// // Copyright 1998-2007 Sun Microsystems, Inc. All Rights Reserved. // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. // // This code is free software; you can redistribute it and/or modify it // under the terms of the GNU General Public License version 2 only, as // published by the Free Software Foundation. // // This code is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License // version 2 for more details (a copy is included in the LICENSE file that // accompanied this code). // // You should have received a copy of the GNU General Public License version // 2 along with this work; if not, write to the Free Software Foundation, // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. // // Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, // CA 95054 USA or visit www.sun.com if you need additional information or // have any questions. // // // SPARC Architecture Description File //----------REGISTER DEFINITION BLOCK------------------------------------------ // This information is used by the matcher and the register allocator to // describe individual registers and classes of registers within the target // archtecture. register %{ //----------Architecture Description Register Definitions---------------------- // General Registers // "reg_def" name ( register save type, C convention save type, // ideal register type, encoding, vm name ); // Register Save Types: // // NS = No-Save: The register allocator assumes that these registers // can be used without saving upon entry to the method, & // that they do not need to be saved at call sites. // // SOC = Save-On-Call: The register allocator assumes that these registers // can be used without saving upon entry to the method, // but that they must be saved at call sites. // // SOE = Save-On-Entry: The register allocator assumes that these registers // must be saved before using them upon entry to the // method, but they do not need to be saved at call // sites. // // AS = Always-Save: The register allocator assumes that these registers // must be saved before using them upon entry to the // method, & that they must be saved at call sites. // // Ideal Register Type is used to determine how to save & restore a // register. Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get // spilled with LoadP/StoreP. If the register supports both, use Op_RegI. // // The encoding number is the actual bit-pattern placed into the opcodes. // ---------------------------- // Integer/Long Registers // ---------------------------- // Need to expose the hi/lo aspect of 64-bit registers // This register set is used for both the 64-bit build and // the 32-bit build with 1-register longs. // Global Registers 0-7 reg_def R_G0H( NS, NS, Op_RegI,128, G0->as_VMReg()->next()); reg_def R_G0 ( NS, NS, Op_RegI, 0, G0->as_VMReg()); reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next()); reg_def R_G1 (SOC, SOC, Op_RegI, 1, G1->as_VMReg()); reg_def R_G2H( NS, NS, Op_RegI,130, G2->as_VMReg()->next()); reg_def R_G2 ( NS, NS, Op_RegI, 2, G2->as_VMReg()); reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next()); reg_def R_G3 (SOC, SOC, Op_RegI, 3, G3->as_VMReg()); reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next()); reg_def R_G4 (SOC, SOC, Op_RegI, 4, G4->as_VMReg()); reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next()); reg_def R_G5 (SOC, SOC, Op_RegI, 5, G5->as_VMReg()); reg_def R_G6H( NS, NS, Op_RegI,134, G6->as_VMReg()->next()); reg_def R_G6 ( NS, NS, Op_RegI, 6, G6->as_VMReg()); reg_def R_G7H( NS, NS, Op_RegI,135, G7->as_VMReg()->next()); reg_def R_G7 ( NS, NS, Op_RegI, 7, G7->as_VMReg()); // Output Registers 0-7 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next()); reg_def R_O0 (SOC, SOC, Op_RegI, 8, O0->as_VMReg()); reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next()); reg_def R_O1 (SOC, SOC, Op_RegI, 9, O1->as_VMReg()); reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next()); reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg()); reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next()); reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg()); reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next()); reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg()); reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next()); reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg()); reg_def R_SPH( NS, NS, Op_RegI,142, SP->as_VMReg()->next()); reg_def R_SP ( NS, NS, Op_RegI, 14, SP->as_VMReg()); reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next()); reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg()); // Local Registers 0-7 reg_def R_L0H( NS, NS, Op_RegI,144, L0->as_VMReg()->next()); reg_def R_L0 ( NS, NS, Op_RegI, 16, L0->as_VMReg()); reg_def R_L1H( NS, NS, Op_RegI,145, L1->as_VMReg()->next()); reg_def R_L1 ( NS, NS, Op_RegI, 17, L1->as_VMReg()); reg_def R_L2H( NS, NS, Op_RegI,146, L2->as_VMReg()->next()); reg_def R_L2 ( NS, NS, Op_RegI, 18, L2->as_VMReg()); reg_def R_L3H( NS, NS, Op_RegI,147, L3->as_VMReg()->next()); reg_def R_L3 ( NS, NS, Op_RegI, 19, L3->as_VMReg()); reg_def R_L4H( NS, NS, Op_RegI,148, L4->as_VMReg()->next()); reg_def R_L4 ( NS, NS, Op_RegI, 20, L4->as_VMReg()); reg_def R_L5H( NS, NS, Op_RegI,149, L5->as_VMReg()->next()); reg_def R_L5 ( NS, NS, Op_RegI, 21, L5->as_VMReg()); reg_def R_L6H( NS, NS, Op_RegI,150, L6->as_VMReg()->next()); reg_def R_L6 ( NS, NS, Op_RegI, 22, L6->as_VMReg()); reg_def R_L7H( NS, NS, Op_RegI,151, L7->as_VMReg()->next()); reg_def R_L7 ( NS, NS, Op_RegI, 23, L7->as_VMReg()); // Input Registers 0-7 reg_def R_I0H( NS, NS, Op_RegI,152, I0->as_VMReg()->next()); reg_def R_I0 ( NS, NS, Op_RegI, 24, I0->as_VMReg()); reg_def R_I1H( NS, NS, Op_RegI,153, I1->as_VMReg()->next()); reg_def R_I1 ( NS, NS, Op_RegI, 25, I1->as_VMReg()); reg_def R_I2H( NS, NS, Op_RegI,154, I2->as_VMReg()->next()); reg_def R_I2 ( NS, NS, Op_RegI, 26, I2->as_VMReg()); reg_def R_I3H( NS, NS, Op_RegI,155, I3->as_VMReg()->next()); reg_def R_I3 ( NS, NS, Op_RegI, 27, I3->as_VMReg()); reg_def R_I4H( NS, NS, Op_RegI,156, I4->as_VMReg()->next()); reg_def R_I4 ( NS, NS, Op_RegI, 28, I4->as_VMReg()); reg_def R_I5H( NS, NS, Op_RegI,157, I5->as_VMReg()->next()); reg_def R_I5 ( NS, NS, Op_RegI, 29, I5->as_VMReg()); reg_def R_FPH( NS, NS, Op_RegI,158, FP->as_VMReg()->next()); reg_def R_FP ( NS, NS, Op_RegI, 30, FP->as_VMReg()); reg_def R_I7H( NS, NS, Op_RegI,159, I7->as_VMReg()->next()); reg_def R_I7 ( NS, NS, Op_RegI, 31, I7->as_VMReg()); // ---------------------------- // Float/Double Registers // ---------------------------- // Float Registers reg_def R_F0 ( SOC, SOC, Op_RegF, 0, F0->as_VMReg()); reg_def R_F1 ( SOC, SOC, Op_RegF, 1, F1->as_VMReg()); reg_def R_F2 ( SOC, SOC, Op_RegF, 2, F2->as_VMReg()); reg_def R_F3 ( SOC, SOC, Op_RegF, 3, F3->as_VMReg()); reg_def R_F4 ( SOC, SOC, Op_RegF, 4, F4->as_VMReg()); reg_def R_F5 ( SOC, SOC, Op_RegF, 5, F5->as_VMReg()); reg_def R_F6 ( SOC, SOC, Op_RegF, 6, F6->as_VMReg()); reg_def R_F7 ( SOC, SOC, Op_RegF, 7, F7->as_VMReg()); reg_def R_F8 ( SOC, SOC, Op_RegF, 8, F8->as_VMReg()); reg_def R_F9 ( SOC, SOC, Op_RegF, 9, F9->as_VMReg()); reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg()); reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg()); reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg()); reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg()); reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg()); reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg()); reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg()); reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg()); reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg()); reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg()); reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg()); reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg()); reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg()); reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg()); reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg()); reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg()); reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg()); reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg()); reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg()); reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg()); reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg()); reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg()); // Double Registers // The rules of ADL require that double registers be defined in pairs. // Each pair must be two 32-bit values, but not necessarily a pair of // single float registers. In each pair, ADLC-assigned register numbers // must be adjacent, with the lower number even. Finally, when the // CPU stores such a register pair to memory, the word associated with // the lower ADLC-assigned number must be stored to the lower address. // These definitions specify the actual bit encodings of the sparc // double fp register numbers. FloatRegisterImpl in register_sparc.hpp // wants 0-63, so we have to convert every time we want to use fp regs // with the macroassembler, using reg_to_DoubleFloatRegister_object(). // 255 is a flag meaning 'dont go here'. // I believe we can't handle callee-save doubles D32 and up until // the place in the sparc stack crawler that asserts on the 255 is // fixed up. reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()); reg_def R_D32 (SOC, SOC, Op_RegD, 1, F32->as_VMReg()->next()); reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()); reg_def R_D34 (SOC, SOC, Op_RegD, 3, F34->as_VMReg()->next()); reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()); reg_def R_D36 (SOC, SOC, Op_RegD, 5, F36->as_VMReg()->next()); reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()); reg_def R_D38 (SOC, SOC, Op_RegD, 7, F38->as_VMReg()->next()); reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()); reg_def R_D40 (SOC, SOC, Op_RegD, 9, F40->as_VMReg()->next()); reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()); reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg()->next()); reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()); reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg()->next()); reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()); reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg()->next()); reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()); reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg()->next()); reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()); reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg()->next()); reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()); reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg()->next()); reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()); reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg()->next()); reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()); reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg()->next()); reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()); reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg()->next()); reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()); reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg()->next()); reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()); reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg()->next()); // ---------------------------- // Special Registers // Condition Codes Flag Registers // I tried to break out ICC and XCC but it's not very pretty. // Every Sparc instruction which defs/kills one also kills the other. // Hence every compare instruction which defs one kind of flags ends // up needing a kill of the other. reg_def CCR (SOC, SOC, Op_RegFlags, 0, VMRegImpl::Bad()); reg_def FCC0(SOC, SOC, Op_RegFlags, 0, VMRegImpl::Bad()); reg_def FCC1(SOC, SOC, Op_RegFlags, 1, VMRegImpl::Bad()); reg_def FCC2(SOC, SOC, Op_RegFlags, 2, VMRegImpl::Bad()); reg_def FCC3(SOC, SOC, Op_RegFlags, 3, VMRegImpl::Bad()); // ---------------------------- // Specify the enum values for the registers. These enums are only used by the // OptoReg "class". We can convert these enum values at will to VMReg when needed // for visibility to the rest of the vm. The order of this enum influences the // register allocator so having the freedom to set this order and not be stuck // with the order that is natural for the rest of the vm is worth it. alloc_class chunk0( R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H, R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H, R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H, R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H); // Note that a register is not allocatable unless it is also mentioned // in a widely-used reg_class below. Thus, R_G7 and R_G0 are outside i_reg. alloc_class chunk1( // The first registers listed here are those most likely to be used // as temporaries. We move F0..F7 away from the front of the list, // to reduce the likelihood of interferences with parameters and // return values. Likewise, we avoid using F0/F1 for parameters, // since they are used for return values. // This FPU fine-tuning is worth about 1% on the SPEC geomean. R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15, R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23, R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31, R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x, R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x, R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x, R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x); alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3); //----------Architecture Description Register Classes-------------------------- // Several register classes are automatically defined based upon information in // this architecture description. // 1) reg_class inline_cache_reg ( as defined in frame section ) // 2) reg_class interpreter_method_oop_reg ( as defined in frame section ) // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ ) // // G0 is not included in integer class since it has special meaning. reg_class g0_reg(R_G0); // ---------------------------- // Integer Register Classes // ---------------------------- // Exclusions from i_reg: // R_G0: hardwired zero // R_G2: reserved by HotSpot to the TLS register (invariant within Java) // R_G6: reserved by Solaris ABI to tools // R_G7: reserved by Solaris ABI to libthread // R_O7: Used as a temp in many encodings reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5); // Class for all integer registers, except the G registers. This is used for // encodings which use G registers as temps. The regular inputs to such // instructions use a "notemp_" prefix, as a hack to ensure that the allocator // will not put an input into a temp register. reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5); reg_class g1_regI(R_G1); reg_class g3_regI(R_G3); reg_class g4_regI(R_G4); reg_class o0_regI(R_O0); reg_class o7_regI(R_O7); // ---------------------------- // Pointer Register Classes // ---------------------------- #ifdef _LP64 // 64-bit build means 64-bit pointers means hi/lo pairs reg_class ptr_reg( R_G1H,R_G1, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5, R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7, R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 ); // Lock encodings use G3 and G4 internally reg_class lock_ptr_reg( R_G1H,R_G1, R_G5H,R_G5, R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7, R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 ); // Special class for storeP instructions, which can store SP or RPC to TLS. // It is also used for memory addressing, allowing direct TLS addressing. reg_class sp_ptr_reg( R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5, R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP, R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7, R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP ); // R_L7 is the lowest-priority callee-save (i.e., NS) register // We use it to save R_G2 across calls out of Java. reg_class l7_regP(R_L7H,R_L7); // Other special pointer regs reg_class g1_regP(R_G1H,R_G1); reg_class g2_regP(R_G2H,R_G2); reg_class g3_regP(R_G3H,R_G3); reg_class g4_regP(R_G4H,R_G4); reg_class g5_regP(R_G5H,R_G5); reg_class i0_regP(R_I0H,R_I0); reg_class o0_regP(R_O0H,R_O0); reg_class o1_regP(R_O1H,R_O1); reg_class o2_regP(R_O2H,R_O2); reg_class o7_regP(R_O7H,R_O7); #else // _LP64 // 32-bit build means 32-bit pointers means 1 register. reg_class ptr_reg( R_G1, R_G3,R_G4,R_G5, R_O0,R_O1,R_O2,R_O3,R_O4,R_O5, R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7, R_I0,R_I1,R_I2,R_I3,R_I4,R_I5); // Lock encodings use G3 and G4 internally reg_class lock_ptr_reg(R_G1, R_G5, R_O0,R_O1,R_O2,R_O3,R_O4,R_O5, R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7, R_I0,R_I1,R_I2,R_I3,R_I4,R_I5); // Special class for storeP instructions, which can store SP or RPC to TLS. // It is also used for memory addressing, allowing direct TLS addressing. reg_class sp_ptr_reg( R_G1,R_G2,R_G3,R_G4,R_G5, R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP, R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7, R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP); // R_L7 is the lowest-priority callee-save (i.e., NS) register // We use it to save R_G2 across calls out of Java. reg_class l7_regP(R_L7); // Other special pointer regs reg_class g1_regP(R_G1); reg_class g2_regP(R_G2); reg_class g3_regP(R_G3); reg_class g4_regP(R_G4); reg_class g5_regP(R_G5); reg_class i0_regP(R_I0); reg_class o0_regP(R_O0); reg_class o1_regP(R_O1); reg_class o2_regP(R_O2); reg_class o7_regP(R_O7); #endif // _LP64 // ---------------------------- // Long Register Classes // ---------------------------- // Longs in 1 register. Aligned adjacent hi/lo pairs. // Note: O7 is never in this class; it is sometimes used as an encoding temp. reg_class long_reg( R_G1H,R_G1, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5 ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5 #ifdef _LP64 // 64-bit, longs in 1 register: use all 64-bit integer registers // 32-bit, longs in 1 register: cannot use I's and L's. Restrict to O's and G's. ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7 ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 #endif // _LP64 ); reg_class g1_regL(R_G1H,R_G1); reg_class o2_regL(R_O2H,R_O2); reg_class o7_regL(R_O7H,R_O7); // ---------------------------- // Special Class for Condition Code Flags Register reg_class int_flags(CCR); reg_class float_flags(FCC0,FCC1,FCC2,FCC3); reg_class float_flag0(FCC0); // ---------------------------- // Float Point Register Classes // ---------------------------- // Skip F30/F31, they are reserved for mem-mem copies reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29); // Paired floating point registers--they show up in the same order as the floats, // but they are used with the "Op_RegD" type, and always occur in even/odd pairs. reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15, R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29, /* Use extra V9 double registers; this AD file does not support V8 */ R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x, R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x ); // Paired floating point registers--they show up in the same order as the floats, // but they are used with the "Op_RegD" type, and always occur in even/odd pairs. // This class is usable for mis-aligned loads as happen in I2C adapters. reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15, R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31 ); %} //----------DEFINITION BLOCK--------------------------------------------------- // Define name --> value mappings to inform the ADLC of an integer valued name // Current support includes integer values in the range [0, 0x7FFFFFFF] // Format: // int_def ( , ); // Generated Code in ad_.hpp // #define () // // value == // Generated code in ad_.cpp adlc_verification() // assert( == , "Expect () to equal "); // definitions %{ // The default cost (of an ALU instruction). int_def DEFAULT_COST ( 100, 100); int_def HUGE_COST (1000000, 1000000); // Memory refs are twice as expensive as run-of-the-mill. int_def MEMORY_REF_COST ( 200, DEFAULT_COST * 2); // Branches are even more expensive. int_def BRANCH_COST ( 300, DEFAULT_COST * 3); int_def CALL_COST ( 300, DEFAULT_COST * 3); %} //----------SOURCE BLOCK------------------------------------------------------- // This is a block of C++ code which provides values, functions, and // definitions necessary in the rest of the architecture description source_hpp %{ // Must be visible to the DFA in dfa_sparc.cpp extern bool can_branch_register( Node *bol, Node *cmp ); // Macros to extract hi & lo halves from a long pair. // G0 is not part of any long pair, so assert on that. // Prevents accidently using G1 instead of G0. #define LONG_HI_REG(x) (x) #define LONG_LO_REG(x) (x) %} source %{ #define __ _masm. // tertiary op of a LoadP or StoreP encoding #define REGP_OP true static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding); static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding); static Register reg_to_register_object(int register_encoding); // Used by the DFA in dfa_sparc.cpp. // Check for being able to use a V9 branch-on-register. Requires a // compare-vs-zero, equal/not-equal, of a value which was zero- or sign- // extended. Doesn't work following an integer ADD, for example, because of // overflow (-1 incremented yields 0 plus a carry in the high-order word). On // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and // replace them with zero, which could become sign-extension in a different OS // release. There's no obvious reason why an interrupt will ever fill these // bits with non-zero junk (the registers are reloaded with standard LD // instructions which either zero-fill or sign-fill). bool can_branch_register( Node *bol, Node *cmp ) { if( !BranchOnRegister ) return false; #ifdef _LP64 if( cmp->Opcode() == Op_CmpP ) return true; // No problems with pointer compares #endif if( cmp->Opcode() == Op_CmpL ) return true; // No problems with long compares if( !SparcV9RegsHiBitsZero ) return false; if( bol->as_Bool()->_test._test != BoolTest::ne && bol->as_Bool()->_test._test != BoolTest::eq ) return false; // Check for comparing against a 'safe' value. Any operation which // clears out the high word is safe. Thus, loads and certain shifts // are safe, as are non-negative constants. Any operation which // preserves zero bits in the high word is safe as long as each of its // inputs are safe. Thus, phis and bitwise booleans are safe if their // inputs are safe. At present, the only important case to recognize // seems to be loads. Constants should fold away, and shifts & // logicals can use the 'cc' forms. Node *x = cmp->in(1); if( x->is_Load() ) return true; if( x->is_Phi() ) { for( uint i = 1; i < x->req(); i++ ) if( !x->in(i)->is_Load() ) return false; return true; } return false; } // **************************************************************************** // REQUIRED FUNCTIONALITY // !!!!! Special hack to get all type of calls to specify the byte offset // from the start of the call to the point where the return address // will point. // The "return address" is the address of the call instruction, plus 8. int MachCallStaticJavaNode::ret_addr_offset() { return NativeCall::instruction_size; // call; delay slot } int MachCallDynamicJavaNode::ret_addr_offset() { int vtable_index = this->_vtable_index; if (vtable_index < 0) { // must be invalid_vtable_index, not nonvirtual_vtable_index assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value"); return (NativeMovConstReg::instruction_size + NativeCall::instruction_size); // sethi; setlo; call; delay slot } else { assert(!UseInlineCaches, "expect vtable calls only if not using ICs"); int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size(); int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes(); if( Assembler::is_simm13(v_off) ) { return (3*BytesPerInstWord + // ld_ptr, ld_ptr, ld_ptr NativeCall::instruction_size); // call; delay slot } else { return (5*BytesPerInstWord + // ld_ptr, set_hi, set, ld_ptr, ld_ptr NativeCall::instruction_size); // call; delay slot } } } int MachCallRuntimeNode::ret_addr_offset() { #ifdef _LP64 return NativeFarCall::instruction_size; // farcall; delay slot #else return NativeCall::instruction_size; // call; delay slot #endif } // Indicate if the safepoint node needs the polling page as an input. // Since Sparc does not have absolute addressing, it does. bool SafePointNode::needs_polling_address_input() { return true; } // emit an interrupt that is caught by the debugger (for debugging compiler) void emit_break(CodeBuffer &cbuf) { MacroAssembler _masm(&cbuf); __ breakpoint_trap(); } #ifndef PRODUCT void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const { st->print("TA"); } #endif void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const { emit_break(cbuf); } uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const { return MachNode::size(ra_); } // Traceable jump void emit_jmpl(CodeBuffer &cbuf, int jump_target) { MacroAssembler _masm(&cbuf); Register rdest = reg_to_register_object(jump_target); __ JMP(rdest, 0); __ delayed()->nop(); } // Traceable jump and set exception pc void emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) { MacroAssembler _masm(&cbuf); Register rdest = reg_to_register_object(jump_target); __ JMP(rdest, 0); __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc ); } void emit_nop(CodeBuffer &cbuf) { MacroAssembler _masm(&cbuf); __ nop(); } void emit_illtrap(CodeBuffer &cbuf) { MacroAssembler _masm(&cbuf); __ illtrap(0); } intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) { assert(n->rule() != loadUB_rule, ""); intptr_t offset = 0; const TypePtr *adr_type = TYPE_PTR_SENTINAL; // Check for base==RegI, disp==immP const Node* addr = n->get_base_and_disp(offset, adr_type); assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP"); assert(addr != NULL && addr != (Node*)-1, "invalid addr"); assert(addr->bottom_type()->isa_oopptr() == atype, ""); atype = atype->add_offset(offset); assert(disp32 == offset, "wrong disp32"); return atype->_offset; } intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) { assert(n->rule() != loadUB_rule, ""); intptr_t offset = 0; Node* addr = n->in(2); assert(addr->bottom_type()->isa_oopptr() == atype, ""); if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) { Node* a = addr->in(2/*AddPNode::Address*/); Node* o = addr->in(3/*AddPNode::Offset*/); offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot; atype = a->bottom_type()->is_ptr()->add_offset(offset); assert(atype->isa_oop_ptr(), "still an oop"); } offset = atype->is_ptr()->_offset; if (offset != Type::OffsetBot) offset += disp32; return offset; } // Standard Sparc opcode form2 field breakdown static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) { f0 &= (1<<19)-1; // Mask displacement to 19 bits int op = (f30 << 30) | (f29 << 29) | (f25 << 25) | (f22 << 22) | (f20 << 20) | (f19 << 19) | (f0 << 0); *((int*)(cbuf.code_end())) = op; cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord); } // Standard Sparc opcode form2 field breakdown static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) { f0 >>= 10; // Drop 10 bits f0 &= (1<<22)-1; // Mask displacement to 22 bits int op = (f30 << 30) | (f25 << 25) | (f22 << 22) | (f0 << 0); *((int*)(cbuf.code_end())) = op; cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord); } // Standard Sparc opcode form3 field breakdown static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) { int op = (f30 << 30) | (f25 << 25) | (f19 << 19) | (f14 << 14) | (f5 << 5) | (f0 << 0); *((int*)(cbuf.code_end())) = op; cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord); } // Standard Sparc opcode form3 field breakdown static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) { simm13 &= (1<<13)-1; // Mask to 13 bits int op = (f30 << 30) | (f25 << 25) | (f19 << 19) | (f14 << 14) | (1 << 13) | // bit to indicate immediate-mode (simm13<<0); *((int*)(cbuf.code_end())) = op; cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord); } static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) { simm10 &= (1<<10)-1; // Mask to 10 bits emit3_simm13(cbuf,f30,f25,f19,f14,simm10); } #ifdef ASSERT // Helper function for VerifyOops in emit_form3_mem_reg void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) { warning("VerifyOops encountered unexpected instruction:"); n->dump(2); warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]); } #endif void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary, int src1_enc, int disp32, int src2_enc, int dst_enc) { #ifdef ASSERT // The following code implements the +VerifyOops feature. // It verifies oop values which are loaded into or stored out of // the current method activation. +VerifyOops complements techniques // like ScavengeALot, because it eagerly inspects oops in transit, // as they enter or leave the stack, as opposed to ScavengeALot, // which inspects oops "at rest", in the stack or heap, at safepoints. // For this reason, +VerifyOops can sometimes detect bugs very close // to their point of creation. It can also serve as a cross-check // on the validity of oop maps, when used toegether with ScavengeALot. // It would be good to verify oops at other points, especially // when an oop is used as a base pointer for a load or store. // This is presently difficult, because it is hard to know when // a base address is biased or not. (If we had such information, // it would be easy and useful to make a two-argument version of // verify_oop which unbiases the base, and performs verification.) assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary"); bool is_verified_oop_base = false; bool is_verified_oop_load = false; bool is_verified_oop_store = false; int tmp_enc = -1; if (VerifyOops && src1_enc != R_SP_enc) { // classify the op, mainly for an assert check int st_op = 0, ld_op = 0; switch (primary) { case Assembler::stb_op3: st_op = Op_StoreB; break; case Assembler::sth_op3: st_op = Op_StoreC; break; case Assembler::stx_op3: // may become StoreP or stay StoreI or StoreD0 case Assembler::stw_op3: st_op = Op_StoreI; break; case Assembler::std_op3: st_op = Op_StoreL; break; case Assembler::stf_op3: st_op = Op_StoreF; break; case Assembler::stdf_op3: st_op = Op_StoreD; break; case Assembler::ldsb_op3: ld_op = Op_LoadB; break; case Assembler::lduh_op3: ld_op = Op_LoadC; break; case Assembler::ldsh_op3: ld_op = Op_LoadS; break; case Assembler::ldx_op3: // may become LoadP or stay LoadI case Assembler::ldsw_op3: // may become LoadP or stay LoadI case Assembler::lduw_op3: ld_op = Op_LoadI; break; case Assembler::ldd_op3: ld_op = Op_LoadL; break; case Assembler::ldf_op3: ld_op = Op_LoadF; break; case Assembler::lddf_op3: ld_op = Op_LoadD; break; case Assembler::ldub_op3: ld_op = Op_LoadB; break; case Assembler::prefetch_op3: ld_op = Op_LoadI; break; default: ShouldNotReachHere(); } if (tertiary == REGP_OP) { if (st_op == Op_StoreI) st_op = Op_StoreP; else if (ld_op == Op_LoadI) ld_op = Op_LoadP; else ShouldNotReachHere(); if (st_op) { // a store // inputs are (0:control, 1:memory, 2:address, 3:value) Node* n2 = n->in(3); if (n2 != NULL) { const Type* t = n2->bottom_type(); is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false; } } else { // a load const Type* t = n->bottom_type(); is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false; } } if (ld_op) { // a Load // inputs are (0:control, 1:memory, 2:address) if (!