # if 0 // DTrace method exit # endif // Clear "last Java frame" SP and PC. // -------------------------------------------------------------------------- __ reset_last_Java_frame(); // Unpack oop result. // -------------------------------------------------------------------------- if (ret_type == T_OBJECT || ret_type == T_ARRAY) { Label skip_unboxing; __ cmpdi(CCR0, R3_RET, 0); __ beq(CCR0, skip_unboxing); __ ld(R3_RET, 0, R3_RET); __ bind(skip_unboxing); __ verify_oop(R3_RET); } // Reset handle block. // -------------------------------------------------------------------------- if (!is_critical_native) { __ ld(r_temp_1, thread_(active_handles)); // TODO: PPC port assert(4 == JNIHandleBlock::top_size_in_bytes(), "unexpected field size"); __ li(r_temp_2, 0); __ stw(r_temp_2, JNIHandleBlock::top_offset_in_bytes(), r_temp_1); // Check for pending exceptions. // -------------------------------------------------------------------------- __ ld(r_temp_2, thread_(pending_exception)); __ cmpdi(CCR0, r_temp_2, 0); __ bne(CCR0, handle_pending_exception); } // Return // -------------------------------------------------------------------------- __ pop_frame(); __ restore_LR_CR(R11); __ blr(); // Handler for pending exceptions (out-of-line). // -------------------------------------------------------------------------- // Since this is a native call, we know the proper exception handler // is the empty function. We just pop this frame and then jump to // forward_exception_entry. if (!is_critical_native) { __ align(InteriorEntryAlignment); __ bind(handle_pending_exception); __ pop_frame(); __ restore_LR_CR(R11); __ b64_patchable((address)StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type); } // Handler for a cache miss (out-of-line). // -------------------------------------------------------------------------- if (!method_is_static) { __ align(InteriorEntryAlignment); __ bind(ic_miss); __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(), relocInfo::runtime_call_type); } // Done. // -------------------------------------------------------------------------- __ flush(); nmethod *nm = nmethod::new_native_nmethod(method, compile_id, masm->code(), vep_start_pc-start_pc, frame_done_pc-start_pc, stack_slots / VMRegImpl::slots_per_word, (method_is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)), in_ByteSize(lock_offset), oop_maps); if (is_critical_native) { nm->set_lazy_critical_native(true); } return nm; #else ShouldNotReachHere(); return NULL; #endif // COMPILER2 } // This function returns the adjust size (in number of words) to a c2i adapter // activation for use during deoptimization. int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) { return round_to((callee_locals - callee_parameters) * Interpreter::stackElementWords, frame::alignment_in_bytes); } uint SharedRuntime::out_preserve_stack_slots() { #ifdef COMPILER2 return frame::jit_out_preserve_size / VMRegImpl::stack_slot_size; #else return 0; #endif } #ifdef COMPILER2 // Frame generation for deopt and uncommon trap blobs. static void push_skeleton_frame(MacroAssembler* masm, bool deopt, /* Read */ Register unroll_block_reg, /* Update */ Register frame_sizes_reg, Register number_of_frames_reg, Register pcs_reg, /* Invalidate */ Register frame_size_reg, Register pc_reg) { __ ld(pc_reg, 0, pcs_reg); __ ld(frame_size_reg, 0, frame_sizes_reg); __ std(pc_reg, _abi(lr), R1_SP); __ push_frame(frame_size_reg, R0/*tmp*/); #ifdef CC_INTERP __ std(R1_SP, _parent_ijava_frame_abi(initial_caller_sp), R1_SP); #else Unimplemented(); #endif __ addi(number_of_frames_reg, number_of_frames_reg, -1); __ addi(frame_sizes_reg, frame_sizes_reg, wordSize); __ addi(pcs_reg, pcs_reg, wordSize); } // Loop through the UnrollBlock info and create new frames. static void push_skeleton_frames(MacroAssembler* masm, bool deopt, /* read */ Register unroll_block_reg, /* invalidate */ Register frame_sizes_reg, Register number_of_frames_reg, Register pcs_reg, Register frame_size_reg, Register pc_reg) { Label loop; // _number_of_frames is of type int (deoptimization.hpp) __ lwa(number_of_frames_reg, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes(), unroll_block_reg); __ ld(pcs_reg, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes(), unroll_block_reg); __ ld(frame_sizes_reg, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes(), unroll_block_reg); // stack: (caller_of_deoptee, ...). // At this point we either have an interpreter frame or a compiled // frame on top of stack. If it is a compiled frame we push a new c2i // adapter here // Memorize top-frame stack-pointer. __ mr(frame_size_reg/*old_sp*/, R1_SP); // Resize interpreter top frame OR C2I adapter. // At this moment, the top frame (which is the caller of the deoptee) is // an interpreter frame or a newly pushed C2I adapter or an entry frame. // The top frame has a TOP_IJAVA_FRAME_ABI and the frame contains the // outgoing arguments. // // In order to push the interpreter frame for the deoptee, we need to // resize the top frame such that we are able to place the deoptee's // locals in the frame. // Additionally, we have to turn the top frame's TOP_IJAVA_FRAME_ABI // into a valid PARENT_IJAVA_FRAME_ABI. __ lwa(R11_scratch1, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes(), unroll_block_reg); __ neg(R11_scratch1, R11_scratch1); // R11_scratch1 contains size of locals for frame resizing. // R12_scratch2 contains top frame's lr. // Resize frame by complete frame size prevents TOC from being // overwritten by locals. A more stack space saving way would be // to copy the TOC to its location in the new abi. __ addi(R11_scratch1, R11_scratch1, - frame::parent_ijava_frame_abi_size); // now, resize the frame __ resize_frame(R11_scratch1, pc_reg/*tmp*/); // In the case where we have resized a c2i frame above, the optional // alignment below the locals has size 32 (why?). __ std(R12_scratch2, _abi(lr), R1_SP); // Initialize initial_caller_sp. __ std(frame_size_reg/*old_sp*/, _parent_ijava_frame_abi(initial_caller_sp), R1_SP); #ifdef ASSERT // Make sure that there is at least one entry in the array. __ cmpdi(CCR0, number_of_frames_reg, 0); __ asm_assert_ne("array_size must be > 0", 0x205); #endif // Now push the new interpreter frames. // __ bind(loop); // Allocate a new frame, fill in the pc. push_skeleton_frame(masm, deopt, unroll_block_reg, frame_sizes_reg, number_of_frames_reg, pcs_reg, frame_size_reg, pc_reg); __ cmpdi(CCR0, number_of_frames_reg, 0); __ bne(CCR0, loop); // Get the return address pointing into the frame manager. __ ld(R0, 0, pcs_reg); // Store it in the top interpreter frame. __ std(R0, _abi(lr), R1_SP); // Initialize frame_manager_lr of interpreter top frame. #ifdef CC_INTERP __ std(R0, _top_ijava_frame_abi(frame_manager_lr), R1_SP); #endif } #endif void SharedRuntime::generate_deopt_blob() { // Allocate space for the code ResourceMark rm; // Setup code generation tools CodeBuffer buffer("deopt_blob", 2048, 1024); InterpreterMacroAssembler* masm = new InterpreterMacroAssembler(&buffer); Label exec_mode_initialized; int frame_size_in_words; OopMap* map = NULL; OopMapSet *oop_maps = new OopMapSet(); // size of ABI112 plus spill slots for R3_RET and F1_RET. const int frame_size_in_bytes = frame::abi_reg_args_spill_size; const int frame_size_in_slots = frame_size_in_bytes / sizeof(jint); int first_frame_size_in_bytes = 0; // frame size of "unpack frame" for call to fetch_unroll_info. const Register exec_mode_reg = R21_tmp1; const address start = __ pc(); #ifdef COMPILER2 // -------------------------------------------------------------------------- // Prolog for non exception case! // We have been called from the deopt