/* * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "c1/c1_CFGPrinter.hpp" #include "c1/c1_Compilation.hpp" #include "c1/c1_IR.hpp" #include "c1/c1_LIRAssembler.hpp" #include "c1/c1_LinearScan.hpp" #include "c1/c1_MacroAssembler.hpp" #include "c1/c1_ValueMap.hpp" #include "c1/c1_ValueStack.hpp" #include "code/debugInfoRec.hpp" typedef enum { _t_compile, _t_setup, _t_optimizeIR, _t_buildIR, _t_emit_lir, _t_linearScan, _t_lirGeneration, _t_lir_schedule, _t_codeemit, _t_codeinstall, max_phase_timers } TimerName; static const char * timer_name[] = { "compile", "setup", "optimizeIR", "buildIR", "emit_lir", "linearScan", "lirGeneration", "lir_schedule", "codeemit", "codeinstall" }; static elapsedTimer timers[max_phase_timers]; static int totalInstructionNodes = 0; class PhaseTraceTime: public TraceTime { private: JavaThread* _thread; public: PhaseTraceTime(TimerName timer): TraceTime("", &timers[timer], CITime || CITimeEach, Verbose) { } }; // Implementation of Compilation #ifndef PRODUCT void Compilation::maybe_print_current_instruction() { if (_current_instruction != NULL && _last_instruction_printed != _current_instruction) { _last_instruction_printed = _current_instruction; _current_instruction->print_line(); } } #endif // PRODUCT DebugInformationRecorder* Compilation::debug_info_recorder() const { return _env->debug_info(); } Dependencies* Compilation::dependency_recorder() const { return _env->dependencies(); } void Compilation::initialize() { // Use an oop recorder bound to the CI environment. // (The default oop recorder is ignorant of the CI.) OopRecorder* ooprec = new OopRecorder(_env->arena()); _env->set_oop_recorder(ooprec); _env->set_debug_info(new DebugInformationRecorder(ooprec)); debug_info_recorder()->set_oopmaps(new OopMapSet()); _env->set_dependencies(new Dependencies(_env)); } void Compilation::build_hir() { CHECK_BAILOUT(); // setup ir _hir = new IR(this, method(), osr_bci()); if (!_hir->is_valid()) { bailout("invalid parsing"); return; } #ifndef PRODUCT if (PrintCFGToFile) { CFGPrinter::print_cfg(_hir, "After Generation of HIR", true, false); } #endif #ifndef PRODUCT if (PrintCFG || PrintCFG0) { tty->print_cr("CFG after parsing"); _hir->print(true); } if (PrintIR || PrintIR0 ) { tty->print_cr("IR after parsing"); _hir->print(false); } #endif _hir->verify(); if (UseC1Optimizations) { NEEDS_CLEANUP // optimization PhaseTraceTime timeit(_t_optimizeIR); _hir->optimize(); } _hir->verify(); _hir->split_critical_edges(); #ifndef PRODUCT if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after optimizations"); _hir->print(true); } if (PrintIR || PrintIR1 ) { tty->print_cr("IR after optimizations"); _hir->print(false); } #endif _hir->verify(); // compute block ordering for code generation // the control flow must not be changed from here on _hir->compute_code(); if (UseGlobalValueNumbering) { ResourceMark rm; int instructions = Instruction::number_of_instructions(); GlobalValueNumbering gvn(_hir); assert(instructions == Instruction::number_of_instructions(), "shouldn't have created an instructions"); } // compute use counts after global value numbering _hir->compute_use_counts(); #ifndef PRODUCT if (PrintCFG || PrintCFG2) { tty->print_cr("CFG before code generation"); _hir->code()->print(true); } if (PrintIR || PrintIR2 ) { tty->print_cr("IR before code generation"); _hir->code()->print(false, true); } #endif _hir->verify(); } void Compilation::emit_lir() { CHECK_BAILOUT(); LIRGenerator gen(this, method()); { PhaseTraceTime timeit(_t_lirGeneration); hir()->iterate_linear_scan_order(&gen); } CHECK_BAILOUT(); { PhaseTraceTime timeit(_t_linearScan); LinearScan* allocator = new LinearScan(hir(), &gen, frame_map()); set_allocator(allocator); // Assign physical registers to LIR operands using a linear scan algorithm. allocator->do_linear_scan(); CHECK_BAILOUT(); _max_spills = allocator->max_spills(); } if (BailoutAfterLIR) { if (PrintLIR && !bailed_out()) { print_LIR(hir()->code()); } bailout("Bailing out because of -XX:+BailoutAfterLIR"); } } void Compilation::emit_code_epilog(LIR_Assembler* assembler) { CHECK_BAILOUT(); CodeOffsets* code_offsets = assembler->offsets(); // generate code or slow cases assembler->emit_slow_case_stubs(); CHECK_BAILOUT(); // generate exception adapters assembler->emit_exception_entries(exception_info_list()); CHECK_BAILOUT(); // Generate code for exception handler. code_offsets->set_value(CodeOffsets::Exceptions, assembler->emit_exception_handler()); CHECK_BAILOUT(); // Generate code for deopt handler. code_offsets->set_value(CodeOffsets::Deopt, assembler->emit_deopt_handler()); CHECK_BAILOUT(); // Emit the MethodHandle deopt handler code (if required). if (has_method_handle_invokes()) { // We can use the same code as for the normal deopt handler, we // just need a different entry point address. code_offsets->set_value(CodeOffsets::DeoptMH, assembler->emit_deopt_handler()); CHECK_BAILOUT(); } // Emit the handler to remove the activation from the stack and // dispatch to the caller. offsets()->set_value(CodeOffsets::UnwindHandler, assembler->emit_unwind_handler()); // done masm()->flush(); } bool Compilation::setup_code_buffer(CodeBuffer* code, int call_stub_estimate) { // Preinitialize the consts section to some large size: int locs_buffer_size = 20 * (relocInfo::length_limit + sizeof(relocInfo)); char* locs_buffer = NEW_RESOURCE_ARRAY(char, locs_buffer_size); code->insts()->initialize_shared_locs((relocInfo*)locs_buffer, locs_buffer_size / sizeof(relocInfo)); code->initialize_consts_size(Compilation::desired_max_constant_size()); // Call stubs + two deopt handlers (regular and MH) + exception handler int stub_size = (call_stub_estimate * LIR_Assembler::call_stub_size) + LIR_Assembler::exception_handler_size + (2 * LIR_Assembler::deopt_handler_size); if (stub_size >= code->insts_capacity()) return false; code->initialize_stubs_size(stub_size); return true; } int Compilation::emit_code_body() { // emit code if (!setup_code_buffer(code(), allocator()->num_calls())) { BAILOUT_("size requested greater than avail code buffer size", 0); } code()->initialize_oop_recorder(env()->oop_recorder()); _masm = new C1_MacroAssembler(code()); _masm->set_oop_recorder(env()->oop_recorder()); LIR_Assembler lir_asm(this); lir_asm.emit_code(hir()->code()); CHECK_BAILOUT_(0); emit_code_epilog(&lir_asm); CHECK_BAILOUT_(0); generate_exception_handler_table(); #ifndef PRODUCT if (PrintExceptionHandlers && Verbose) { exception_handler_table()->print(); } #endif /* PRODUCT */ return frame_map()->framesize(); } int Compilation::compile_java_method() { assert(!method()->is_native(), "should not reach here"); if (BailoutOnExceptionHandlers) { if (method()->has_exception_handlers()) { bailout("linear scan can't handle exception handlers"); } } CHECK_BAILOUT_(no_frame_size); if (is_profiling() && !method()->ensure_method_data()) { BAILOUT_("mdo allocation failed", no_frame_size); } { PhaseTraceTime timeit(_t_buildIR); build_hir(); } if (BailoutAfterHIR) { BAILOUT_("Bailing out because of -XX:+BailoutAfterHIR", no_frame_size); } { PhaseTraceTime timeit(_t_emit_lir); _frame_map = new FrameMap(method(), hir()->number_of_locks(), MAX2(4, hir()->max_stack())); emit_lir(); } CHECK_BAILOUT_(no_frame_size); { PhaseTraceTime timeit(_t_codeemit); return emit_code_body(); } } void Compilation::install_code(int frame_size) { // frame_size is in 32-bit words so adjust it intptr_t words assert(frame_size == frame_map()->framesize(), "must match"); assert(in_bytes(frame_map()->framesize_in_bytes()) % sizeof(intptr_t) == 0, "must be at least pointer