(n->ideal_Opcode()==ld_op) && // Following are special cases !(n->ideal_Opcode()==Op_LoadLLocked && ld_op==Op_LoadI) && !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) && !(n->ideal_Opcode()==Op_LoadI && ld_op==Op_LoadF) && !(n->ideal_Opcode()==Op_LoadF && ld_op==Op_LoadI) && !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) && !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) && !(n->ideal_Opcode()==Op_LoadL && ld_op==Op_LoadI) && !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) && !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) && !(n->ideal_Opcode()==Op_ConvI2F && ld_op==Op_LoadF) && !(n->ideal_Opcode()==Op_ConvI2D && ld_op==Op_LoadF) && !(n->ideal_Opcode()==Op_PrefetchRead && ld_op==Op_LoadI) && !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) && !(n->rule() == loadUB_rule)) { verify_oops_warning(n, n->ideal_Opcode(), ld_op); } } else if (st_op) { // a Store // inputs are (0:control, 1:memory, 2:address, 3:value) if (!(n->ideal_Opcode()==st_op) && // Following are special cases !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) && !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) && !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) && !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) && !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) { verify_oops_warning(n, n->ideal_Opcode(), st_op); } } if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) { Node* addr = n->in(2); if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) { const TypeOopPtr* atype = addr->bottom_type()->isa_instptr(); // %%% oopptr? if (atype != NULL) { intptr_t offset = get_offset_from_base(n, atype, disp32); intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32); if (offset != offset_2) { get_offset_from_base(n, atype, disp32); get_offset_from_base_2(n, atype, disp32); } assert(offset == offset_2, "different offsets"); if (offset == disp32) { // we now know that src1 is a true oop pointer is_verified_oop_base = true; if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) { if( primary == Assembler::ldd_op3 ) { is_verified_oop_base = false; // Cannot 'ldd' into O7 } else { tmp_enc = dst_enc; dst_enc = R_O7_enc; // Load into O7; preserve source oop assert(src1_enc != dst_enc, ""); } } } if (st_op && (( offset == oopDesc::klass_offset_in_bytes()) || offset == oopDesc::mark_offset_in_bytes())) { // loading the mark should not be allowed either, but // we don't check this since it conflicts with InlineObjectHash // usage of LoadINode to get the mark. We could keep the // check if we create a new LoadMarkNode // but do not verify the object before its header is initialized ShouldNotReachHere(); } } } } } #endif uint instr; instr = (Assembler::ldst_op << 30) | (dst_enc << 25) | (primary << 19) | (src1_enc << 14); uint index = src2_enc; int disp = disp32; if (src1_enc == R_SP_enc || src1_enc == R_FP_enc) disp += STACK_BIAS; // We should have a compiler bailout here rather than a guarantee. // Better yet would be some mechanism to handle variable-size matches correctly. guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" ); if( disp == 0 ) { // use reg-reg form // bit 13 is already zero instr |= index; } else { // use reg-imm form instr |= 0x00002000; // set bit 13 to one instr |= disp & 0x1FFF; } uint *code = (uint*)cbuf.code_end(); *code = instr; cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord); #ifdef ASSERT { MacroAssembler _masm(&cbuf); if (is_verified_oop_base) { __ verify_oop(reg_to_register_object(src1_enc)); } if (is_verified_oop_store) { __ verify_oop(reg_to_register_object(dst_enc)); } if (tmp_enc != -1) { __ mov(O7, reg_to_register_object(tmp_enc)); } if (is_verified_oop_load) { __ verify_oop(reg_to_register_object(dst_enc)); } } #endif } void emit_form3_mem_reg_asi(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary, int src1_enc, int disp32, int src2_enc, int dst_enc, int asi) { uint instr; instr = (Assembler::ldst_op << 30) | (dst_enc << 25) | (primary << 19) | (src1_enc << 14); int disp = disp32; int index = src2_enc; if (src1_enc == R_SP_enc || src1_enc == R_FP_enc) disp += STACK_BIAS; // We should have a compiler bailout here rather than a guarantee. // Better yet would be some mechanism to handle variable-size matches correctly. guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" ); if( disp != 0 ) { // use reg-reg form // set src2=R_O7 contains offset index = R_O7_enc; emit3_simm13( cbuf, Assembler::arith_op, index, Assembler::or_op3, 0, disp); } instr |= (asi << 5); instr |= index; uint *code = (uint*)cbuf.code_end(); *code = instr; cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord); } void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false, bool force_far_call = false) { // The method which records debug information at every safepoint // expects the call to be the first instruction in the snippet as // it creates a PcDesc structure which tracks the offset of a call // from the start of the codeBlob. This offset is computed as // code_end() - code_begin() of the code which has been emitted // so far. // In this particular case we have skirted around the problem by // putting the "mov" instruction in the delay slot but the problem // may bite us again at some other point and a cleaner/generic // solution using relocations would be needed. MacroAssembler _masm(&cbuf); __ set_inst_mark(); // We flush the current window just so that there is a valid stack copy // the fact that the current window becomes active again instantly is // not a problem there is nothing live in it. #ifdef ASSERT int startpos = __ offset(); #endif /* ASSERT */ #ifdef _LP64 // Calls to the runtime or native may not be reachable from compiled code, // so we generate the far call sequence on 64 bit sparc. // This code sequence is relocatable to any address, even on LP64. if ( force_far_call ) { __ relocate(rtype); Address dest(O7, (address)entry_point); __ jumpl_to(dest, O7); } else #endif { __ call((address)entry_point, rtype); } if (preserve_g2) __ delayed()->mov(G2, L7); else __ delayed()->nop(); if (preserve_g2) __ mov(L7, G2); #ifdef ASSERT if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) { #ifdef _LP64 // Trash argument dump slots. __ set(0xb0b8ac0db0b8ac0d, G1); __ mov(G1, G5); __ stx(G1, SP, STACK_BIAS + 0x80); __ stx(G1, SP, STACK_BIAS + 0x88); __ stx(G1, SP, STACK_BIAS + 0x90); __ stx(G1, SP, STACK_BIAS + 0x98); __ stx(G1, SP, STACK_BIAS + 0xA0); __ stx(G1, SP, STACK_BIAS + 0xA8); #else // _LP64 // this is also a native call, so smash the first 7 stack locations, // and the various registers // Note: [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset], // while [SP+0x44..0x58] are the argument dump slots. __ set((intptr_t)0xbaadf00d, G1); __ mov(G1, G5); __ sllx(G1, 32, G1); __ or3(G1, G5, G1); __ mov(G1, G5); __ stx(G1, SP, 0x40); __ stx(G1, SP, 0x48); __ stx(G1, SP, 0x50); __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot #endif // _LP64 } #endif /*ASSERT*/ } //============================================================================= // REQUIRED FUNCTIONALITY for encoding void emit_lo(CodeBuffer &cbuf, int val) { } void emit_hi(CodeBuffer &cbuf, int val) { } void emit_ptr(CodeBuffer &cbuf, intptr_t val, Register reg, bool ForceRelocatable) { MacroAssembler _masm(&cbuf); if (ForceRelocatable) { Address addr(reg, (address)val); __ sethi(addr, ForceRelocatable); __ add(addr, reg); } else { __ set(val, reg); } } //============================================================================= #ifndef PRODUCT void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const { Compile* C = ra_->C; for (int i = 0; i < OptoPrologueNops; i++) { st->print_cr("NOP"); st->print("\t"); } if( VerifyThread ) { st->print_cr("Verify_Thread"); st->print("\t"); } size_t framesize = C->frame_slots() << LogBytesPerInt; // Calls to C2R adapters often do not accept exceptional returns. // We require that their callers must bang for them. But be careful, because // some VM calls (such as call site linkage) can use several kilobytes of // stack. But the stack safety zone should account for that. // See bugs 4446381, 4468289, 4497237. if (C->need_stack_bang(framesize)) { st->print_cr("! stack bang"); st->print("\t"); } if (Assembler::is_simm13(-framesize)) { st->print ("SAVE R_SP,-%d,R_SP",framesize); } else { st->print_cr("SETHI R_SP,hi%%(-%d),R_G3",framesize); st->print("\t"); st->print_cr("ADD R_G3,lo%%(-%d),R_G3",framesize); st->print("\t"); st->print ("SAVE R_SP,R_G3,R_SP"); } } #endif void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const { Compile* C = ra_->C; MacroAssembler _masm(&cbuf); for (int i = 0; i < OptoPrologueNops; i++) { __ nop(); } __ verify_thread(); size_t framesize = C->frame_slots() << LogBytesPerInt; assert(framesize >= 16*wordSize, "must have room for reg. save area"); assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment"); // Calls to C2R adapters often do not accept exceptional returns. // We require that their callers must bang for them. But be careful, because // some VM calls (such as call site linkage) can use several kilobytes of // stack. But the stack safety zone should account for that. // See bugs 4446381, 4468289, 4497237. if (C->need_stack_bang(framesize)) { __ generate_stack_overflow_check(framesize); } if (Assembler::is_simm13(-framesize)) { __ save(SP, -framesize, SP); } else { __ sethi(-framesize & ~0x3ff, G3); __ add(G3, -framesize & 0x3ff, G3); __ save(SP, G3, SP); } C->set_frame_complete( __ offset() ); } uint MachPrologNode::size(PhaseRegAlloc *ra_) const { return MachNode::size(ra_); } int MachPrologNode::reloc() const { return 10; // a large enough number } //============================================================================= #ifndef PRODUCT void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const { Compile* C = ra_->C; if( do_polling() && ra_->C->is_method_compilation() ) { st->print("SETHI #PollAddr,L0\t! Load Polling address\n\t"); #ifdef _LP64 st->print("LDX [L0],G0\t!Poll for Safepointing\n\t"); #else st->print("LDUW [L0],G0\t!Poll for Safepointing\n\t"); #endif } if( do_polling() ) st->print("RET\n\t"); st->print("RESTORE"); } #endif void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const { MacroAssembler _masm(&cbuf); Compile* C = ra_->C; __ verify_thread(); // If this does safepoint polling, then do it here if( do_polling() && ra_->C->is_method_compilation() ) { Address polling_page(L0, (address)os::get_polling_page()); __ sethi(polling_page, false); __ relocate(relocInfo::poll_return_type); __ ld_ptr( L0, 0, G0 ); } // If this is a return, then stuff the restore in the delay slot if( do_polling() ) { __ ret(); __ delayed()->restore(); } else { __ restore(); } } uint MachEpilogNode::size(PhaseRegAlloc *ra_) const { return MachNode::size(ra_); } int MachEpilogNode::reloc() const { return 16; // a large enough number } const Pipeline * MachEpilogNode::pipeline() const { return MachNode::pipeline_class(); } int MachEpilogNode::safepoint_offset() const { assert( do_polling(), "no return for this epilog node"); return MacroAssembler::size_of_sethi(os::get_polling_page()); } //============================================================================= // Figure out which register class each belongs in: rc_int, rc_float, rc_stack enum RC { rc_bad, rc_int, rc_float, rc_stack }; static enum RC rc_class( OptoReg::Name reg ) { if( !OptoReg::is_valid(reg) ) return rc_bad; if (OptoReg::is_stack(reg)) return rc_stack; VMReg r = OptoReg::as_VMReg(reg); if (r->is_Register()) return rc_int; assert(r->is_FloatRegister(), "must be"); return rc_float; } static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) { if( cbuf ) { // Better yet would be some mechanism to handle variable-size matches correctly if (!Assembler::is_simm13(offset + STACK_BIAS)) { ra_->C->record_method_not_compilable("unable to handle large constant offsets"); } else { emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]); } } #ifndef PRODUCT else if( !do_size ) { if( size != 0 ) st->print("\n\t"); if( is_load ) st->print("%s [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg)); else st->print("%s R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset); } #endif return size+4; } static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) { if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] ); #ifndef PRODUCT else if( !do_size ) { if( size != 0 ) st->print("\n\t"); st->print("%s R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst)); } #endif return size+4; } uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const { // Get registers to move OptoReg::Name src_second = ra_->get_reg_second(in(1)); OptoReg::Name src_first = ra_->get_reg_first(in(1)); OptoReg::Name dst_second = ra_->get_reg_second(this ); OptoReg::Name dst_first = ra_->get_reg_first(this ); enum RC src_second_rc = rc_class(src_second); enum RC src_first_rc = rc_class(src_first); enum RC dst_second_rc = rc_class(dst_second); enum RC dst_first_rc = rc_class(dst_first); assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" ); // Generate spill code! int size = 0; if( src_first == dst_first && src_second == dst_second ) return size; // Self copy, no move // -------------------------------------- // Check for mem-mem move. Load into unused float registers and fall into // the float-store case. if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) { int offset = ra_->reg2offset(src_first); // Further check for aligned-adjacent pair, so we can use a double load if( (src_first&1)==0 && src_first+1 == src_second ) { src_second = OptoReg::Name(R_F31_num); src_second_rc = rc_float; size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st); } else { size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st); } src_first = OptoReg::Name(R_F30_num); src_first_rc = rc_float; } if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) { int offset = ra_->reg2offset(src_second); size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st); src_second = OptoReg::Name(R_F31_num); src_second_rc = rc_float; } // -------------------------------------- // Check for float->int copy; requires a trip through memory if( src_first_rc == rc_float && dst_first_rc == rc_int ) { int offset = frame::register_save_words*wordSize; if( cbuf ) { emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 ); impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st); impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st); emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 ); } #ifndef PRODUCT else if( !do_size ) { if( size != 0 ) st->print("\n\t"); st->print( "SUB R_SP,16,R_SP\n"); impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st); impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st); st->print("\tADD R_SP,16,R_SP\n"); } #endif size += 16; } // -------------------------------------- // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations. // In such cases, I have to do the big-endian swap. For aligned targets, the // hardware does the flop for me. Doubles are always aligned, so no problem // there. Misaligned sources only come from native-long-returns (handled // special below). #ifndef _LP64 if( src_first_rc == rc_int && // source is already big-endian src_second_rc != rc_bad && // 64-bit move ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" ); // Do the big-endian flop. OptoReg::Name tmp = dst_first ; dst_first = dst_second ; dst_second = tmp ; enum RC tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc; } #endif // -------------------------------------- // Check for integer reg-reg copy if( src_first_rc == rc_int && dst_first_rc == rc_int ) { #ifndef _LP64 if( src_first == R_O0_num && src_second == R_O1_num ) { // Check for the evil O0/O1 native long-return case // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value // as stored in memory. On a big-endian machine like SPARC, this means that the _second // operand contains the least significant word of the 64-bit value and vice versa. OptoReg::Name tmp = OptoReg::Name(R_O7_num); assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" ); // Shift O0 left in-place, zero-extend O1, then OR them into the dst if( cbuf ) { emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 ); emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 ); emit3 ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] ); #ifndef PRODUCT } else if( !do_size ) { if( size != 0 ) st->print("\n\t"); st->print("SLLX R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp)); st->print("SRL R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second)); st->print("OR R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first)); #endif } return size+12; } else if( dst_first == R_I0_num && dst_second == R_I1_num ) { // returning a long value in I0/I1 // a SpillCopy must be able to target a return instruction's reg_class // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value // as stored in memory. On a big-endian machine like SPARC, this means that the _second // operand contains the least significant word of the 64-bit value and vice versa. OptoReg::Name tdest = dst_first; if (src_first == dst_first) { tdest = OptoReg::Name(R_O7_num); size += 4; } if( cbuf ) { assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg"); // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1 // ShrL_reg_imm6 emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 ); // ShrR_reg_imm6 src, 0, dst emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 ); if (tdest != dst_first) { emit3 ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] ); } } #ifndef PRODUCT else if( !do_size ) { if( size != 0 ) st->print("\n\t"); // %%%%% !!!!! st->print("SRLX R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest)); st->print("SRL R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second)); if (tdest != dst_first) { st->print("MOV R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first)); } } #endif // PRODUCT return size+8; } #endif // !_LP64 // Else normal reg-reg copy assert( src_second != dst_first, "smashed second before evacuating it" ); size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV ",size, st); assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" ); // This moves an aligned adjacent pair. // See if we are done. if( src_first+1 == src_second && dst_first+1 == dst_second ) return size; } // Check for integer store if( src_first_rc == rc_int && dst_first_rc == rc_stack ) { int offset = ra_->reg2offset(dst_first); // Further check for aligned-adjacent pair, so we can use a double store if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second ) return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st); size = impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st); } // Check for integer load if( dst_first_rc == rc_int && src_first_rc == rc_stack ) { int offset = ra_->reg2offset(src_first); // Further check for aligned-adjacent pair, so we can use a double load if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second ) return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st); size = impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st); } // Check for float reg-reg copy if( src_first_rc == rc_float && dst_first_rc == rc_float ) { // Further check for aligned-adjacent pair, so we can use a double move if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second ) return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st); size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st); } // Check for float store if( src_first_rc == rc_float && dst_first_rc == rc_stack ) { int offset = ra_->reg2offset(dst_first); // Further check for aligned-adjacent pair, so we can use a double store if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second ) return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st); size = impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st); } // Check for float load if( dst_first_rc == rc_float && src_first_rc == rc_stack ) { int offset = ra_->reg2offset(src_first); // Further check for aligned-adjacent pair, so we can use a double load if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second ) return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st); size = impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st); } // -------------------------------------------------------------------- // Check for hi bits still needing moving. Only happens for misaligned // arguments to native calls. if( src_second == dst_second ) return size; // Self copy; no move assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" ); #ifndef _LP64 // In the LP64 build, all registers can be moved as aligned/adjacent // pairs, so there's never any need to move the high bits seperately. // The 32-bit builds have to deal with the 32-bit ABI which can force // all sorts of silly alignment problems. // Check for integer reg-reg copy. Hi bits are stuck up in the top // 32-bits of a 64-bit register, but are needed in low bits of another // register (else it's a hi-bits-to-hi-bits copy which should have // happened already as part of a 64-bit move) if( src_second_rc == rc_int && dst_second_rc == rc_int ) { assert( (src_second&1)==1, "its the evil O0/O1 native return case" ); assert( (dst_second&1)==0, "should have moved with 1 64-bit move" ); // Shift src_second down to dst_second's low bits. if( cbuf ) { emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 ); #ifndef PRODUCT } else if( !do_size ) { if( size != 0 ) st->print("\n\t"); st->print("SRLX R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second)); #endif } return size+4; } // Check for high word integer store. Must down-shift the hi bits // into a temp register, then fall into the case of storing int bits. if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) { // Shift src_second down to dst_second's low bits. if( cbuf ) { emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 ); #ifndef PRODUCT } else if( !do_size ) { if( size != 0 ) st->print("\n\t"); st->print("SRLX R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num)); #endif } size+=4; src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num! } // Check for high word integer load if( dst_second_rc == rc_int && src_second_rc == rc_stack ) return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st); // Check for high word integer store if( src_second_rc == rc_int && dst_second_rc == rc_stack ) return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st); // Check for high word float store if( src_second_rc == rc_float && dst_second_rc == rc_stack ) return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st); #endif // !_LP64 Unimplemented(); } #ifndef PRODUCT void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const { implementation( NULL, ra_, false, st ); } #endif void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const { implementation( &cbuf, ra_, false, NULL ); } uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const { return implementation( NULL, ra_, true, NULL ); } //============================================================================= #ifndef PRODUCT void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const { st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count); } #endif void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const { MacroAssembler _masm(&cbuf); for(int i = 0; i < _count; i += 1) { __ nop(); } } uint MachNopNode::size(PhaseRegAlloc *ra_) const { return 4 * _count; } //============================================================================= #ifndef PRODUCT void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const { int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()); int reg = ra_->get_reg_first(this); st->print("LEA [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]); } #endif void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const { MacroAssembler _masm(&cbuf); int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS; int reg = ra_->get_encode(this); if (Assembler::is_simm13(offset)) { __ add(SP, offset, reg_to_register_object(reg)); } else { __ set(offset, O7); __ add(SP, O7, reg_to_register_object(reg)); } } uint BoxLockNode::size(PhaseRegAlloc *ra_) const { // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_) assert(ra_ == ra_->C->regalloc(), "sanity"); return ra_->C->scratch_emit_size(this); } //============================================================================= // emit call stub, compiled java to interpretor void emit_java_to_interp(CodeBuffer &cbuf ) { // Stub is fixed up when the corresponding call is converted from calling // compiled code to calling interpreted code. // set (empty), G5 // jmp -1 address mark = cbuf.inst_mark(); // get mark within main instrs section MacroAssembler _masm(&cbuf); address base = __ start_a_stub(Compile::MAX_stubs_size); if (base == NULL) return; // CodeBuffer::expand failed // static stub relocation stores the instruction address of the call __ relocate(static_stub_Relocation::spec(mark)); __ set_oop(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode())); __ set_inst_mark(); Address a(G3, (address)-1); __ JUMP(a, 0); __ delayed()->nop(); // Update current stubs pointer and restore code_end. __ end_a_stub(); } // size of call stub, compiled java to interpretor uint size_java_to_interp() { // This doesn't need to be accurate but it must be larger or equal to // the real size of the stub. return (NativeMovConstReg::instruction_size + // sethi/setlo; NativeJump::instruction_size + // sethi; jmp; nop (TraceJumps ? 20 * BytesPerInstWord : 0) ); } // relocation entries for call stub, compiled java to interpretor uint reloc_java_to_interp() { return 10; // 4 in emit_java_to_interp + 1 in Java_Static_Call } //============================================================================= #ifndef PRODUCT void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const { st->print_cr("\nUEP:"); #ifdef _LP64 st->print_cr("\tLDX [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check"); st->print_cr("\tCMP R_G5,R_G3" ); st->print ("\tTne xcc,R_G0+ST_RESERVED_FOR_USER_0+2"); #else // _LP64 st->print_cr("\tLDUW [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check"); st->print_cr("\tCMP R_G5,R_G3" ); st->print ("\tTne icc,R_G0+ST_RESERVED_FOR_USER_0+2"); #endif // _LP64 } #endif void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const { MacroAssembler _masm(&cbuf); Label L; Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode()); Register temp_reg = G3; assert( G5_ic_reg != temp_reg, "conflicting registers" ); // Load klass from reciever __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), temp_reg); // Compare against expected klass __ cmp(temp_reg, G5_ic_reg); // Branch to miss code, checks xcc or icc depending __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2); } uint MachUEPNode::size(PhaseRegAlloc *ra_) const { return MachNode::size(ra_); } //============================================================================= uint size_exception_handler() { if (TraceJumps) { return (400); // just a guess } return ( NativeJump::instruction_size ); // sethi;jmp;nop } uint size_deopt_handler() { if (TraceJumps) { return (400); // just a guess } return ( 4+ NativeJump::instruction_size ); // save;sethi;jmp;restore } // Emit exception handler code. int emit_exception_handler(CodeBuffer& cbuf) { Register temp_reg = G3; Address exception_blob(temp_reg, OptoRuntime::exception_blob()->instructions_begin()); MacroAssembler _masm(&cbuf); address base = __ start_a_stub(size_exception_handler()); if (base == NULL) return 0; // CodeBuffer::expand failed int offset = __ offset(); __ JUMP(exception_blob, 0); // sethi;jmp __ delayed()->nop(); assert(__ offset() - offset <= (int) size_exception_handler(), "overflow"); __ end_a_stub(); return offset; } int emit_deopt_handler(CodeBuffer& cbuf) { // Can't use any of the current frame's registers as we may have deopted // at a poll and everything (including G3) can be live. Register temp_reg = L0; Address deopt_blob(temp_reg, SharedRuntime::deopt_blob()->unpack()); MacroAssembler _masm(&cbuf); address base = __ start_a_stub(size_deopt_handler()); if (base == NULL) return 0; // CodeBuffer::expand failed int offset = __ offset(); __ save_frame(0); __ JUMP(deopt_blob, 0); // sethi;jmp __ delayed()->restore(); assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow"); __ end_a_stub(); return offset; } // Given a register encoding, produce a Integer Register object static Register reg_to_register_object(int register_encoding) { assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding"); return as_Register(register_encoding); } // Given a register encoding, produce a single-precision Float Register object static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) { assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding"); return as_SingleFloatRegister(register_encoding); } // Given a register encoding, produce a double-precision Float Register object static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) { assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding"); assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding"); return as_DoubleFloatRegister(register_encoding); } int Matcher::regnum_to_fpu_offset(int regnum) { return regnum - 32; // The FP registers are in the second chunk } #ifdef ASSERT address last_rethrow = NULL; // debugging aid for Rethrow encoding #endif // Vector width in bytes const uint Matcher::vector_width_in_bytes(void) { return 8; } // Vector ideal reg const uint Matcher::vector_ideal_reg(void) { return Op_RegD; } // USII supports fxtof through the whole range of number, USIII doesn't const bool Matcher::convL2FSupported(void) { return VM_Version::has_fast_fxtof(); } // Is this branch offset short enough that a short branch can be used? // // NOTE: If the platform does not provide any short branch variants, then // this method should return false for offset 0. bool Matcher::is_short_branch_offset(int offset) { return false; } const bool Matcher::isSimpleConstant64(jlong value) { // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?. // Depends on optimizations in MacroAssembler::setx. int hi = (int)(value >> 32); int lo = (int)(value & ~0); return (hi == 0) || (hi == -1) || (lo == 0); } // No scaling for the parameter the ClearArray node. const bool Matcher::init_array_count_is_in_bytes = true; // Threshold size for cleararray. const int Matcher::init_array_short_size = 8 * BytesPerLong; // Should the Matcher clone shifts on addressing modes, expecting them to // be subsumed into complex addressing expressions or compute them into // registers? True for Intel but false for most RISCs const bool Matcher::clone_shift_expressions = false; // Is it better to copy float constants, or load them directly from memory? // Intel can load a float constant from a direct address, requiring no // extra registers. Most RISCs will have to materialize an address into a // register first, so they would do better to copy the constant from stack. const bool Matcher::rematerialize_float_constants = false; // If CPU can load and store mis-aligned doubles directly then no fixup is // needed. Else we split the double into 2 integer pieces and move it // piece-by-piece. Only happens when passing