handler of the deoptee. // // deoptee: // ... // call X // ... // deopt_handler: call_deopt_stub // cur. return pc --> ... // // So currently SR_LR points behind the call in the deopt handler. // We adjust it such that it points to the start of the deopt handler. // The return_pc has been stored in the frame of the deoptee and // will replace the address of the deopt_handler in the call // to Deoptimization::fetch_unroll_info below. // We can't grab a free register here, because all registers may // contain live values, so let the RegisterSaver do the adjustment // of the return pc. const int return_pc_adjustment_no_exception = -size_deopt_handler(); // Push the "unpack frame" // Save everything in sight. map = RegisterSaver::push_frame_reg_args_and_save_live_registers(masm, &first_frame_size_in_bytes, /*generate_oop_map=*/ true, return_pc_adjustment_no_exception, RegisterSaver::return_pc_is_lr); assert(map != NULL, "OopMap must have been created"); __ li(exec_mode_reg, Deoptimization::Unpack_deopt); // Save exec mode for unpack_frames. __ b(exec_mode_initialized); // -------------------------------------------------------------------------- // Prolog for exception case // An exception is pending. // We have been called with a return (interpreter) or a jump (exception blob). // // - R3_ARG1: exception oop // - R4_ARG2: exception pc int exception_offset = __ pc() - start; BLOCK_COMMENT("Prolog for exception case"); // The RegisterSaves doesn't need to adjust the return pc for this situation. const int return_pc_adjustment_exception = 0; // Push the "unpack frame". // Save everything in sight. assert(R4 == R4_ARG2, "exception pc must be in r4"); RegisterSaver::push_frame_reg_args_and_save_live_registers(masm, &first_frame_size_in_bytes, /*generate_oop_map=*/ false, return_pc_adjustment_exception, RegisterSaver::return_pc_is_r4); // Deopt during an exception. Save exec mode for unpack_frames. __ li(exec_mode_reg, Deoptimization::Unpack_exception); // Store exception oop and pc in thread (location known to GC). // This is needed since the call to "fetch_unroll_info()" may safepoint. __ std(R3_ARG1, in_bytes(JavaThread::exception_oop_offset()), R16_thread); __ std(R4_ARG2, in_bytes(JavaThread::exception_pc_offset()), R16_thread); // fall through // -------------------------------------------------------------------------- __ BIND(exec_mode_initialized); { const Register unroll_block_reg = R22_tmp2; // We need to set `last_Java_frame' because `fetch_unroll_info' will // call `last_Java_frame()'. The value of the pc in the frame is not // particularly important. It just needs to identify this blob. __ set_last_Java_frame(R1_SP, noreg); // With EscapeAnalysis turned on, this call may safepoint! __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info), R16_thread); address calls_return_pc = __ last_calls_return_pc(); // Set an oopmap for the call site that describes all our saved registers. oop_maps->add_gc_map(calls_return_pc - start, map); __ reset_last_Java_frame(); // Save the return value. __ mr(unroll_block_reg, R3_RET); // Restore only the result registers that have been saved // by save_volatile_registers(...). RegisterSaver::restore_result_registers(masm, first_frame_size_in_bytes); // In excp_deopt_mode, restore and clear exception oop which we // stored in the thread during exception entry above. The exception // oop will be the return value of this stub. Label skip_restore_excp; __ cmpdi(CCR0, exec_mode_reg, Deoptimization::Unpack_exception); __ bne(CCR0, skip_restore_excp); __ ld(R3_RET, in_bytes(JavaThread::exception_oop_offset()), R16_thread); __ ld(R4_ARG2, in_bytes(JavaThread::exception_pc_offset()), R16_thread); __ li(R0, 0); __ std(R0, in_bytes(JavaThread::exception_pc_offset()), R16_thread); __ std(R0, in_bytes(JavaThread::exception_oop_offset()), R16_thread); __ BIND(skip_restore_excp); // reload narrro_oop_base if (UseCompressedOops && Universe::narrow_oop_base() != 0) { __ load_const_optimized(R30, Universe::narrow_oop_base()); } __ pop_frame(); // stack: (deoptee, optional i2c, caller of deoptee, ...). // pop the deoptee's frame __ pop_frame(); // stack: (caller_of_deoptee, ...). // Loop through the `UnrollBlock' info and create interpreter frames. push_skeleton_frames(masm, true/*deopt*/, unroll_block_reg, R23_tmp3, R24_tmp4, R25_tmp5, R26_tmp6, R27_tmp7); // stack: (skeletal interpreter frame, ..., optional skeletal // interpreter frame, optional c2i, caller of deoptee, ...). } // push an `unpack_frame' taking care of float / int return values. __ push_frame(frame_size_in_bytes, R0/*tmp*/); // stack: (unpack frame, skeletal interpreter frame, ..., optional // skeletal interpreter frame, optional c2i, caller of deoptee, // ...). // Spill live volatile registers since we'll do a call. __ std( R3_RET, _abi_reg_args_spill(spill_ret), R1_SP); __ stfd(F1_RET, _abi_reg_args_spill(spill_fret), R1_SP); // Let the unpacker layout information in the skeletal frames just // allocated. __ get_PC_trash_LR(R3_RET); __ set_last_Java_frame(/*sp*/R1_SP, /*pc*/R3_RET); // This is a call to a LEAF method, so no oop map is required. __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), R16_thread/*thread*/, exec_mode_reg/*exec_mode*/); __ reset_last_Java_frame(); // Restore the volatiles saved above. __ ld( R3_RET, _abi_reg_args_spill(spill_ret), R1_SP); __ lfd(F1_RET, _abi_reg_args_spill(spill_fret), R1_SP); // Pop the unpack frame. __ pop_frame(); __ restore_LR_CR(R0); // stack: (top interpreter frame, ..., optional interpreter frame, // optional c2i, caller of deoptee, ...). // Initialize R14_state. __ ld(R14_state, 0, R1_SP); __ addi(R14_state, R14_state, -frame::interpreter_frame_cinterpreterstate_size_in_bytes()); // Also inititialize R15_prev_state. __ restore_prev_state(); // Return to the interpreter entry point. __ blr(); __ flush(); #else // COMPILER2 __ unimplemented("deopt blob needed only with compiler"); int exception_offset = __ pc() - start; #endif // COMPILER2 _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, 0, first_frame_size_in_bytes / wordSize); } #ifdef COMPILER2 void SharedRuntime::generate_uncommon_trap_blob() { // Allocate space for the code. ResourceMark rm; // Setup code generation tools. CodeBuffer buffer("uncommon_trap_blob", 2048, 1024); InterpreterMacroAssembler* masm = new InterpreterMacroAssembler(&buffer); address start = __ pc(); Register unroll_block_reg = R21_tmp1; Register klass_index_reg = R22_tmp2; Register unc_trap_reg = R23_tmp3; OopMapSet* oop_maps = new OopMapSet(); int frame_size_in_bytes = frame::abi_reg_args_size; OopMap* map = new OopMap(frame_size_in_bytes / sizeof(jint), 0); // stack: (deoptee, optional i2c, caller_of_deoptee, ...). // Push a dummy `unpack_frame' and call // `Deoptimization::uncommon_trap' to pack the compiled frame into a // vframe array and return the `UnrollBlock' information. // Save LR to compiled frame. __ save_LR_CR(R11_scratch1); // Push an "uncommon_trap" frame. __ push_frame_reg_args(0, R11_scratch1); // stack: (unpack frame, deoptee, optional i2c, caller_of_deoptee, ...). // Set the `unpack_frame' as last_Java_frame. // `Deoptimization::uncommon_trap' expects it and considers its // sender frame as the deoptee frame. // Remember the offset of the instruction whose address will be // moved to R11_scratch1. address gc_map_pc = __ get_PC_trash_LR(R11_scratch1); __ set_last_Java_frame(/*sp*/R1_SP, /*pc*/R11_scratch1); __ mr(klass_index_reg, R3); __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap), R16_thread, klass_index_reg); // Set an oopmap for the call site. oop_maps->add_gc_map(gc_map_pc - start, map); __ reset_last_Java_frame(); // Pop