/* * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "classfile/javaClasses.hpp" #include "classfile/systemDictionary.hpp" #include "gc_implementation/shared/gcTimer.hpp" #include "gc_implementation/shared/gcTraceTime.hpp" #include "gc_interface/collectedHeap.hpp" #include "gc_interface/collectedHeap.inline.hpp" #include "memory/referencePolicy.hpp" #include "memory/referenceProcessor.hpp" #include "oops/oop.inline.hpp" #include "runtime/java.hpp" #include "runtime/jniHandles.hpp" PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC ReferencePolicy* ReferenceProcessor::_always_clear_soft_ref_policy = NULL; ReferencePolicy* ReferenceProcessor::_default_soft_ref_policy = NULL; bool ReferenceProcessor::_pending_list_uses_discovered_field = false; jlong ReferenceProcessor::_soft_ref_timestamp_clock = 0; void referenceProcessor_init() { ReferenceProcessor::init_statics(); } void ReferenceProcessor::init_statics() { // We need a monotonically non-deccreasing time in ms but // os::javaTimeMillis() does not guarantee monotonicity. jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC; // Initialize the soft ref timestamp clock. _soft_ref_timestamp_clock = now; // Also update the soft ref clock in j.l.r.SoftReference java_lang_ref_SoftReference::set_clock(_soft_ref_timestamp_clock); _always_clear_soft_ref_policy = new AlwaysClearPolicy(); _default_soft_ref_policy = new COMPILER2_PRESENT(LRUMaxHeapPolicy()) NOT_COMPILER2(LRUCurrentHeapPolicy()); if (_always_clear_soft_ref_policy == NULL || _default_soft_ref_policy == NULL) { vm_exit_during_initialization("Could not allocate reference policy object"); } guarantee(RefDiscoveryPolicy == ReferenceBasedDiscovery || RefDiscoveryPolicy == ReferentBasedDiscovery, "Unrecongnized RefDiscoveryPolicy"); _pending_list_uses_discovered_field = JDK_Version::current().pending_list_uses_discovered_field(); } void ReferenceProcessor::enable_discovery(bool verify_disabled, bool check_no_refs) { #ifdef ASSERT // Verify that we're not currently discovering refs assert(!verify_disabled || !_discovering_refs, "nested call?"); if (check_no_refs) { // Verify that the discovered lists are empty verify_no_references_recorded(); } #endif // ASSERT // Someone could have modified the value of the static // field in the j.l.r.SoftReference class that holds the // soft reference timestamp clock using reflection or // Unsafe between GCs. Unconditionally update the static // field in ReferenceProcessor here so that we use the new // value during reference discovery. _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock(); _discovering_refs = true; } ReferenceProcessor::ReferenceProcessor(MemRegion span, bool mt_processing, uint mt_processing_degree, bool mt_discovery, uint mt_discovery_degree, bool atomic_discovery, BoolObjectClosure* is_alive_non_header, bool discovered_list_needs_post_barrier) : _discovering_refs(false), _enqueuing_is_done(false), _is_alive_non_header(is_alive_non_header), _discovered_list_needs_post_barrier(discovered_list_needs_post_barrier), _processing_is_mt(mt_processing), _next_id(0) { _span = span; _discovery_is_atomic = atomic_discovery; _discovery_is_mt = mt_discovery; _num_q = MAX2(1U, mt_processing_degree); _max_num_q = MAX2(_num_q, mt_discovery_degree); _discovered_refs = NEW_C_HEAP_ARRAY(DiscoveredList, _max_num_q * number_of_subclasses_of_ref(), mtGC); if (_discovered_refs == NULL) { vm_exit_during_initialization("Could not allocated RefProc Array"); } _discoveredSoftRefs = &_discovered_refs[0]; _discoveredWeakRefs = &_discoveredSoftRefs[_max_num_q]; _discoveredFinalRefs = &_discoveredWeakRefs[_max_num_q]; _discoveredPhantomRefs = &_discoveredFinalRefs[_max_num_q]; // Initialize all entries to NULL for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) { _discovered_refs[i].set_head(NULL); _discovered_refs[i].set_length(0); } setup_policy(false /* default soft ref policy */); } #ifndef PRODUCT void ReferenceProcessor::verify_no_references_recorded() { guarantee(!_discovering_refs, "Discovering refs?"); for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) { guarantee(_discovered_refs[i].is_empty(), "Found non-empty discovered list"); } } #endif void ReferenceProcessor::weak_oops_do(OopClosure* f) { for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) { if (UseCompressedOops) { f->do_oop((narrowOop*)_discovered_refs[i].adr_head()); } else { f->do_oop((oop*)_discovered_refs[i].adr_head()); } } } void ReferenceProcessor::update_soft_ref_master_clock() { // Update (advance) the soft ref master clock field. This must be done // after processing the soft ref list. // We need a monotonically non-deccreasing time in ms but // os::javaTimeMillis() does not guarantee monotonicity. jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC; jlong soft_ref_clock = java_lang_ref_SoftReference::clock(); assert(soft_ref_clock == _soft_ref_timestamp_clock, "soft ref clocks out of sync"); NOT_PRODUCT( if (now < _soft_ref_timestamp_clock) { warning("time warp: "INT64_FORMAT" to "INT64_FORMAT, _soft_ref_timestamp_clock, now); } ) // The values of now and _soft_ref_timestamp_clock are set using // javaTimeNanos(), which is guaranteed