doubles into C code as the // Java calling convention forces doubles to be aligned. #ifdef _LP64 const bool Matcher::misaligned_doubles_ok = true; #else const bool Matcher::misaligned_doubles_ok = false; #endif // No-op on SPARC. void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) { } // Advertise here if the CPU requires explicit rounding operations // to implement the UseStrictFP mode. const bool Matcher::strict_fp_requires_explicit_rounding = false; // Do floats take an entire double register or just half? const bool Matcher::float_in_double = false; // Do ints take an entire long register or just half? // Note that we if-def off of _LP64. // The relevant question is how the int is callee-saved. In _LP64 // the whole long is written but de-opt'ing will have to extract // the relevant 32 bits, in not-_LP64 only the low 32 bits is written. #ifdef _LP64 const bool Matcher::int_in_long = true; #else const bool Matcher::int_in_long = false; #endif // Return whether or not this register is ever used as an argument. This // function is used on startup to build the trampoline stubs in generateOptoStub. // Registers not mentioned will be killed by the VM call in the trampoline, and // arguments in those registers not be available to the callee. bool Matcher::can_be_java_arg( int reg ) { // Standard sparc 6 args in registers if( reg == R_I0_num || reg == R_I1_num || reg == R_I2_num || reg == R_I3_num || reg == R_I4_num || reg == R_I5_num ) return true; #ifdef _LP64 // 64-bit builds can pass 64-bit pointers and longs in // the high I registers if( reg == R_I0H_num || reg == R_I1H_num || reg == R_I2H_num || reg == R_I3H_num || reg == R_I4H_num || reg == R_I5H_num ) return true; #else // 32-bit builds with longs-in-one-entry pass longs in G1 & G4. // Longs cannot be passed in O regs, because O regs become I regs // after a 'save' and I regs get their high bits chopped off on // interrupt. if( reg == R_G1H_num || reg == R_G1_num ) return true; if( reg == R_G4H_num || reg == R_G4_num ) return true; #endif // A few float args in registers if( reg >= R_F0_num && reg <= R_F7_num ) return true; return false; } bool Matcher::is_spillable_arg( int reg ) { return can_be_java_arg(reg); } // Register for DIVI projection of divmodI RegMask Matcher::divI_proj_mask() { ShouldNotReachHere(); return RegMask(); } // Register for MODI projection of divmodI RegMask Matcher::modI_proj_mask() { ShouldNotReachHere(); return RegMask(); } // Register for DIVL projection of divmodL RegMask Matcher::divL_proj_mask() { ShouldNotReachHere(); return RegMask(); } // Register for MODL projection of divmodL RegMask Matcher::modL_proj_mask() { ShouldNotReachHere(); return RegMask(); } %} // The intptr_t operand types, defined by textual substitution. // (Cf. opto/type.hpp. This lets us avoid many, many other ifdefs.) #ifdef _LP64 #define immX immL #define immX13 immL13 #define iRegX iRegL #define g1RegX g1RegL #else #define immX immI #define immX13 immI13 #define iRegX iRegI #define g1RegX g1RegI #endif //----------ENCODING BLOCK----------------------------------------------------- // This block specifies the encoding classes used by the compiler to output // byte streams. Encoding classes are parameterized macros used by // Machine Instruction Nodes in order to generate the bit encoding of the // instruction. Operands specify their base encoding interface with the // interface keyword. There are currently supported four interfaces, // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER. REG_INTER causes an // operand to generate a function which returns its register number when // queried. CONST_INTER causes an operand to generate a function which // returns the value of the constant when queried. MEMORY_INTER causes an // operand to generate four functions which return the Base Register, the // Index Register, the Scale Value, and the Offset Value of the operand when // queried. COND_INTER causes an operand to generate six functions which // return the encoding code (ie - encoding bits for the instruction) // associated with each basic boolean condition for a conditional instruction. // // Instructions specify two basic values for encoding. Again, a function // is available to check if the constant displacement is an oop. They use the // ins_encode keyword to specify their encoding classes (which must be // a sequence of enc_class names, and their parameters, specified in // the encoding block), and they use the // opcode keyword to specify, in order, their primary, secondary, and // tertiary opcode. Only the opcode sections which a particular instruction // needs for encoding need to be specified. encode %{ enc_class enc_untested %{ #ifdef ASSERT MacroAssembler _masm(&cbuf); __ untested("encoding"); #endif %} enc_class form3_mem_reg( memory mem, iRegI dst ) %{ emit_form3_mem_reg(cbuf, this, $primary, $tertiary, $mem$$base, $mem$$disp, $mem$$index, $dst$$reg); %} enc_class form3_mem_reg_little( memory mem, iRegI dst) %{ emit_form3_mem_reg_asi(cbuf, this, $primary, $tertiary, $mem$$base, $mem$$disp, $mem$$index, $dst$$reg, Assembler::ASI_PRIMARY_LITTLE); %} enc_class form3_mem_prefetch_read( memory mem ) %{ emit_form3_mem_reg(cbuf, this, $primary, $tertiary, $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/); %} enc_class form3_mem_prefetch_write( memory mem ) %{ emit_form3_mem_reg(cbuf, this, $primary, $tertiary, $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/); %} enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{ assert( Assembler::is_simm13($mem$$disp ), "need disp and disp+4" ); assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" ); guarantee($mem$$index == R_G0_enc, "double index?"); emit_form3_mem_reg(cbuf, this, $primary, $tertiary, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc ); emit_form3_mem_reg(cbuf, this, $primary, $tertiary, $mem$$base, $mem$$disp, R_G0_enc, $reg$$reg ); emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 ); emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc ); %} enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{ assert( Assembler::is_simm13($mem$$disp ), "need disp and disp+4" ); assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" ); guarantee($mem$$index == R_G0_enc, "double index?"); // Load long with 2 instructions emit_form3_mem_reg(cbuf, this, $primary, $tertiary, $mem$$base, $mem$$disp, R_G0_enc, $reg$$reg+0 ); emit_form3_mem_reg(cbuf, this, $primary, $tertiary, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 ); %} //%%% form3_mem_plus_4_reg is a hack--get rid of it enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{ guarantee($mem$$disp, "cannot offset a reg-reg operand by 4"); emit_form3_mem_reg(cbuf, this, $primary, $tertiary, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg); %} enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{ // Encode a reg-reg copy. If it is useless, then empty encoding. if( $rs2$$reg != $rd$$reg ) emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg ); %} // Target lo half of long enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{ // Encode a reg-reg copy. If it is useless, then empty encoding. if( $rs2$$reg != LONG_LO_REG($rd$$reg) ) emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg ); %} // Source lo half of long enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{ // Encode a reg-reg copy. If it is useless, then empty encoding. if( LONG_LO_REG($rs2$$reg) != $rd$$reg ) emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) ); %} // Target hi half of long enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{ emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 ); %} // Source lo half of long, and leave it sign extended. enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{ // Sign extend low half emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 ); %} // Source hi half of long, and leave it sign extended. enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{ // Shift high half to low half emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 ); %} // Source hi half of long enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{ // Encode a reg-reg copy. If it is useless, then empty encoding. if( LONG_HI_REG($rs2$$reg) != $rd$$reg ) emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) ); %} enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{ emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg ); %} enc_class enc_to_bool( iRegI src, iRegI dst ) %{ emit3 ( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, 0, 0, $src$$reg ); emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 ); %} enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{ emit3 ( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg ); // clear if nothing else is happening emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, 0 ); // blt,a,pn done emit2_19 ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 ); // mov dst,-1 in delay slot emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 ); %} enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{ emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F ); %} enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{ emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 ); %} enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{ emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg ); %} enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{ emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant ); %} enc_class move_return_pc_to_o1() %{ emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset ); %} #ifdef _LP64 /* %%% merge with enc_to_bool */ enc_class enc_convP2B( iRegI dst, iRegP src ) %{ MacroAssembler _masm(&cbuf); Register src_reg = reg_to_register_object($src$$reg); Register dst_reg = reg_to_register_object($dst$$reg); __ movr(Assembler::rc_nz, src_reg, 1, dst_reg); %} #endif enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{ // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q))) MacroAssembler _masm(&cbuf); Register p_reg = reg_to_register_object($p$$reg); Register q_reg = reg_to_register_object($q$$reg); Register y_reg = reg_to_register_object($y$$reg); Register tmp_reg = reg_to_register_object($tmp$$reg); __ subcc( p_reg, q_reg, p_reg ); __ add ( p_reg, y_reg, tmp_reg ); __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg ); %} enc_class form_d2i_helper(regD src, regF dst) %{ // fcmp %fcc0,$src,$src emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg ); // branch %fcc0 not-nan, predict taken emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 ); // fdtoi $src,$dst emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, 0, Assembler::fdtoi_opf, $src$$reg ); // fitos $dst,$dst (if nan) emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, 0, Assembler::fitos_opf, $dst$$reg ); // clear $dst (if nan) emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg ); // carry on here... %} enc_class form_d2l_helper(regD src, regD dst) %{ // fcmp %fcc0,$src,$src check for NAN emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg ); // branch %fcc0 not-nan, predict taken emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 ); // fdtox $src,$dst convert in delay slot emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, 0, Assembler::fdtox_opf, $src$$reg ); // fxtod $dst,$dst (if nan) emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, 0, Assembler::fxtod_opf, $dst$$reg ); // clear $dst (if nan) emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg ); // carry on here... %} enc_class form_f2i_helper(regF src, regF dst) %{ // fcmps %fcc0,$src,$src emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg ); // branch %fcc0 not-nan, predict taken emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 ); // fstoi $src,$dst emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, 0, Assembler::fstoi_opf, $src$$reg ); // fitos $dst,$dst (if nan) emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, 0, Assembler::fitos_opf, $dst$$reg ); // clear $dst (if nan) emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg ); // carry on here... %} enc_class form_f2l_helper(regF src, regD dst) %{ // fcmps %fcc0,$src,$src emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg ); // branch %fcc0 not-nan, predict taken emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 ); // fstox $src,$dst emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, 0, Assembler::fstox_opf, $src$$reg ); // fxtod $dst,$dst (if nan) emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, 0, Assembler::fxtod_opf, $dst$$reg ); // clear $dst (if nan) emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg ); // carry on here... %} enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %} enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %} enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %} enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %} enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %} enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %} enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %} enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{ emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg ); %} enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{ emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg ); %} enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{ emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg ); %} enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{ emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg ); %} enc_class form3_convI2F(regF rs2, regF rd) %{ emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg); %} // Encloding class for traceable jumps enc_class form_jmpl(g3RegP dest) %{ emit_jmpl(cbuf, $dest$$reg); %} enc_class form_jmpl_set_exception_pc(g1RegP dest) %{ emit_jmpl_set_exception_pc(cbuf, $dest$$reg); %} enc_class form2_nop() %{ emit_nop(cbuf); %} enc_class form2_illtrap() %{ emit_illtrap(cbuf); %} // Compare longs and convert into -1, 0, 1. enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{ // CMP $src1,$src2 emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg ); // blt,a,pn done emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 ); // mov dst,-1 in delay slot emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 ); // bgt,a,pn done emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 ); // mov dst,1 in delay slot emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, 1 ); // CLR $dst emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 ); %} enc_class enc_PartialSubtypeCheck() %{ MacroAssembler _masm(&cbuf); __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type); __ delayed()->nop(); %} enc_class enc_bp( Label labl, cmpOp cmp, flagsReg cc ) %{ MacroAssembler _masm(&cbuf); Label &L = *($labl$$label); Assembler::Predict predict_taken = cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn; __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, L); __ delayed()->nop(); %} enc_class enc_bpl( Label labl, cmpOp cmp, flagsRegL cc ) %{ MacroAssembler _masm(&cbuf); Label &L = *($labl$$label); Assembler::Predict predict_taken = cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn; __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, L); __ delayed()->nop(); %} enc_class enc_bpx( Label labl, cmpOp cmp, flagsRegP cc ) %{ MacroAssembler _masm(&cbuf); Label &L = *($labl$$label); Assembler::Predict predict_taken = cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn; __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, L); __ delayed()->nop(); %} enc_class enc_fbp( Label labl, cmpOpF cmp, flagsRegF cc ) %{ MacroAssembler _masm(&cbuf); Label &L = *($labl$$label); Assembler::Predict predict_taken = cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn; __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($cc$$reg), predict_taken, L); __ delayed()->nop(); %} enc_class jump_enc( iRegX switch_val, o7RegI table) %{ MacroAssembler _masm(&cbuf); Register switch_reg = as_Register($switch_val$$reg); Register table_reg = O7; address table_base = __ address_table_constant(_index2label); RelocationHolder rspec = internal_word_Relocation::spec(table_base); // Load table address Address the_pc(table_reg, table_base, rspec); __ load_address(the_pc); // Jump to base address + switch value __ ld_ptr(table_reg, switch_reg, table_reg); __ jmp(table_reg, G0); __ delayed()->nop(); %} enc_class enc_ba( Label labl ) %{ MacroAssembler _masm(&cbuf); Label &L = *($labl$$label); __ ba(false, L); __ delayed()->nop(); %} enc_class enc_bpr( Label labl, cmpOp_reg cmp, iRegI op1 ) %{ MacroAssembler _masm(&cbuf); Label &L = *$labl$$label; Assembler::Predict predict_taken = cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn; __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), L); __ delayed()->nop(); %} enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{ int op = (Assembler::arith_op << 30) | ($dst$$reg << 25) | (Assembler::movcc_op3 << 19) | (1 << 18) | // cc2 bit for 'icc' ($cmp$$cmpcode << 14) | (0 << 13) | // select register move ($pcc$$constant << 11) | // cc1, cc0 bits for 'icc' or 'xcc' ($src$$reg << 0); *((int*)(cbuf.code_end())) = op; cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord); %} enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{ int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits int op = (Assembler::arith_op << 30) | ($dst$$reg << 25) | (Assembler::movcc_op3 << 19) | (1 << 18) | // cc2 bit for 'icc' ($cmp$$cmpcode << 14) | (1 << 13) | // select immediate move ($pcc$$constant << 11) | // cc1, cc0 bits for 'icc' (simm11 << 0); *((int*)(cbuf.code_end())) = op; cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord); %} enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{ int op = (Assembler::arith_op << 30) | ($dst$$reg << 25) | (Assembler::movcc_op3 << 19) | (0 << 18) | // cc2 bit for 'fccX' ($cmp$$cmpcode << 14) | (0 << 13) | // select register move ($fcc$$reg << 11) | // cc1, cc0 bits for fcc0-fcc3 ($src$$reg << 0); *((int*)(cbuf.code_end())) = op; cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord); %} enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{ int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits int op = (Assembler::arith_op << 30) | ($dst$$reg << 25) | (Assembler::movcc_op3 << 19) | (0 << 18) | // cc2 bit for 'fccX' ($cmp$$cmpcode << 14) | (1 << 13) | // select immediate move ($fcc$$reg << 11) | // cc1, cc0 bits for fcc0-fcc3 (simm11 << 0); *((int*)(cbuf.code_end())) = op; cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord); %} enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{ int op = (Assembler::arith_op << 30) | ($dst$$reg << 25) | (Assembler::fpop2_op3 << 19) | (0 << 18) | ($cmp$$cmpcode << 14) | (1 << 13) | // select register move ($pcc$$constant << 11) | // cc1-cc0 bits for 'icc' or 'xcc' ($primary << 5) | // select single, double or quad ($src$$reg << 0); *((int*)(cbuf.code_end())) = op; cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord); %} enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{ int op = (Assembler::arith_op << 30) | ($dst$$reg << 25) | (Assembler::fpop2_op3 << 19) | (0 << 18) | ($cmp$$cmpcode << 14) | ($fcc$$reg << 11) | // cc2-cc0 bits for 'fccX' ($primary << 5) | // select single, double or quad ($src$$reg << 0); *((int*)(cbuf.code_end())) = op; cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord); %} // Used by the MIN/MAX encodings. Same as a CMOV, but // the condition comes from opcode-field instead of an argument. enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{ int op = (Assembler::arith_op << 30) | ($dst$$reg << 25) | (Assembler::movcc_op3 << 19) | (1 << 18) | // cc2 bit for 'icc' ($primary << 14) | (0 << 13) | // select register move (0 << 11) | // cc1, cc0 bits for 'icc' ($src$$reg << 0); *((int*)(cbuf.code_end())) = op; cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord); %} enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{ int op = (Assembler::arith_op << 30) | ($dst$$reg << 25) | (Assembler::movcc_op3 << 19) | (6 << 16) | // cc2 bit for 'xcc' ($primary << 14) | (0 << 13) | // select register move (0 << 11) | // cc1, cc0 bits for 'icc' ($src$$reg << 0); *((int*)(cbuf.code_end())) = op; cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord); %} // Utility encoding for loading a 64 bit Pointer into a register // The 64 bit pointer is stored in the generated code stream enc_class SetPtr( immP src, iRegP rd ) %{ Register dest = reg_to_register_object($rd$$reg); // [RGV] This next line should be generated from ADLC if ( _opnds[1]->constant_is_oop() ) { intptr_t val = $src$$constant; MacroAssembler _masm(&cbuf); __ set_oop_constant((jobject)val, dest); } else { // non-oop pointers, e.g. card mark base, heap top emit_ptr(cbuf, $src$$constant, dest, /*ForceRelocatable=*/ false); } %} enc_class Set13( immI13 src, iRegI rd ) %{ emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant ); %} enc_class SetHi22( immI src, iRegI rd ) %{ emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant ); %} enc_class Set32( immI src, iRegI rd ) %{ MacroAssembler _masm(&cbuf); __ set($src$$constant, reg_to_register_object($rd$$reg)); %} enc_class SetNull( iRegI rd ) %{ emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0 ); %} enc_class call_epilog %{ if( VerifyStackAtCalls ) { MacroAssembler _masm(&cbuf); int framesize = ra_->C->frame_slots() << LogBytesPerInt; Register temp_reg = G3; __ add(SP, framesize, temp_reg); __ cmp(temp_reg, FP); __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc); } %} // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value // to G1 so the register allocator will not have to deal with the misaligned register // pair. enc_class adjust_long_from_native_call %{ #ifndef _LP64 if (returns_long()) { // sllx O0,32,O0 emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 ); // srl O1,0,O1 emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 ); // or O0,O1,G1 emit3 ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc ); } #endif %} enc_class Java_To_Runtime (method meth) %{ // CALL Java_To_Runtime // CALL directly to the runtime // The user of this is responsible for ensuring that R_L7 is empty (killed). emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type, /*preserve_g2=*/true, /*force far call*/true); %} enc_class Java_Static_Call (method meth) %{ // JAVA STATIC CALL // CALL to fixup routine. Fixup routine uses ScopeDesc info to determine // who we intended to call. if ( !_method ) { emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type); } else if (_optimized_virtual) { emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type); } else { emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type); } if( _method ) { // Emit stub for static call emit_java_to_interp(cbuf); } %} enc_class Java_Dynamic_Call (method meth) %{ // JAVA DYNAMIC CALL MacroAssembler _masm(&cbuf); __ set_inst_mark(); int vtable_index = this->_vtable_index; // MachCallDynamicJavaNode::ret_addr_offset uses this same test if (vtable_index < 0) { // must be invalid_vtable_index, not nonvirtual_vtable_index assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value"); Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode()); assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()"); assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub"); // !!!!! // Generate "set 0x01, R_G5", placeholder instruction to load oop-info // emit_call_dynamic_prologue( cbuf ); __ set_oop((jobject)Universe::non_oop_word(), G5_ic_reg); address virtual_call_oop_addr = __ inst_mark(); // CALL to fixup routine. Fixup routine uses ScopeDesc info to determine // who we intended to call. __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr)); emit_call_reloc(cbuf, $meth$$method, relocInfo::none); } else { assert(!UseInlineCaches, "expect vtable calls only if not using ICs"); // Just go thru the vtable // get receiver klass (receiver already checked for non-null) // If we end up going thru a c2i adapter interpreter expects method in G5 int off = __ offset(); __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), G3_scratch); int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size(); int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes(); if( __ is_simm13(v_off) ) { __ ld_ptr(G3, v_off, G5_method); } else { // Generate 2 instructions __ Assembler::sethi(v_off & ~0x3ff, G5_method); __ or3(G5_method, v_off & 0x3ff, G5_method); // ld_ptr, set_hi, set assert(__ offset() - off == 3*BytesPerInstWord, "Unexpected instruction size(s)"); __ ld_ptr(G3, G5_method, G5_method); } // NOTE: for vtable dispatches, the vtable entry will never be null. // However it may very well end up in handle_wrong_method if the // method is abstract for the particular class. __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3_scratch); // jump to target (either compiled code or c2iadapter) __ jmpl(G3_scratch, G0, O7); __ delayed()->nop(); } %} enc_class Java_Compiled_Call (method meth) %{ // JAVA COMPILED CALL MacroAssembler _masm(&cbuf); Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode()); Register temp_reg = G3; // caller must kill G3! We cannot reuse G5_ic_reg here because // we might be calling a C2I adapter which needs it. assert(temp_reg != G5_ic_reg, "conflicting registers"); // Load nmethod __ ld_ptr(G5_ic_reg, in_bytes(methodOopDesc::from_compiled_offset()), temp_reg); // CALL to compiled java, indirect the contents of G3 __ set_inst_mark(); __ callr(temp_reg, G0); __ delayed()->nop(); %} enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{ MacroAssembler _masm(&cbuf); Register Rdividend = reg_to_register_object($src1$$reg); Register Rdivisor = reg_to_register_object($src2$$reg); Register Rresult = reg_to_register_object($dst$$reg); __ sra(Rdivisor, 0, Rdivisor); __ sra(Rdividend, 0, Rdividend); __ sdivx(Rdividend, Rdivisor, Rresult); %} enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{ MacroAssembler _masm(&cbuf); Register Rdividend = reg_to_register_object($src1$$reg); int divisor = $imm$$constant; Register Rresult = reg_to_register_object($dst$$reg); __ sra(Rdividend, 0, Rdividend); __ sdivx(Rdividend, divisor, Rresult); %} enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{ MacroAssembler _masm(&cbuf); Register Rsrc1 = reg_to_register_object($src1$$reg); Register Rsrc2 = reg_to_register_object($src2$$reg); Register Rdst = reg_to_register_object($dst$$reg); __ sra( Rsrc1, 0, Rsrc1 ); __ sra( Rsrc2, 0, Rsrc2 ); __ mulx( Rsrc1, Rsrc2, Rdst ); __ srlx( Rdst, 32, Rdst ); %} enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{ MacroAssembler _masm(&cbuf); Register Rdividend = reg_to_register_object($src1$$reg); Register Rdivisor = reg_to_register_object($src2$$reg); Register Rresult = reg_to_register_object($dst$$reg); Register Rscratch = reg_to_register_object($scratch$$reg); assert(Rdividend != Rscratch, ""); assert(Rdivisor != Rscratch, ""); __ sra(Rdividend, 0, Rdividend); __ sra(Rdivisor, 0, Rdivisor); __ sdivx(Rdividend, Rdivisor, Rscratch); __ mulx(Rscratch, Rdivisor, Rscratch); __ sub(Rdividend, Rscratch, Rresult); %} enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{ MacroAssembler _masm(&cbuf); Register Rdividend = reg_to_register_object($src1$$reg); int divisor = $imm$$constant; Register Rresult = reg_to_register_object($dst$$reg); Register Rscratch = reg_to_register_object($scratch$$reg); assert(Rdividend != Rscratch, ""); __ sra(Rdividend, 0, Rdividend); __ sdivx(Rdividend, divisor, Rscratch); __ mulx(Rscratch, divisor, Rscratch); __ sub(Rdividend, Rscratch, Rresult); %} enc_class fabss (sflt_reg dst, sflt_reg src) %{ MacroAssembler _masm(&cbuf); FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg); FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg); __ fabs(FloatRegisterImpl::S, Fsrc, Fdst); %} enc_class fabsd (dflt_reg dst, dflt_reg src) %{ MacroAssembler _masm(&cbuf); FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg); FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg); __ fabs(FloatRegisterImpl::D, Fsrc, Fdst); %} enc_class fnegd (dflt_reg dst, dflt_reg src) %{ MacroAssembler _masm(&cbuf); FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg); FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg); __ fneg(FloatRegisterImpl::D, Fsrc, Fdst); %} enc_class fsqrts (sflt_reg dst, sflt_reg src) %{ MacroAssembler _masm(&cbuf); FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg); FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg); __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst); %} enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{ MacroAssembler _masm(&cbuf); FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg); FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg); __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst); %} enc_class fmovs (dflt_reg dst, dflt_reg src) %{ MacroAssembler _masm(&cbuf); FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg); FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg); __ fmov(FloatRegisterImpl::S, Fsrc, Fdst); %} enc_class fmovd (dflt_reg dst, dflt_reg src) %{ MacroAssembler _masm(&cbuf); FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg); FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg); __ fmov(FloatRegisterImpl::D, Fsrc, Fdst); %} enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{ MacroAssembler _masm(&cbuf); Register Roop = reg_to_register_object($oop$$reg); Register Rbox = reg_to_register_object($box$$reg); Register Rscratch = reg_to_register_object($scratch$$reg); Register Rmark = reg_to_register_object($scratch2$$reg); assert(Roop != Rscratch, ""); assert(Roop != Rmark, ""); assert(Rbox != Rscratch, ""); assert(Rbox != Rmark, ""); __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters); %} enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{ MacroAssembler _masm(&cbuf); Register Roop = reg_to_register_object($oop$$reg); Register Rbox = reg_to_register_object($box$$reg); Register Rscratch = reg_to_register_object($scratch$$reg); Register Rmark = reg_to_register_object($scratch2$$reg); assert(Roop != Rscratch, ""); assert(Roop != Rmark, ""); assert(Rbox != Rscratch, ""); assert(Rbox != Rmark, ""); __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch); %} enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{ MacroAssembler _masm(&cbuf); Register Rmem = reg_to_register_object($mem$$reg); Register Rold = reg_to_register_object($old$$reg); Register Rnew = reg_to_register_object($new$$reg); // casx_under_lock picks 1 of 3 encodings: // For 32-bit pointers you get a 32-bit CAS // For 64-bit pointers you get a 64-bit CASX __ casx_under_lock(Rmem, Rold, Rnew, // Swap(*Rmem,Rnew) if *Rmem == Rold (address) StubRoutines::Sparc::atomic_memory_operation_lock_addr()); __ cmp( Rold, Rnew ); %} enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{ Register Rmem = reg_to_register_object($mem$$reg); Register Rold = reg_to_register_object($old$$reg); Register Rnew = reg_to_register_object($new$$reg); MacroAssembler _masm(&cbuf); __ mov(Rnew, O7); __ casx(Rmem, Rold, O7); __ cmp( Rold, O7 ); %} // raw int cas, used for compareAndSwap enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{ Register Rmem = reg_to_register_object($mem$$reg); Register Rold = reg_to_register_object($old$$reg); Register Rnew = reg_to_register_object($new$$reg); MacroAssembler _masm(&cbuf); __ mov(Rnew, O7); __ cas(Rmem, Rold, O7); __ cmp( Rold, O7 ); %} enc_class enc_lflags_ne_to_boolean( iRegI