/* * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef CPU_SPARC_VM_FRAME_SPARC_INLINE_HPP #define CPU_SPARC_VM_FRAME_SPARC_INLINE_HPP #include "asm/macroAssembler.hpp" // Inline functions for SPARC frames: // Constructors inline frame::frame() { _pc = NULL; _sp = NULL; _younger_sp = NULL; _cb = NULL; _deopt_state = unknown; _sp_adjustment_by_callee = 0; } // Accessors: inline bool frame::equal(frame other) const { bool ret = sp() == other.sp() && fp() == other.fp() && pc() == other.pc(); assert(!ret || ret && cb() == other.cb() && _deopt_state == other._deopt_state, "inconsistent construction"); return ret; } // Return unique id for this frame. The id must have a value where we can distinguish // identity and younger/older relationship. NULL represents an invalid (incomparable) // frame. inline intptr_t* frame::id(void) const { return unextended_sp(); } // Relationals on frames based // Return true if the frame is younger (more recent activation) than the frame represented by id inline bool frame::is_younger(intptr_t* id) const { assert(this->id() != NULL && id != NULL, "NULL frame id"); return this->id() < id ; } // Return true if the frame is older (less recent activation) than the frame represented by id inline bool frame::is_older(intptr_t* id) const { assert(this->id() != NULL && id != NULL, "NULL frame id"); return this->id() > id ; } inline int frame::frame_size(RegisterMap* map) const { return sender_sp() - sp(); } inline intptr_t* frame::link() const { return (intptr_t *)(fp()[FP->sp_offset_in_saved_window()] + STACK_BIAS); } inline void frame::set_link(intptr_t* addr) { assert(link()==addr, "frame nesting is controlled by hardware"); } inline intptr_t* frame::unextended_sp() const { return sp() + _sp_adjustment_by_callee; } // return address: inline address frame::sender_pc() const { return *I7_addr() + pc_return_offset; } inline address* frame::I7_addr() const { return (address*) &sp()[ I7->sp_offset_in_saved_window()]; } inline address* frame::I0_addr() const { return (address*) &sp()[ I0->sp_offset_in_saved_window()]; } inline address* frame::O7_addr() const { return (address*) &younger_sp()[ I7->sp_offset_in_saved_window()]; } inline address* frame::O0_addr() const { return (address*) &younger_sp()[ I0->sp_offset_in_saved_window()]; } inline intptr_t* frame::sender_sp() const { return fp(); } inline intptr_t* frame::real_fp() const { return fp(); } // Used only in frame::oopmapreg_to_location // This return a value in VMRegImpl::slot_size inline int frame::pd_oop_map_offset_adjustment() const { return _sp_adjustment_by_callee * VMRegImpl::slots_per_word; } #ifdef CC_INTERP inline intptr_t** frame::interpreter_frame_locals_addr() const { interpreterState istate = get_interpreterState(); return (intptr_t**) &istate->_locals; } inline intptr_t* frame::interpreter_frame_bcx_addr() const { interpreterState istate = get_interpreterState(); return (intptr_t*) &istate->_bcp; } inline intptr_t* frame::interpreter_frame_mdx_addr() const { interpreterState istate = get_interpreterState(); return (intptr_t*) &istate->_mdx; } inline jint frame::interpreter_frame_expression_stack_direction() { return -1; } // bottom(base) of the expression stack (highest address) inline intptr_t* frame::interpreter_frame_expression_stack() const { return (intptr_t*)interpreter_frame_monitor_end() - 1; } // top of expression stack (lowest address) inline intptr_t* frame::interpreter_frame_tos_address() const { interpreterState istate = get_interpreterState(); return istate->_stack + 1; // Is this off by one? QQQ } // monitor elements // in keeping with Intel side: end is lower in memory than begin; // and beginning element is oldest element // Also begin is one past last monitor. inline BasicObjectLock* frame::interpreter_frame_monitor_begin() const { return get_interpreterState()->monitor_base(); } inline BasicObjectLock* frame::interpreter_frame_monitor_end() const { return (BasicObjectLock*) get_interpreterState()->stack_base(); } inline int frame::interpreter_frame_monitor_size() { return round_to(BasicObjectLock::size(), WordsPerLong); } inline Method** frame::interpreter_frame_method_addr() const { interpreterState istate = get_interpreterState(); return &istate->_method; } // Constant pool cache // where LcpoolCache is saved: inline ConstantPoolCache** frame::interpreter_frame_cpoolcache_addr() const { interpreterState istate = get_interpreterState(); return &istate->_constants; // should really use accessor } inline ConstantPoolCache** frame::interpreter_frame_cache_addr() const { interpreterState istate = get_interpreterState(); return &istate->_constants; } #else // !CC_INTERP inline intptr_t** frame::interpreter_frame_locals_addr() const { return (intptr_t**) sp_addr_at( Llocals->sp_offset_in_saved_window()); } inline intptr_t* frame::interpreter_frame_bcx_addr() const { // %%%%% reinterpreting Lbcp as a bcx return (intptr_t*) sp_addr_at( Lbcp->sp_offset_in_saved_window()); } inline intptr_t* frame::interpreter_frame_mdx_addr() const { // %%%%% reinterpreting ImethodDataPtr as a mdx return (intptr_t*) sp_addr_at( ImethodDataPtr->sp_offset_in_saved_window()); } inline jint frame::interpreter_frame_expression_stack_direction() { return -1; } // bottom(base) of the expression stack (highest address) inline intptr_t* frame::interpreter_frame_expression_stack() const { return (intptr_t*)interpreter_frame_monitors() - 