aligned"); _env->register_method( method(), osr_bci(), &_offsets, in_bytes(_frame_map->sp_offset_for_orig_pc()), code(), in_bytes(frame_map()->framesize_in_bytes()) / sizeof(intptr_t), debug_info_recorder()->_oopmaps, exception_handler_table(), implicit_exception_table(), compiler(), _env->comp_level(), has_unsafe_access() ); } void Compilation::compile_method() { // setup compilation initialize(); if (!method()->can_be_compiled()) { // Prevent race condition 6328518. // This can happen if the method is obsolete or breakpointed. bailout("Bailing out because method is not compilable"); return; } if (_env->jvmti_can_hotswap_or_post_breakpoint()) { // We can assert evol_method because method->can_be_compiled is true. dependency_recorder()->assert_evol_method(method()); } if (method()->break_at_execute()) { BREAKPOINT; } #ifndef PRODUCT if (PrintCFGToFile) { CFGPrinter::print_compilation(this); } #endif // compile method int frame_size = compile_java_method(); // bailout if method couldn't be compiled // Note: make sure we mark the method as not compilable! CHECK_BAILOUT(); if (InstallMethods) { // install code PhaseTraceTime timeit(_t_codeinstall); install_code(frame_size); } totalInstructionNodes += Instruction::number_of_instructions(); } void Compilation::generate_exception_handler_table() { // Generate an ExceptionHandlerTable from the exception handler // information accumulated during the compilation. ExceptionInfoList* info_list = exception_info_list(); if (info_list->length() == 0) { return; } // allocate some arrays for use by the collection code. const int num_handlers = 5; GrowableArray* bcis = new GrowableArray(num_handlers); GrowableArray* scope_depths = new GrowableArray(num_handlers); GrowableArray* pcos = new GrowableArray(num_handlers); for (int i = 0; i < info_list->length(); i++) { ExceptionInfo* info = info_list->at(i); XHandlers* handlers = info->exception_handlers(); // empty the arrays bcis->trunc_to(0); scope_depths->trunc_to(0); pcos->trunc_to(0); for (int i = 0; i < handlers->length(); i++) { XHandler* handler = handlers->handler_at(i); assert(handler->entry_pco() != -1, "must have been generated"); int e = bcis->find(handler->handler_bci()); if (e >= 0 && scope_depths->at(e) == handler->scope_count()) { // two different handlers are declared to dispatch to the same // catch bci. During parsing we created edges for each // handler but we really only need one. The exception handler // table will also get unhappy if we try to declare both since // it's nonsensical. Just skip this handler. continue; } bcis->append(handler->handler_bci()); if (handler->handler_bci() == -1) { // insert a wildcard handler at scope depth 0 so that the // exception lookup logic with find it. scope_depths->append(0); } else { scope_depths->append(handler->scope_count()); } pcos->append(handler->entry_pco()); // stop processing once we hit a catch any if (handler->is_catch_all()) { assert(i == handlers->length() - 1, "catch all must be last handler"); } } exception_handler_table()->add_subtable(info->pco(), bcis, scope_depths, pcos); } } Compilation::Compilation(AbstractCompiler* compiler, ciEnv* env, ciMethod* method, int osr_bci, BufferBlob* buffer_blob) : _compiler(compiler) , _env(env) , _method(method) , _osr_bci(osr_bci) , _hir(NULL) , _max_spills(-1) , _frame_map(NULL) , _masm(NULL) , _has_exception_handlers(false) , _has_fpu_code(true) // pessimistic assumption , _would_profile(false) , _has_unsafe_access(false) , _has_method_handle_invokes(false) , _bailout_msg(NULL) , _exception_info_list(NULL) , _allocator(NULL) , _next_id(0) , _next_block_id(0) , _code(buffer_blob) , _current_instruction(NULL) #ifndef PRODUCT , _last_instruction_printed(NULL) #endif // PRODUCT { PhaseTraceTime timeit(_t_compile); _arena = Thread::current()->resource_area(); _env->set_compiler_data(this); _exception_info_list = new