res ) %{ Register Rres = reg_to_register_object($res$$reg); MacroAssembler _masm(&cbuf); __ mov(1, Rres); __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres ); %} enc_class enc_iflags_ne_to_boolean( iRegI res ) %{ Register Rres = reg_to_register_object($res$$reg); MacroAssembler _masm(&cbuf); __ mov(1, Rres); __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres ); %} enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{ MacroAssembler _masm(&cbuf); Register Rdst = reg_to_register_object($dst$$reg); FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg) : reg_to_DoubleFloatRegister_object($src1$$reg); FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg) : reg_to_DoubleFloatRegister_object($src2$$reg); // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1) __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst); %} enc_class LdImmL (immL src, iRegL dst, o7RegL tmp) %{ // Load Immediate MacroAssembler _masm(&cbuf); Register dest = reg_to_register_object($dst$$reg); Register temp = reg_to_register_object($tmp$$reg); __ set64( $src$$constant, dest, temp ); %} enc_class LdImmF(immF src, regF dst, o7RegP tmp) %{ // Load Immediate address float_address = MacroAssembler(&cbuf).float_constant($src$$constant); RelocationHolder rspec = internal_word_Relocation::spec(float_address); #ifdef _LP64 Register tmp_reg = reg_to_register_object($tmp$$reg); cbuf.relocate(cbuf.code_end(), rspec, 0); emit_ptr(cbuf, (intptr_t)float_address, tmp_reg, /*ForceRelocatable=*/ true); emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::ldf_op3, $tmp$$reg, 0 ); #else // _LP64 uint *code; int tmp_reg = $tmp$$reg; cbuf.relocate(cbuf.code_end(), rspec, 0); emit2_22( cbuf, Assembler::branch_op, tmp_reg, Assembler::sethi_op2, (intptr_t) float_address ); cbuf.relocate(cbuf.code_end(), rspec, 0); emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::ldf_op3, tmp_reg, (intptr_t) float_address ); #endif // _LP64 %} enc_class LdImmD(immD src, regD dst, o7RegP tmp) %{ // Load Immediate address double_address = MacroAssembler(&cbuf).double_constant($src$$constant); RelocationHolder rspec = internal_word_Relocation::spec(double_address); #ifdef _LP64 Register tmp_reg = reg_to_register_object($tmp$$reg); cbuf.relocate(cbuf.code_end(), rspec, 0); emit_ptr(cbuf, (intptr_t)double_address, tmp_reg, /*ForceRelocatable=*/ true); emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::lddf_op3, $tmp$$reg, 0 ); #else // _LP64 uint *code; int tmp_reg = $tmp$$reg; cbuf.relocate(cbuf.code_end(), rspec, 0); emit2_22( cbuf, Assembler::branch_op, tmp_reg, Assembler::sethi_op2, (intptr_t) double_address ); cbuf.relocate(cbuf.code_end(), rspec, 0); emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::lddf_op3, tmp_reg, (intptr_t) double_address ); #endif // _LP64 %} enc_class LdReplImmI(immI src, regD dst, o7RegP tmp, int count, int width) %{ // Load a constant replicated "count" times with width "width" int bit_width = $width$$constant * 8; jlong elt_val = $src$$constant; elt_val &= (((jlong)1) << bit_width) - 1; // mask off sign bits jlong val = elt_val; for (int i = 0; i < $count$$constant - 1; i++) { val <<= bit_width; val |= elt_val; } jdouble dval = *(jdouble*)&val; // coerce to double type address double_address = MacroAssembler(&cbuf).double_constant(dval); RelocationHolder rspec = internal_word_Relocation::spec(double_address); #ifdef _LP64 Register tmp_reg = reg_to_register_object($tmp$$reg); cbuf.relocate(cbuf.code_end(), rspec, 0); emit_ptr(cbuf, (intptr_t)double_address, tmp_reg, /*ForceRelocatable=*/ true); emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::lddf_op3, $tmp$$reg, 0 ); #else // _LP64 uint *code; int tmp_reg = $tmp$$reg; cbuf.relocate(cbuf.code_end(), rspec, 0); emit2_22( cbuf, Assembler::branch_op, tmp_reg, Assembler::sethi_op2, (intptr_t) double_address ); cbuf.relocate(cbuf.code_end(), rspec, 0); emit3_simm10( cbuf, Assembler::ldst_op, $dst$$reg, Assembler::lddf_op3, tmp_reg, (intptr_t) double_address ); #endif // _LP64 %} enc_class ShouldNotEncodeThis ( ) %{ ShouldNotCallThis(); %} // Compiler ensures base is doubleword aligned and cnt is count of doublewords enc_class enc_Clear_Array(iRegX cnt, iRegP base, iRegX temp) %{ MacroAssembler _masm(&cbuf); Register nof_bytes_arg = reg_to_register_object($cnt$$reg); Register nof_bytes_tmp = reg_to_register_object($temp$$reg); Register base_pointer_arg = reg_to_register_object($base$$reg); Label loop; __ mov(nof_bytes_arg, nof_bytes_tmp); // Loop and clear, walking backwards through the array. // nof_bytes_tmp (if >0) is always the number of bytes to zero __ bind(loop); __ deccc(nof_bytes_tmp, 8); __ br(Assembler::greaterEqual, true, Assembler::pt, loop); __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp); // %%%% this mini-loop must not cross a cache boundary! %} enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegP tmp1, g4RegP tmp2, notemp_iRegI result) %{ Label Ldone, Lloop; MacroAssembler _masm(&cbuf); Register str1_reg = reg_to_register_object($str1$$reg); Register str2_reg = reg_to_register_object($str2$$reg); Register tmp1_reg = reg_to_register_object($tmp1$$reg); Register tmp2_reg = reg_to_register_object($tmp2$$reg); Register result_reg = reg_to_register_object($result$$reg); // Get the first character position in both strings // [8] char array, [12] offset, [16] count int value_offset = java_lang_String:: value_offset_in_bytes(); int offset_offset = java_lang_String::offset_offset_in_bytes(); int count_offset = java_lang_String:: count_offset_in_bytes(); // load str1 (jchar*) base address into tmp1_reg __ ld_ptr(Address(str1_reg, 0, value_offset), tmp1_reg); __ ld(Address(str1_reg, 0, offset_offset), result_reg); __ add(tmp1_reg, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1_reg); __ ld(Address(str1_reg, 0, count_offset), str1_reg); // hoisted __ sll(result_reg, exact_log2(sizeof(jchar)), result_reg); __ ld_ptr(Address(str2_reg, 0, value_offset), tmp2_reg); // hoisted __ add(result_reg, tmp1_reg, tmp1_reg); // load str2 (jchar*) base address into tmp2_reg // __ ld_ptr(Address(str2_reg, 0, value_offset), tmp2_reg); // hoisted __ ld(Address(str2_reg, 0, offset_offset), result_reg); __ add(tmp2_reg, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp2_reg); __ ld(Address(str2_reg, 0, count_offset), str2_reg); // hoisted __ sll(result_reg, exact_log2(sizeof(jchar)), result_reg); __ subcc(str1_reg, str2_reg, O7); // hoisted __ add(result_reg, tmp2_reg, tmp2_reg); // Compute the minimum of the string lengths(str1_reg) and the // difference of the string lengths (stack) // discard string base pointers, after loading up the lengths // __ ld(Address(str1_reg, 0, count_offset), str1_reg); // hoisted // __ ld(Address(str2_reg, 0, count_offset), str2_reg); // hoisted // See if the lengths are different, and calculate min in str1_reg. // Stash diff in O7 in case we need it for a tie-breaker. Label Lskip; // __ subcc(str1_reg, str2_reg, O7); // hoisted __ sll(str1_reg, exact_log2(sizeof(jchar)), str1_reg); // scale the limit __ br(Assembler::greater, true, Assembler::pt, Lskip); // str2 is shorter, so use its count: __ delayed()->sll(str2_reg, exact_log2(sizeof(jchar)), str1_reg); // scale the limit __ bind(Lskip); // reallocate str1_reg, str2_reg, result_reg // Note: limit_reg holds the string length pre-scaled by 2 Register limit_reg = str1_reg; Register chr2_reg = str2_reg; Register chr1_reg = result_reg; // tmp{12} are the base pointers // Is the minimum length zero? __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity __ br(Assembler::equal, true, Assembler::pn, Ldone); __ delayed()->mov(O7, result_reg); // result is difference in lengths // Load first characters __ lduh(tmp1_reg, 0, chr1_reg); __ lduh(tmp2_reg, 0, chr2_reg); // Compare first characters __ subcc(chr1_reg, chr2_reg, chr1_reg); __ br(Assembler::notZero, false, Assembler::pt, Ldone); assert(chr1_reg == result_reg, "result must be pre-placed"); __ delayed()->nop(); { // Check after comparing first character to see if strings are equivalent Label LSkip2; // Check if the strings start at same location __ cmp(tmp1_reg, tmp2_reg); __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2); __ delayed()->nop(); // Check if the length difference is zero (in O7) __ cmp(G0, O7); __ br(Assembler::equal, true, Assembler::pn, Ldone); __ delayed()->mov(G0, result_reg); // result is zero // Strings might not be equal __ bind(LSkip2); } __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg); __ br(Assembler::equal, true, Assembler::pn, Ldone); __ delayed()->mov(O7, result_reg); // result is difference in lengths // Shift tmp1_reg and tmp2_reg to the end of the arrays, negate limit __ add(tmp1_reg, limit_reg, tmp1_reg); __ add(tmp2_reg, limit_reg, tmp2_reg); __ neg(chr1_reg, limit_reg); // limit = -(limit-2) // Compare the rest of the characters __ lduh(tmp1_reg, limit_reg, chr1_reg); __ bind(Lloop); // __ lduh(tmp1_reg, limit_reg, chr1_reg); // hoisted __ lduh(tmp2_reg, limit_reg, chr2_reg); __ subcc(chr1_reg, chr2_reg, chr1_reg); __ br(Assembler::notZero, false, Assembler::pt, Ldone); assert(chr1_reg == result_reg, "result must be pre-placed"); __ delayed()->inccc(limit_reg, sizeof(jchar)); // annul LDUH if branch is not taken to prevent access past end of string __ br(Assembler::notZero, true, Assembler::pt, Lloop); __ delayed()->lduh(tmp1_reg, limit_reg, chr1_reg); // hoisted // If strings are equal up to min length, return the length difference. __ mov(O7, result_reg); // Otherwise, return the difference between the first mismatched chars. __ bind(Ldone); %} enc_class enc_rethrow() %{ cbuf.set_inst_mark(); Register temp_reg = G3; Address rethrow_stub(temp_reg, OptoRuntime::rethrow_stub()); assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg"); MacroAssembler _masm(&cbuf); #ifdef ASSERT __ save_frame(0); Address last_rethrow_addr(L1, (address)&last_rethrow); __ sethi(last_rethrow_addr); __ get_pc(L2); __ inc(L2, 3 * BytesPerInstWord); // skip this & 2 more insns to point at jump_to __ st_ptr(L2, last_rethrow_addr); __ restore(); #endif __ JUMP(rethrow_stub, 0); // sethi;jmp __ delayed()->nop(); %} enc_class emit_mem_nop() %{ // Generates the instruction LDUXA [o6,g0],#0x82,g0 unsigned int *code = (unsigned int*)cbuf.code_end(); *code = (unsigned int)0xc0839040; cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord); %} enc_class emit_fadd_nop() %{ // Generates the instruction FMOVS f31,f31 unsigned int *code = (unsigned int*)cbuf.code_end(); *code = (unsigned int)0xbfa0003f; cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord); %} enc_class emit_br_nop() %{ // Generates the instruction BPN,PN . unsigned int *code = (unsigned int*)cbuf.code_end(); *code = (unsigned int)0x00400000; cbuf.set_code_end(cbuf.code_end() + BytesPerInstWord); %} enc_class enc_membar_acquire %{ MacroAssembler _masm(&cbuf); __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) ); %} enc_class enc_membar_release %{ MacroAssembler _masm(&cbuf); __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) ); %} enc_class enc_membar_volatile %{ MacroAssembler _masm(&cbuf); __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) ); %} enc_class enc_repl8b( iRegI src, iRegL dst ) %{ MacroAssembler _masm(&cbuf); Register src_reg = reg_to_register_object($src$$reg); Register dst_reg = reg_to_register_object($dst$$reg); __ sllx(src_reg, 56, dst_reg); __ srlx(dst_reg, 8, O7); __ or3 (dst_reg, O7, dst_reg); __ srlx(dst_reg, 16, O7); __ or3 (dst_reg, O7, dst_reg); __ srlx(dst_reg, 32, O7); __ or3 (dst_reg, O7, dst_reg); %} enc_class enc_repl4b( iRegI src, iRegL dst ) %{ MacroAssembler _masm(&cbuf); Register src_reg = reg_to_register_object($src$$reg); Register dst_reg = reg_to_register_object($dst$$reg); __ sll(src_reg, 24, dst_reg); __ srl(dst_reg, 8, O7); __ or3(dst_reg, O7, dst_reg); __ srl(dst_reg, 16, O7); __ or3(dst_reg, O7, dst_reg); %} enc_class enc_repl4s( iRegI src, iRegL dst ) %{ MacroAssembler _masm(&cbuf); Register src_reg = reg_to_register_object($src$$reg); Register dst_reg = reg_to_register_object($dst$$reg); __ sllx(src_reg, 48, dst_reg); __ srlx(dst_reg, 16, O7); __ or3 (dst_reg, O7, dst_reg); __ srlx(dst_reg, 32, O7); __ or3 (dst_reg, O7, dst_reg); %} enc_class enc_repl2i( iRegI src, iRegL dst ) %{ MacroAssembler _masm(&cbuf); Register src_reg = reg_to_register_object($src$$reg); Register dst_reg = reg_to_register_object($dst$$reg); __ sllx(src_reg, 32, dst_reg); __ srlx(dst_reg, 32, O7); __ or3 (dst_reg, O7, dst_reg); %} %} //----------FRAME-------------------------------------------------------------- // Definition of frame structure and management information. // // S T A C K L A Y O U T Allocators stack-slot number // | (to get allocators register number // G Owned by | | v add VMRegImpl::stack0) // r CALLER | | // o | +--------+ pad to even-align allocators stack-slot // w V | pad0 | numbers; owned by CALLER // t -----------+--------+----> Matcher::_in_arg_limit, unaligned // h ^ | in | 5 // | | args | 4 Holes in incoming args owned by SELF // | | | | 3 // | | +--------+ // V | | old out| Empty on Intel, window on Sparc // | old |preserve| Must be even aligned. // | SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned // | | in | 3 area for Intel ret address // Owned by |preserve| Empty on Sparc. // SELF +--------+ // | | pad2 | 2 pad to align old SP // | +--------+ 1 // | | locks | 0 // | +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned // | | pad1 | 11 pad to align new SP // | +--------+ // | | | 10 // | | spills | 9 spills // V | | 8 (pad0 slot for callee) // -----------+--------+----> Matcher::_out_arg_limit, unaligned // ^ | out | 7 // | | args | 6 Holes in outgoing args owned by CALLEE // Owned by +--------+ // CALLEE | new out| 6 Empty on Intel, window on Sparc // | new |preserve| Must be even-aligned. // | SP-+--------+----> Matcher::_new_SP, even aligned // | | | // // Note 1: Only region 8-11 is determined by the allocator. Region 0-5 is // known from SELF's arguments and the Java calling convention. // Region 6-7 is determined per call site. // Note 2: If the calling convention leaves holes in the incoming argument // area, those holes are owned by SELF. Holes in the outgoing area // are owned by the CALLEE. Holes should not be nessecary in the // incoming area, as the Java calling convention is completely under // the control of the AD file. Doubles can be sorted and packed to // avoid holes. Holes in the outgoing arguments may be nessecary for // varargs C calling conventions. // Note 3: Region 0-3 is even aligned, with pad2 as needed. Region 3-5 is // even aligned with pad0 as needed. // Region 6 is even aligned. Region 6-7 is NOT even aligned; // region 6-11 is even aligned; it may be padded out more so that // the region from SP to FP meets the minimum stack alignment. frame %{ // What direction does stack grow in (assumed to be same for native & Java) stack_direction(TOWARDS_LOW); // These two registers define part of the calling convention // between compiled code and the interpreter. inline_cache_reg(R_G5); // Inline Cache Register or methodOop for I2C interpreter_method_oop_reg(R_G5); // Method Oop Register when calling interpreter // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset] cisc_spilling_operand_name(indOffset); // Number of stack slots consumed by a Monitor enter #ifdef _LP64 sync_stack_slots(2); #else sync_stack_slots(1); #endif // Compiled code's Frame Pointer frame_pointer(R_SP); // Stack alignment requirement stack_alignment(StackAlignmentInBytes); // LP64: Alignment size in bytes (128-bit -> 16 bytes) // !LP64: Alignment size in bytes (64-bit -> 8 bytes) // Number of stack slots between incoming argument block and the start of // a new frame. The PROLOG must add this many slots to the stack. The // EPILOG must remove this many slots. in_preserve_stack_slots(0); // Number of outgoing stack slots killed above the out_preserve_stack_slots // for calls to C. Supports the var-args backing area for register parms. // ADLC doesn't support parsing expressions, so I folded the math by hand. #ifdef _LP64 // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word varargs_C_out_slots_killed(12); #else // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word varargs_C_out_slots_killed( 7); #endif // The after-PROLOG location of the return address. Location of // return address specifies a type (REG or STACK) and a number // representing the register number (i.e. - use a register name) or // stack slot. return_addr(REG R_I7); // Ret Addr is in register I7 // Body of function which returns an OptoRegs array locating // arguments either in registers or in stack slots for calling // java calling_convention %{ (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing); %} // Body of function which returns an OptoRegs array locating // arguments either in registers or in stack slots for callin // C. c_calling_convention %{ // This is obviously always outgoing (void) SharedRuntime::c_calling_convention(sig_bt, regs, length); %} // Location of native (C/C++) and interpreter return values. This is specified to // be the same as Java. In the 32-bit VM, long values are actually returned from // native calls in O0:O1 and returned to the interpreter in I0:I1. The copying // to and from the register pairs is done by the appropriate call and epilog // opcodes. This simplifies the register allocator. c_return_value %{ assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" ); #ifdef _LP64 static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num, R_O0_num, R_F0_num, R_F0_num, R_O0_num }; static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num, OptoReg::Bad, R_F1_num, R_O0H_num}; static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num, R_I0_num, R_F0_num, R_F0_num, R_I0_num }; static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num, OptoReg::Bad, R_F1_num, R_I0H_num}; #else // !_LP64 static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num, R_O0_num, R_F0_num, R_F0_num, R_G1_num }; static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num }; static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num, R_I0_num, R_F0_num, R_F0_num, R_G1_num }; static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num }; #endif return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg], (is_outgoing?lo_out:lo_in)[ideal_reg] ); %} // Location of compiled Java return values. Same as C return_value %{ assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" ); #ifdef _LP64 static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num, R_O0_num, R_F0_num, R_F0_num, R_O0_num }; static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num, OptoReg::Bad, R_F1_num, R_O0H_num}; static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num, R_I0_num, R_F0_num, R_F0_num, R_I0_num }; static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num, OptoReg::Bad, R_F1_num, R_I0H_num}; #else // !_LP64 static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num, R_O0_num, R_F0_num, R_F0_num, R_G1_num }; static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num}; static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num, R_I0_num, R_F0_num, R_F0_num, R_G1_num }; static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num}; #endif return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg], (is_outgoing?lo_out:lo_in)[ideal_reg] ); %} %} //----------ATTRIBUTES--------------------------------------------------------- //----------Operand Attributes------------------------------------------------- op_attrib op_cost(1); // Required cost attribute //----------Instruction Attributes--------------------------------------------- ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute ins_attrib ins_size(32); // Required size attribute (in bits) ins_attrib ins_pc_relative(0); // Required PC Relative flag ins_attrib ins_short_branch(0); // Required flag: is this instruction a // non-matching short branch variant of some // long branch? //----------OPERANDS----------------------------------------------------------- // Operand definitions must precede instruction definitions for correct parsing // in the ADLC because operands constitute user defined types which are used in // instruction definitions. //----------Simple Operands---------------------------------------------------- // Immediate Operands // Integer Immediate: 32-bit operand immI() %{ match(ConI); op_cost(0); // formats are generated automatically for constants and base registers format %{ %} interface(CONST_INTER); %} // Integer Immediate: 13-bit operand immI13() %{ predicate(Assembler::is_simm13(n->get_int())); match(ConI); op_cost(0); format %{ %} interface(CONST_INTER); %} // Unsigned (positive) Integer Immediate: 13-bit operand immU13() %{ predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int())); match(ConI); op_cost(0); format %{ %} interface(CONST_INTER); %} // Integer Immediate: 6-bit operand immU6() %{ predicate(n->get_int() >= 0 && n->get_int() <= 63); match(ConI); op_cost(0); format %{ %} interface(CONST_INTER); %} // Integer Immediate: 11-bit operand immI11() %{ predicate(Assembler::is_simm(n->get_int(),11)); match(ConI); op_cost(0); format %{ %} interface(CONST_INTER); %} // Integer Immediate: 0-bit operand immI0() %{ predicate(n->get_int() == 0); match(ConI); op_cost(0); format %{ %} interface(CONST_INTER); %} // Integer Immediate: the value 10 operand immI10() %{ predicate(n->get_int() == 10); match(ConI); op_cost(0); format %{ %} interface(CONST_INTER); %} // Integer Immediate: the values 0-31 operand immU5() %{ predicate(n->get_int() >= 0 && n->get_int() <= 31); match(ConI); op_cost(0); format %{ %} interface(CONST_INTER); %} // Integer Immediate: the values 1-31 operand immI_1_31() %{ predicate(n->get_int() >= 1 && n->get_int() <= 31); match(ConI); op_cost(0); format %{ %} interface(CONST_INTER); %} // Integer Immediate: the values 32-63 operand immI_32_63() %{ predicate(n->get_int() >= 32 && n->get_int() <= 63); match(ConI); op_cost(0); format %{ %} interface(CONST_INTER); %} // Integer Immediate: the value 255 operand immI_255() %{ predicate( n->get_int() == 255 ); match(ConI); op_cost(0); format %{ %} interface(CONST_INTER); %} // Long Immediate: the value FF operand immL_FF() %{ predicate( n->get_long() == 0xFFL ); match(ConL); op_cost(0); format %{ %} interface(CONST_INTER); %} // Long Immediate: the value FFFF operand immL_FFFF() %{ predicate( n->get_long() == 0xFFFFL ); match(ConL); op_cost(0); format %{ %} interface(CONST_INTER); %} // Pointer Immediate: 32 or 64-bit operand immP() %{ match(ConP); op_cost(5); // formats are generated automatically for constants and base registers format %{ %} interface(CONST_INTER); %} operand immP13() %{ predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095)); match(ConP); op_cost(0); format %{ %} interface(CONST_INTER); %} operand immP0() %{ predicate(n->get_ptr() == 0); match(ConP); op_cost(0); format %{ %} interface(CONST_INTER); %} operand immP_poll() %{ predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page()); match(ConP); // formats are generated automatically for constants and base registers format %{ %} interface(CONST_INTER); %} operand immL() %{ match(ConL); op_cost(40); // formats are generated automatically for constants and base registers format %{ %} interface(CONST_INTER); %} operand immL0() %{ predicate(n->get_long() == 0L); match(ConL); op_cost(0); // formats are generated automatically for constants and base registers format %{ %} interface(CONST_INTER); %} // Long Immediate: 13-bit operand immL13() %{ predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L)); match(ConL); op_cost(0); format %{ %} interface(CONST_INTER); %} // Long Immediate: low 32-bit mask operand immL_32bits() %{ predicate(n->get_long() == 0xFFFFFFFFL); match(ConL); op_cost(0); format %{ %} interface(CONST_INTER); %} // Double Immediate operand immD() %{ match(ConD); op_cost(40); format %{ %} interface(CONST_INTER); %} operand immD0() %{ #ifdef _LP64 // on 64-bit architectures this comparision is faster predicate(jlong_cast(n->getd()) == 0); #else predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO)); #endif match(ConD); op_cost(0); format %{ %} interface(CONST_INTER); %} // Float Immediate operand immF() %{ match(ConF); op_cost(20); format %{ %} interface(CONST_INTER); %} // Float Immediate: 0 operand immF0() %{ predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO)); match(ConF); op_cost(0); format %{ %} interface(CONST_INTER); %} // Integer Register Operands // Integer Register operand iRegI() %{ constraint(ALLOC_IN_RC(int_reg)); match(RegI); match(notemp_iRegI); match(g1RegI); match(o0RegI); match(iRegIsafe); format %{ %} interface(REG_INTER); %} operand notemp_iRegI() %{ constraint(ALLOC_IN_RC(notemp_int_reg)); match(RegI); match(o0RegI); format %{ %} interface(REG_INTER); %} operand o0RegI() %{ constraint(ALLOC_IN_RC(o0_regI)); match(iRegI); format %{ %} interface(REG_INTER); %} // Pointer Register operand iRegP() %{ constraint(ALLOC_IN_RC(ptr_reg)); match(RegP); match(lock_ptr_RegP); match(g1RegP); match(g2RegP); match(g3RegP); match(g4RegP); match(i0RegP); match(o0RegP); match(o1RegP); match(l7RegP); format %{ %} interface(REG_INTER); %} operand sp_ptr_RegP() %{ constraint(ALLOC_IN_RC(sp_ptr_reg)); match(RegP); match(iRegP); format %{ %} interface(REG_INTER); %} operand lock_ptr_RegP() %{ constraint(ALLOC_IN_RC(lock_ptr_reg)); match(RegP); match(i0RegP); match(o0RegP); match(o1RegP); match(l7RegP); format %{ %} interface(REG_INTER); %} operand g1RegP() %{ constraint(ALLOC_IN_RC(g1_regP)); match(iRegP); format %{ %} interface(REG_INTER); %} operand g2RegP() %{ constraint(ALLOC_IN_RC(g2_regP)); match(iRegP); format %{ %} interface(REG_INTER); %} operand g3RegP() %{ constraint(ALLOC_IN_RC(g3_regP)); match(iRegP); format %{ %} interface(REG_INTER); %} operand g1RegI() %{ constraint(ALLOC_IN_RC(g1_regI)); match(iRegI); format %{ %} interface(REG_INTER); %} operand g3RegI() %{ constraint(ALLOC_IN_RC(g3_regI)); match(iRegI); format %{ %} interface(REG_INTER); %} operand g4RegI() %{ constraint(ALLOC_IN_RC(g4_regI)); match(iRegI); format %{ %} interface(REG_INTER); %} operand g4RegP() %{ constraint(ALLOC_IN_RC(g4_regP)); match(iRegP); format %{ %} interface(REG_INTER); %} operand i0RegP() %{ constraint(ALLOC_IN_RC(i0_regP)); match(iRegP); format %{ %} interface(REG_INTER); %} operand o0RegP() %{ constraint(ALLOC_IN_RC(o0_regP)); match(iRegP); format %{ %} interface(REG_INTER); %} operand o1RegP() %{ constraint(ALLOC_IN_RC(o1_regP)); match(iRegP); format %{ %} interface(REG_INTER); %} operand o2RegP() %{ constraint(ALLOC_IN_RC(o2_regP)); match(iRegP); format %{ %} interface(REG_INTER); %} operand o7RegP() %{ constraint(ALLOC_IN_RC(o7_regP)); match(iRegP); format %{ %} interface(REG_INTER); %} operand l7RegP() %{ constraint(ALLOC_IN_RC(l7_regP)); match(iRegP); format %{ %} interface(REG_INTER); %} operand o7RegI() %{ constraint(ALLOC_IN_RC(o7_regI)); match(iRegI); format %{ %} interface(REG_INTER); %} // Long Register operand iRegL() %{ constraint(ALLOC_IN_RC(long_reg)); match(RegL); format %{ %} interface(REG_INTER); %} operand o2RegL() %{ constraint(ALLOC_IN_RC(o2_regL)); match(iRegL); format %{ %} interface(REG_INTER); %} operand o7RegL() %{ constraint(ALLOC_IN_RC(o7_regL)); match(iRegL); format %{ %} interface(REG_INTER); %} operand g1RegL() %{ constraint(ALLOC_IN_RC(g1_regL)); match(iRegL); format %{ %} interface(REG_INTER); %} // Int Register safe // This is 64bit safe operand iRegIsafe() %{ constraint(ALLOC_IN_RC(long_reg)); match(iRegI); format %{ %} interface(REG_INTER); %} // Condition Code Flag Register operand flagsReg() %{ constraint(ALLOC_IN_RC(int_flags)); match(RegFlags); format %{ "ccr" %} // both ICC and XCC interface(REG_INTER); %} // Condition Code Register, unsigned comparisons. operand flagsRegU() %{ constraint(ALLOC_IN_RC(int_flags)); match(RegFlags); format %{ "icc_U" %} interface(REG_INTER); %} // Condition Code Register, pointer comparisons. operand flagsRegP() %{ constraint(ALLOC_IN_RC(int_flags)); match(RegFlags); #ifdef _LP64 format %{ "xcc_P" %} #else format %{ "icc_P" %} #endif interface(REG_INTER); %} // Condition Code Register, long comparisons. operand flagsRegL() %{ constraint(ALLOC_IN_RC(int_flags)); match(RegFlags); format %{ "xcc_L" %} interface(REG_INTER); %} // Condition Code Register, floating comparisons, unordered same as "less". operand flagsRegF() %{ constraint(ALLOC_IN_RC(float_flags)); match(RegFlags); match(flagsRegF0); format %{ %} interface(REG_INTER); %} operand flagsRegF0() %{ constraint(ALLOC_IN_RC(float_flag0)); match(RegFlags); format %{ %} interface(REG_INTER); %} // Condition Code Flag Register used by long compare operand flagsReg_long_LTGE() %{ constraint(ALLOC_IN_RC(int_flags)); match(RegFlags); format %{ "icc_LTGE" %} interface(REG_INTER); %} operand flagsReg_long_EQNE() %{ constraint(ALLOC_IN_RC(int_flags)); match(RegFlags); format %{ "icc_EQNE" %} interface(REG_INTER); %} operand flagsReg_long_LEGT() %{ constraint(ALLOC_IN_RC(int_flags)); match(RegFlags); format %{ "icc_LEGT" %} interface(REG_INTER); %} operand regD() %{ constraint(ALLOC_IN_RC(dflt_reg)); match(RegD); format %{ %} interface(REG_INTER); %} operand regF() %{ constraint(ALLOC_IN_RC(sflt_reg)); match(RegF); format %{ %} interface(REG_INTER); %} operand regD_low() %{ constraint(ALLOC_IN_RC(dflt_low_reg)); match(RegD); format %{ %} interface(REG_INTER); %} // Special Registers // Method Register operand inline_cache_regP(iRegP reg) %{ constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1 match(reg); format %{ %} interface(REG_INTER); %} operand interpreter_method_oop_regP(iRegP reg) %{ constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1 match(reg); format %{ %} interface(REG_INTER); %} //----------Complex Operands--------------------------------------------------- // Indirect Memory Reference operand indirect(sp_ptr_RegP reg) %{ constraint(ALLOC_IN_RC(sp_ptr_reg)); match(reg); op_cost(100); format %{ "[$reg]" %} interface(MEMORY_INTER) %{ base($reg); index(0x0); scale(0x0); disp(0x0); %} %} // Indirect with Offset operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{ constraint(ALLOC_IN_RC(sp_ptr_reg)); match(AddP reg offset); op_cost(100); format %{ "[$reg + $offset]" %} interface(MEMORY_INTER) %{ base($reg); index(0x0); scale(0x0); disp($offset); %} %} // Note: Intel has a swapped version also, like this: //operand indOffsetX(iRegI reg, immP offset) %{ // constraint(ALLOC_IN_RC(int_reg)); // match(AddP offset reg); // // op_cost(100); // format %{ "[$reg + $offset]" %} // interface(MEMORY_INTER) %{ // base($reg); // index(0x0); // scale(0x0); // disp($offset); // %} //%} //// However, it doesn't make sense for SPARC, since // we have no particularly good way to embed oops in // single instructions. // Indirect with Register Index operand indIndex(iRegP addr, iRegX index) %{ constraint(ALLOC_IN_RC(ptr_reg)); match(AddP addr index); op_cost(100); format %{ "[$addr + $index]" %} interface(MEMORY_INTER) %{ base($addr); index($index); scale(0x0); disp(0x0); %} %} //----------Special Memory Operands-------------------------------------------- // Stack Slot Operand - This operand is used for loading and storing temporary // values on the stack where a match requires a value to // flow through memory. operand stackSlotI(sRegI reg) %{ constraint(ALLOC_IN_RC(stack_slots)); op_cost(100); //match(RegI); format %{ "[$reg]" %} interface(MEMORY_INTER) %{ base(0xE); // R_SP index(0x0); scale(0x0); disp($reg); // Stack Offset %} %} operand stackSlotP(sRegP reg) %{ constraint(ALLOC_IN_RC(stack_slots)); op_cost(100); //match(RegP); format %{ "[$reg]" %} interface(MEMORY_INTER) %{ base(0xE); // R_SP index(0x0); scale(0x0); disp($reg); // Stack Offset %} %} operand stackSlotF(sRegF reg) %{ constraint(ALLOC_IN_RC(stack_slots)); op_cost(100); //match(RegF); format %{ "[$reg]" %} interface(MEMORY_INTER) %{ base(0xE); // R_SP index(0x0); scale(0x0); disp($reg); // Stack Offset %} %} operand stackSlotD(sRegD reg) %{ constraint(ALLOC_IN_RC(stack_slots)); op_cost(100); //match(RegD); format %{ "[$reg]" %} interface(MEMORY_INTER) %{ base(0xE); // R_SP index(0x0); scale(0x0); disp($reg); // Stack Offset %} %} operand stackSlotL(sRegL reg) %{ constraint(ALLOC_IN_RC(stack_slots)); op_cost(100); //match(RegL); format %{ "[$reg]" %} interface(MEMORY_INTER) %{ base(0xE); // R_SP index(0x0); scale(0x0); disp($reg); // Stack Offset %} %} // Operands for expressing Control Flow // NOTE: Label is a predefined operand which should not be redefined in // the AD file. It is generically handled within the ADLC. //----------Conditional Branch Operands---------------------------------------- // Comparison Op - This is the operation of the comparison, and is limited to // the following set of codes: // L (<), LE (<=), G (>), GE (>=), E (==), NE (!