1; } // top of expression stack (lowest address) inline intptr_t* frame::interpreter_frame_tos_address() const { return *interpreter_frame_esp_addr() + 1; } inline BasicObjectLock** frame::interpreter_frame_monitors_addr() const { return (BasicObjectLock**) sp_addr_at(Lmonitors->sp_offset_in_saved_window()); } inline intptr_t** frame::interpreter_frame_esp_addr() const { return (intptr_t**)sp_addr_at(Lesp->sp_offset_in_saved_window()); } inline void frame::interpreter_frame_set_tos_address( intptr_t* x ) { *interpreter_frame_esp_addr() = x - 1; } // monitor elements // in keeping with Intel side: end is lower in memory than begin; // and beginning element is oldest element // Also begin is one past last monitor. inline BasicObjectLock* frame::interpreter_frame_monitor_begin() const { int rounded_vm_local_words = round_to(frame::interpreter_frame_vm_local_words, WordsPerLong); return (BasicObjectLock *)fp_addr_at(-rounded_vm_local_words); } inline BasicObjectLock* frame::interpreter_frame_monitor_end() const { return interpreter_frame_monitors(); } inline void frame::interpreter_frame_set_monitor_end(BasicObjectLock* value) { interpreter_frame_set_monitors(value); } inline int frame::interpreter_frame_monitor_size() { return round_to(BasicObjectLock::size(), WordsPerLong); } inline Method** frame::interpreter_frame_method_addr() const { return (Method**)sp_addr_at( Lmethod->sp_offset_in_saved_window()); } inline BasicObjectLock* frame::interpreter_frame_monitors() const { return *interpreter_frame_monitors_addr(); } inline void frame::interpreter_frame_set_monitors(BasicObjectLock* monitors) { *interpreter_frame_monitors_addr() = monitors; } // Constant pool cache // where LcpoolCache is saved: inline ConstantPoolCache** frame::interpreter_frame_cpoolcache_addr() const { return (ConstantPoolCache**)sp_addr_at(LcpoolCache->sp_offset_in_saved_window()); } inline ConstantPoolCache** frame::interpreter_frame_cache_addr() const { return (ConstantPoolCache**)sp_addr_at( LcpoolCache->sp_offset_in_saved_window()); } inline oop* frame::interpreter_frame_temp_oop_addr() const { return (oop *)(fp() + interpreter_frame_oop_temp_offset); } #endif // CC_INTERP inline JavaCallWrapper** frame::entry_frame_call_wrapper_addr() const { // note: adjust this code if the link argument in StubGenerator::call_stub() changes! const Argument link = Argument(0, false); return (JavaCallWrapper**)&sp()[link.as_in().as_register()->sp_offset_in_saved_window()]; } inline int frame::local_offset_for_compiler(int local_index, int nof_args, int max_nof_locals, int max_nof_monitors) { // always allocate non-argument locals 0..5 as if they were arguments: int allocated_above_frame = nof_args; if (allocated_above_frame < callee_register_argument_save_area_words) allocated_above_frame = callee_register_argument_save_area_words; if (allocated_above_frame > max_nof_locals) allocated_above_frame = max_nof_locals; // Note: monitors (BasicLock blocks) are never allocated in argument slots //assert(local_index >= 0 && local_index < max_nof_locals, "bad local index"); if (local_index < allocated_above_frame) return local_index + callee_register_argument_save_area_sp_offset; else return local_index - (max_nof_locals + max_nof_monitors*2) + compiler_frame_vm_locals_fp_offset; } inline int frame::monitor_offset_for_compiler(int local_index, int nof_args, int max_nof_locals, int max_nof_monitors) { assert(local_index >= max_nof_locals && ((local_index - max_nof_locals) & 1) && (local_index - max_nof_locals) < max_nof_monitors*2, "bad monitor index"); // The compiler uses the __higher__ of two indexes allocated to the monitor. // Increasing local indexes are mapped to increasing memory locations, // so the start of the BasicLock is associated with the __lower__ index. int offset = (local_index-1) - (max_nof_locals + max_nof_monitors*2) + compiler_frame_vm_locals_fp_offset; // We allocate monitors aligned zero mod 8: assert((offset & 1) == 0, "monitor must be an an even address."); // This works because all monitors are allocated after // all locals, and because the highest address corresponding to any // monitor index is always even. assert((compiler_frame_vm_locals_fp_offset & 1) == 0, "end of monitors must be even address"); return offset; } inline int frame::min_local_offset_for_compiler(int nof_args, int max_nof_locals, int max_nof_monitors) { // always allocate non-argument locals 0..5 as if they were arguments: int allocated_above_frame = nof_args; if (allocated_above_frame < callee_register_argument_save_area_words) allocated_above_frame = callee_register_argument_save_area_words; if (allocated_above_frame > max_nof_locals) allocated_above_frame = max_nof_locals; int allocated_in_frame = (max_nof_locals + max_nof_monitors*2) - allocated_above_frame; return compiler_frame_vm_locals_fp_offset - allocated_in_frame; } // On SPARC, the %lN and %iN registers are non-volatile. inline bool frame::volatile_across_calls(Register reg) { // This predicate is (presently) applied only to temporary registers, // and so it need not recognize non-volatile globals. return reg->is_out() || reg->is_global(); } inline oop frame::saved_oop_result(RegisterMap* map) const { return *((oop*) map->location(O0->as_VMReg())); } inline void frame::set_saved_oop_result(RegisterMap* map, oop obj) { *((oop*) map->location(O0->as_VMReg())) = obj; } #endif // CPU_SPARC_VM_FRAME_SPARC_INLINE_HPP