the `unpack frame'. __ pop_frame(); // stack: (deoptee, optional i2c, caller_of_deoptee, ...). // Save the return value. __ mr(unroll_block_reg, R3_RET); // Pop the uncommon_trap frame. __ pop_frame(); // stack: (caller_of_deoptee, ...). // Allocate new interpreter frame(s) and possibly a c2i adapter // frame. push_skeleton_frames(masm, false/*deopt*/, unroll_block_reg, R22_tmp2, R23_tmp3, R24_tmp4, R25_tmp5, R26_tmp6); // stack: (skeletal interpreter frame, ..., optional skeletal // interpreter frame, optional c2i, caller of deoptee, ...). // Push a dummy `unpack_frame' taking care of float return values. // Call `Deoptimization::unpack_frames' to layout information in the // interpreter frames just created. // Push a simple "unpack frame" here. __ push_frame_reg_args(0, R11_scratch1); // stack: (unpack frame, skeletal interpreter frame, ..., optional // skeletal interpreter frame, optional c2i, caller of deoptee, // ...). // Set the "unpack_frame" as last_Java_frame. __ get_PC_trash_LR(R11_scratch1); __ set_last_Java_frame(/*sp*/R1_SP, /*pc*/R11_scratch1); // Indicate it is the uncommon trap case. __ li(unc_trap_reg, Deoptimization::Unpack_uncommon_trap); // Let the unpacker layout information in the skeletal frames just // allocated. __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), R16_thread, unc_trap_reg); __ reset_last_Java_frame(); // Pop the `unpack frame'. __ pop_frame(); // Restore LR from top interpreter frame. __ restore_LR_CR(R11_scratch1); // stack: (top interpreter frame, ..., optional interpreter frame, // optional c2i, caller of deoptee, ...). // Initialize R14_state, ... __ ld(R11_scratch1, 0, R1_SP); __ addi(R14_state, R11_scratch1, -frame::interpreter_frame_cinterpreterstate_size_in_bytes()); // also initialize R15_prev_state. __ restore_prev_state(); // Return to the interpreter entry point. __ blr(); masm->flush(); _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, frame_size_in_bytes/wordSize); } #endif // COMPILER2 // Generate a special Compile2Runtime blob that saves all registers, and setup oopmap. SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) { assert(StubRoutines::forward_exception_entry() != NULL, "must be generated before"); ResourceMark rm; OopMapSet *oop_maps = new OopMapSet(); OopMap* map; // Allocate space for the code. Setup code generation tools. CodeBuffer buffer("handler_blob", 2048, 1024); MacroAssembler* masm = new MacroAssembler(&buffer); address start = __ pc(); int frame_size_in_bytes = 0; RegisterSaver::ReturnPCLocation return_pc_location; bool cause_return = (poll_type == POLL_AT_RETURN); if (cause_return) { // Nothing to do here. The frame has already been popped in MachEpilogNode. // Register LR already contains the return pc. return_pc_location = RegisterSaver::return_pc_is_lr; } else { // Use thread()->saved_exception_pc() as return pc. return_pc_location = RegisterSaver::return_pc_is_thread_saved_exception_pc; } // Save registers, fpu state, and flags. map = RegisterSaver::push_frame_reg_args_and_save_live_registers(masm, &frame_size_in_bytes, /*generate_oop_map=*/ true, /*return_pc_adjustment=*/0, return_pc_location); // The following is basically a call_VM. However, we need the precise // address of the call in order to generate an oopmap. Hence, we do all the // work outselves. __ set_last_Java_frame(/*sp=*/R1_SP, /*pc=*/noreg); // The return address must always be correct so that the frame constructor // never sees an invalid pc. // Do the call __ call_VM_leaf(call_ptr, R16_thread); address calls_return_pc = __ last_calls_return_pc(); // Set an oopmap for the call site. This oopmap will map all // oop-registers and debug-info registers as callee-saved. This // will allow deoptimization at this safepoint to find all possible // debug-info recordings, as well as let GC find all