ExceptionInfoList(); _implicit_exception_table.set_size(0); compile_method(); if (bailed_out()) { _env->record_method_not_compilable(bailout_msg(), !TieredCompilation); if (is_profiling()) { // Compilation failed, create MDO, which would signal the interpreter // to start profiling on its own. _method->ensure_method_data(); } } else if (is_profiling()) { ciMethodData *md = method->method_data_or_null(); if (md != NULL) { md->set_would_profile(_would_profile); } } } Compilation::~Compilation() { _env->set_compiler_data(NULL); } void Compilation::add_exception_handlers_for_pco(int pco, XHandlers* exception_handlers) { #ifndef PRODUCT if (PrintExceptionHandlers && Verbose) { tty->print_cr(" added exception scope for pco %d", pco); } #endif // Note: we do not have program counters for these exception handlers yet exception_info_list()->push(new ExceptionInfo(pco, exception_handlers)); } void Compilation::notice_inlined_method(ciMethod* method) { _env->notice_inlined_method(method); } void Compilation::bailout(const char* msg) { assert(msg != NULL, "bailout message must exist"); if (!bailed_out()) { // keep first bailout message if (PrintBailouts) tty->print_cr("compilation bailout: %s", msg); _bailout_msg = msg; } } void Compilation::print_timers() { // tty->print_cr(" Native methods : %6.3f s, Average : %2.3f", CompileBroker::_t_native_compilation.seconds(), CompileBroker::_t_native_compilation.seconds() / CompileBroker::_total_native_compile_count); float total = timers[_t_setup].seconds() + timers[_t_buildIR].seconds() + timers[_t_emit_lir].seconds() + timers[_t_lir_schedule].seconds() + timers[_t_codeemit].seconds() + timers[_t_codeinstall].seconds(); tty->print_cr(" Detailed C1 Timings"); tty->print_cr(" Setup time: %6.3f s (%4.1f%%)", timers[_t_setup].seconds(), (timers[_t_setup].seconds() / total) * 100.0); tty->print_cr(" Build IR: %6.3f s (%4.1f%%)", timers[_t_buildIR].seconds(), (timers[_t_buildIR].seconds() / total) * 100.0); tty->print_cr(" Optimize: %6.3f s (%4.1f%%)", timers[_t_optimizeIR].seconds(), (timers[_t_optimizeIR].seconds() / total) * 100.0); tty->print_cr(" Emit LIR: %6.3f s (%4.1f%%)", timers[_t_emit_lir].seconds(), (timers[_t_emit_lir].seconds() / total) * 100.0); tty->print_cr(" LIR Gen: %6.3f s (%4.1f%%)", timers[_t_lirGeneration].seconds(), (timers[_t_lirGeneration].seconds() / total) * 100.0); tty->print_cr(" Linear Scan: %6.3f s (%4.1f%%)", timers[_t_linearScan].seconds(), (timers[_t_linearScan].seconds() / total) * 100.0); NOT_PRODUCT(LinearScan::print_timers(timers[_t_linearScan].seconds())); tty->print_cr(" LIR Schedule: %6.3f s (%4.1f%%)", timers[_t_lir_schedule].seconds(), (timers[_t_lir_schedule].seconds() / total) * 100.0); tty->print_cr(" Code Emission: %6.3f s (%4.1f%%)", timers[_t_codeemit].seconds(), (timers[_t_codeemit].seconds() / total) * 100.0); tty->print_cr(" Code Installation: %6.3f s (%4.1f%%)", timers[_t_codeinstall].seconds(), (timers[_t_codeinstall].seconds() / total) * 100.0); tty->print_cr(" Instruction Nodes: %6d nodes", totalInstructionNodes); NOT_PRODUCT(LinearScan::print_statistics()); } #ifndef PRODUCT void Compilation::compile_only_this_method() { ResourceMark rm; fileStream stream(fopen("c1_compile_only", "wt")); stream.print_cr("# c1 compile only directives"); compile_only_this_scope(&stream, hir()->top_scope()); } void Compilation::compile_only_this_scope(outputStream* st, IRScope* scope) { st->print("CompileOnly="); scope->method()->holder()->name()->print_symbol_on(st); st->print("."); scope->method()->name()->print_symbol_on(st); st->cr(); } void Compilation::exclude_this_method() { fileStream stream(fopen(".hotspot_compiler", "at")); stream.print("exclude "); method()->holder()->name()->print_symbol_on(&stream); stream.print(" "); method()->name()->print_symbol_on(&stream); stream.cr(); stream.cr(); } #endif