=) // // Other attributes of the comparison, such as unsignedness, are specified // by the comparison instruction that sets a condition code flags register. // That result is represented by a flags operand whose subtype is appropriate // to the unsignedness (etc.) of the comparison. // // Later, the instruction which matches both the Comparison Op (a Bool) and // the flags (produced by the Cmp) specifies the coding of the comparison op // by matching a specific subtype of Bool operand below, such as cmpOpU. operand cmpOp() %{ match(Bool); format %{ "" %} interface(COND_INTER) %{ equal(0x1); not_equal(0x9); less(0x3); greater_equal(0xB); less_equal(0x2); greater(0xA); %} %} // Comparison Op, unsigned operand cmpOpU() %{ match(Bool); format %{ "u" %} interface(COND_INTER) %{ equal(0x1); not_equal(0x9); less(0x5); greater_equal(0xD); less_equal(0x4); greater(0xC); %} %} // Comparison Op, pointer (same as unsigned) operand cmpOpP() %{ match(Bool); format %{ "p" %} interface(COND_INTER) %{ equal(0x1); not_equal(0x9); less(0x5); greater_equal(0xD); less_equal(0x4); greater(0xC); %} %} // Comparison Op, branch-register encoding operand cmpOp_reg() %{ match(Bool); format %{ "" %} interface(COND_INTER) %{ equal (0x1); not_equal (0x5); less (0x3); greater_equal(0x7); less_equal (0x2); greater (0x6); %} %} // Comparison Code, floating, unordered same as less operand cmpOpF() %{ match(Bool); format %{ "fl" %} interface(COND_INTER) %{ equal(0x9); not_equal(0x1); less(0x3); greater_equal(0xB); less_equal(0xE); greater(0x6); %} %} // Used by long compare operand cmpOp_commute() %{ match(Bool); format %{ "" %} interface(COND_INTER) %{ equal(0x1); not_equal(0x9); less(0xA); greater_equal(0x2); less_equal(0xB); greater(0x3); %} %} //----------OPERAND CLASSES---------------------------------------------------- // Operand Classes are groups of operands that are used to simplify // instruction definitions by not requiring the AD writer to specify seperate // instructions for every form of operand when the instruction accepts // multiple operand types with the same basic encoding and format. The classic // case of this is memory operands. // Indirect is not included since its use is limited to Compare & Swap opclass memory( indirect, indOffset13, indIndex ); //----------PIPELINE----------------------------------------------------------- pipeline %{ //----------ATTRIBUTES--------------------------------------------------------- attributes %{ fixed_size_instructions; // Fixed size instructions branch_has_delay_slot; // Branch has delay slot following max_instructions_per_bundle = 4; // Up to 4 instructions per bundle instruction_unit_size = 4; // An instruction is 4 bytes long instruction_fetch_unit_size = 16; // The processor fetches one line instruction_fetch_units = 1; // of 16 bytes // List of nop instructions nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR ); %} //----------RESOURCES---------------------------------------------------------- // Resources are the functional units available to the machine resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1); //----------PIPELINE DESCRIPTION----------------------------------------------- // Pipeline Description specifies the stages in the machine's pipeline pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D); //----------PIPELINE CLASSES--------------------------------------------------- // Pipeline Classes describe the stages in which input and output are // referenced by the hardware pipeline. // Integer ALU reg-reg operation pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{ single_instruction; dst : E(write); src1 : R(read); src2 : R(read); IALU : R; %} // Integer ALU reg-reg long operation pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{ instruction_count(2); dst : E(write); src1 : R(read); src2 : R(read); IALU : R; IALU : R; %} // Integer ALU reg-reg long dependent operation pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{ instruction_count(1); multiple_bundles; dst : E(write); src1 : R(read); src2 : R(read); cr : E(write); IALU : R(2); %} // Integer ALU reg-imm operaion pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{ single_instruction; dst : E(write); src1 : R(read); IALU : R; %} // Integer ALU reg-reg operation with condition code pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{ single_instruction; dst : E(write); cr : E(write); src1 : R(read); src2 : R(read); IALU : R; %} // Integer ALU reg-imm operation with condition code pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{ single_instruction; dst : E(write); cr : E(write); src1 : R(read); IALU : R; %} // Integer ALU zero-reg operation pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{ single_instruction; dst : E(write); src2 : R(read); IALU : R; %} // Integer ALU zero-reg operation with condition code only pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{ single_instruction; cr : E(write); src : R(read); IALU : R; %} // Integer ALU reg-reg operation with condition code only pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{ single_instruction; cr : E(write); src1 : R(read); src2 : R(read); IALU : R; %} // Integer ALU reg-imm operation with condition code only pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{ single_instruction; cr : E(write); src1 : R(read); IALU : R; %} // Integer ALU reg-reg-zero operation with condition code only pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{ single_instruction; cr : E(write); src1 : R(read); src2 : R(read); IALU : R; %} // Integer ALU reg-imm-zero operation with condition code only pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{ single_instruction; cr : E(write); src1 : R(read); IALU : R; %} // Integer ALU reg-reg operation with condition code, src1 modified pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{ single_instruction; cr : E(write); src1 : E(write); src1 : R(read); src2 : R(read); IALU : R; %} // Integer ALU reg-imm operation with condition code, src1 modified pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{ single_instruction; cr : E(write); src1 : E(write); src1 : R(read); IALU : R; %} pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{ multiple_bundles; dst : E(write)+4; cr : E(write); src1 : R(read); src2 : R(read); IALU : R(3); BR : R(2); %} // Integer ALU operation pipe_class ialu_none(iRegI dst) %{ single_instruction; dst : E(write); IALU : R; %} // Integer ALU reg operation pipe_class ialu_reg(iRegI dst, iRegI src) %{ single_instruction; may_have_no_code; dst : E(write); src : R(read); IALU : R; %} // Integer ALU reg conditional operation // This instruction has a 1 cycle stall, and cannot execute // in the same cycle as the instruction setting the condition // code. We kludge this by pretending to read the condition code // 1 cycle earlier, and by marking the functional units as busy // for 2 cycles with the result available 1 cycle later than // is really the case. pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{ single_instruction; op2_out : C(write); op1 : R(read); cr : R(read); // This is really E, with a 1 cycle stall BR : R(2); MS : R(2); %} #ifdef _LP64 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{ instruction_count(1); multiple_bundles; dst : C(write)+1; src : R(read)+1; IALU : R(1); BR : E(2); MS : E(2); %} #endif // Integer ALU reg operation pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{ single_instruction; may_have_no_code; dst : E(write); src : R(read); IALU : R; %} pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{ single_instruction; may_have_no_code; dst : E(write); src : R(read); IALU : R; %} // Two integer ALU reg operations pipe_class ialu_reg_2(iRegL dst, iRegL src) %{ instruction_count(2); dst : E(write); src : R(read); A0 : R; A1 : R; %} // Two integer ALU reg operations pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{ instruction_count(2); may_have_no_code; dst : E(write); src : R(read); A0 : R; A1 : R; %} // Integer ALU imm operation pipe_class ialu_imm(iRegI dst, immI13 src) %{ single_instruction; dst : E(write); IALU : R; %} // Integer ALU reg-reg with carry operation pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{ single_instruction; dst : E(write); src1 : R(read); src2 : R(read); IALU : R; %} // Integer ALU cc operation pipe_class ialu_cc(iRegI dst, flagsReg cc) %{ single_instruction; dst : E(write); cc : R(read); IALU : R; %} // Integer ALU cc / second IALU operation pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{ instruction_count(1); multiple_bundles; dst : E(write)+1; src : R(read); IALU : R; %} // Integer ALU cc / second IALU operation pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{ instruction_count(1); multiple_bundles; dst : E(write)+1; p : R(read); q : R(read); IALU : R; %} // Integer ALU hi-lo-reg operation pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{ instruction_count(1); multiple_bundles; dst : E(write)+1; IALU : R(2); %} // Float ALU hi-lo-reg operation (with temp) pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{ instruction_count(1); multiple_bundles; dst : E(write)+1; IALU : R(2); %} // Long Constant pipe_class loadConL( iRegL dst, immL src ) %{ instruction_count(2); multiple_bundles; dst : E(write)+1; IALU : R(2); IALU : R(2); %} // Pointer Constant pipe_class loadConP( iRegP dst, immP src ) %{ instruction_count(0); multiple_bundles; fixed_latency(6); %} // Polling Address pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{ #ifdef _LP64 instruction_count(0); multiple_bundles; fixed_latency(6); #else dst : E(write); IALU : R; #endif %} // Long Constant small pipe_class loadConLlo( iRegL dst, immL src ) %{ instruction_count(2); dst : E(write); IALU : R; IALU : R; %} // [PHH] This is wrong for 64-bit. See LdImmF/D. pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{ instruction_count(1); multiple_bundles; src : R(read); dst : M(write)+1; IALU : R; MS : E; %} // Integer ALU nop operation pipe_class ialu_nop() %{ single_instruction; IALU : R; %} // Integer ALU nop operation pipe_class ialu_nop_A0() %{ single_instruction; A0 : R; %} // Integer ALU nop operation pipe_class ialu_nop_A1() %{ single_instruction; A1 : R; %} // Integer Multiply reg-reg operation pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{ single_instruction; dst : E(write); src1 : R(read); src2 : R(read); MS : R(5); %} // Integer Multiply reg-imm operation pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{ single_instruction; dst : E(write); src1 : R(read); MS : R(5); %} pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{ single_instruction; dst : E(write)+4; src1 : R(read); src2 : R(read); MS : R(6); %} pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{ single_instruction; dst : E(write)+4; src1 : R(read); MS : R(6); %} // Integer Divide reg-reg pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{ instruction_count(1); multiple_bundles; dst : E(write); temp : E(write); src1 : R(read); src2 : R(read); temp : R(read); MS : R(38); %} // Integer Divide reg-imm pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{ instruction_count(1); multiple_bundles; dst : E(write); temp : E(write); src1 : R(read); temp : R(read); MS : R(38); %} // Long Divide pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{ dst : E(write)+71; src1 : R(read); src2 : R(read)+1; MS : R(70); %} pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{ dst : E(write)+71; src1 : R(read); MS : R(70); %} // Floating Point Add Float pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{ single_instruction; dst : X(write); src1 : E(read); src2 : E(read); FA : R; %} // Floating Point Add Double pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{ single_instruction; dst : X(write); src1 : E(read); src2 : E(read); FA : R; %} // Floating Point Conditional Move based on integer flags pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{ single_instruction; dst : X(write); src : E(read); cr : R(read); FA : R(2); BR : R(2); %} // Floating Point Conditional Move based on integer flags pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{ single_instruction; dst : X(write); src : E(read); cr : R(read); FA : R(2); BR : R(2); %} // Floating Point Multiply Float pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{ single_instruction; dst : X(write); src1 : E(read); src2 : E(read); FM : R; %} // Floating Point Multiply Double pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{ single_instruction; dst : X(write); src1 : E(read); src2 : E(read); FM : R; %} // Floating Point Divide Float pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{ single_instruction; dst : X(write); src1 : E(read); src2 : E(read); FM : R; FDIV : C(14); %} // Floating Point Divide Double pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{ single_instruction; dst : X(write); src1 : E(read); src2 : E(read); FM : R; FDIV : C(17); %} // Floating Point Move/Negate/Abs Float pipe_class faddF_reg(regF dst, regF src) %{ single_instruction; dst : W(write); src : E(read); FA : R(1); %} // Floating Point Move/Negate/Abs Double pipe_class faddD_reg(regD dst, regD src) %{ single_instruction; dst : W(write); src : E(read); FA : R; %} // Floating Point Convert F->D pipe_class fcvtF2D(regD dst, regF src) %{ single_instruction; dst : X(write); src : E(read); FA : R; %} // Floating Point Convert I->D pipe_class fcvtI2D(regD dst, regF src) %{ single_instruction; dst : X(write); src : E(read); FA : R; %} // Floating Point Convert LHi->D pipe_class fcvtLHi2D(regD dst, regD src) %{ single_instruction; dst : X(write); src : E(read); FA : R; %} // Floating Point Convert L->D pipe_class fcvtL2D(regD dst, regF src) %{ single_instruction; dst : X(write); src : E(read); FA : R; %} // Floating Point Convert L->F pipe_class fcvtL2F(regD dst, regF src) %{ single_instruction; dst : X(write); src : E(read); FA : R; %} // Floating Point Convert D->F pipe_class fcvtD2F(regD dst, regF src) %{ single_instruction; dst : X(write); src : E(read); FA : R; %} // Floating Point Convert I->L pipe_class fcvtI2L(regD dst, regF src) %{ single_instruction; dst : X(write); src : E(read); FA : R; %} // Floating Point Convert D->F pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{ instruction_count(1); multiple_bundles; dst : X(write)+6; src : E(read); FA : R; %} // Floating Point Convert D->L pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{ instruction_count(1); multiple_bundles; dst : X(write)+6; src : E(read); FA : R; %} // Floating Point Convert F->I pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{ instruction_count(1); multiple_bundles; dst : X(write)+6; src : E(read); FA : R; %} // Floating Point Convert F->L pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{ instruction_count(1); multiple_bundles; dst : X(write)+6; src : E(read); FA : R; %} // Floating Point Convert I->F pipe_class fcvtI2F(regF dst, regF src) %{ single_instruction; dst : X(write); src : E(read); FA : R; %} // Floating Point Compare pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{ single_instruction; cr : X(write); src1 : E(read); src2 : E(read); FA : R; %} // Floating Point Compare pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{ single_instruction; cr : X(write); src1 : E(read); src2 : E(read); FA : R; %} // Floating Add Nop pipe_class fadd_nop() %{ single_instruction; FA : R; %} // Integer Store to Memory pipe_class istore_mem_reg(memory mem, iRegI src) %{ single_instruction; mem : R(read); src : C(read); MS : R; %} // Integer Store to Memory pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{ single_instruction; mem : R(read); src : C(read); MS : R; %} // Integer Store Zero to Memory pipe_class istore_mem_zero(memory mem, immI0 src) %{ single_instruction; mem : R(read); MS : R; %} // Special Stack Slot Store pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{ single_instruction; stkSlot : R(read); src : C(read); MS : R; %} // Special Stack Slot Store pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{ instruction_count(2); multiple_bundles; stkSlot : R(read); src : C(read); MS : R(2); %} // Float Store pipe_class fstoreF_mem_reg(memory mem, RegF src) %{ single_instruction; mem : R(read); src : C(read); MS : R; %} // Float Store pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{ single_instruction; mem : R(read); MS : R; %} // Double Store pipe_class fstoreD_mem_reg(memory mem, RegD src) %{ instruction_count(1); mem : R(read); src : C(read); MS : R; %} // Double Store pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{ single_instruction; mem : R(read); MS : R; %} // Special Stack Slot Float Store pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{ single_instruction; stkSlot : R(read); src : C(read); MS : R; %} // Special Stack Slot Double Store pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{ single_instruction; stkSlot : R(read); src : C(read); MS : R; %} // Integer Load (when sign bit propagation not needed) pipe_class iload_mem(iRegI dst, memory mem) %{ single_instruction; mem : R(read); dst : C(write); MS : R; %} // Integer Load from stack operand pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{ single_instruction; mem : R(read); dst : C(write); MS : R; %} // Integer Load (when sign bit propagation or masking is needed) pipe_class iload_mask_mem(iRegI dst, memory mem) %{ single_instruction; mem : R(read); dst : M(write); MS : R; %} // Float Load pipe_class floadF_mem(regF dst, memory mem) %{ single_instruction; mem : R(read); dst : M(write); MS : R; %} // Float Load pipe_class floadD_mem(regD dst, memory mem) %{ instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case mem : R(read); dst : M(write); MS : R; %} // Float Load pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{ single_instruction; stkSlot : R(read); dst : M(write); MS : R; %} // Float Load pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{ single_instruction; stkSlot : R(read); dst : M(write); MS : R; %} // Memory Nop pipe_class mem_nop() %{ single_instruction; MS : R; %} pipe_class sethi(iRegP dst, immI src) %{ single_instruction; dst : E(write); IALU : R; %} pipe_class loadPollP(iRegP poll) %{ single_instruction; poll : R(read); MS : R; %} pipe_class br(Universe br, label labl) %{ single_instruction_with_delay_slot; BR : R; %} pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{ single_instruction_with_delay_slot; cr : E(read); BR : R; %} pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{ single_instruction_with_delay_slot; op1 : E(read); BR : R; MS : R; %} pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{ single_instruction_with_delay_slot; cr : E(read); BR : R; %} pipe_class br_nop() %{ single_instruction; BR : R; %} pipe_class simple_call(method meth) %{ instruction_count(2); multiple_bundles; force_serialization; fixed_latency(100); BR : R(1); MS : R(1); A0 : R(1); %} pipe_class compiled_call(method meth) %{ instruction_count(1); multiple_bundles; force_serialization; fixed_latency(100); MS : R(1); %} pipe_class call(method meth) %{ instruction_count(0); multiple_bundles; force_serialization; fixed_latency(100); %} pipe_class tail_call(Universe ignore, label labl) %{ single_instruction; has_delay_slot; fixed_latency(100); BR : R(1); MS : R(1); %} pipe_class ret(Universe ignore) %{ single_instruction; has_delay_slot; BR : R(1); MS : R(1); %} pipe_class ret_poll(g3RegP poll) %{ instruction_count(3); has_delay_slot; poll : E(read); MS : R; %} // The real do-nothing guy pipe_class empty( ) %{ instruction_count(0); %} pipe_class long_memory_op() %{ instruction_count(0); multiple_bundles; force_serialization; fixed_latency(25); MS : R(1); %} // Check-cast pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{ array : R(read); match : R(read); IALU : R(2); BR : R(2); MS : R; %} // Convert FPU flags into +1,0,-1 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{ src1 : E(read); src2 : E(read); dst : E(write); FA : R; MS : R(2); BR : R(2); %} // Compare for p < q, and conditionally add y pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{ p : E(read); q : E(read); y : E(read); IALU : R(3) %} // Perform a compare, then move conditionally in a branch delay slot. pipe_class min_max( iRegI src2, iRegI srcdst ) %{ src2 : E(read); srcdst : E(read); IALU : R; BR : R; %} // Define the class for the Nop node define %{ MachNop = ialu_nop; %} %} //----------INSTRUCTIONS------------------------------------------------------- //------------Special Stack Slot instructions - no match rules----------------- instruct stkI_to_regF(regF dst, stackSlotI src) %{ // No match rule to avoid chain rule match. effect(DEF dst, USE src); ins_cost(MEMORY_REF_COST); size(4); format %{ "LDF $src,$dst\t! stkI to regF" %} opcode(Assembler::ldf_op3); ins_encode(form3_mem_reg(src, dst)); ins_pipe(floadF_stk); %} instruct stkL_to_regD(regD dst, stackSlotL src) %{ // No match rule to avoid chain rule match. effect(DEF dst, USE src); ins_cost(MEMORY_REF_COST); size(4); format %{ "LDDF $src,$dst\t! stkL to regD" %} opcode(Assembler::lddf_op3); ins_encode(form3_mem_reg(src, dst)); ins_pipe(floadD_stk); %} instruct regF_to_stkI(stackSlotI dst, regF src) %{ // No match rule to avoid chain rule match. effect(DEF dst, USE src); ins_cost(MEMORY_REF_COST); size(4); format %{ "STF $src,$dst\t! regF to stkI" %} opcode(Assembler::stf_op3); ins_encode(form3_mem_reg(dst, src)); ins_pipe(fstoreF_stk_reg); %} instruct regD_to_stkL(stackSlotL dst, regD src) %{ // No match rule to avoid chain rule match. effect(DEF dst, USE src); ins_cost(MEMORY_REF_COST); size(4); format %{ "STDF $src,$dst\t! regD to stkL" %} opcode(Assembler::stdf_op3); ins_encode(form3_mem_reg(dst, src)); ins_pipe(fstoreD_stk_reg); %} instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{ effect(DEF dst, USE src); ins_cost(MEMORY_REF_COST*2); size(8); format %{ "STW $src,$dst.hi\t! long\n\t" "STW R_G0,$dst.lo" %} opcode(Assembler::stw_op3); ins_encode(form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0)); ins_pipe(lstoreI_stk_reg); %} instruct regL_to_stkD(stackSlotD dst, iRegL src) %{ // No match rule to avoid chain rule match. effect(DEF dst, USE src); ins_cost(MEMORY_REF_COST); size(4); format %{ "STX $src,$dst\t! regL to stkD" %} opcode(Assembler::stx_op3); ins_encode( form3_mem_reg( dst, src ) ); ins_pipe(istore_stk_reg); %} //---------- Chain stack slots between similar types -------- // Load integer from stack slot instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{ match(Set dst src); ins_cost(MEMORY_REF_COST); size(4); format %{ "LDUW $src,$dst\t!stk" %} opcode(Assembler::lduw_op3); ins_encode( form3_mem_reg( src, dst ) ); ins_pipe(iload_mem); %} // Store integer to stack slot instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{ match(Set dst src); ins_cost(MEMORY_REF_COST); size(4); format %{ "STW $src,$dst\t!stk" %} opcode(Assembler::stw_op3); ins_encode( form3_mem_reg( dst, src ) ); ins_pipe(istore_mem_reg); %} // Load long from stack slot instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{ match(Set dst src); ins_cost(MEMORY_REF_COST); size(4); format %{ "LDX $src,$dst\t! long" %} opcode(Assembler::ldx_op3); ins_encode( form3_mem_reg( src, dst ) ); ins_pipe(iload_mem); %} // Store long to stack slot instruct regL_to_stkL(stackSlotL dst, iRegL src) %{ match(Set dst src); ins_cost(MEMORY_REF_COST); size(4); format %{ "STX $src,$dst\t! long" %} opcode(Assembler::stx_op3); ins_encode( form3_mem_reg( dst, src ) ); ins_pipe(istore_mem_reg); %} #ifdef _LP64 // Load pointer from stack slot, 64-bit encoding instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{ match(Set dst src); ins_cost(MEMORY_REF_COST); size(4); format %{ "LDX $src,$dst\t!ptr" %} opcode(Assembler::ldx_op3); ins_encode( form3_mem_reg( src, dst ) ); ins_pipe(iload_mem); %} // Store pointer to stack slot instruct regP_to_stkP(stackSlotP dst, iRegP src) %{ match(Set dst src); ins_cost(MEMORY_REF_COST); size(4); format %{ "STX $src,$dst\t!ptr" %} opcode(Assembler::stx_op3); ins_encode( form3_mem_reg( dst, src ) ); ins_pipe(istore_mem_reg); %} #else // _LP64 // Load pointer from stack slot, 32-bit encoding instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{ match(Set dst src); ins_cost(MEMORY_REF_COST); format %{ "LDUW $src,$dst\t!ptr" %} opcode(Assembler::lduw_op3, Assembler::ldst_op); ins_encode( form3_mem_reg( src, dst ) ); ins_pipe(iload_mem); %} // Store pointer to stack slot instruct regP_to_stkP(stackSlotP dst, iRegP src) %{ match(Set dst src); ins_cost(MEMORY_REF_COST); format %{ "STW $src,$dst\t!ptr" %} opcode(Assembler::stw_op3, Assembler::ldst_op); ins_encode( form3_mem_reg( dst, src ) ); ins_pipe(istore_mem_reg); %} #endif // _LP64 //------------Special Nop instructions for bundling - no match rules----------- // Nop using the A0 functional unit instruct Nop_A0() %{ ins_cost(0); format %{ "NOP ! Alu Pipeline" %} opcode(Assembler::or_op3, Assembler::arith_op); ins_encode( form2_nop() ); ins_pipe(ialu_nop_A0); %} // Nop using the A1 functional unit instruct Nop_A1( ) %{ ins_cost(0); format %{ "NOP ! Alu Pipeline" %} opcode(Assembler::or_op3, Assembler::arith_op); ins_encode( form2_nop() ); ins_pipe(ialu_nop_A1); %} // Nop using the memory functional unit instruct Nop_MS( ) %{ ins_cost(0); format %{ "NOP ! Memory Pipeline" %} ins_encode( emit_mem_nop ); ins_pipe(mem_nop); %} // Nop using the floating add functional unit instruct Nop_FA( ) %{ ins_cost(0); format %{ "NOP ! Floating Add Pipeline" %} ins_encode( emit_fadd_nop ); ins_pipe(fadd_nop); %} // Nop using the branch functional unit instruct Nop_BR( ) %{ ins_cost(0); format %{ "NOP ! Branch Pipeline" %} ins_encode( emit_br_nop ); ins_pipe(br_nop); %} //----------Load/Store/Move Instructions--------------------------------------- //----------Load Instructions-------------------------------------------------- // Load Byte (8bit signed) instruct loadB(iRegI dst, memory mem) %{ match(Set dst (LoadB mem)); ins_cost(MEMORY_REF_COST); size(4); format %{ "LDSB $mem,$dst" %} opcode(Assembler::ldsb_op3); ins_encode( form3_mem_reg( mem, dst ) ); ins_pipe(iload_mask_mem); %} // Load Byte (8bit UNsigned) into an int reg instruct loadUB(iRegI dst, memory mem, immI_255 bytemask) %{ match(Set dst (AndI (LoadB mem) bytemask)); ins_cost(MEMORY_REF_COST); size(4); format %{ "LDUB $mem,$dst" %} opcode(Assembler::ldub_op3); ins_encode( form3_mem_reg( mem, dst ) ); ins_pipe(iload_mask_mem); %} // Load Byte (8bit UNsigned) into a Long Register instruct loadUBL(iRegL dst, memory mem, immL_FF bytemask) %{ match(Set dst (AndL (ConvI2L (LoadB mem)) bytemask)); ins_cost(MEMORY_REF_COST); size(4); format %{ "LDUB $mem,$dst" %} opcode(Assembler::ldub_op3); ins_encode( form3_mem_reg( mem, dst ) ); ins_pipe(iload_mask_mem); %} // Load Char (16bit UNsigned) into a Long Register instruct loadUCL(iRegL dst, memory mem, immL_FFFF bytemask) %{ match(Set dst (AndL (ConvI2L (LoadC mem)) bytemask)); ins_cost(MEMORY_REF_COST); size(4); format %{ "LDUH $mem,$dst" %} opcode(Assembler::lduh_op3); ins_encode( form3_mem_reg( mem, dst ) ); ins_pipe(iload_mask_mem); %} // Load Char (16bit unsigned) instruct loadC(iRegI dst, memory mem) %{ match(Set dst (LoadC mem)); ins_cost(MEMORY_REF_COST); size(4); format %{ "LDUH $mem,$dst" %} opcode(Assembler::lduh_op3); ins_encode( form3_mem_reg( mem, dst ) ); ins_pipe(iload_mask_mem); %} // Load Integer instruct loadI(iRegI dst, memory mem) %{ match(Set dst (LoadI mem)); ins_cost(MEMORY_REF_COST); size(4); format %{ "LDUW $mem,$dst" %} opcode(Assembler::lduw_op3); ins_encode( form3_mem_reg( mem, dst ) ); ins_pipe(iload_mem); %} // Load Long - aligned instruct loadL(iRegL dst, memory mem ) %{ match(Set dst (LoadL mem)); ins_cost(MEMORY_REF_COST); size(4); format %{ "LDX $mem,$dst\t! long" %} opcode(Assembler::ldx_op3); ins_encode( form3_mem_reg( mem, dst ) ); ins_pipe(iload_mem); %} // Load Long - UNaligned instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{ match(Set dst (LoadL_unaligned mem)); effect(KILL tmp); ins_cost(MEMORY_REF_COST*2+DEFAULT_COST); size(16); format %{ "LDUW $mem+4,R_O7\t! misaligned long\n" "\tLDUW $mem ,$dst\n" "\tSLLX #32, $dst, $dst\n" "\tOR $dst, R_O7, $dst" %} opcode(Assembler::lduw_op3); ins_encode( form3_mem_reg_long_unaligned_marshal( mem, dst )); ins_pipe(iload_mem); %} // Load Aligned Packed Byte into a Double Register instruct loadA8B(regD dst, memory mem) %{ match(Set dst (Load8B mem)); ins_cost(MEMORY_REF_COST); size(4); format %{ "LDDF $mem,$dst\t! packed8B" %} opcode(Assembler::lddf_op3); ins_encode( form3_mem_reg( mem, dst ) ); ins_pipe(floadD_mem); %} // Load Aligned Packed Char into a Double Register instruct loadA4C(regD dst, memory mem) %{ match(Set dst (Load4C mem)); ins_cost(MEMORY_REF_COST); size(4); format %{ "LDDF $mem,$dst\t! packed4C" %} opcode(Assembler::lddf_op3); ins_encode( form3_mem_reg( mem, dst ) ); ins_pipe(floadD_mem); %} // Load Aligned Packed Short into a Double Register instruct loadA4S(regD dst, memory mem) %{ match(Set dst (Load4S mem)); ins_cost(MEMORY_REF_COST); size(4); format %{ "LDDF $mem,$dst\t! packed4S" %} opcode(Assembler::lddf_op3); ins_encode( form3_mem_reg( mem, dst ) ); ins_pipe(floadD_mem); %} // Load Aligned Packed Int into a Double Register instruct loadA2I(regD dst, memory mem) %{ match(Set dst (Load2I mem)); ins_cost(MEMORY_REF_COST); size(4); format %{ "LDDF $mem,$dst\t! packed2I" %} opcode(Assembler::lddf_op3); ins_encode( form3_mem_reg( mem, dst ) ); ins_pipe(floadD_mem); %} // Load Range instruct loadRange(iRegI dst, memory mem) %{ match(Set dst (LoadRange mem)); ins_cost(MEMORY_REF_COST); size(4); format %{ "LDUW $mem,$dst\t! range" %} opcode(Assembler::lduw_op3); ins_encode( form3_mem_reg( mem, dst ) ); ins_pipe(iload_mem); %} // Load Integer into %f register (for fitos/fitod) instruct loadI_freg(regF dst, memory mem) %{ match(Set dst (LoadI mem)); ins_cost(MEMORY_REF_COST); size(4); format %{ "LDF $mem,$dst\t! for fitos/fitod" %} opcode(Assembler::ldf_op3); ins_encode( form3_mem_reg( mem, dst ) ); ins_pipe(floadF_mem); %} // Load Pointer instruct loadP(iRegP dst, memory mem) %{ match(Set dst (LoadP mem)); ins_cost(MEMORY_REF_COST); size(4); #ifndef _LP64 format %{ "LDUW $mem,$dst\t! ptr" %} opcode(Assembler::lduw_op3, 0, REGP_OP); #else