/* * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "classfile/systemDictionary.hpp" #include "classfile/vmSymbols.hpp" #include "oops/oop.inline.hpp" #include "runtime/handles.inline.hpp" #include "runtime/javaCalls.hpp" #include "services/lowMemoryDetector.hpp" #include "services/management.hpp" #include "services/memoryManager.hpp" #include "services/memoryPool.hpp" #include "services/memoryService.hpp" #include "services/gcNotifier.hpp" #include "utilities/dtrace.hpp" #ifndef USDT2 HS_DTRACE_PROBE_DECL8(hotspot, mem__pool__gc__begin, char*, int, char*, int, size_t, size_t, size_t, size_t); HS_DTRACE_PROBE_DECL8(hotspot, mem__pool__gc__end, char*, int, char*, int, size_t, size_t, size_t, size_t); #endif /* !USDT2 */ MemoryManager::MemoryManager() { _num_pools = 0; _memory_mgr_obj = NULL; } void MemoryManager::add_pool(MemoryPool* pool) { assert(_num_pools < MemoryManager::max_num_pools, "_num_pools exceeds the max"); if (_num_pools < MemoryManager::max_num_pools) { _pools[_num_pools] = pool; _num_pools++; } pool->add_manager(this); } MemoryManager* MemoryManager::get_code_cache_memory_manager() { return (MemoryManager*) new CodeCacheMemoryManager(); } GCMemoryManager* MemoryManager::get_copy_memory_manager() { return (GCMemoryManager*) new CopyMemoryManager(); } GCMemoryManager* MemoryManager::get_msc_memory_manager() { return (GCMemoryManager*) new MSCMemoryManager(); } GCMemoryManager* MemoryManager::get_parnew_memory_manager() { return (GCMemoryManager*) new ParNewMemoryManager(); } GCMemoryManager* MemoryManager::get_cms_memory_manager() { return (GCMemoryManager*) new CMSMemoryManager(); } GCMemoryManager* MemoryManager::get_psScavenge_memory_manager() { return (GCMemoryManager*) new PSScavengeMemoryManager(); } GCMemoryManager* MemoryManager::get_psMarkSweep_memory_manager() { return (GCMemoryManager*) new PSMarkSweepMemoryManager(); } GCMemoryManager* MemoryManager::get_g1YoungGen_memory_manager() { return (GCMemoryManager*) new G1YoungGenMemoryManager(); } GCMemoryManager* MemoryManager::get_g1OldGen_memory_manager() { return (GCMemoryManager*) new G1OldGenMemoryManager(); } instanceOop MemoryManager::get_memory_manager_instance(TRAPS) { // Must do an acquire so as to force ordering of subsequent // loads from anything _memory_mgr_obj points to or implies. instanceOop mgr_obj = (instanceOop)OrderAccess::load_ptr_acquire(&_memory_mgr_obj); if (mgr_obj == NULL) { // It's ok for more than one thread to execute the code up to the locked region. // Extra manager instances will just be gc'ed. klassOop k = Management::sun_management_ManagementFactory_klass(CHECK_0); instanceKlassHandle ik(THREAD, k); Handle mgr_name = java_lang_String::create_from_str(name(), CHECK_0); JavaValue result(T_OBJECT); JavaCallArguments args; args.push_oop(mgr_name); // Argument 1 Symbol* method_name = NULL; Symbol* signature = NULL; if (is_gc_memory_manager()) { method_name = vmSymbols::createGarbageCollector_name(); signature = vmSymbols::createGarbageCollector_signature(); args.push_oop(Handle()); // Argument 2 (for future extension) } else { method_name = vmSymbols::createMemoryManager_name(); signature = vmSymbols::createMemoryManager_signature(); } JavaCalls::call_static(&result, ik, method_name, signature, &args, CHECK_0); instanceOop m = (instanceOop) result.get_jobject(); instanceHandle mgr(THREAD, m); { // Get lock before setting _memory_mgr_obj // since another thread may have created the instance MutexLocker ml(Management_lock); // Check if another thread has created the management object. We reload // _memory_mgr_obj here because some other thread may have initialized // it while we were executing the code before the lock. // // The lock has done an acquire, so the load can't float above it, but // we need to do a load_acquire as above. mgr_obj = (instanceOop)OrderAccess::load_ptr_acquire(&_memory_mgr_obj); if (mgr_obj != NULL) { return mgr_obj; } // Get the address of the object we created via call_special. mgr_obj = mgr(); // Use store barrier to make sure the memory accesses associated // with creating the management object are visible before publishing // its address. The unlock will publish the store to _memory_mgr_obj // because it does a release first. OrderAccess::release_store_ptr(&_memory_mgr_obj, mgr_obj); } } return mgr_obj; } void MemoryManager::oops_do(OopClosure* f) { f->do_oop((oop*) &_memory_mgr_obj); } GCStatInfo::GCStatInfo(int num_pools) { // initialize the arrays for memory usage _before_gc_usage_array = (MemoryUsage*) NEW_C_HEAP_ARRAY(MemoryUsage, num_pools); _after_gc_usage_array = (MemoryUsage*) NEW_C_HEAP_ARRAY(MemoryUsage, num_pools); size_t len = num_pools * sizeof(MemoryUsage); memset(_before_gc_usage_array, 0, len); memset(_after_gc_usage_array, 0, len); _usage_array_size = num_pools; } GCStatInfo::~GCStatInfo() { FREE_C_HEAP_ARRAY(MemoryUsage*, _before_gc_usage_array); FREE_C_HEAP_ARRAY(MemoryUsage*, _after_gc_usage_array); } void GCStatInfo::set_gc_usage(int pool_index, MemoryUsage usage, bool before_gc) { MemoryUsage* gc_usage_array; if (before_gc) { gc_usage_array = _before_gc_usage_array; } else { gc_usage_array = _after_gc_usage_array; } gc_usage_array[pool_index] = usage; } void GCStatInfo::clear() { _index = 0; _start_time = 0L; _end_time = 0L; size_t len = _usage_array_size * sizeof(MemoryUsage); memset(_before_gc_usage_array, 0, len); memset(_after_gc_usage_array, 0, len); } GCMemoryManager::GCMemoryManager() : MemoryManager() { _num_collections = 0; _last_gc_stat = NULL; _last_gc_lock = new Mutex(Mutex::leaf, "_last_gc_lock", true); _current_gc_stat = NULL; _num_gc_threads = 1; _notification_enabled = false; } GCMemoryManager::~GCMemoryManager() { delete _last_gc_stat; delete _last_gc_lock; delete _current_gc_stat; } void GCMemoryManager::initialize_gc_stat_info() { assert(MemoryService::num_memory_pools() > 0, "should have one or more memory pools"); _last_gc_stat = new GCStatInfo(MemoryService::num_memory_pools()); _current_gc_stat = new GCStatInfo(MemoryService::num_memory_pools()); // tracking concurrent collections we need two objects: one to update, and one to // hold the publicly available "last (completed) gc" information. } void GCMemoryManager::gc_begin(bool recordGCBeginTime, bool recordPreGCUsage, bool recordAccumulatedGCTime) { assert(_last_gc_stat != NULL && _current_gc_stat != NULL, "Just checking"); if (recordAccumulatedGCTime) { _accumulated_timer.start(); } // _num_collections now increases in gc_end, to count completed collections if (recordGCBeginTime) { _current_gc_stat->set_index(_num_collections+1); _current_gc_stat->set_start_time(Management::timestamp()); } if (recordPreGCUsage) { // Keep memory usage of all memory pools for (int i = 0; i < MemoryService::num_memory_pools(); i++) { MemoryPool* pool = MemoryService::get_memory_pool(i); MemoryUsage usage = pool->get_memory_usage(); _current_gc_stat->set_before_gc_usage(i, usage); #ifndef USDT2 HS_DTRACE_PROBE8(hotspot, mem__pool__gc__begin, name(), strlen(name()), pool->name(), strlen(pool->name()), usage.init_size(), usage.used(), usage.committed(), usage.max_size()); #else /* USDT2 */ HOTSPOT_MEM_POOL_GC_BEGIN( (char *) name(), strlen(name()), (char *) pool->name(), strlen(pool->name()), usage.init_size(), usage.used(), usage.committed(), usage.max_size()); #endif /* USDT2 */ } } } // A collector MUST, even if it does not complete for some reason, // make a TraceMemoryManagerStats object where countCollection is true, // to ensure the current gc stat is placed in _last_gc_stat. void GCMemoryManager::gc_end(bool recordPostGCUsage, bool recordAccumulatedGCTime, bool recordGCEndTime, bool countCollection, GCCause::Cause cause) { if (recordAccumulatedGCTime) { _accumulated_timer.stop(); } if (recordGCEndTime) { _current_gc_stat->set_end_time(Management::timestamp()); } if (recordPostGCUsage) { int i; // keep the last gc statistics for all memory pools for (i = 0; i < MemoryService::num_memory_pools(); i++) { MemoryPool* pool = MemoryService::get_memory_pool(i); MemoryUsage usage = pool->get_memory_usage(); #ifndef USDT2 HS_DTRACE_PROBE8(hotspot, mem__pool__gc__end, name(), strlen(name()), pool->name(), strlen(pool->name()), usage.init_size(), usage.used(), usage.committed(), usage.max_size()); #else /* USDT2 */ HOTSPOT_MEM_POOL_GC_END( (char *) name(), strlen(name()), (char *) pool->name(), strlen(pool->name()), usage.init_size(), usage.used(), usage.committed(), usage.max_size()); #endif /* USDT2 */ _current_gc_stat->set_after_gc_usage(i, usage); } // Set last collection usage of the memory pools managed by this collector for (i = 0; i < num_memory_pools(); i++) { MemoryPool* pool = get_memory_pool(i); MemoryUsage usage = pool->get_memory_usage(); // Compare with GC usage threshold pool->set_last_collection_usage(usage); LowMemoryDetector::detect_after_gc_memory(pool); } if(is_notification_enabled()) { bool isMajorGC = this == MemoryService::get_major_gc_manager(); GCNotifier::pushNotification(this, isMajorGC ? "end of major GC" : "end of minor GC", GCCause::to_string(cause)); } } if (countCollection) { _num_collections++; // alternately update two objects making one public when complete { MutexLockerEx ml(_last_gc_lock, Mutex::_no_safepoint_check_flag); GCStatInfo *tmp = _last_gc_stat; _last_gc_stat = _current_gc_stat; _current_gc_stat = tmp; // reset the current stat for diagnosability purposes _current_gc_stat->clear(); } } } size_t GCMemoryManager::get_last_gc_stat(GCStatInfo* dest) { MutexLockerEx ml(_last_gc_lock, Mutex::_no_safepoint_check_flag); if (_last_gc_stat->gc_index() != 0) { dest->set_index(_last_gc_stat->gc_index()); dest->set_start_time(_last_gc_stat->start_time()); dest->set_end_time(_last_gc_stat->end_time()); assert(dest->usage_array_size() == _last_gc_stat->usage_array_size(), "Must have same array size"); size_t len = dest->usage_array_size() * sizeof(MemoryUsage); memcpy(dest->before_gc_usage_array(), _last_gc_stat->before_gc_usage_array(), len); memcpy(dest->after_gc_usage_array(), _last_gc_stat->after_gc_usage_array(), len); } return _last_gc_stat->gc_index(); }