to be monotonically // non-decreasing provided the underlying platform provides such // a time source (and it is bug free). // In product mode, however, protect ourselves from non-monotonicty. if (now > _soft_ref_timestamp_clock) { _soft_ref_timestamp_clock = now; java_lang_ref_SoftReference::set_clock(now); } // Else leave clock stalled at its old value until time progresses // past clock value. } size_t ReferenceProcessor::total_count(DiscoveredList lists[]) { size_t total = 0; for (uint i = 0; i < _max_num_q; ++i) { total += lists[i].length(); } return total; } ReferenceProcessorStats ReferenceProcessor::process_discovered_references( BoolObjectClosure* is_alive, OopClosure* keep_alive, VoidClosure* complete_gc, AbstractRefProcTaskExecutor* task_executor, GCTimer* gc_timer) { NOT_PRODUCT(verify_ok_to_handle_reflists()); assert(!enqueuing_is_done(), "If here enqueuing should not be complete"); // Stop treating discovered references specially. disable_discovery(); // If discovery was concurrent, someone could have modified // the value of the static field in the j.l.r.SoftReference // class that holds the soft reference timestamp clock using // reflection or Unsafe between when discovery was enabled and // now. Unconditionally update the static field in ReferenceProcessor // here so that we use the new value during processing of the // discovered soft refs. _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock(); bool trace_time = PrintGCDetails && PrintReferenceGC; // Soft references size_t soft_count = 0; { GCTraceTime tt("SoftReference", trace_time, false, gc_timer); soft_count = process_discovered_reflist(_discoveredSoftRefs, _current_soft_ref_policy, true, is_alive, keep_alive, complete_gc, task_executor); } update_soft_ref_master_clock(); // Weak references size_t weak_count = 0; { GCTraceTime tt("WeakReference", trace_time, false, gc_timer); weak_count = process_discovered_reflist(_discoveredWeakRefs, NULL, true, is_alive, keep_alive, complete_gc, task_executor); } // Final references size_t final_count = 0; { GCTraceTime tt("FinalReference", trace_time, false, gc_timer); final_count = process_discovered_reflist(_discoveredFinalRefs, NULL, false, is_alive, keep_alive, complete_gc, task_executor); } // Phantom references size_t phantom_count = 0; { GCTraceTime tt("PhantomReference", trace_time, false, gc_timer); phantom_count = process_discovered_reflist(_discoveredPhantomRefs, NULL, false, is_alive, keep_alive, complete_gc, task_executor); } // Weak global JNI references. It would make more sense (semantically) to // traverse these simultaneously with the regular weak references above, but // that is not how the JDK1.2 specification is. See #4126360. Native code can // thus use JNI weak references to circumvent the phantom references and // resurrect a "post-mortem" object. { GCTraceTime tt("JNI Weak Reference", trace_time, false, gc_timer); if (task_executor != NULL) { task_executor->set_single_threaded_mode(); } process_phaseJNI(is_alive, keep_alive, complete_gc); } return ReferenceProcessorStats(soft_count, weak_count, final_count, phantom_count); } #ifndef PRODUCT // Calculate the number of jni handles. uint ReferenceProcessor::count_jni_refs() { class AlwaysAliveClosure: public BoolObjectClosure { public: virtual bool do_object_b(oop obj) { return true; } }; class CountHandleClosure: public OopClosure { private: int _count; public: CountHandleClosure(): _count(0) {} void do_oop(oop* unused) { _count++; } void do_oop(narrowOop* unused) { ShouldNotReachHere(); } int count() { return _count; } }; CountHandleClosure global_handle_count; AlwaysAliveClosure always_alive; JNIHandles::weak_oops_do(&always_alive, &global_handle_count); return global_handle_count.count(); } #endif void ReferenceProcessor::process_phaseJNI(BoolObjectClosure* is_alive, OopClosure* keep_alive, VoidClosure* complete_gc) { #ifndef PRODUCT if (PrintGCDetails && PrintReferenceGC) { unsigned int count = count_jni_refs(); gclog_or_tty->print(", %u refs", count); } #endif JNIHandles::weak_oops_do(is_alive, keep_alive); complete_gc->do_void(); } template bool enqueue_discovered_ref_helper(ReferenceProcessor* ref, AbstractRefProcTaskExecutor* task_executor) { // Remember old value of pending references list T* pending_list_addr = (T*)java_lang_ref_Reference::pending_list_addr(); T old_pending_list_value = *pending_list_addr; // Enqueue references that are not made active again, and // clear the decks for the next collection (cycle). ref->enqueue_discovered_reflists((HeapWord*)pending_list_addr, task_executor); // Do the post-barrier on pending_list_addr missed in // enqueue_discovered_reflist. oopDesc::bs()->write_ref_field(pending_list_addr, oopDesc::load_decode_heap_oop(pending_list_addr)); // Stop treating discovered references specially. ref->disable_discovery(); // Return true if new pending references were added return old_pending_list_value != *pending_list_addr; } bool ReferenceProcessor::enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor) { NOT_PRODUCT(verify_ok_to_handle_reflists()); if (UseCompressedOops) { return enqueue_discovered_ref_helper(this, task_executor); } else { return enqueue_discovered_ref_helper(this, task_executor); } } void ReferenceProcessor::enqueue_discovered_reflist(DiscoveredList& refs_list, HeapWord* pending_list_addr) { // Given a list of refs linked through the "discovered" field // (java.lang.ref.Reference.discovered), self-loop their "next" field // thus distinguishing them from active References, then // prepend them to the pending list. // BKWRD COMPATIBILITY NOTE: For older JDKs (prior to the fix for 4956777), // the "next" field is used to chain the pending list, not the discovered // field. if (TraceReferenceGC && PrintGCDetails) { gclog_or_tty->print_cr("ReferenceProcessor::enqueue_discovered_reflist list " INTPTR_FORMAT, (address)refs_list.head()); } oop obj = NULL; oop next_d = refs_list.head(); if (pending_list_uses_discovered_field()) { // New behaviour // Walk down the list, self-looping the next field // so that the References are not considered active. while (obj != next_d) { obj = next_d; assert(obj->is_instanceRef(), "should be reference object"); next_d = java_lang_ref_Reference::discovered(obj); if (TraceReferenceGC && PrintGCDetails) { gclog_or_tty->print_cr(" obj " INTPTR_FORMAT "/next_d " INTPTR_FORMAT, (void *)obj, (void *)next_d); } assert(java_lang_ref_Reference::next(obj) == NULL, "Reference not active; should not be discovered"); // Self-loop next, so as to make Ref not active. // Post-barrier not needed when looping to self. java_lang_ref_Reference::set_next_raw(obj, obj); if (next_d == obj) { // obj is last // Swap refs_list into pendling_list_addr and // set obj's discovered to what we read from pending_list_addr. oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr); // Need post-barrier on pending_list_addr above; // see special post-barrier code at the end of // enqueue_discovered_reflists() further below. java_lang_ref_Reference::set_discovered_raw(obj, old); // old may be NULL oopDesc::bs()->write_ref_field(java_lang_ref_Reference::discovered_addr(obj), old); } } } else { // Old behaviour // Walk down the list, copying the discovered field into // the next field and clearing the discovered field. while (obj != next_d) { obj = next_d; assert(obj->is_instanceRef(), "should be reference object"); next_d = java_lang_ref_Reference::discovered(obj); if (TraceReferenceGC && PrintGCDetails) { gclog_or_tty->print_cr(" obj " INTPTR_FORMAT "/next_d " INTPTR_FORMAT, (void *)obj, (void *)next_d); } assert(java_lang_ref_Reference::next(obj) == NULL, "The reference should not be enqueued"); if (next_d == obj) { // obj is last // Swap refs_list into pendling_list_addr and // set obj's next to what we read from pending_list_addr. oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr); // Need oop_check on pending_list_addr above; // see special oop-check code at the end of // enqueue_discovered_reflists() further below. if (old == NULL) { // obj should be made to point to itself, since // pending list was empty. java_lang_ref_Reference::set_next(obj, obj); } else { java_lang_ref_Reference::set_next(obj, old); } } else { java_lang_ref_Reference::set_next(obj, next_d); } java_lang_ref_Reference::set_discovered(obj, (oop) NULL); } } } // Parallel enqueue task class RefProcEnqueueTask: public AbstractRefProcTaskExecutor::EnqueueTask { public: RefProcEnqueueTask(ReferenceProcessor& ref_processor, DiscoveredList discovered_refs[], HeapWord* pending_list_addr, int n_queues) : EnqueueTask(ref_processor, discovered_refs, pending_list_addr, n_queues) { } virtual void work(unsigned int work_id) { assert(work_id < (unsigned int)_ref_processor.max_num_q(), "Index out-of-bounds"); // Simplest first cut: static partitioning. int index = work_id; // The increment on "index" must correspond to the maximum number of queues // (n_queues) with which that ReferenceProcessor was created. That // is because of the "clever" way the discovered references lists were // allocated and are indexed into. assert(_n_queues == (int) _ref_processor.max_num_q(), "Different number not expected"); for (int j = 0; j < ReferenceProcessor::number_of_subclasses_of_ref(); j++, index += _n_queues) { _ref_processor.enqueue_discovered_reflist( _refs_lists[index], _pending_list_addr); _refs_lists[index].set_head(NULL); _refs_lists[index].set_length(0); } } }; // Enqueue references that are not made active again void ReferenceProcessor::enqueue_discovered_reflists(HeapWord* pending_list_addr, AbstractRefProcTaskExecutor* task_executor) { if (_processing_is_mt && task_executor != NULL) { // Parallel code RefProcEnqueueTask tsk(*this, _discovered_refs, pending_list_addr, _max_num_q); task_executor->execute(tsk); } else { // Serial code: call the parent class's implementation for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) { enqueue_discovered_reflist(_discovered_refs[i], pending_list_addr); _discovered_refs[i].set_head(NULL); _discovered_refs[i].set_length(0); } } } void DiscoveredListIterator::load_ptrs(DEBUG_ONLY(bool allow_null_referent)) { _discovered_addr = java_lang_ref_Reference::discovered_addr(_ref); oop discovered = java_lang_ref_Reference::discovered(_ref); assert(_discovered_addr && discovered->is_oop_or_null(), "discovered