format %{ "LDX $mem,$dst\t! ptr" %} opcode(Assembler::ldx_op3, 0, REGP_OP); #endif ins_encode( form3_mem_reg( mem, dst ) ); ins_pipe(iload_mem); %} // Load Klass Pointer instruct loadKlass(iRegP dst, memory mem) %{ match(Set dst (LoadKlass mem)); ins_cost(MEMORY_REF_COST); size(4); #ifndef _LP64 format %{ "LDUW $mem,$dst\t! klass ptr" %} opcode(Assembler::lduw_op3, 0, REGP_OP); #else format %{ "LDX $mem,$dst\t! klass ptr" %} opcode(Assembler::ldx_op3, 0, REGP_OP); #endif ins_encode( form3_mem_reg( mem, dst ) ); ins_pipe(iload_mem); %} // Load Short (16bit signed) instruct loadS(iRegI dst, memory mem) %{ match(Set dst (LoadS mem)); ins_cost(MEMORY_REF_COST); size(4); format %{ "LDSH $mem,$dst" %} opcode(Assembler::ldsh_op3); ins_encode( form3_mem_reg( mem, dst ) ); ins_pipe(iload_mask_mem); %} // Load Double instruct loadD(regD dst, memory mem) %{ match(Set dst (LoadD mem)); ins_cost(MEMORY_REF_COST); size(4); format %{ "LDDF $mem,$dst" %} opcode(Assembler::lddf_op3); ins_encode( form3_mem_reg( mem, dst ) ); ins_pipe(floadD_mem); %} // Load Double - UNaligned instruct loadD_unaligned(regD_low dst, memory mem ) %{ match(Set dst (LoadD_unaligned mem)); ins_cost(MEMORY_REF_COST*2+DEFAULT_COST); size(8); format %{ "LDF $mem ,$dst.hi\t! misaligned double\n" "\tLDF $mem+4,$dst.lo\t!" %} opcode(Assembler::ldf_op3); ins_encode( form3_mem_reg_double_unaligned( mem, dst )); ins_pipe(iload_mem); %} // Load Float instruct loadF(regF dst, memory mem) %{ match(Set dst (LoadF mem)); ins_cost(MEMORY_REF_COST); size(4); format %{ "LDF $mem,$dst" %} opcode(Assembler::ldf_op3); ins_encode( form3_mem_reg( mem, dst ) ); ins_pipe(floadF_mem); %} // Load Constant instruct loadConI( iRegI dst, immI src ) %{ match(Set dst src); ins_cost(DEFAULT_COST * 3/2); format %{ "SET $src,$dst" %} ins_encode( Set32(src, dst) ); ins_pipe(ialu_hi_lo_reg); %} instruct loadConI13( iRegI dst, immI13 src ) %{ match(Set dst src); size(4); format %{ "MOV $src,$dst" %} ins_encode( Set13( src, dst ) ); ins_pipe(ialu_imm); %} instruct loadConP(iRegP dst, immP src) %{ match(Set dst src); ins_cost(DEFAULT_COST * 3/2); format %{ "SET $src,$dst\t!ptr" %} // This rule does not use "expand" unlike loadConI because then // the result type is not known to be an Oop. An ADLC // enhancement will be needed to make that work - not worth it! ins_encode( SetPtr( src, dst ) ); ins_pipe(loadConP); %} instruct loadConP0(iRegP dst, immP0 src) %{ match(Set dst src); size(4); format %{ "CLR $dst\t!ptr" %} ins_encode( SetNull( dst ) ); ins_pipe(ialu_imm); %} instruct loadConP_poll(iRegP dst, immP_poll src) %{ match(Set dst src); ins_cost(DEFAULT_COST); format %{ "SET $src,$dst\t!ptr" %} ins_encode %{ Address polling_page(reg_to_register_object($dst$$reg), (address)os::get_polling_page()); __ sethi(polling_page, false ); %} ins_pipe(loadConP_poll); %} instruct loadConL(iRegL dst, immL src, o7RegL tmp) %{ // %%% maybe this should work like loadConD match(Set dst src); effect(KILL tmp); ins_cost(DEFAULT_COST * 4); format %{ "SET64 $src,$dst KILL $tmp\t! long" %} ins_encode( LdImmL(src, dst, tmp) ); ins_pipe(loadConL); %} instruct loadConL0( iRegL dst, immL0 src ) %{ match(Set dst src); ins_cost(DEFAULT_COST); size(4); format %{ "CLR $dst\t! long" %} ins_encode( Set13( src, dst ) ); ins_pipe(ialu_imm); %} instruct loadConL13( iRegL dst, immL13 src ) %{ match(Set dst src); ins_cost(DEFAULT_COST * 2); size(4); format %{ "MOV $src,$dst\t! long" %} ins_encode( Set13( src, dst ) ); ins_pipe(ialu_imm); %} instruct loadConF(regF dst, immF src, o7RegP tmp) %{ match(Set dst src); effect(KILL tmp); #ifdef _LP64 size(36); #else size(8); #endif format %{ "SETHI hi(&$src),$tmp\t!get float $src from table\n\t" "LDF [$tmp+lo(&$src)],$dst" %} ins_encode( LdImmF(src, dst, tmp) ); ins_pipe(loadConFD); %} instruct loadConD(regD dst, immD src, o7RegP tmp) %{ match(Set dst src); effect(KILL tmp); #ifdef _LP64 size(36); #else size(8); #endif format %{ "SETHI hi(&$src),$tmp\t!get double $src from table\n\t" "LDDF [$tmp+lo(&$src)],$dst" %} ins_encode( LdImmD(src, dst, tmp) ); ins_pipe(loadConFD); %} // Prefetch instructions. // Must be safe to execute with invalid address (cannot fault). instruct prefetchr( memory mem ) %{ match( PrefetchRead mem ); ins_cost(MEMORY_REF_COST); format %{ "PREFETCH $mem,0\t! Prefetch read-many" %} opcode(Assembler::prefetch_op3); ins_encode( form3_mem_prefetch_read( mem ) ); ins_pipe(iload_mem); %} instruct prefetchw( memory mem ) %{ match( PrefetchWrite mem ); ins_cost(MEMORY_REF_COST); format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %} opcode(Assembler::prefetch_op3); ins_encode( form3_mem_prefetch_write( mem ) ); ins_pipe(iload_mem); %} //----------Store Instructions------------------------------------------------- // Store Byte instruct storeB(memory mem, iRegI src) %{ match(Set mem (StoreB mem src)); ins_cost(MEMORY_REF_COST); size(4); format %{ "STB $src,$mem\t! byte" %} opcode(Assembler::stb_op3); ins_encode( form3_mem_reg( mem, src ) ); ins_pipe(istore_mem_reg); %} instruct storeB0(memory mem, immI0 src) %{ match(Set mem (StoreB mem src)); ins_cost(MEMORY_REF_COST); size(4); format %{ "STB $src,$mem\t! byte" %} opcode(Assembler::stb_op3); ins_encode( form3_mem_reg( mem, R_G0 ) ); ins_pipe(istore_mem_zero); %} instruct storeCM0(memory mem, immI0 src) %{ match(Set mem (StoreCM mem src)); ins_cost(MEMORY_REF_COST); size(4); format %{ "STB $src,$mem\t! CMS card-mark byte 0" %} opcode(Assembler::stb_op3); ins_encode( form3_mem_reg( mem, R_G0 ) ); ins_pipe(istore_mem_zero); %} // Store Char/Short instruct storeC(memory mem, iRegI src) %{ match(Set mem (StoreC mem src)); ins_cost(MEMORY_REF_COST); size(4); format %{ "STH $src,$mem\t! short" %} opcode(Assembler::sth_op3); ins_encode( form3_mem_reg( mem, src ) ); ins_pipe(istore_mem_reg); %} instruct storeC0(memory mem, immI0 src) %{ match(Set mem (StoreC mem src)); ins_cost(MEMORY_REF_COST); size(4); format %{ "STH $src,$mem\t! short" %} opcode(Assembler::sth_op3); ins_encode( form3_mem_reg( mem, R_G0 ) ); ins_pipe(istore_mem_zero); %} // Store Integer instruct storeI(memory mem, iRegI src) %{ match(Set mem (StoreI mem src)); ins_cost(MEMORY_REF_COST); size(4); format %{ "STW $src,$mem" %} opcode(Assembler::stw_op3); ins_encode( form3_mem_reg( mem, src ) ); ins_pipe(istore_mem_reg); %} // Store Long instruct storeL(memory mem, iRegL src) %{ match(Set mem (StoreL mem src)); ins_cost(MEMORY_REF_COST); size(4); format %{ "STX $src,$mem\t! long" %} opcode(Assembler::stx_op3); ins_encode( form3_mem_reg( mem, src ) ); ins_pipe(istore_mem_reg); %} instruct storeI0(memory mem, immI0 src) %{ match(Set mem (StoreI mem src)); ins_cost(MEMORY_REF_COST); size(4); format %{ "STW $src,$mem" %} opcode(Assembler::stw_op3); ins_encode( form3_mem_reg( mem, R_G0 ) ); ins_pipe(istore_mem_zero); %} instruct storeL0(memory mem, immL0 src) %{ match(Set mem (StoreL mem src)); ins_cost(MEMORY_REF_COST); size(4); format %{ "STX $src,$mem" %} opcode(Assembler::stx_op3); ins_encode( form3_mem_reg( mem, R_G0 ) ); ins_pipe(istore_mem_zero); %} // Store Integer from float register (used after fstoi) instruct storeI_Freg(memory mem, regF src) %{ match(Set mem (StoreI mem src)); ins_cost(MEMORY_REF_COST); size(4); format %{ "STF $src,$mem\t! after fstoi/fdtoi" %} opcode(Assembler::stf_op3); ins_encode( form3_mem_reg( mem, src ) ); ins_pipe(fstoreF_mem_reg); %} // Store Pointer instruct storeP(memory dst, sp_ptr_RegP src) %{ match(Set dst (StoreP dst src)); ins_cost(MEMORY_REF_COST); size(4); #ifndef _LP64 format %{ "STW $src,$dst\t! ptr" %} opcode(Assembler::stw_op3, 0, REGP_OP); #else format %{ "STX $src,$dst\t! ptr" %} opcode(Assembler::stx_op3, 0, REGP_OP); #endif ins_encode( form3_mem_reg( dst, src ) ); ins_pipe(istore_mem_spORreg); %} instruct storeP0(memory dst, immP0 src) %{ match(Set dst (StoreP dst src)); ins_cost(MEMORY_REF_COST); size(4); #ifndef _LP64 format %{ "STW $src,$dst\t! ptr" %} opcode(Assembler::stw_op3, 0, REGP_OP); #else format %{ "STX $src,$dst\t! ptr" %} opcode(Assembler::stx_op3, 0, REGP_OP); #endif ins_encode( form3_mem_reg( dst, R_G0 ) ); ins_pipe(istore_mem_zero); %} // Store Double instruct storeD( memory mem, regD src) %{ match(Set mem (StoreD mem src)); ins_cost(MEMORY_REF_COST); size(4); format %{ "STDF $src,$mem" %} opcode(Assembler::stdf_op3); ins_encode( form3_mem_reg( mem, src ) ); ins_pipe(fstoreD_mem_reg); %} instruct storeD0( memory mem, immD0 src) %{ match(Set mem (StoreD mem src)); ins_cost(MEMORY_REF_COST); size(4); format %{ "STX $src,$mem" %} opcode(Assembler::stx_op3); ins_encode( form3_mem_reg( mem, R_G0 ) ); ins_pipe(fstoreD_mem_zero); %} // Store Float instruct storeF( memory mem, regF src) %{ match(Set mem (StoreF mem src)); ins_cost(MEMORY_REF_COST); size(4); format %{ "STF $src,$mem" %} opcode(Assembler::stf_op3); ins_encode( form3_mem_reg( mem, src ) ); ins_pipe(fstoreF_mem_reg); %} instruct storeF0( memory mem, immF0 src) %{ match(Set mem (StoreF mem src)); ins_cost(MEMORY_REF_COST); size(4); format %{ "STW $src,$mem\t! storeF0" %} opcode(Assembler::stw_op3); ins_encode( form3_mem_reg( mem, R_G0 ) ); ins_pipe(fstoreF_mem_zero); %} // Store Aligned Packed Bytes in Double register to memory instruct storeA8B(memory mem, regD src) %{ match(Set mem (Store8B mem src)); ins_cost(MEMORY_REF_COST); size(4); format %{ "STDF $src,$mem\t! packed8B" %} opcode(Assembler::stdf_op3); ins_encode( form3_mem_reg( mem, src ) ); ins_pipe(fstoreD_mem_reg); %} // Store Zero into Aligned Packed Bytes instruct storeA8B0(memory mem, immI0 zero) %{ match(Set mem (Store8B mem zero)); ins_cost(MEMORY_REF_COST); size(4); format %{ "STX $zero,$mem\t! packed8B" %} opcode(Assembler::stx_op3); ins_encode( form3_mem_reg( mem, R_G0 ) ); ins_pipe(fstoreD_mem_zero); %} // Store Aligned Packed Chars/Shorts in Double register to memory instruct storeA4C(memory mem, regD src) %{ match(Set mem (Store4C mem src)); ins_cost(MEMORY_REF_COST); size(4); format %{ "STDF $src,$mem\t! packed4C" %} opcode(Assembler::stdf_op3); ins_encode( form3_mem_reg( mem, src ) ); ins_pipe(fstoreD_mem_reg); %} // Store Zero into Aligned Packed Chars/Shorts instruct storeA4C0(memory mem, immI0 zero) %{ match(Set mem (Store4C mem (Replicate4C zero))); ins_cost(MEMORY_REF_COST); size(4); format %{ "STX $zero,$mem\t! packed4C" %} opcode(Assembler::stx_op3); ins_encode( form3_mem_reg( mem, R_G0 ) ); ins_pipe(fstoreD_mem_zero); %} // Store Aligned Packed Ints in Double register to memory instruct storeA2I(memory mem, regD src) %{ match(Set mem (Store2I mem src)); ins_cost(MEMORY_REF_COST); size(4); format %{ "STDF $src,$mem\t! packed2I" %} opcode(Assembler::stdf_op3); ins_encode( form3_mem_reg( mem, src ) ); ins_pipe(fstoreD_mem_reg); %} // Store Zero into Aligned Packed Ints instruct storeA2I0(memory mem, immI0 zero) %{ match(Set mem (Store2I mem zero)); ins_cost(MEMORY_REF_COST); size(4); format %{ "STX $zero,$mem\t! packed2I" %} opcode(Assembler::stx_op3); ins_encode( form3_mem_reg( mem, R_G0 ) ); ins_pipe(fstoreD_mem_zero); %} //----------MemBar Instructions----------------------------------------------- // Memory barrier flavors instruct membar_acquire() %{ match(MemBarAcquire); ins_cost(4*MEMORY_REF_COST); size(0); format %{ "MEMBAR-acquire" %} ins_encode( enc_membar_acquire ); ins_pipe(long_memory_op); %} instruct membar_acquire_lock() %{ match(MemBarAcquire); predicate(Matcher::prior_fast_lock(n)); ins_cost(0); size(0); format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %} ins_encode( ); ins_pipe(empty); %} instruct membar_release() %{ match(MemBarRelease); ins_cost(4*MEMORY_REF_COST); size(0); format %{ "MEMBAR-release" %} ins_encode( enc_membar_release ); ins_pipe(long_memory_op); %} instruct membar_release_lock() %{ match(MemBarRelease); predicate(Matcher::post_fast_unlock(n)); ins_cost(0); size(0); format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %} ins_encode( ); ins_pipe(empty); %} instruct membar_volatile() %{ match(MemBarVolatile); ins_cost(4*MEMORY_REF_COST); size(4); format %{ "MEMBAR-volatile" %} ins_encode( enc_membar_volatile ); ins_pipe(long_memory_op); %} instruct unnecessary_membar_volatile() %{ match(MemBarVolatile); predicate(Matcher::post_store_load_barrier(n)); ins_cost(0); size(0); format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %} ins_encode( ); ins_pipe(empty); %} //----------Register Move Instructions----------------------------------------- instruct roundDouble_nop(regD dst) %{ match(Set dst (RoundDouble dst)); ins_cost(0); // SPARC results are already "rounded" (i.e., normal-format IEEE) ins_encode( ); ins_pipe(empty); %} instruct roundFloat_nop(regF dst) %{ match(Set dst (RoundFloat dst)); ins_cost(0); // SPARC results are already "rounded" (i.e., normal-format IEEE) ins_encode( ); ins_pipe(empty); %} // Cast Index to Pointer for unsafe natives instruct castX2P(iRegX src, iRegP dst) %{ match(Set dst (CastX2P src)); format %{ "MOV $src,$dst\t! IntX->Ptr" %} ins_encode( form3_g0_rs2_rd_move( src, dst ) ); ins_pipe(ialu_reg); %} // Cast Pointer to Index for unsafe natives instruct castP2X(iRegP src, iRegX dst) %{ match(Set dst (CastP2X src)); format %{ "MOV $src,$dst\t! Ptr->IntX" %} ins_encode( form3_g0_rs2_rd_move( src, dst ) ); ins_pipe(ialu_reg); %} instruct stfSSD(stackSlotD stkSlot, regD src) %{ // %%%% TO DO: Tell the coalescer that this kind of node is a copy! match(Set stkSlot src); // chain rule ins_cost(MEMORY_REF_COST); format %{ "STDF $src,$stkSlot\t!stk" %} opcode(Assembler::stdf_op3); ins_encode(form3_mem_reg(stkSlot, src)); ins_pipe(fstoreD_stk_reg); %} instruct ldfSSD(regD dst, stackSlotD stkSlot) %{ // %%%% TO DO: Tell the coalescer that this kind of node is a copy! match(Set dst stkSlot); // chain rule ins_cost(MEMORY_REF_COST); format %{ "LDDF $stkSlot,$dst\t!stk" %} opcode(Assembler::lddf_op3); ins_encode(form3_mem_reg(stkSlot, dst)); ins_pipe(floadD_stk); %} instruct stfSSF(stackSlotF stkSlot, regF src) %{ // %%%% TO DO: Tell the coalescer that this kind of node is a copy! match(Set stkSlot src); // chain rule ins_cost(MEMORY_REF_COST); format %{ "STF $src,$stkSlot\t!stk" %} opcode(Assembler::stf_op3); ins_encode(form3_mem_reg(stkSlot, src)); ins_pipe(fstoreF_stk_reg); %} //----------Conditional Move--------------------------------------------------- // Conditional move instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{ match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src))); ins_cost(150); format %{ "MOV$cmp $pcc,$src,$dst" %} ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) ); ins_pipe(ialu_reg); %} instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{ match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src))); ins_cost(140); format %{ "MOV$cmp $pcc,$src,$dst" %} ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) ); ins_pipe(ialu_imm); %} instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{ match(Set dst (CMoveI (Binary cmp icc) (Binary dst src))); ins_cost(150); size(4); format %{ "MOV$cmp $icc,$src,$dst" %} ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) ); ins_pipe(ialu_reg); %} instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{ match(Set dst (CMoveI (Binary cmp icc) (Binary dst src))); ins_cost(140); size(4); format %{ "MOV$cmp $icc,$src,$dst" %} ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) ); ins_pipe(ialu_imm); %} instruct cmovII_U_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{ match(Set dst (CMoveI (Binary cmp icc) (Binary dst src))); ins_cost(150); size(4); format %{ "MOV$cmp $icc,$src,$dst" %} ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) ); ins_pipe(ialu_reg); %} instruct cmovII_U_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{ match(Set dst (CMoveI (Binary cmp icc) (Binary dst src))); ins_cost(140); size(4); format %{ "MOV$cmp $icc,$src,$dst" %} ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) ); ins_pipe(ialu_imm); %} instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{ match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src))); ins_cost(150); size(4); format %{ "MOV$cmp $fcc,$src,$dst" %} ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) ); ins_pipe(ialu_reg); %} instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{ match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src))); ins_cost(140); size(4); format %{ "MOV$cmp $fcc,$src,$dst" %} ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) ); ins_pipe(ialu_imm); %} // Conditional move instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{ match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src))); ins_cost(150); format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %} ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) ); ins_pipe(ialu_reg); %} instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{ match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src))); ins_cost(140); format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %} ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) ); ins_pipe(ialu_imm); %} instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{ match(Set dst (CMoveP (Binary cmp icc) (Binary dst src))); ins_cost(150); size(4); format %{ "MOV$cmp $icc,$src,$dst\t! ptr" %} ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) ); ins_pipe(ialu_reg); %} instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{ match(Set dst (CMoveP (Binary cmp icc) (Binary dst src))); ins_cost(140); size(4); format %{ "MOV$cmp $icc,$src,$dst\t! ptr" %} ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) ); ins_pipe(ialu_imm); %} instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{ match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src))); ins_cost(150); size(4); format %{ "MOV$cmp $fcc,$src,$dst" %} ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) ); ins_pipe(ialu_imm); %} instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{ match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src))); ins_cost(140); size(4); format %{ "MOV$cmp $fcc,$src,$dst" %} ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) ); ins_pipe(ialu_imm); %} // Conditional move instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{ match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src))); ins_cost(150); opcode(0x101); format %{ "FMOVD$cmp $pcc,$src,$dst" %} ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) ); ins_pipe(int_conditional_float_move); %} instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{ match(Set dst (CMoveF (Binary cmp icc) (Binary dst src))); ins_cost(150); size(4); format %{ "FMOVS$cmp $icc,$src,$dst" %} opcode(0x101); ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) ); ins_pipe(int_conditional_float_move); %} // Conditional move, instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{ match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src))); ins_cost(150); size(4); format %{ "FMOVF$cmp $fcc,$src,$dst" %} opcode(0x1); ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) ); ins_pipe(int_conditional_double_move); %} // Conditional move instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{ match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src))); ins_cost(150); size(4); opcode(0x102); format %{ "FMOVD$cmp $pcc,$src,$dst" %} ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) ); ins_pipe(int_conditional_double_move); %} instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{ match(Set dst (CMoveD (Binary cmp icc) (Binary dst src))); ins_cost(150); size(4); format %{ "FMOVD$cmp $icc,$src,$dst" %} opcode(0x102); ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) ); ins_pipe(int_conditional_double_move); %} // Conditional move, instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{ match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src))); ins_cost(150); size(4); format %{ "FMOVD$cmp $fcc,$src,$dst" %} opcode(0x2); ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) ); ins_pipe(int_conditional_double_move); %} // Conditional move instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{ match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src))); ins_cost(150); format %{ "MOV$cmp $pcc,$src,$dst\t! long" %} ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) ); ins_pipe(ialu_reg); %} instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{ match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src))); ins_cost(140); format %{ "MOV$cmp $pcc,$src,$dst\t! long" %} ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) ); ins_pipe(ialu_imm); %} instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{ match(Set dst (CMoveL (Binary cmp icc) (Binary dst src))); ins_cost(150); size(4); format %{ "MOV$cmp $icc,$src,$dst\t! long" %} ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) ); ins_pipe(ialu_reg); %} instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{ match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src))); ins_cost(150); size(4); format %{ "MOV$cmp $fcc,$src,$dst\t! long" %} ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) ); ins_pipe(ialu_reg); %} //----------OS and Locking Instructions---------------------------------------- // This name is KNOWN by the ADLC and cannot be changed. // The ADLC forces a 'TypeRawPtr::BOTTOM' output type // for this guy. instruct tlsLoadP(g2RegP dst) %{ match(Set dst (ThreadLocal)); size(0); ins_cost(0); format %{ "# TLS is in G2" %} ins_encode( /*empty encoding*/ ); ins_pipe(ialu_none); %} instruct checkCastPP( iRegP dst ) %{ match(Set dst (CheckCastPP dst)); size(0); format %{ "# checkcastPP of $dst" %} ins_encode( /*empty encoding*/ ); ins_pipe(empty); %} instruct castPP( iRegP dst ) %{ match(Set dst (CastPP dst)); format %{ "# castPP of $dst" %} ins_encode( /*empty encoding*/ ); ins_pipe(empty); %} instruct castII( iRegI dst ) %{ match(Set dst (CastII dst)); format %{ "# castII of $dst" %} ins_encode( /*empty encoding*/ ); ins_cost(0); ins_pipe(empty); %} //----------Arithmetic Instructions-------------------------------------------- // Addition Instructions // Register Addition instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{ match(Set dst (AddI src1 src2)); size(4); format %{ "ADD $src1,$src2,$dst" %} ins_encode %{ __ add($src1$$Register, $src2$$Register, $dst$$Register); %} ins_pipe(ialu_reg_reg); %} // Immediate Addition instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{ match(Set dst (AddI src1 src2)); size(4); format %{ "ADD $src1,$src2,$dst" %} opcode(Assembler::add_op3, Assembler::arith_op); ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) ); ins_pipe(ialu_reg_imm); %} // Pointer Register Addition instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{ match(Set dst (AddP src1 src2)); size(4); format %{ "ADD $src1,$src2,$dst" %} opcode(Assembler::add_op3, Assembler::arith_op); ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) ); ins_pipe(ialu_reg_reg); %} // Pointer Immediate Addition instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{ match(Set dst (AddP src1 src2)); size(4); format %{ "ADD $src1,$src2,$dst" %} opcode(Assembler::add_op3, Assembler::arith_op); ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) ); ins_pipe(ialu_reg_imm); %} // Long Addition instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{ match(Set dst (AddL src1 src2)); size(4); format %{ "ADD $src1,$src2,$dst\t! long" %} opcode(Assembler::add_op3, Assembler::arith_op); ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) ); ins_pipe(ialu_reg_reg); %} instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{ match(Set dst (AddL src1 con)); size(4); format %{ "ADD $src1,$con,$dst" %} opcode(Assembler::add_op3, Assembler::arith_op); ins_encode( form3_rs1_simm13_rd( src1, con, dst ) ); ins_pipe(ialu_reg_imm); %} //----------Conditional_store-------------------------------------------------- // Conditional-store of the updated heap-top. // Used during allocation of the shared heap. // Sets flags (EQ) on success. Implemented with a CASA on Sparc. // LoadP-locked. Same as a regular pointer load when used with a compare-swap instruct loadPLocked(iRegP dst, memory mem) %{ match(Set dst (LoadPLocked mem)); ins_cost(MEMORY_REF_COST); #ifndef _LP64 size(4); format %{ "LDUW $mem,$dst\t! ptr" %} opcode(Assembler::lduw_op3, 0, REGP_OP); #else format %{ "LDX $mem,$dst\t! ptr" %} opcode(Assembler::ldx_op3, 0, REGP_OP); #endif ins_encode( form3_mem_reg( mem, dst ) ); ins_pipe(iload_mem); %} // LoadL-locked. Same as a regular long load when used with a compare-swap instruct loadLLocked(iRegL dst, memory mem) %{ match(Set dst (LoadLLocked mem)); ins_cost(MEMORY_REF_COST); size(4); format %{ "LDX $mem,$dst\t! long" %} opcode(Assembler::ldx_op3); ins_encode( form3_mem_reg( mem, dst ) ); ins_pipe(iload_mem); %} instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{ match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval))); effect( KILL newval ); format %{ "CASA [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t" "CMP R_G3,$oldval\t\t! See if we made progress" %} ins_encode( enc_cas(heap_top_ptr,oldval,newval) ); ins_pipe( long_memory_op ); %} instruct storeLConditional_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{ match(Set res (StoreLConditional mem_ptr (Binary oldval newval))); effect( USE mem_ptr, KILL ccr, KILL tmp1); // Marshal the register pairs into V9 64-bit registers, then do the compare-and-swap format %{ "MOV $newval,R_O7\n\t" "CASXA [$mem_ptr],$oldval,R_O7\t! If $oldval==[$mem_ptr] Then store R_O7 into [$mem_ptr], set R_O7=[$mem_ptr] in any case\n\t" "CMP $oldval,R_O7\t\t! See if we made progress\n\t" "MOV 1,$res\n\t" "MOVne xcc,R_G0,$res" %} ins_encode( enc_casx(mem_ptr, oldval, newval), enc_lflags_ne_to_boolean(res) ); ins_pipe( long_memory_op ); %} instruct storeLConditional_flags(iRegP mem_ptr, iRegL oldval, iRegL newval, flagsRegL xcc, o7RegI tmp1, immI0 zero) %{ match(Set xcc (CmpI (StoreLConditional mem_ptr (Binary oldval newval)) zero)); effect( USE mem_ptr, KILL tmp1); // Marshal the register pairs into V9 64-bit registers, then do the compare-and-swap format %{ "MOV $newval,R_O7\n\t" "CASXA [$mem_ptr],$oldval,R_O7\t! If $oldval==[$mem_ptr] Then store R_O7 into [$mem_ptr], set R_O7=[$mem_ptr] in any case\n\t" "CMP $oldval,R_O7\t\t! See if we made progress" %} ins_encode( enc_casx(mem_ptr, oldval, newval)); ins_pipe( long_memory_op ); %} // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{ match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval))); effect( USE mem_ptr, KILL ccr, KILL tmp1); format %{ "MOV $newval,O7\n\t" "CASXA [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t" "CMP $oldval,O7\t\t! See if we made progress\n\t" "MOV 1,$res\n\t" "MOVne xcc,R_G0,$res" %} ins_encode( enc_casx(mem_ptr, oldval, newval), enc_lflags_ne_to_boolean(res) ); ins_pipe( long_memory_op ); %} instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{ match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval))); effect( USE mem_ptr, KILL ccr, KILL tmp1); format %{ "MOV $newval,O7\n\t" "CASA [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t" "CMP $oldval,O7\t\t! See if we made progress\n\t" "MOV 1,$res\n\t" "MOVne icc,R_G0,$res" %} ins_encode( enc_casi(mem_ptr, oldval, newval), enc_iflags_ne_to_boolean(res) ); ins_pipe( long_memory_op ); %} instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{ match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval))); effect( USE mem_ptr, KILL ccr, KILL tmp1); #ifdef _LP64 format %{ "MOV $newval,O7\n\t" "CASXA [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t" "CMP $oldval,O7\t\t! See if we made progress\n\t" "MOV 1,$res\n\t" "MOVne xcc,R_G0,$res" %} ins_encode( enc_casx(mem_ptr, oldval, newval), enc_lflags_ne_to_boolean(res) ); #else format %{ "MOV $newval,O7\n\t" "CASA [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t" "CMP $oldval,O7\t\t! See if we made progress\n\t" "MOV 1,$res\n\t" "MOVne icc,R_G0,$res" %} ins_encode( enc_casi(mem_ptr, oldval, newval), enc_iflags_ne_to_boolean(res) ); #endif ins_pipe( long_memory_op ); %} //--------------------- // Subtraction Instructions // Register Subtraction instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{ match(Set dst (SubI src1 src2)); size(4); format %{ "SUB $src1,$src2,$dst" %} opcode(Assembler::sub_op3, Assembler::arith_op); ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) ); ins_pipe(ialu_reg_reg); %} // Immediate Subtraction instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{ match(Set dst (SubI src1 src2)); size(4); format %{ "SUB $src1,$src2,$dst" %} opcode(Assembler::sub_op3, Assembler::arith_op); ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) ); ins_pipe(ialu_reg_imm); %} instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{ match(Set dst (SubI zero src2)); size(4); format %{ "NEG $src2,$dst" %} opcode(Assembler::sub_op3, Assembler::arith_op); ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) ); ins_pipe(ialu_zero_reg); %} // Long subtraction instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{ match(Set dst (SubL src1 src2)); size(4); format %{ "SUB $src1,$src2,$dst\t! long" %} opcode(Assembler::sub_op3, Assembler::arith_op); ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) ); ins_pipe(ialu_reg_reg); %} // Immediate Subtraction instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{ match(Set dst (SubL src1 con)); size(4); format %{ "SUB $src1,$con,$dst\t! long" %} opcode(Assembler::sub_op3, Assembler::arith_op); ins_encode( form3_rs1_simm13_rd( src1, con, dst ) ); ins_pipe(ialu_reg_imm); %} // Long negation instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{ match(Set dst (SubL zero src2)); size(4); format %{ "NEG $src2,$dst\t! long" %} opcode(Assembler::sub_op3, Assembler::arith_op); ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) ); ins_pipe(ialu_zero_reg); %} // Multiplication Instructions // Integer Multiplication // Register Multiplication instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{ match(Set dst (MulI src1 src2)); size(4); format %{ "MULX $src1,$src2,$dst" %} opcode(Assembler::mulx_op3, Assembler::arith_op); ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) ); ins_pipe(imul_reg_reg); %} // Immediate Multiplication instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{ match(Set dst (MulI src1 src2)); size(4); format %{ "MULX $src1,$src2,$dst" %} opcode(Assembler::mulx_op3, Assembler::arith_op); ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) ); ins_pipe(imul_reg_imm); %} instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{ match(Set dst (MulL src1 src2)); ins_cost(DEFAULT_COST * 5); size(4); format %{ "MULX $src1,$src2,$dst\t! long" %} opcode(Assembler::mulx_op3, Assembler::arith_op); ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) ); ins_pipe(mulL_reg_reg); %} // Immediate Multiplication instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{ match(Set dst (MulL src1 src2)); ins_cost(DEFAULT_COST * 5); size(4); format %{ "MULX $src1,$src2,$dst" %} opcode(Assembler::mulx_op3, Assembler::arith_op); ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) ); ins_pipe(mulL_reg_imm); %} // Integer Division // Register Division instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{ match(Set dst (DivI src1 src2)); ins_cost((2+71)*DEFAULT_COST); format %{ "SRA $src2,0,$src2\n\t" "SRA $src1,0,$src1\n\t" "SDIVX $src1,$src2,$dst" %} ins_encode( idiv_reg( src1, src2, dst ) ); ins_pipe(sdiv_reg_reg); %} // Immediate Division instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{ match(Set dst (DivI src1 src2)); ins_cost((2+71)*DEFAULT_COST); format %{ "SRA $src1,0,$src1\n\t" "SDIVX $src1,$src2,$dst" %} ins_encode( idiv_imm( src1, src2, dst ) ); ins_pipe(sdiv_reg_imm); %} //----------Div-By-10-Expansion------------------------------------------------ // Extract hi bits of a 32x32->64 bit multiply. // Expand rule only, not matched instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{ effect( DEF dst, USE src1, USE src2 ); format %{ "MULX $src1,$src2,$dst\t! Used in div-by-10\n\t" "SRLX $dst,#32,$dst\t\t! Extract only hi word of result" %} ins_encode( enc_mul_hi(dst,src1,src2)); ins_pipe(sdiv_reg_reg); %} // Magic constant, reciprical of 10 instruct loadConI_x66666667(iRegIsafe dst) %{ effect( DEF dst ); size(8); format %{ "SET 0x66666667,$dst\t! Used in div-by-10" %} ins_encode( Set32(0x66666667, dst) ); ins_pipe(ialu_hi_lo_reg); %} // Register Shift Right Arithmatic Long by 32-63 instruct sra_31( iRegI dst, iRegI src ) %{ effect( DEF dst, USE src ); format %{ "SRA $src,31,$dst\t! Used in div-by-10" %} ins_encode( form3_rs1_rd_copysign_hi(src,dst) ); ins_pipe(ialu_reg_reg); %} // Arithmetic Shift Right by 8-bit immediate instruct sra_reg_2( iRegI dst, iRegI src ) %{ effect( DEF dst, USE src ); format %{ "SRA $src,2,$dst\t! Used in div-by-10" %} opcode(Assembler::sra_op3, Assembler::arith_op); ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) ); ins_pipe(ialu_reg_imm); %} // Integer DIV with 10 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{ match(Set dst (DivI src div)); ins_cost((6+6)*DEFAULT_COST); expand %{ iRegIsafe tmp1; // Killed temps; iRegIsafe tmp2; // Killed temps; iRegI tmp3; // Killed temps; iRegI tmp4; // Killed temps; loadConI_x66666667( tmp1 ); // SET 0x66666667 -> tmp1 mul_hi( tmp2, src, tmp1 ); // MUL hibits(src * tmp1) -> tmp2 sra_31( tmp3, src ); // SRA src,31 -> tmp3 sra_reg_2( tmp4, tmp2 ); // SRA tmp2,2 -> tmp4 subI_reg_reg( dst,tmp4,tmp3); // SUB tmp4 - tmp3 -> dst %} %} // Register Long Division instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{ match(Set dst (DivL src1 src2)); ins_cost(DEFAULT_COST*71); size(4); format %{ "SDIVX $src1,$src2,$dst\t! long" %} opcode(Assembler::sdivx_op3, Assembler::arith_op); ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) ); ins_pipe(divL_reg_reg); %} // Register Long Division instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{ match(Set dst (DivL src1 src2)); ins_cost(DEFAULT_COST*71); size(4); format %{ "SDIVX $src1,$src2,$dst\t! long" %} opcode(Assembler::sdivx_op3, Assembler::arith_op); ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) ); ins_pipe(divL_reg_imm); %} // Integer Remainder // Register Remainder instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{ match(Set dst (ModI src1 src2)); effect( KILL ccr, KILL temp); format %{ "SREM $src1,$src2,$dst" %} ins_encode( irem_reg(src1, src2, dst, temp) ); ins_pipe(sdiv_reg_reg); %} // Immediate Remainder instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{ match(Set dst (ModI src1 src2)); effect( KILL ccr, KILL temp); format %{ "SREM $src1,$src2,$dst" %} ins_encode( irem_imm(src1, src2, dst, temp) ); ins_pipe(sdiv_reg_imm); %} // Register Long Remainder instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{ effect(DEF dst, USE src1, USE src2); size(4); format %{ "SDIVX $src1,$src2,$dst\t! long" %} opcode(Assembler::sdivx_op3, Assembler::arith_op); ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) ); ins_pipe(divL_reg_reg); %} // Register Long Division instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{ effect(DEF dst, USE src1, USE src2); size(4); format %{ "SDIVX $src1,$src2,$dst\t! long" %} opcode(Assembler::sdivx_op3, Assembler::arith_op); ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) ); ins_pipe(divL_reg_imm); %} instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{ effect(DEF dst, USE src1, USE src2); size(4); format %{ "MULX $src1,$src2,$dst\t! long" %} opcode(Assembler::mulx_op3, Assembler::arith_op); ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) ); ins_pipe(mulL_reg_reg); %} // Immediate Multiplication instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{ effect(DEF dst, USE src1, USE src2); size(4); format %{ "MULX $src1,$src2,$dst" %} opcode(Assembler::mulx_op3, Assembler::arith_op); ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) ); ins_pipe(mulL_reg_imm); %} instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{ effect(DEF dst, USE src1, USE src2); size(4); format %{ "SUB $src1,$src2,$dst\t! long" %} opcode(Assembler::sub_op3, Assembler::arith_op); ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) ); ins_pipe(ialu_reg_reg); %} instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{ effect(DEF dst, USE src1, USE src2); size(4); format %{ "SUB $src1,$src2,$dst\t! long" %} opcode(Assembler::sub_op3, Assembler::arith_op); ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) ); ins_pipe(ialu_reg_reg); %} // Register Long Remainder instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{ match(Set dst (ModL src1 src2)); ins_cost(DEFAULT_COST*(71 + 6 + 1)); expand %{ iRegL tmp1; iRegL tmp2; divL_reg_reg_1(tmp1, src1, src2); mulL_reg_reg_1(tmp2, tmp1, src2); subL_reg_reg_1(dst, src1, tmp2); %} %} // Register Long Remainder instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{ match(Set dst (ModL src1 src2)); ins_cost(DEFAULT_COST*(71 + 6 + 1)); expand %{ iRegL tmp1; iRegL tmp2; divL_reg_imm13_1(tmp1, src1, src2); mulL_reg_imm13_1(tmp2, tmp1, src2); subL_reg_reg_2 (dst, src1, tmp2); %} %} // Integer Shift Instructions // Register Shift Left instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{ match(Set dst (LShiftI src1 src2)); size(4); format %{ "SLL $src1,$src2,$dst" %} opcode(Assembler::sll_op3, Assembler::arith_op); ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) ); ins_pipe(ialu_reg_reg); %} // Register Shift Left Immediate instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{ match(Set dst (LShiftI src1 src2)); size(4); format %{ "SLL $src1,$src2,$dst" %} opcode(Assembler::sll_op3, Assembler::arith_op); ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) ); ins_pipe(ialu_reg_imm); %} // Register Shift Left instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{ match(Set dst (LShiftL src1 src2)); size(4); format %{ "SLLX $src1,$src2,$dst" %} opcode(Assembler::sllx_op3, Assembler::arith_op); ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) ); ins_pipe(ialu_reg_reg); %} // Register Shift Left Immediate instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{ match(Set dst (LShiftL src1 src2)); size(4); format %{ "SLLX $src1,$src2,$dst" %} opcode(Assembler::sllx_op3, Assembler::arith_op); ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) ); ins_pipe(ialu_reg_imm); %} // Register Arithmetic Shift Right instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{ match(Set dst (RShiftI src1 src2)); size(4); format %{ "SRA $src1,$src2,$dst" %} opcode(Assembler::sra_op3, Assembler::arith_op); ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) ); ins_pipe(ialu_reg_reg); %} // Register Arithmetic Shift Right Immediate instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{ match(Set dst (RShiftI src1 src2)); size(4); format %{ "SRA $src1,$src2,$dst" %} opcode(Assembler::sra_op3, Assembler::arith_op); ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) ); ins_pipe(ialu_reg_imm); %} // Register Shift Right Arithmatic Long instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{ match(Set dst (RShiftL src1 src2)); size(4); format %{ "SRAX $src1,$src2,$dst" %} opcode(Assembler::srax_op3, Assembler::arith_op); ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) ); ins_pipe(ialu_reg_reg); %} // Register Shift Left Immediate instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{ match(Set dst (RShiftL src1 src2)); size(4); format %{ "SRAX $src1,$src2,$dst" %} opcode(Assembler::srax_op3, Assembler::arith_op); ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) ); ins_pipe(ialu_reg_imm); %} // Register Shift Right instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{ match(Set dst (URShiftI src1 src2)); size(4); format %{ "SRL $src1,$src2,$dst" %} opcode(Assembler::srl_op3, Assembler::arith_op); ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) ); ins_pipe(ialu_reg_reg); %} // Register Shift Right Immediate instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{ match(Set dst (URShiftI src1 src2)); size(4); format %{ "SRL $src1,$src2,$dst" %} opcode(Assembler::srl_op3, Assembler::arith_op); ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) ); ins_pipe(ialu_reg_imm); %} // Register Shift Right instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{ match(Set dst (URShiftL src1 src2)); size(4); format %{ "SRLX $src1,$src2,$dst" %} opcode(Assembler::srlx_op3, Assembler::arith_op); ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) ); ins_pipe(ialu_reg_reg); %} // Register Shift Right Immediate instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{ match(Set dst (URShiftL src1 src2)); size(4); format %{ "SRLX $src1,$src2,$dst" %} opcode(Assembler::srlx_op3, Assembler::arith_op); ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) ); ins_pipe(ialu_reg_imm); %} // Register Shift Right Immediate with a CastP2X #ifdef _LP64 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{ match(Set dst (URShiftL (CastP2X src1) src2)); size(4); format %{ "SRLX $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %} opcode(Assembler::srlx_op3, Assembler::arith_op); ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) ); ins_pipe(ialu_reg_imm); %} #else instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{ match(Set dst (URShiftI (CastP2X src1) src2)); size(4); format %{ "SRL $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %} opcode(Assembler::srl_op3, Assembler::arith_op); ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) ); ins_pipe(ialu_reg_imm); %} #endif //----------Floating Point Arithmetic Instructions----------------------------- // Add float single precision instruct addF_reg_reg(regF dst, regF src1, regF src2) %{ match(Set dst (AddF src1 src2)); size(4); format %{ "FADDS $src1,$src2,$dst" %} opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf); ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst)); ins_pipe(faddF_reg_reg); %} // Add float double precision instruct addD_reg_reg(regD dst, regD src1, regD src2) %{ match(Set dst (AddD src1 src2)); size(4); format %{ "FADDD $src1,$src2,$dst" %} opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf); ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst)); ins_pipe(faddD_reg_reg); %} // Sub float single precision instruct subF_reg_reg(regF dst, regF src1, regF src2) %{ match(Set dst (SubF src1 src2)); size(4); format %{ "FSUBS $src1,$src2,$dst" %} opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf); ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst)); ins_pipe(faddF_reg_reg); %} // Sub float double precision instruct subD_reg_reg(regD dst, regD src1, regD src2) %{ match(Set dst (SubD src1 src2)); size(4); format %{ "FSUBD $src1,$src2,$dst" %} opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf); ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst)); ins_pipe(faddD_reg_reg); %} // Mul float single precision instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{ match(Set dst (MulF src1 src2)); size(4); format %{ "FMULS $src1,$src2,$dst" %} opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf); ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst)); ins_pipe(fmulF_reg_reg); %} // Mul float double precision instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{ match(Set dst (MulD src1 src2)); size(4); format %{ "FMULD $src1,$src2,$dst" %} opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf); ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst)); ins_pipe(fmulD_reg_reg); %} // Div float single precision instruct divF_reg_reg(regF dst, regF src1, regF src2) %{ match(Set dst (DivF src1 src2)); size(4); format %{ "FDIVS $src1,$src2,$dst" %} opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf); ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst)); ins_pipe(fdivF_reg_reg); %} // Div float double precision instruct divD_reg_reg(regD dst, regD src1, regD src2) %{ match(Set dst (DivD src1 src2)); size(4); format %{ "FDIVD $src1,$src2,$dst" %} opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf); ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst)); ins_pipe(fdivD_reg_reg); %} // Absolute float double precision instruct absD_reg(regD dst, regD src) %{ match(Set dst (AbsD src)); format %{ "FABSd $src,$dst" %} ins_encode(fabsd(dst, src)); ins_pipe(faddD_reg); %} // Absolute float single precision instruct absF_reg(regF dst, regF src) %{ match(Set dst (AbsF src)); format %{ "FABSs $src,$dst" %} ins_encode(fabss(dst, src)); ins_pipe(faddF_reg); %} instruct negF_reg(regF dst, regF src) %{ match(Set dst (NegF src)); size(4); format %{ "FNEGs $src,$dst" %} opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf); ins_encode(form3_opf_rs2F_rdF(src, dst)); ins_pipe(faddF_reg); %} instruct negD_reg(regD dst, regD src) %{ match(Set dst (NegD src)); format %{ "FNEGd $src,$dst" %} ins_encode(fnegd(dst, src)); ins_pipe(faddD_reg); %} // Sqrt float double precision instruct sqrtF_reg_reg(regF dst, regF src) %{ match(Set dst (ConvD2F (SqrtD (ConvF2D src)))); size(4); format %{ "FSQRTS $src,$dst" %} ins_encode(fsqrts(dst, src)); ins_pipe(fdivF_reg_reg); %} // Sqrt float double precision instruct sqrtD_reg_reg(regD dst, regD src) %{ match(Set dst (SqrtD src)); size(4); format %{ "FSQRTD $src,$dst" %} ins_encode(fsqrtd(dst, src)); ins_pipe(fdivD_reg_reg); %} //----------Logical Instructions----------------------------------------------- // And Instructions // Register And instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{ match(Set dst (AndI src1 src2)); size(4); format %{ "AND $src1,$src2,$dst" %} opcode(Assembler::and_op3, Assembler::arith_op); ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) ); ins_pipe(ialu_reg_reg); %} // Immediate And instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{ match(Set dst (AndI src1 src2)); size(4); format %{ "AND $src1,$src2,$dst" %} opcode(Assembler::and_op3, Assembler::arith_op); ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) ); ins_pipe(ialu_reg_imm); %} // Register And Long instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{ match(Set dst (AndL src1 src2)); ins_cost(DEFAULT_COST); size(4); format %{ "AND $src1,$src2,$dst\t! long" %} opcode(Assembler::and_op3, Assembler::arith_op); ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) ); ins_pipe(ialu_reg_reg); %} instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{ match(Set dst (AndL src1 con)); ins_cost(DEFAULT_COST); size(4); format %{ "AND $src1,$con,$dst\t! long" %} opcode(Assembler::and_op3, Assembler::arith_op); ins_encode( form3_rs1_simm13_rd( src1, con, dst ) ); ins_pipe(ialu_reg_imm); %} // Or Instructions // Register Or instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{ match(Set dst (OrI src1 src2)); size(4); format %{ "OR $src1,$src2,$dst" %} opcode(Assembler::or_op3, Assembler::arith_op); ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) ); ins_pipe(ialu_reg_reg); %} // Immediate Or instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{ match(Set dst (OrI src1 src2)); size(4); format %{ "OR $src1,$src2,$dst" %} opcode(Assembler::or_op3, Assembler::arith_op); ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) ); ins_pipe(ialu_reg_imm); %} // Register Or Long instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{ match(Set dst (OrL src1 src2)); ins_cost(DEFAULT_COST); size(4); format %{ "OR $src1,$src2,$dst\t! long" %} opcode(Assembler::or_op3, Assembler::arith_op); ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) ); ins_pipe(ialu_reg_reg); %} instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{ match(Set dst (OrL src1 con)); ins_cost(DEFAULT_COST*2); ins_cost(DEFAULT_COST); size(4); format %{ "OR $src1,$con,$dst\t! long" %} opcode(Assembler::or_op3, Assembler::arith_op); ins_encode( form3_rs1_simm13_rd( src1, con, dst ) ); ins_pipe(ialu_reg_imm); %} // Xor Instructions // Register Xor instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{ match(Set dst (XorI src1 src2)); size(4); format %{ "XOR $src1,$src2,$dst" %} opcode(Assembler::xor_op3, Assembler::arith_op); ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) ); ins_pipe(ialu_reg_reg); %} // Immediate Xor instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{ match(Set dst (XorI src1 src2)); size(4); format %{ "XOR $src1,$src2,$dst" %} opcode(Assembler::xor_op3, Assembler::arith_op); ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) ); ins_pipe(ialu_reg_imm); %} // Register Xor Long instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{ match(Set dst (XorL src1 src2)); ins_cost(DEFAULT_COST); size(4); format %{ "XOR $src1,$src2,$dst\t! long" %} opcode(Assembler::xor_op3, Assembler::arith_op); ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) ); ins_pipe(ialu_reg_reg); %} instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{ match(Set dst (XorL src1 con)); ins_cost(DEFAULT_COST); size(4); format %{ "XOR $src1,$con,$dst\t! long" %} opcode(Assembler::xor_op3, Assembler::arith_op); ins_encode( form3_rs1_simm13_rd( src1, con, dst ) ); ins_pipe(ialu_reg_imm); %} //----------Convert to Boolean------------------------------------------------- // Nice hack for 32-bit tests but doesn't work for // 64-bit pointers. instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{ match(Set dst (Conv2B src)); effect( KILL ccr ); ins_cost(DEFAULT_COST*2); format %{ "CMP R_G0,$src\n\t" "ADDX R_G0,0,$dst" %} ins_encode( enc_to_bool( src, dst ) ); ins_pipe(ialu_reg_ialu); %} #ifndef _LP64 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{ match(Set dst (Conv2B src)); effect( KILL ccr ); ins_cost(DEFAULT_COST*2); format %{ "CMP R_G0,$src\n\t" "ADDX R_G0,0,$dst" %} ins_encode( enc_to_bool( src, dst ) ); ins_pipe(ialu_reg_ialu); %} #else instruct convP2B( iRegI dst, iRegP src ) %{ match(Set dst (Conv2B src)); ins_cost(DEFAULT_COST*2); format %{ "MOV $src,$dst\n\t" "MOVRNZ $src,1,$dst" %} ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) ); ins_pipe(ialu_clr_and_mover); %} #endif instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{ match(Set dst (CmpLTMask p q)); effect( KILL ccr ); ins_cost(DEFAULT_COST*4); format %{ "CMP $p,$q\n\t" "MOV #0,$dst\n\t" "BLT,a .+8\n\t" "MOV #-1,$dst" %} ins_encode( enc_ltmask(p,q,dst) ); ins_pipe(ialu_reg_reg_ialu); %} instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{ match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q))); effect(KILL ccr, TEMP tmp); ins_cost(DEFAULT_COST*3); format %{ "SUBcc $p,$q,$p\t! p' = p-q\n\t" "ADD $p,$y,$tmp\t! g3=p-q+y\n\t" "MOVl $tmp,$p\t! p' < 0 ? p'+y : p'" %} ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) ); ins_pipe( cadd_cmpltmask ); %} instruct cadd_cmpLTMask2( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{ match(Set p (AddI (SubI p q) (AndI (CmpLTMask p q) y))); effect( KILL ccr, TEMP tmp); ins_cost(DEFAULT_COST*3); format %{ "SUBcc $p,$q,$p\t! p' = p-q\n\t" "ADD $p,$y,$tmp\t! g3=p-q+y\n\t" "MOVl $tmp,$p\t! p' < 0 ? p'+y : p'" %} ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) ); ins_pipe( cadd_cmpltmask ); %} //----------Arithmetic Conversion Instructions--------------------------------- // The conversions operations are all Alpha sorted. Please keep it that way! instruct convD2F_reg(regF dst, regD src) %{ match(Set dst (ConvD2F src)); size(4); format %{ "FDTOS $src,$dst" %} opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf); ins_encode(form3_opf_rs2D_rdF(src, dst)); ins_pipe(fcvtD2F); %} // Convert a double to an int in a float register. // If the double is a NAN, stuff a zero in instead. instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{ effect(DEF dst, USE src, KILL fcc0); format %{ "FCMPd fcc0,$src,$src\t! check for NAN\n\t" "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t" "FDTOI $src,$dst\t! convert in delay slot\n\t" "FITOS $dst,$dst\t! change NaN/max-int to valid float\n\t" "FSUBs $dst,$dst,$dst\t! cleared only if nan\n" "skip:" %} ins_encode(form_d2i_helper(src,dst)); ins_pipe(fcvtD2I); %} instruct convD2I_reg(stackSlotI dst, regD src) %{ match(Set dst (ConvD2I src)); ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST); expand %{ regF tmp; convD2I_helper(tmp, src); regF_to_stkI(dst, tmp); %} %} // Convert a double to a long in a double register. // If the double is a NAN, stuff a zero in instead. instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{ effect(DEF dst, USE src, KILL fcc0); format %{ "FCMPd fcc0,$src,$src\t! check for NAN\n\t" "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t" "FDTOX $src,$dst\t! convert in delay slot\n\t" "FXTOD $dst,$dst\t! change NaN/max-long to valid double\n\t" "FSUBd $dst,$dst,$dst\t! cleared only if nan\n" "skip:" %} ins_encode(form_d2l_helper(src,dst)); ins_pipe(fcvtD2L); %} // Double to Long conversion instruct convD2L_reg(stackSlotL dst, regD src) %{ match(Set dst (ConvD2L src)); ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST); expand %{ regD tmp; convD2L_helper(tmp, src); regD_to_stkL(dst, tmp); %} %} instruct convF2D_reg(regD dst, regF src) %{ match(Set dst (ConvF2D src)); format %{ "FSTOD $src,$dst" %} opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf); ins_encode(form3_opf_rs2F_rdD(src, dst)); ins_pipe(fcvtF2D); %} instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{ effect(DEF dst, USE src, KILL fcc0); format %{ "FCMPs fcc0,$src,$src\t! check for NAN\n\t" "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t" "FSTOI $src,$dst\t! convert in delay slot\n\t" "FITOS $dst,$dst\t! change NaN/max-int to valid float\n\t" "FSUBs $dst,$dst,$dst\t! cleared only if nan\n" "skip:" %} ins_encode(form_f2i_helper(src,dst)); ins_pipe(fcvtF2I); %} instruct convF2I_reg(stackSlotI dst, regF src) %{ match(Set dst (ConvF2I src)); ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST); expand %{ regF tmp; convF2I_helper(tmp, src); regF_to_stkI(dst, tmp); %} %} instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{ effect(DEF dst, USE src, KILL fcc0); format %{ "FCMPs fcc0,$src,$src\t! check for NAN\n\t" "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t" "FSTOX $src,$dst\t! convert in delay slot\n\t" "FXTOD $dst,$dst\t! change NaN/max-long to valid double\n\t" "FSUBd $dst,$dst,$dst\t! cleared only if nan\n" "skip:" %} ins_encode(form_f2l_helper(src,dst)); ins_pipe(fcvtF2L); %} // Float to Long conversion instruct convF2L_reg(stackSlotL dst, regF src) %{ match(Set dst (ConvF2L src)); ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST); expand %{ regD tmp; convF2L_helper(tmp, src); regD_to_stkL(dst, tmp); %} %} instruct convI2D_helper(regD dst, regF tmp) %{ effect(USE tmp, DEF dst); format %{ "FITOD $tmp,$dst" %} opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf); ins_encode(form3_opf_rs2F_rdD(tmp, dst)); ins_pipe(fcvtI2D); %} instruct convI2D_reg(stackSlotI src, regD dst) %{ match(Set dst (ConvI2D src)); ins_cost(DEFAULT_COST + MEMORY_REF_COST); expand %{ regF tmp; stkI_to_regF( tmp, src); convI2D_helper( dst, tmp); %} %} instruct convI2D_mem( regD_low dst, memory mem ) %{ match(Set dst (ConvI2D (LoadI mem))); ins_cost(DEFAULT_COST + MEMORY_REF_COST); size(8); format %{ "LDF $mem,$dst\n\t" "FITOD $dst,$dst" %} opcode(Assembler::ldf_op3, Assembler::fitod_opf); ins_encode( form3_mem_reg( mem, dst ), form3_convI2F(dst, dst)); ins_pipe(floadF_mem); %} instruct convI2F_helper(regF dst, regF tmp) %{ effect(DEF dst, USE tmp); format %{ "FITOS $tmp,$dst" %} opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf); ins_encode(form3_opf_rs2F_rdF(tmp, dst)); ins_pipe(fcvtI2F); %} instruct convI2F_reg( regF dst, stackSlotI src ) %{ match(Set dst (ConvI2F src)); ins_cost(DEFAULT_COST + MEMORY_REF_COST); expand %{ regF tmp; stkI_to_regF(tmp,src); convI2F_helper(dst, tmp); %} %} instruct convI2F_mem( regF dst, memory mem ) %{ match(Set dst (ConvI2F (LoadI mem))); ins_cost(DEFAULT_COST + MEMORY_REF_COST); size(8); format %{ "LDF $mem,$dst\n\t" "FITOS $dst,$dst" %} opcode(Assembler::ldf_op3, Assembler::fitos_opf); ins_encode( form3_mem_reg( mem, dst ), form3_convI2F(dst, dst)); ins_pipe(floadF_mem); %} instruct convI2L_reg(iRegL dst, iRegI src) %{ match(Set dst (ConvI2L src)); size(4); format %{ "SRA $src,0,$dst\t! int->long" %} opcode(Assembler::sra_op3, Assembler::arith_op); ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) ); ins_pipe(ialu_reg_reg); %} // Zero-extend convert int to long instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{ match(Set dst (AndL (ConvI2L src) mask) ); size(4); format %{ "SRL $src,0,$dst\t! zero-extend int to long" %} opcode(Assembler::srl_op3, Assembler::arith_op); ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) ); ins_pipe(ialu_reg_reg); %} // Zero-extend long instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{ match(Set dst (AndL src mask) ); size(4); format %{ "SRL $src,0,$dst\t! zero-extend long" %} opcode(Assembler::srl_op3, Assembler::arith_op); ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) ); ins_pipe(ialu_reg_reg); %} instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{ match(Set dst (MoveF2I src)); effect(DEF dst, USE src); ins_cost(MEMORY_REF_COST); size(4); format %{ "LDUW $src,$dst\t! MoveF2I" %} opcode(Assembler::lduw_op3); ins_encode( form3_mem_reg( src, dst ) ); ins_pipe(iload_mem); %} instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{ match(Set dst (MoveI2F src)); effect(DEF dst, USE src); ins_cost(MEMORY_REF_COST); size(4); format %{ "LDF $src,$dst\t! MoveI2F" %} opcode(Assembler::ldf_op3); ins_encode(form3_mem_reg(src, dst)); ins_pipe(floadF_stk); %} instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{ match(Set dst (MoveD2L src)); effect(DEF dst, USE src); ins_cost(MEMORY_REF_COST); size(4); format %{ "LDX $src,$dst\t! MoveD2L" %} opcode(Assembler::ldx_op3); ins_encode( form3_mem_reg( src, dst ) ); ins_pipe(iload_mem); %} instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{ match(Set dst (MoveL2D src)); effect(DEF dst, USE src); ins_cost(MEMORY_REF_COST); size(4); format %{ "LDDF $src,$dst\t! MoveL2D" %} opcode(Assembler::lddf_op3); ins_encode(form3_mem_reg(src, dst)); ins_pipe(floadD_stk); %} instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{ match(Set dst (MoveF2I src)); effect(DEF dst, USE src); ins_cost(MEMORY_REF_COST); size(4); format %{ "STF $src,$dst\t!MoveF2I" %} opcode(Assembler::stf_op3); ins_encode(form3_mem_reg(dst, src)); ins_pipe(fstoreF_stk_reg); %} instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{ match(Set dst (MoveI2F src)); effect(DEF dst, USE src); ins_cost(MEMORY_REF_COST); size(4); format %{ "STW $src,$dst\t!MoveI2F" %} opcode(Assembler::stw_op3); ins_encode( form3_mem_reg( dst, src ) ); ins_pipe(istore_mem_reg); %} instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{ match(Set dst (MoveD2L src)); effect(DEF dst, USE src); ins_cost(MEMORY_REF_COST); size(4); format %{ "STDF $src,$dst\t!MoveD2L" %} opcode(Assembler::stdf_op3); ins_encode(form3_mem_reg(dst, src)); ins_pipe(fstoreD_stk_reg); %} instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{ match(Set dst (MoveL2D src)); effect(DEF dst, USE src); ins_cost(MEMORY_REF_COST); size(4); format %{ "STX $src,$dst\t!MoveL2D" %} opcode(Assembler::stx_op3); ins_encode( form3_mem_reg( dst, src ) ); ins_pipe(istore_mem_reg); %} //----------- // Long to Double conversion using V8 opcodes. // Still useful because cheetah traps and becomes // amazingly slow for some common numbers. // Magic constant, 0x43300000 instruct loadConI_x43300000(iRegI dst) %{ effect(DEF dst); size(4); format %{ "SETHI HI(0x43300000),$dst\t! 2^52" %} ins_encode(SetHi22(0x43300000, dst)); ins_pipe(ialu_none); %} // Magic constant, 0x41f00000 instruct loadConI_x41f00000(iRegI dst) %{ effect(DEF dst); size(4); format %{ "SETHI HI(0x41f00000),$dst\t! 2^32" %} ins_encode(SetHi22(0x41f00000, dst)); ins_pipe(ialu_none); %} // Construct a double from two float halves instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{ effect(DEF dst, USE src1, USE src2); size(8); format %{ "FMOVS $src1.hi,$dst.hi\n\t" "FMOVS $src2.lo,$dst.lo" %} opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf); ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst)); ins_pipe(faddD_reg_reg); %} // Convert integer in high half of a double register (in the lower half of // the double register file) to double instruct convI2D_regDHi_regD(regD dst, regD_low src) %{ effect(DEF dst, USE src); size(4); format %{ "FITOD $src,$dst" %} opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf); ins_encode(form3_opf_rs2D_rdD(src, dst)); ins_pipe(fcvtLHi2D); %} // Add float double precision instruct addD_regD_regD(regD dst, regD src1, regD src2) %{ effect(DEF dst, USE src1, USE src2); size(4); format %{ "FADDD $src1,$src2,$dst" %} opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf); ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst)); ins_pipe(faddD_reg_reg); %} // Sub float double precision instruct subD_regD_regD(regD dst, regD src1, regD src2) %{ effect(DEF dst, USE src1, USE src2); size(4); format %{ "FSUBD $src1,$src2,$dst" %} opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf); ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst)); ins_pipe(faddD_reg_reg); %} // Mul float double precision instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{ effect(DEF dst, USE src1, USE src2); size(4); format %{ "FMULD $src1,$src2,$dst" %} opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf); ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst)); ins_pipe(fmulD_reg_reg); %} instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{ match(Set dst (ConvL2D src)); ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6); expand %{ regD_low tmpsrc; iRegI ix43300000; iRegI ix41f00000; stackSlotL lx43300000; stackSlotL lx41f00000; regD_low dx43300000; regD dx41f00000; regD tmp1; regD_low tmp2; regD tmp3; regD tmp4; stkL_to_regD(tmpsrc, src); loadConI_x43300000(ix43300000); loadConI_x41f00000(ix41f00000); regI_to_stkLHi(lx43300000, ix43300000); regI_to_stkLHi(lx41f00000, ix41f00000); stkL_to_regD(dx43300000, lx43300000); stkL_to_regD(dx41f00000, lx41f00000); convI2D_regDHi_regD(tmp1, tmpsrc); regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc); subD_regD_regD(tmp3, tmp2, dx43300000); mulD_regD_regD(tmp4, tmp1, dx41f00000); addD_regD_regD(dst, tmp3, tmp4); %} %} // Long to Double conversion using fast fxtof instruct convL2D_helper(regD dst, regD tmp) %{ effect(DEF dst, USE tmp); size(4); format %{ "FXTOD $tmp,$dst" %} opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf); ins_encode(form3_opf_rs2D_rdD(tmp, dst)); ins_pipe(fcvtL2D); %} instruct convL2D_reg_fast_fxtof(regD dst, stackSlotL src) %{ predicate(VM_Version::has_fast_fxtof()); match(Set dst (ConvL2D src)); ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST); expand %{ regD tmp; stkL_to_regD(tmp, src); convL2D_helper(dst, tmp); %} %} //----------- // Long to Float conversion using V8 opcodes. // Still useful because cheetah traps and becomes // amazingly slow for some common numbers. // Long to Float conversion using fast fxtof instruct convL2F_helper(regF dst, regD tmp) %{ effect(DEF dst, USE tmp); size(4); format %{ "FXTOS $tmp,$dst" %} opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf); ins_encode(form3_opf_rs2D_rdF(tmp, dst)); ins_pipe(fcvtL2F); %} instruct