oops. oop_maps->add_gc_map(calls_return_pc - start, map); Label noException; // Clear the last Java frame. __ reset_last_Java_frame(); BLOCK_COMMENT(" Check pending exception."); const Register pending_exception = R0; __ ld(pending_exception, thread_(pending_exception)); __ cmpdi(CCR0, pending_exception, 0); __ beq(CCR0, noException); // Exception pending RegisterSaver::restore_live_registers_and_pop_frame(masm, frame_size_in_bytes, /*restore_ctr=*/true); BLOCK_COMMENT(" Jump to forward_exception_entry."); // Jump to forward_exception_entry, with the issuing PC in LR // so it looks like the original nmethod called forward_exception_entry. __ b64_patchable(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type); // No exception case. __ BIND(noException); // Normal exit, restore registers and exit. RegisterSaver::restore_live_registers_and_pop_frame(masm, frame_size_in_bytes, /*restore_ctr=*/true); __ blr(); // Make sure all code is generated masm->flush(); // Fill-out other meta info // CodeBlob frame size is in words. return SafepointBlob::create(&buffer, oop_maps, frame_size_in_bytes / wordSize); } // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss) // // Generate a stub that calls into the vm to find out the proper destination // of a java call. All the argument registers are live at this point // but since this is generic code we don't know what they are and the caller // must do any gc of the args. // RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) { // allocate space for the code ResourceMark rm; CodeBuffer buffer(name, 1000, 512); MacroAssembler* masm = new MacroAssembler(&buffer); int frame_size_in_bytes; OopMapSet *oop_maps = new OopMapSet(); OopMap* map = NULL; address start = __ pc(); map = RegisterSaver::push_frame_reg_args_and_save_live_registers(masm, &frame_size_in_bytes, /*generate_oop_map*/ true, /*return_pc_adjustment*/ 0, RegisterSaver::return_pc_is_lr); // Use noreg as last_Java_pc, the return pc will be reconstructed // from the physical frame. __ set_last_Java_frame(/*sp*/R1_SP, noreg); int frame_complete = __ offset(); // Pass R19_method as 2nd (optional) argument, used by // counter_overflow_stub. __ call_VM_leaf(destination, R16_thread, R19_method); address calls_return_pc = __ last_calls_return_pc(); // Set an oopmap for the call site. // We need this not only for callee-saved registers, but also for volatile // registers that the compiler might be keeping live across a safepoint. // Create the oopmap for the call's return pc. oop_maps->add_gc_map(calls_return_pc - start, map); // R3_RET contains the address we are going to jump to assuming no exception got installed. // clear last_Java_sp __ reset_last_Java_frame(); // Check for pending exceptions. BLOCK_COMMENT("Check for pending exceptions."); Label pending; __ ld(R11_scratch1, thread_(pending_exception)); __ cmpdi(CCR0, R11_scratch1, 0); __ bne(CCR0, pending); __ mtctr(R3_RET); // Ctr will not be touched by restore_live_registers_and_pop_frame. RegisterSaver::restore_live_registers_and_pop_frame(masm, frame_size_in_bytes, /*restore_ctr*/ false); // Get the returned methodOop. __ get_vm_result_2(R19_method); __ bctr(); // Pending exception after the safepoint. __ BIND(pending); RegisterSaver::restore_live_registers_and_pop_frame(masm, frame_size_in_bytes, /*restore_ctr*/ true); // exception pending => remove activation and forward to exception handler __ li(R11_scratch1, 0); __ ld(R3_ARG1, thread_(pending_exception)); __ std(R11_scratch1, in_bytes(JavaThread::vm_result_offset()), R16_thread); __ b64_patchable(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type); // ------------- // Make sure all code is generated. masm->flush(); // return the blob // frame_size_words or bytes?? return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_bytes/wordSize, oop_maps, true); }