field is bad"); _next = discovered; _referent_addr = java_lang_ref_Reference::referent_addr(_ref); _referent = java_lang_ref_Reference::referent(_ref); assert(Universe::heap()->is_in_reserved_or_null(_referent), "Wrong oop found in java.lang.Reference object"); assert(allow_null_referent ? _referent->is_oop_or_null() : _referent->is_oop(), "bad referent"); } void DiscoveredListIterator::remove() { assert(_ref->is_oop(), "Dropping a bad reference"); oop_store_raw(_discovered_addr, NULL); // First _prev_next ref actually points into DiscoveredList (gross). oop new_next; if (_next == _ref) { // At the end of the list, we should make _prev point to itself. // If _ref is the first ref, then _prev_next will be in the DiscoveredList, // and _prev will be NULL. new_next = _prev; } else { new_next = _next; } // Remove Reference object from discovered list. Note that G1 does not need a // pre-barrier here because we know the Reference has already been found/marked, // that's how it ended up in the discovered list in the first place. oop_store_raw(_prev_next, new_next); if (_discovered_list_needs_post_barrier && _prev_next != _refs_list.adr_head()) { // Needs post-barrier and this is not the list head (which is not on the heap) oopDesc::bs()->write_ref_field(_prev_next, new_next); } NOT_PRODUCT(_removed++); _refs_list.dec_length(1); } // Make the Reference object active again. void DiscoveredListIterator::make_active() { // For G1 we don't want to use set_next - it // will dirty the card for the next field of // the reference object and will fail // CT verification. if (UseG1GC) { HeapWord* next_addr = java_lang_ref_Reference::next_addr(_ref); if (UseCompressedOops) { oopDesc::bs()->write_ref_field_pre((narrowOop*)next_addr, NULL); } else { oopDesc::bs()->write_ref_field_pre((oop*)next_addr, NULL); } java_lang_ref_Reference::set_next_raw(_ref, NULL); } else { java_lang_ref_Reference::set_next(_ref, NULL); } } void DiscoveredListIterator::clear_referent() { oop_store_raw(_referent_addr, NULL); } // NOTE: process_phase*() are largely similar, and at a high level // merely iterate over the extant list applying a predicate to // each of its elements and possibly removing that element from the // list and applying some further closures to that element. // We should consider the possibility of replacing these // process_phase*() methods by abstracting them into // a single general iterator invocation that receives appropriate // closures that accomplish this work. // (SoftReferences only) Traverse the list and remove any SoftReferences whose // referents are not alive, but that should be kept alive for policy reasons. // Keep alive the transitive closure of all such referents. void ReferenceProcessor::process_phase1(DiscoveredList& refs_list, ReferencePolicy* policy, BoolObjectClosure* is_alive, OopClosure* keep_alive, VoidClosure* complete_gc) { assert(policy != NULL, "Must have a non-NULL policy"); DiscoveredListIterator iter(refs_list, keep_alive, is_alive, _discovered_list_needs_post_barrier); // Decide which softly reachable refs should be kept alive. while (iter.has_next()) { iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */)); bool referent_is_dead = (iter.referent() != NULL) && !iter.is_referent_alive(); if (referent_is_dead && !policy->should_clear_reference(iter.obj(), _soft_ref_timestamp_clock)) { if (TraceReferenceGC) { gclog_or_tty->print_cr("Dropping reference (" INTPTR_FORMAT ": %s" ") by policy", (void *)iter.obj(), iter.obj()->klass()->internal_name()); } // Remove Reference object from list iter.remove(); // Make the Reference object active again iter.make_active(); // keep the referent around iter.make_referent_alive(); iter.move_to_next(); } else { iter.next(); } } // Close the reachable set complete_gc->do_void(); NOT_PRODUCT( if (PrintGCDetails && TraceReferenceGC) { gclog_or_tty->print_cr(" Dropped %d dead Refs out of %d " "discovered Refs by policy, from list " INTPTR_FORMAT, iter.removed(), iter.processed(), (address)refs_list.head()); } ) } // Traverse the list and remove any Refs that are not active, or // whose referents are either alive or NULL. void ReferenceProcessor::pp2_work(DiscoveredList& refs_list, BoolObjectClosure* is_alive, OopClosure* keep_alive) { assert(discovery_is_atomic(), "Error"); DiscoveredListIterator iter(refs_list, keep_alive, is_alive, _discovered_list_needs_post_barrier); while (iter.has_next()) { iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */)); DEBUG_ONLY(oop next = java_lang_ref_Reference::next(iter.obj());) assert(next == NULL, "Should not discover inactive Reference"); if (iter.is_referent_alive()) { if (TraceReferenceGC) { gclog_or_tty->print_cr("Dropping strongly reachable reference (" INTPTR_FORMAT ": %s)", (void *)iter.obj(), iter.obj()->klass()->internal_name()); } // The referent is reachable after all. // Remove Reference object from list. iter.remove(); // Update the referent pointer as necessary: Note that this // should not entail any recursive marking because the // referent must already have been traversed. iter.make_referent_alive(); iter.move_to_next(); } else { iter.next(); } } NOT_PRODUCT( if (PrintGCDetails && TraceReferenceGC && (iter.processed() > 0)) { gclog_or_tty->print_cr(" Dropped %d active Refs out of %d " "Refs in discovered list " INTPTR_FORMAT, iter.removed(), iter.processed(), (address)refs_list.head()); } ) } void ReferenceProcessor::pp2_work_concurrent_discovery(DiscoveredList& refs_list, BoolObjectClosure* is_alive, OopClosure* keep_alive, VoidClosure* complete_gc) { assert(!discovery_is_atomic(), "Error"); DiscoveredListIterator iter(refs_list, keep_alive, is_alive, _discovered_list_needs_post_barrier); while (iter.has_next()) { iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */)); HeapWord* next_addr = java_lang_ref_Reference::next_addr(iter.obj()); oop next = java_lang_ref_Reference::next(iter.obj()); if ((iter.referent() == NULL || iter.is_referent_alive() || next != NULL)) { assert(next->is_oop_or_null(), "bad next field"); // Remove Reference object from list iter.remove(); // Trace the cohorts iter.make_referent_alive(); if (UseCompressedOops) { keep_alive->do_oop((narrowOop*)next_addr); } else { keep_alive->do_oop((oop*)next_addr); } iter.move_to_next(); } else { iter.next(); } } // Now close the newly reachable set complete_gc->do_void(); NOT_PRODUCT( if (PrintGCDetails && TraceReferenceGC && (iter.processed() > 0)) { gclog_or_tty->print_cr(" Dropped %d active Refs out of %d " "Refs in discovered list " INTPTR_FORMAT, iter.removed(), iter.processed(), (address)refs_list.head()); } ) } // Traverse the list and process the referents, by either // clearing them or keeping them (and their reachable // closure) alive. void ReferenceProcessor::process_phase3(DiscoveredList& refs_list, bool clear_referent, BoolObjectClosure* is_alive, OopClosure* keep_alive, VoidClosure* complete_gc) { ResourceMark rm; DiscoveredListIterator iter(refs_list, keep_alive, is_alive, _discovered_list_needs_post_barrier); while (iter.has_next()) { iter.update_discovered(); iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */)); if (clear_referent) { // NULL out referent pointer iter.clear_referent(); } else { // keep the referent around iter.make_referent_alive(); } if (TraceReferenceGC) { gclog_or_tty->print_cr("Adding %sreference (" INTPTR_FORMAT ": %s) as pending", clear_referent ? "cleared " : "", (void *)iter.obj(), iter.obj()->klass()->internal_name()); } assert(iter.obj()->is_oop(UseConcMarkSweepGC), "Adding a bad reference"); iter.next(); } // Remember to update the next pointer of the last ref. iter.update_discovered(); // Close the reachable set complete_gc->do_void(); } void ReferenceProcessor::clear_discovered_references(DiscoveredList& refs_list) { oop obj = NULL; oop next = refs_list.head(); while (next != obj) { obj = next; next = java_lang_ref_Reference::discovered(obj); java_lang_ref_Reference::set_discovered_raw(obj, NULL); } refs_list.set_head(NULL); refs_list.set_length(0); } void ReferenceProcessor::abandon_partial_discovered_list(DiscoveredList& refs_list) { clear_discovered_references(refs_list); } void ReferenceProcessor::abandon_partial_discovery() { // loop over the lists for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) { if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) { gclog_or_tty->print_cr("\nAbandoning %s discovered list", list_name(i)); } abandon_partial_discovered_list(_discovered_refs[i]); } } class RefProcPhase1Task: public AbstractRefProcTaskExecutor::ProcessTask { public: RefProcPhase1Task(ReferenceProcessor& ref_processor, DiscoveredList refs_lists[], ReferencePolicy* policy, bool marks_oops_alive) : ProcessTask(ref_processor, refs_lists, marks_oops_alive), _policy(policy) { } virtual void work(unsigned int i, BoolObjectClosure& is_alive, OopClosure& keep_alive, VoidClosure& complete_gc) { Thread* thr = Thread::current(); int refs_list_index = ((WorkerThread*)thr)->id(); _ref_processor.process_phase1(_refs_lists[refs_list_index], _policy, &is_alive, &keep_alive, &complete_gc); } private: ReferencePolicy* _policy; }; class RefProcPhase2Task: public AbstractRefProcTaskExecutor::ProcessTask { public: RefProcPhase2Task(ReferenceProcessor& ref_processor, DiscoveredList refs_lists[], bool marks_oops_alive) : ProcessTask(ref_processor, refs_lists, marks_oops_alive) { } virtual void work(unsigned int i, BoolObjectClosure& is_alive, OopClosure& keep_alive, VoidClosure& complete_gc) { _ref_processor.process_phase2(_refs_lists[i], &is_alive, &keep_alive, &complete_gc); } }; class RefProcPhase3Task: public AbstractRefProcTaskExecutor::ProcessTask { public: RefProcPhase3Task(ReferenceProcessor& ref_processor, DiscoveredList refs_lists[], bool clear_referent, bool marks_oops_alive) : ProcessTask(ref_processor, refs_lists, marks_oops_alive), _clear_referent(clear_referent) { } virtual void work(unsigned int i, BoolObjectClosure& is_alive, OopClosure& keep_alive, VoidClosure& complete_gc) { // Don't use "refs_list_index" calculated in this way because // balance_queues() has moved the Ref's into the first n queues. // Thread* thr = Thread::current(); // int refs_list_index = ((WorkerThread*)thr)->id(); // _ref_processor.process_phase3(_refs_lists[refs_list_index], _clear_referent, _ref_processor.process_phase3(_refs_lists[i], _clear_referent, &is_alive, &keep_alive, &complete_gc); } private: bool _clear_referent; }; void ReferenceProcessor::set_discovered(oop ref, oop value) { java_lang_ref_Reference::set_discovered_raw(ref, value); if (_discovered_list_needs_post_barrier) { oopDesc::bs()->write_ref_field(java_lang_ref_Reference::discovered_addr(ref), value); } } // Balances reference queues. // Move entries from all queues[0, 1, ..., _max_num_q-1] to // queues[0, 1, ..., _num_q-1] because only the first _num_q // corresponding to the active workers will be processed. void ReferenceProcessor::balance_queues(DiscoveredList ref_lists[]) { // calculate total length size_t total_refs = 0; if (TraceReferenceGC && PrintGCDetails) { gclog_or_tty->print_cr("\nBalance ref_lists "); } for (uint i = 0; i < _max_num_q; ++i) { total_refs += ref_lists[i].length(); if (TraceReferenceGC && PrintGCDetails) { gclog_or_tty->print("%d ", ref_lists[i].length()); } } if (TraceReferenceGC && PrintGCDetails) { gclog_or_tty->print_cr(" = %d", total_refs); } size_t avg_refs = total_refs / _num_q + 1; uint to_idx = 0; for (uint from_idx = 0; from_idx < _max_num_q; from_idx++) { bool move_all = false; if (from_idx >= _num_q) { move_all = ref_lists[from_idx].length() > 0; } while ((ref_lists[from_idx].length() > avg_refs) || move_all) { assert(to_idx < _num_q, "Sanity Check!"); if (ref_lists[to_idx].length() < avg_refs) { // move superfluous refs size_t refs_to_move; // Move all the Ref's if the from queue will not be processed. if (move_all) { refs_to_move = MIN2(ref_lists[from_idx].length(), avg_refs - ref_lists[to_idx].length()); } else { refs_to_move = MIN2(ref_lists[from_idx].length() - avg_refs, avg_refs - ref_lists[to_idx].length()); } assert(refs_to_move > 0, "otherwise the code below will fail"); oop move_head = ref_lists[from_idx].head(); oop move_tail = move_head; oop new_head = move_head; // find an element to split the list on for (size_t j = 0; j < refs_to_move; ++j) { move_tail = new_head; new_head = java_lang_ref_Reference::discovered(new_head); } // Add the chain to the to list. if (ref_lists[to_idx].head() == NULL) { // to list is empty. Make a loop at the end. set_discovered(move_tail, move_tail); } else { set_discovered(move_tail, ref_lists[to_idx].head()); } ref_lists[to_idx].set_head(move_head); ref_lists[to_idx].inc_length(refs_to_move); // Remove the chain from the from list. if (move_tail == new_head) { // We found the end of the from list. ref_lists[from_idx].set_head(NULL); } else { ref_lists[from_idx].set_head(new_head); } ref_lists[from_idx].dec_length(refs_to_move); if (ref_lists[from_idx].length() == 0) { break; } } else { to_idx = (to_idx + 1) % _num_q; } } } #ifdef ASSERT size_t balanced_total_refs = 0; for (uint i = 0; i < _max_num_q; ++i) { balanced_total_refs += ref_lists[i].length(); if (TraceReferenceGC && PrintGCDetails) { gclog_or_tty->print("%d ", ref_lists[i].length()); } } if (TraceReferenceGC && PrintGCDetails) { gclog_or_tty->print_cr(" = %d", balanced_total_refs); gclog_or_tty->flush(); } assert(total_refs == balanced_total_refs, "Balancing was incomplete"); #endif } void ReferenceProcessor::balance_all_queues() { balance_queues(_discoveredSoftRefs); balance_queues(_discoveredWeakRefs); balance_queues(_discoveredFinalRefs); balance_queues(_discoveredPhantomRefs); } size_t ReferenceProcessor::process_discovered_reflist( DiscoveredList refs_lists[], ReferencePolicy* policy, bool clear_referent, BoolObjectClosure* is_alive, OopClosure* keep_alive, VoidClosure* complete_gc, AbstractRefProcTaskExecutor* task_executor) { bool mt_processing = task_executor != NULL && _processing_is_mt; // If discovery used MT and a dynamic number of GC threads, then // the queues must be balanced for correctness if fewer than the // maximum number of queues were used. The number of queue used // during discovery may be different than the number to be used // for processing so don't depend of _num_q < _max_num_q as part // of the test. bool must_balance = _discovery_is_mt; if ((mt_processing && ParallelRefProcBalancingEnabled) || must_balance) { balance_queues(refs_lists); } size_t total_list_count = total_count(refs_lists); if (PrintReferenceGC && PrintGCDetails) { gclog_or_tty->print(", %u refs", total_list_count); } // Phase 1 (soft refs only): // . Traverse the list and remove any SoftReferences whose // referents are not alive, but that should be kept alive for // policy reasons. Keep alive the transitive closure of all // such referents. if (policy != NULL) { if (mt_processing) { RefProcPhase1Task phase1(*this, refs_lists, policy, true /*marks_oops_alive*/); task_executor->execute(phase1); } else { for (uint i = 0; i < _max_num_q; i++) { process_phase1(refs_lists[i], policy, is_alive, keep_alive, complete_gc); } } } else { // policy == NULL assert(refs_lists != _discoveredSoftRefs, "Policy must be specified for soft references."); } // Phase 2: // . Traverse the list and remove any refs whose referents are alive. if (mt_processing) { RefProcPhase2Task phase2(*this, refs_lists, !discovery_is_atomic() /*marks_oops_alive*/); task_executor->execute(phase2); } else { for (uint