convL2F_reg_fast_fxtof(regF dst, stackSlotL src) %{ match(Set dst (ConvL2F src)); ins_cost(DEFAULT_COST + MEMORY_REF_COST); expand %{ regD tmp; stkL_to_regD(tmp, src); convL2F_helper(dst, tmp); %} %} //----------- instruct convL2I_reg(iRegI dst, iRegL src) %{ match(Set dst (ConvL2I src)); #ifndef _LP64 format %{ "MOV $src.lo,$dst\t! long->int" %} ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) ); ins_pipe(ialu_move_reg_I_to_L); #else size(4); format %{ "SRA $src,R_G0,$dst\t! long->int" %} ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) ); ins_pipe(ialu_reg); #endif %} // Register Shift Right Immediate instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{ match(Set dst (ConvL2I (RShiftL src cnt))); size(4); format %{ "SRAX $src,$cnt,$dst" %} opcode(Assembler::srax_op3, Assembler::arith_op); ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) ); ins_pipe(ialu_reg_imm); %} // Replicate scalar to packed byte values in Double register instruct Repl8B_reg_helper(iRegL dst, iRegI src) %{ effect(DEF dst, USE src); format %{ "SLLX $src,56,$dst\n\t" "SRLX $dst, 8,O7\n\t" "OR $dst,O7,$dst\n\t" "SRLX $dst,16,O7\n\t" "OR $dst,O7,$dst\n\t" "SRLX $dst,32,O7\n\t" "OR $dst,O7,$dst\t! replicate8B" %} ins_encode( enc_repl8b(src, dst)); ins_pipe(ialu_reg); %} // Replicate scalar to packed byte values in Double register instruct Repl8B_reg(stackSlotD dst, iRegI src) %{ match(Set dst (Replicate8B src)); expand %{ iRegL tmp; Repl8B_reg_helper(tmp, src); regL_to_stkD(dst, tmp); %} %} // Replicate scalar constant to packed byte values in Double register instruct Repl8B_immI(regD dst, immI13 src, o7RegP tmp) %{ match(Set dst (Replicate8B src)); #ifdef _LP64 size(36); #else size(8); #endif format %{ "SETHI hi(&Repl8($src)),$tmp\t!get Repl8B($src) from table\n\t" "LDDF [$tmp+lo(&Repl8($src))],$dst" %} ins_encode( LdReplImmI(src, dst, tmp, (8), (1)) ); ins_pipe(loadConFD); %} // Replicate scalar to packed char values into stack slot instruct Repl4C_reg_helper(iRegL dst, iRegI src) %{ effect(DEF dst, USE src); format %{ "SLLX $src,48,$dst\n\t" "SRLX $dst,16,O7\n\t" "OR $dst,O7,$dst\n\t" "SRLX $dst,32,O7\n\t" "OR $dst,O7,$dst\t! replicate4C" %} ins_encode( enc_repl4s(src, dst) ); ins_pipe(ialu_reg); %} // Replicate scalar to packed char values into stack slot instruct Repl4C_reg(stackSlotD dst, iRegI src) %{ match(Set dst (Replicate4C src)); expand %{ iRegL tmp; Repl4C_reg_helper(tmp, src); regL_to_stkD(dst, tmp); %} %} // Replicate scalar constant to packed char values in Double register instruct Repl4C_immI(regD dst, immI src, o7RegP tmp) %{ match(Set dst (Replicate4C src)); #ifdef _LP64 size(36); #else size(8); #endif format %{ "SETHI hi(&Repl4($src)),$tmp\t!get Repl4C($src) from table\n\t" "LDDF [$tmp+lo(&Repl4($src))],$dst" %} ins_encode( LdReplImmI(src, dst, tmp, (4), (2)) ); ins_pipe(loadConFD); %} // Replicate scalar to packed short values into stack slot instruct Repl4S_reg_helper(iRegL dst, iRegI src) %{ effect(DEF dst, USE src); format %{ "SLLX $src,48,$dst\n\t" "SRLX $dst,16,O7\n\t" "OR $dst,O7,$dst\n\t" "SRLX $dst,32,O7\n\t" "OR $dst,O7,$dst\t! replicate4S" %} ins_encode( enc_repl4s(src, dst) ); ins_pipe(ialu_reg); %} // Replicate scalar to packed short values into stack slot instruct Repl4S_reg(stackSlotD dst, iRegI src) %{ match(Set dst (Replicate4S src)); expand %{ iRegL tmp; Repl4S_reg_helper(tmp, src); regL_to_stkD(dst, tmp); %} %} // Replicate scalar constant to packed short values in Double register instruct Repl4S_immI(regD dst, immI src, o7RegP tmp) %{ match(Set dst (Replicate4S src)); #ifdef _LP64 size(36); #else size(8); #endif format %{ "SETHI hi(&Repl4($src)),$tmp\t!get Repl4S($src) from table\n\t" "LDDF [$tmp+lo(&Repl4($src))],$dst" %} ins_encode( LdReplImmI(src, dst, tmp, (4), (2)) ); ins_pipe(loadConFD); %} // Replicate scalar to packed int values in Double register instruct Repl2I_reg_helper(iRegL dst, iRegI src) %{ effect(DEF dst, USE src); format %{ "SLLX $src,32,$dst\n\t" "SRLX $dst,32,O7\n\t" "OR $dst,O7,$dst\t! replicate2I" %} ins_encode( enc_repl2i(src, dst)); ins_pipe(ialu_reg); %} // Replicate scalar to packed int values in Double register instruct Repl2I_reg(stackSlotD dst, iRegI src) %{ match(Set dst (Replicate2I src)); expand %{ iRegL tmp; Repl2I_reg_helper(tmp, src); regL_to_stkD(dst, tmp); %} %} // Replicate scalar zero constant to packed int values in Double register instruct Repl2I_immI(regD dst, immI src, o7RegP tmp) %{ match(Set dst (Replicate2I src)); #ifdef _LP64 size(36); #else size(8); #endif format %{ "SETHI hi(&Repl2($src)),$tmp\t!get Repl2I($src) from table\n\t" "LDDF [$tmp+lo(&Repl2($src))],$dst" %} ins_encode( LdReplImmI(src, dst, tmp, (2), (4)) ); ins_pipe(loadConFD); %} //----------Control Flow Instructions------------------------------------------ // Compare Instructions // Compare Integers instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{ match(Set icc (CmpI op1 op2)); effect( DEF icc, USE op1, USE op2 ); size(4); format %{ "CMP $op1,$op2" %} opcode(Assembler::subcc_op3, Assembler::arith_op); ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) ); ins_pipe(ialu_cconly_reg_reg); %} instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{ match(Set icc (CmpU op1 op2)); size(4); format %{ "CMP $op1,$op2\t! unsigned" %} opcode(Assembler::subcc_op3, Assembler::arith_op); ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) ); ins_pipe(ialu_cconly_reg_reg); %} instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{ match(Set icc (CmpI op1 op2)); effect( DEF icc, USE op1 ); size(4); format %{ "CMP $op1,$op2" %} opcode(Assembler::subcc_op3, Assembler::arith_op); ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) ); ins_pipe(ialu_cconly_reg_imm); %} instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{ match(Set icc (CmpI (AndI op1 op2) zero)); size(4); format %{ "BTST $op2,$op1" %} opcode(Assembler::andcc_op3, Assembler::arith_op); ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) ); ins_pipe(ialu_cconly_reg_reg_zero); %} instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{ match(Set icc (CmpI (AndI op1 op2) zero)); size(4); format %{ "BTST $op2,$op1" %} opcode(Assembler::andcc_op3, Assembler::arith_op); ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) ); ins_pipe(ialu_cconly_reg_imm_zero); %} instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{ match(Set xcc (CmpL op1 op2)); effect( DEF xcc, USE op1, USE op2 ); size(4); format %{ "CMP $op1,$op2\t\t! long" %} opcode(Assembler::subcc_op3, Assembler::arith_op); ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) ); ins_pipe(ialu_cconly_reg_reg); %} instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{ match(Set xcc (CmpL op1 con)); effect( DEF xcc, USE op1, USE con ); size(4); format %{ "CMP $op1,$con\t\t! long" %} opcode(Assembler::subcc_op3, Assembler::arith_op); ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) ); ins_pipe(ialu_cconly_reg_reg); %} instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{ match(Set xcc (CmpL (AndL op1 op2) zero)); effect( DEF xcc, USE op1, USE op2 ); size(4); format %{ "BTST $op1,$op2\t\t! long" %} opcode(Assembler::andcc_op3, Assembler::arith_op); ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) ); ins_pipe(ialu_cconly_reg_reg); %} // useful for checking the alignment of a pointer: instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{ match(Set xcc (CmpL (AndL op1 con) zero)); effect( DEF xcc, USE op1, USE con ); size(4); format %{ "BTST $op1,$con\t\t! long" %} opcode(Assembler::andcc_op3, Assembler::arith_op); ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) ); ins_pipe(ialu_cconly_reg_reg); %} instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{ match(Set icc (CmpU op1 op2)); size(4); format %{ "CMP $op1,$op2\t! unsigned" %} opcode(Assembler::subcc_op3, Assembler::arith_op); ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) ); ins_pipe(ialu_cconly_reg_imm); %} // Compare Pointers instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{ match(Set pcc (CmpP op1 op2)); size(4); format %{ "CMP $op1,$op2\t! ptr" %} opcode(Assembler::subcc_op3, Assembler::arith_op); ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) ); ins_pipe(ialu_cconly_reg_reg); %} instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{ match(Set pcc (CmpP op1 op2)); size(4); format %{ "CMP $op1,$op2\t! ptr" %} opcode(Assembler::subcc_op3, Assembler::arith_op); ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) ); ins_pipe(ialu_cconly_reg_imm); %} //----------Max and Min-------------------------------------------------------- // Min Instructions // Conditional move for min instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{ effect( USE_DEF op2, USE op1, USE icc ); size(4); format %{ "MOVlt icc,$op1,$op2\t! min" %} opcode(Assembler::less); ins_encode( enc_cmov_reg_minmax(op2,op1) ); ins_pipe(ialu_reg_flags); %} // Min Register with Register. instruct minI_eReg(iRegI op1, iRegI op2) %{ match(Set op2 (MinI op1 op2)); ins_cost(DEFAULT_COST*2); expand %{ flagsReg icc; compI_iReg(icc,op1,op2); cmovI_reg_lt(op2,op1,icc); %} %} // Max Instructions // Conditional move for max instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{ effect( USE_DEF op2, USE op1, USE icc ); format %{ "MOVgt icc,$op1,$op2\t! max" %} opcode(Assembler::greater); ins_encode( enc_cmov_reg_minmax(op2,op1) ); ins_pipe(ialu_reg_flags); %} // Max Register with Register instruct maxI_eReg(iRegI op1, iRegI op2) %{ match(Set op2 (MaxI op1 op2)); ins_cost(DEFAULT_COST*2); expand %{ flagsReg icc; compI_iReg(icc,op1,op2); cmovI_reg_gt(op2,op1,icc); %} %} //----------Float Compares---------------------------------------------------- // Compare floating, generate condition code instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{ match(Set fcc (CmpF src1 src2)); size(4); format %{ "FCMPs $fcc,$src1,$src2" %} opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf); ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) ); ins_pipe(faddF_fcc_reg_reg_zero); %} instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{ match(Set fcc (CmpD src1 src2)); size(4); format %{ "FCMPd $fcc,$src1,$src2" %} opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf); ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) ); ins_pipe(faddD_fcc_reg_reg_zero); %} // Compare floating, generate -1,0,1 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{ match(Set dst (CmpF3 src1 src2)); effect(KILL fcc0); ins_cost(DEFAULT_COST*3+BRANCH_COST*3); format %{ "fcmpl $dst,$src1,$src2" %} // Primary = float opcode( true ); ins_encode( floating_cmp( dst, src1, src2 ) ); ins_pipe( floating_cmp ); %} instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{ match(Set dst (CmpD3 src1 src2)); effect(KILL fcc0); ins_cost(DEFAULT_COST*3+BRANCH_COST*3); format %{ "dcmpl $dst,$src1,$src2" %} // Primary = double (not float) opcode( false ); ins_encode( floating_cmp( dst, src1, src2 ) ); ins_pipe( floating_cmp ); %} //----------Branches--------------------------------------------------------- // Jump // (compare 'operand indIndex' and 'instruct addP_reg_reg' above) instruct jumpXtnd(iRegX switch_val, o7RegI table) %{ match(Jump switch_val); ins_cost(350); format %{ "SETHI [hi(table_base)],O7\n\t" "ADD O7, lo(table_base), O7\n\t" "LD [O7+$switch_val], O7\n\t" "JUMP O7" %} ins_encode( jump_enc( switch_val, table) ); ins_pc_relative(1); ins_pipe(ialu_reg_reg); %} // Direct Branch. Use V8 version with longer range. instruct branch(label labl) %{ match(Goto); effect(USE labl); size(8); ins_cost(BRANCH_COST); format %{ "BA $labl" %} // Prim = bits 24-22, Secnd = bits 31-30, Tert = cond opcode(Assembler::br_op2, Assembler::branch_op, Assembler::always); ins_encode( enc_ba( labl ) ); ins_pc_relative(1); ins_pipe(br); %} // Conditional Direct Branch instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{ match(If cmp icc); effect(USE labl); size(8); ins_cost(BRANCH_COST); format %{ "BP$cmp $icc,$labl" %} // Prim = bits 24-22, Secnd = bits 31-30 ins_encode( enc_bp( labl, cmp, icc ) ); ins_pc_relative(1); ins_pipe(br_cc); %} // Branch-on-register tests all 64 bits. We assume that values // in 64-bit registers always remains zero or sign extended // unless our code munges the high bits. Interrupts can chop // the high order bits to zero or sign at any time. instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{ match(If cmp (CmpI op1 zero)); predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf)); effect(USE labl); size(8); ins_cost(BRANCH_COST); format %{ "BR$cmp $op1,$labl" %} ins_encode( enc_bpr( labl, cmp, op1 ) ); ins_pc_relative(1); ins_pipe(br_reg); %} instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{ match(If cmp (CmpP op1 null)); predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf)); effect(USE labl); size(8); ins_cost(BRANCH_COST); format %{ "BR$cmp $op1,$labl" %} ins_encode( enc_bpr( labl, cmp, op1 ) ); ins_pc_relative(1); ins_pipe(br_reg); %} instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{ match(If cmp (CmpL op1 zero)); predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf)); effect(USE labl); size(8); ins_cost(BRANCH_COST); format %{ "BR$cmp $op1,$labl" %} ins_encode( enc_bpr( labl, cmp, op1 ) ); ins_pc_relative(1); ins_pipe(br_reg); %} instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{ match(If cmp icc); effect(USE labl); format %{ "BP$cmp $icc,$labl" %} // Prim = bits 24-22, Secnd = bits 31-30 ins_encode( enc_bp( labl, cmp, icc ) ); ins_pc_relative(1); ins_pipe(br_cc); %} instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{ match(If cmp pcc); effect(USE labl); size(8); ins_cost(BRANCH_COST); format %{ "BP$cmp $pcc,$labl" %} // Prim = bits 24-22, Secnd = bits 31-30 ins_encode( enc_bpx( labl, cmp, pcc ) ); ins_pc_relative(1); ins_pipe(br_cc); %} instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{ match(If cmp fcc); effect(USE labl); size(8); ins_cost(BRANCH_COST); format %{ "FBP$cmp $fcc,$labl" %} // Prim = bits 24-22, Secnd = bits 31-30 ins_encode( enc_fbp( labl, cmp, fcc ) ); ins_pc_relative(1); ins_pipe(br_fcc); %} instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{ match(CountedLoopEnd cmp icc); effect(USE labl); size(8); ins_cost(BRANCH_COST); format %{ "BP$cmp $icc,$labl\t! Loop end" %} // Prim = bits 24-22, Secnd = bits 31-30 ins_encode( enc_bp( labl, cmp, icc ) ); ins_pc_relative(1); ins_pipe(br_cc); %} instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{ match(CountedLoopEnd cmp icc); effect(USE labl); size(8); ins_cost(BRANCH_COST); format %{ "BP$cmp $icc,$labl\t! Loop end" %} // Prim = bits 24-22, Secnd = bits 31-30 ins_encode( enc_bp( labl, cmp, icc ) ); ins_pc_relative(1); ins_pipe(br_cc); %} // ============================================================================ // Long Compare // // Currently we hold longs in 2 registers. Comparing such values efficiently // is tricky. The flavor of compare used depends on whether we are testing // for LT, LE, or EQ. For a simple LT test we can check just the sign bit. // The GE test is the negated LT test. The LE test can be had by commuting // the operands (yielding a GE test) and then negating; negate again for the // GT test. The EQ test is done by ORcc'ing the high and low halves, and the // NE test is negated from that. // Due to a shortcoming in the ADLC, it mixes up expressions like: // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)). Note the // difference between 'Y' and '0L'. The tree-matches for the CmpI sections // are collapsed internally in the ADLC's dfa-gen code. The match for // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the // foo match ends up with the wrong leaf. One fix is to not match both // reg-reg and reg-zero forms of long-compare. This is unfortunate because // both forms beat the trinary form of long-compare and both are very useful // on Intel which has so few registers. instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{ match(If cmp xcc); effect(USE labl); size(8); ins_cost(BRANCH_COST); format %{ "BP$cmp $xcc,$labl" %} // Prim = bits 24-22, Secnd = bits 31-30 ins_encode( enc_bpl( labl, cmp, xcc ) ); ins_pc_relative(1); ins_pipe(br_cc); %} // Manifest a CmpL3 result in an integer register. Very painful. // This is the test to avoid. instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{ match(Set dst (CmpL3 src1 src2) ); effect( KILL ccr ); ins_cost(6*DEFAULT_COST); size(24); format %{ "CMP $src1,$src2\t\t! long\n" "\tBLT,a,pn done\n" "\tMOV -1,$dst\t! delay slot\n" "\tBGT,a,pn done\n" "\tMOV 1,$dst\t! delay slot\n" "\tCLR $dst\n" "done:" %} ins_encode( cmpl_flag(src1,src2,dst) ); ins_pipe(cmpL_reg); %} // Conditional move instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{ match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src))); ins_cost(150); format %{ "MOV$cmp $xcc,$src,$dst\t! long" %} ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) ); ins_pipe(ialu_reg); %} instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{ match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src))); ins_cost(140); format %{ "MOV$cmp $xcc,$src,$dst\t! long" %} ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) ); ins_pipe(ialu_imm); %} instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{ match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src))); ins_cost(150); format %{ "MOV$cmp $xcc,$src,$dst" %} ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) ); ins_pipe(ialu_reg); %} instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{ match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src))); ins_cost(140); format %{ "MOV$cmp $xcc,$src,$dst" %} ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) ); ins_pipe(ialu_imm); %} instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{ match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src))); ins_cost(150); format %{ "MOV$cmp $xcc,$src,$dst" %} ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) ); ins_pipe(ialu_reg); %} instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{ match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src))); ins_cost(140); format %{ "MOV$cmp $xcc,$src,$dst" %} ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) ); ins_pipe(ialu_imm); %} instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{ match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src))); ins_cost(150); opcode(0x101); format %{ "FMOVS$cmp $xcc,$src,$dst" %} ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) ); ins_pipe(int_conditional_float_move); %} instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{ match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src))); ins_cost(150); opcode(0x102); format %{ "FMOVD$cmp $xcc,$src,$dst" %} ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) ); ins_pipe(int_conditional_float_move); %} // ============================================================================ // Safepoint Instruction instruct safePoint_poll(iRegP poll) %{ match(SafePoint poll); effect(USE poll); size(4); #ifdef _LP64 format %{ "LDX [$poll],R_G0\t! Safepoint: poll for GC" %} #else format %{ "LDUW [$poll],R_G0\t! Safepoint: poll for GC" %} #endif ins_encode %{ __ relocate(relocInfo::poll_type); __ ld_ptr($poll$$Register, 0, G0); %} ins_pipe(loadPollP); %} // ============================================================================ // Call Instructions // Call Java Static Instruction instruct CallStaticJavaDirect( method meth ) %{ match(CallStaticJava); effect(USE meth); size(8); ins_cost(CALL_COST); format %{ "CALL,static ; NOP ==> " %} ins_encode( Java_Static_Call( meth ), call_epilog ); ins_pc_relative(1); ins_pipe(simple_call); %} // Call Java Dynamic Instruction instruct CallDynamicJavaDirect( method meth ) %{ match(CallDynamicJava); effect(USE meth); ins_cost(CALL_COST); format %{ "SET (empty),R_G5\n\t" "CALL,dynamic ; NOP ==> " %} ins_encode( Java_Dynamic_Call( meth ), call_epilog ); ins_pc_relative(1); ins_pipe(call); %} // Call Runtime Instruction instruct CallRuntimeDirect(method meth, l7RegP l7) %{ match(CallRuntime); effect(USE meth, KILL l7); ins_cost(CALL_COST); format %{ "CALL,runtime" %} ins_encode( Java_To_Runtime( meth ), call_epilog, adjust_long_from_native_call ); ins_pc_relative(1); ins_pipe(simple_call); %} // Call runtime without safepoint - same as CallRuntime instruct CallLeafDirect(method meth, l7RegP l7) %{ match(CallLeaf); effect(USE meth, KILL l7); ins_cost(CALL_COST); format %{ "CALL,runtime leaf" %} ins_encode( Java_To_Runtime( meth ), call_epilog, adjust_long_from_native_call ); ins_pc_relative(1); ins_pipe(simple_call); %} // Call runtime without safepoint - same as CallLeaf instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{ match(CallLeafNoFP); effect(USE meth, KILL l7); ins_cost(CALL_COST); format %{ "CALL,runtime leaf nofp" %} ins_encode( Java_To_Runtime( meth ), call_epilog, adjust_long_from_native_call ); ins_pc_relative(1); ins_pipe(simple_call); %} // Tail Call; Jump from runtime stub to Java code. // Also known as an 'interprocedural jump'. // Target of jump will eventually return to caller. // TailJump below removes the return address. instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{ match(TailCall jump_target method_oop ); ins_cost(CALL_COST); format %{ "Jmp $jump_target ; NOP \t! $method_oop holds method oop" %} ins_encode(form_jmpl(jump_target)); ins_pipe(tail_call); %} // Return Instruction instruct Ret() %{ match(Return); // The epilogue node did the ret already. size(0); format %{ "! return" %} ins_encode(); ins_pipe(empty); %} // Tail Jump; remove the return address; jump to target. // TailCall above leaves the return address around. // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2). // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a // "restore" before this instruction (in Epilogue), we need to materialize it // in %i0. instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{ match( TailJump jump_target ex_oop ); ins_cost(CALL_COST); format %{ "! discard R_O7\n\t" "Jmp $jump_target ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %} ins_encode(form_jmpl_set_exception_pc(jump_target)); // opcode(Assembler::jmpl_op3, Assembler::arith_op); // The hack duplicates the exception oop into G3, so that CreateEx can use it there. // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() ); ins_pipe(tail_call); %} // Create exception oop: created by stack-crawling runtime code. // Created exception is now available to this handler, and is setup // just prior to jumping to this handler. No code emitted. instruct CreateException( o0RegP ex_oop ) %{ match(Set ex_oop (CreateEx)); ins_cost(0); size(0); // use the following format syntax format %{ "! exception oop is in R_O0; no code emitted" %} ins_encode(); ins_pipe(empty); %} // Rethrow exception: // The exception oop will come in the first argument position. // Then JUMP (not call) to the rethrow stub code. instruct RethrowException() %{ match(Rethrow); ins_cost(CALL_COST); // use the following format syntax format %{ "Jmp rethrow_stub" %} ins_encode(enc_rethrow); ins_pipe(tail_call); %} // Die now instruct ShouldNotReachHere( ) %{ match(Halt); ins_cost(CALL_COST); size(4); // Use the following format syntax format %{ "ILLTRAP ; ShouldNotReachHere" %} ins_encode( form2_illtrap() ); ins_pipe(tail_call); %} // ============================================================================ // The 2nd slow-half of a subtype check. Scan the subklass's 2ndary superklass // array for an instance of the superklass. Set a hidden internal cache on a // hit (cache is checked with exposed code in gen_subtype_check()). Return // not zero for a miss or zero for a hit. The encoding ALSO sets flags. instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{ match(Set index (PartialSubtypeCheck sub super)); effect( KILL pcc, KILL o7 ); ins_cost(DEFAULT_COST*10); format %{ "CALL PartialSubtypeCheck\n\tNOP" %} ins_encode( enc_PartialSubtypeCheck() ); ins_pipe(partial_subtype_check_pipe); %} instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{ match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero)); effect( KILL idx, KILL o7 ); ins_cost(DEFAULT_COST*10); format %{ "CALL PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %} ins_encode( enc_PartialSubtypeCheck() ); ins_pipe(partial_subtype_check_pipe); %} // ============================================================================ // inlined locking and unlocking instruct cmpFastLock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{ match(Set pcc (FastLock object box)); effect(KILL scratch, TEMP scratch2); ins_cost(100); size(4*112); // conservative overestimation ... format %{ "FASTLOCK $object, $box; KILL $scratch, $scratch2, $box" %} ins_encode( Fast_Lock(object, box, scratch, scratch2) ); ins_pipe(long_memory_op); %} instruct cmpFastUnlock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{ match(Set pcc (FastUnlock object box)); effect(KILL scratch, TEMP scratch2); ins_cost(100); size(4*120); // conservative overestimation ... format %{ "FASTUNLOCK $object, $box; KILL $scratch, $scratch2, $box" %} ins_encode( Fast_Unlock(object, box, scratch, scratch2) ); ins_pipe(long_memory_op); %} // Count and Base registers are fixed because the allocator cannot // kill unknown registers. The encodings are generic. instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{ match(Set dummy (ClearArray cnt base)); effect(TEMP temp, KILL ccr); ins_cost(300); format %{ "MOV $cnt,$temp\n" "loop: SUBcc $temp,8,$temp\t! Count down a dword of bytes\n" " BRge loop\t\t! Clearing loop\n" " STX G0,[$base+$temp]\t! delay slot" %} ins_encode( enc_Clear_Array(cnt, base, temp) ); ins_pipe(long_memory_op); %} instruct string_compare(o0RegP str1, o1RegP str2, g3RegP tmp1, g4RegP tmp2, notemp_iRegI result, flagsReg ccr) %{ match(Set result (StrComp str1 str2)); effect(USE_KILL str1, USE_KILL str2, KILL tmp1, KILL tmp2, KILL ccr); ins_cost(300); format %{ "String Compare $str1,$str2 -> $result" %} ins_encode( enc_String_Compare(str1, str2, tmp1, tmp2, result) ); ins_pipe(long_memory_op); %} // ============================================================================ //------------Bytes reverse-------------------------------------------------- instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{ match(Set dst (ReverseBytesI src)); effect(DEF dst, USE src); // Op cost is artificially doubled to make sure that load or store // instructions are preferred over this one which requires a spill // onto a stack slot. ins_cost(2*DEFAULT_COST + MEMORY_REF_COST); size(8); format %{ "LDUWA $src, $dst\t!asi=primary_little" %} opcode(Assembler::lduwa_op3); ins_encode( form3_mem_reg_little(src, dst) ); ins_pipe( iload_mem ); %} instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{ match(Set dst (ReverseBytesL src)); effect(DEF dst, USE src); // Op cost is artificially doubled to make sure that load or store // instructions are preferred over this one which requires a spill // onto a stack slot. ins_cost(2*DEFAULT_COST + MEMORY_REF_COST); size(8); format %{ "LDXA $src, $dst\t!asi=primary_little" %} opcode(Assembler::ldxa_op3); ins_encode( form3_mem_reg_little(src, dst) ); ins_pipe( iload_mem ); %} // Load Integer reversed byte order instruct loadI_reversed(iRegI dst, memory src) %{ match(Set dst (ReverseBytesI (LoadI src))); ins_cost(DEFAULT_COST + MEMORY_REF_COST); size(8); format %{ "LDUWA $src, $dst\t!asi=primary_little" %} opcode(Assembler::lduwa_op3); ins_encode( form3_mem_reg_little( src, dst) ); ins_pipe(iload_mem); %} // Load Long - aligned and reversed instruct loadL_reversed(iRegL dst, memory src) %{ match(Set dst (ReverseBytesL (LoadL src))); ins_cost(DEFAULT_COST + MEMORY_REF_COST); size(8); format %{ "LDXA $src, $dst\t!asi=primary_little" %} opcode(Assembler::ldxa_op3); ins_encode( form3_mem_reg_little( src, dst ) ); ins_pipe(iload_mem); %} // Store Integer reversed byte order instruct storeI_reversed(memory dst, iRegI src) %{ match(Set dst (StoreI dst (ReverseBytesI src))); ins_cost(MEMORY_REF_COST); size(8); format %{ "STWA $src, $dst\t!asi=primary_little" %} opcode(Assembler::stwa_op3); ins_encode( form3_mem_reg_little( dst, src) ); ins_pipe(istore_mem_reg); %} // Store Long reversed byte order instruct storeL_reversed(memory dst, iRegL src) %{ match(Set dst (StoreL dst (ReverseBytesL src))); ins_cost(MEMORY_REF_COST); size(8); format %{ "STXA $src, $dst\t!asi=primary_little" %} opcode(Assembler::stxa_op3); ins_encode( form3_mem_reg_little( dst, src) ); ins_pipe(istore_mem_reg); %} //----------PEEPHOLE RULES----------------------------------------------------- // These must follow all instruction definitions as they use the names // defined in the instructions definitions. // // peepmatch ( root_instr_name [preceeding_instruction]* ); // // peepconstraint %{ // (instruction_number.operand_name relational_op instruction_number.operand_name // [, ...] ); // // instruction numbers are zero-based using left to right order in peepmatch // // peepreplace ( instr_name ( [instruction_number.operand_name]* ) ); // // provide an instruction_number.operand_name for each operand that appears // // in the replacement instruction's match rule // // ---------VM FLAGS--------------------------------------------------------- // // All peephole optimizations can be turned off using -XX:-OptoPeephole // // Each peephole rule is given an identifying number starting with zero and // increasing by one in the order seen by the parser. An individual peephole // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=# // on the command-line. // // ---------CURRENT LIMITATIONS---------------------------------------------- // // Only match adjacent instructions in same basic block // Only equality constraints // Only constraints between operands, not (0.dest_reg == EAX_enc) // Only one replacement instruction // // ---------EXAMPLE---------------------------------------------------------- // // // pertinent parts of existing instructions in architecture description // instruct movI(eRegI dst, eRegI src) %{ // match(Set dst (CopyI src)); // %} // // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{ // match(Set dst (AddI dst src)); // effect(KILL cr); // %} // // // Change (inc mov) to lea // peephole %{ // // increment preceeded by register-register move // peepmatch ( incI_eReg movI ); // // require that the destination register of the increment // // match the destination register of the move // peepconstraint ( 0.dst == 1.dst ); // // construct a replacement instruction that sets // // the destination to ( move's source register + one ) // peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) ); // %} // // // Change load of spilled value to only a spill // instruct storeI(memory mem, eRegI src) %{ // match(Set mem (StoreI mem src)); // %} // // instruct loadI(eRegI dst, memory mem) %{ // match(Set dst (LoadI mem)); // %} // // peephole %{ // peepmatch ( loadI storeI ); // peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem ); // peepreplace ( storeI( 1.mem 1.mem 1.src ) ); // %} //----------SMARTSPILL RULES--------------------------------------------------- // These must follow all instruction definitions as they use the names // defined in the instructions definitions. // // SPARC will probably not have any of these rules due to RISC instruction set. //----------PIPELINE----------------------------------------------------------- // Rules which define the behavior of the target architectures pipeline.