i = 0; i < _max_num_q; i++) { process_phase2(refs_lists[i], is_alive, keep_alive, complete_gc); } } // Phase 3: // . Traverse the list and process referents as appropriate. if (mt_processing) { RefProcPhase3Task phase3(*this, refs_lists, clear_referent, true /*marks_oops_alive*/); task_executor->execute(phase3); } else { for (uint i = 0; i < _max_num_q; i++) { process_phase3(refs_lists[i], clear_referent, is_alive, keep_alive, complete_gc); } } return total_list_count; } void ReferenceProcessor::clean_up_discovered_references() { // loop over the lists for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) { if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) { gclog_or_tty->print_cr( "\nScrubbing %s discovered list of Null referents", list_name(i)); } clean_up_discovered_reflist(_discovered_refs[i]); } } void ReferenceProcessor::clean_up_discovered_reflist(DiscoveredList& refs_list) { assert(!discovery_is_atomic(), "Else why call this method?"); DiscoveredListIterator iter(refs_list, NULL, NULL, _discovered_list_needs_post_barrier); while (iter.has_next()) { iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */)); oop next = java_lang_ref_Reference::next(iter.obj()); assert(next->is_oop_or_null(), "bad next field"); // If referent has been cleared or Reference is not active, // drop it. if (iter.referent() == NULL || next != NULL) { debug_only( if (PrintGCDetails && TraceReferenceGC) { gclog_or_tty->print_cr("clean_up_discovered_list: Dropping Reference: " INTPTR_FORMAT " with next field: " INTPTR_FORMAT " and referent: " INTPTR_FORMAT, (void *)iter.obj(), (void *)next, (void *)iter.referent()); } ) // Remove Reference object from list iter.remove(); iter.move_to_next(); } else { iter.next(); } } NOT_PRODUCT( if (PrintGCDetails && TraceReferenceGC) { gclog_or_tty->print( " Removed %d Refs with NULL referents out of %d discovered Refs", iter.removed(), iter.processed()); } ) } inline DiscoveredList* ReferenceProcessor::get_discovered_list(ReferenceType rt) { uint id = 0; // Determine the queue index to use for this object. if (_discovery_is_mt) { // During a multi-threaded discovery phase, // each thread saves to its "own" list. Thread* thr = Thread::current(); id = thr->as_Worker_thread()->id(); } else { // single-threaded discovery, we save in round-robin // fashion to each of the lists. if (_processing_is_mt) { id = next_id(); } } assert(0 <= id && id < _max_num_q, "Id is out-of-bounds (call Freud?)"); // Get the discovered queue to which we will add DiscoveredList* list = NULL; switch (rt) { case REF_OTHER: // Unknown reference type, no special treatment break; case REF_SOFT: list = &_discoveredSoftRefs[id]; break; case REF_WEAK: list = &_discoveredWeakRefs[id]; break; case REF_FINAL: list = &_discoveredFinalRefs[id]; break; case REF_PHANTOM: list = &_discoveredPhantomRefs[id]; break; case REF_NONE: // we should not reach here if we are an InstanceRefKlass default: ShouldNotReachHere(); } if (TraceReferenceGC && PrintGCDetails) { gclog_or_tty->print_cr("Thread %d gets list " INTPTR_FORMAT, id, list); } return list; } inline void ReferenceProcessor::add_to_discovered_list_mt(DiscoveredList& refs_list, oop obj, HeapWord* discovered_addr) { assert(_discovery_is_mt, "!_discovery_is_mt should have been handled by caller"); // First we must make sure this object is only enqueued once. CAS in a non null // discovered_addr. oop current_head = refs_list.head(); // The last ref must have its discovered field pointing to itself. oop next_discovered = (current_head != NULL) ? current_head : obj; // Note: In the case of G1, this specific pre-barrier is strictly // not necessary because the only case we are interested in // here is when *discovered_addr is NULL (see the CAS further below), // so this will expand to nothing. As a result, we have manually // elided this out for G1, but left in the test for some future // collector that might have need for a pre-barrier here, e.g.:- // oopDesc::bs()->write_ref_field_pre((oop* or narrowOop*)discovered_addr, next_discovered); assert(!_discovered_list_needs_post_barrier || UseG1GC, "Need to check non-G1 collector: " "may need a pre-write-barrier for CAS from NULL below"); oop retest = oopDesc::atomic_compare_exchange_oop(next_discovered, discovered_addr, NULL); if (retest == NULL) { // This thread just won the right to enqueue the object. // We have separate lists for enqueueing, so no synchronization // is necessary. refs_list.set_head(obj); refs_list.inc_length(1); if (_discovered_list_needs_post_barrier) { oopDesc::bs()->write_ref_field((void*)discovered_addr, next_discovered); } if (TraceReferenceGC) { gclog_or_tty->print_cr("Discovered reference (mt) (" INTPTR_FORMAT ": %s)", (void *)obj, obj->klass()->internal_name()); } } else { // If retest was non NULL, another thread beat us to it: // The reference has already been discovered... if (TraceReferenceGC) { gclog_or_tty->print_cr("Already discovered reference (" INTPTR_FORMAT ": %s)", (void *)obj, obj->klass()->internal_name()); } } } #ifndef PRODUCT // Non-atomic (i.e. concurrent) discovery might allow us // to observe j.l.References with NULL referents, being those // cleared concurrently by mutators during (or after) discovery. void ReferenceProcessor::verify_referent(oop obj) { bool da = discovery_is_atomic(); oop referent = java_lang_ref_Reference::referent(obj); assert(da ? referent->is_oop() : referent->is_oop_or_null(), err_msg("Bad referent " INTPTR_FORMAT " found in Reference " INTPTR_FORMAT " during %satomic discovery ", (void *)referent, (void *)obj, da ? "" : "non-")); } #endif // We mention two of several possible choices here: // #0: if the reference object is not in the "originating generation" // (or part of the heap being collected, indicated by our "span" // we don't treat it specially (i.e. we scan it as we would // a normal oop, treating its references as strong references). // This means that references can't be discovered unless their // referent is also in the same span. This is the simplest, // most "local" and most conservative approach, albeit one // that may cause weak references to be enqueued least promptly. // We call this choice the "ReferenceBasedDiscovery" policy. // #1: the reference object may be in any generation (span), but if // the referent is in the generation (span) being currently collected // then we can discover the reference object, provided // the object has not already been discovered by // a different concurrently running collector (as may be the // case, for instance, if the reference object is in CMS and // the referent in DefNewGeneration), and provided the processing // of this reference object by the current collector will // appear atomic to every other collector in the system. // (Thus, for instance, a concurrent collector may not // discover references in other generations even if the // referent is in its own generation). This policy may, // in certain cases, enqueue references somewhat sooner than // might Policy #0 above, but at marginally increased cost // and complexity in processing these references. // We call this choice the "RefeferentBasedDiscovery" policy. bool ReferenceProcessor::discover_reference(oop obj, ReferenceType rt) { // Make sure we are discovering refs (rather than processing discovered refs). if (!_discovering_refs || !RegisterReferences) { return false; } // We only discover active references. oop next = java_lang_ref_Reference::next(obj); if (next != NULL) { // Ref is no longer active return false; } HeapWord* obj_addr = (HeapWord*)obj; if (RefDiscoveryPolicy == ReferenceBasedDiscovery && !_span.contains(obj_addr)) { // Reference is not in the originating generation; // don't treat it specially (i.e. we want to scan it as a normal // object with strong references). return false; } // We only discover references whose referents are not (yet) // known to be strongly reachable. if (is_alive_non_header() != NULL) { verify_referent(obj); if (is_alive_non_header()->do_object_b(java_lang_ref_Reference::referent(obj))) { return false; // referent is reachable } } if (rt == REF_SOFT) { // For soft refs we can decide now if these are not // current candidates for clearing, in which case we // can mark through them now, rather than delaying that // to the reference-processing phase. Since all current // time-stamp policies advance the soft-ref clock only // at a major collection cycle, this is always currently // accurate. if (!_current_soft_ref_policy->should_clear_reference(obj, _soft_ref_timestamp_clock)) { return false; } } ResourceMark rm; // Needed for tracing. HeapWord* const discovered_addr = java_lang_ref_Reference::discovered_addr(obj); const oop discovered = java_lang_ref_Reference::discovered(obj); assert(discovered->is_oop_or_null(), "bad discovered field"); if (discovered != NULL) { // The reference has already been discovered... if (TraceReferenceGC) { gclog_or_tty->print_cr("Already discovered reference (" INTPTR_FORMAT ": %s)", (void *)obj, obj->klass()->internal_name()); } if (RefDiscoveryPolicy == ReferentBasedDiscovery) { // assumes that an object is not processed twice; // if it's been already discovered it must be on another // generation's discovered list; so we won't discover it. return false; } else { assert(RefDiscoveryPolicy == ReferenceBasedDiscovery, "Unrecognized policy"); // Check assumption that an object is not potentially // discovered twice except by concurrent collectors that potentially // trace the same Reference object twice. assert(UseConcMarkSweepGC || UseG1GC, "Only possible with a concurrent marking collector"); return true; } } if (RefDiscoveryPolicy == ReferentBasedDiscovery) { verify_referent(obj); // Discover if and only if EITHER: // .. reference is in our span, OR // .. we are an atomic collector and referent is in our span if (_span.contains(obj_addr) || (discovery_is_atomic() && _span.contains(java_lang_ref_Reference::referent(obj)))) { // should_enqueue = true; } else { return false; } } else { assert(RefDiscoveryPolicy == ReferenceBasedDiscovery && _span.contains(obj_addr), "code inconsistency"); } // Get the right type of discovered queue head. DiscoveredList* list = get_discovered_list(rt); if (list == NULL) { return false; // nothing special needs to be done } if (_discovery_is_mt) { add_to_discovered_list_mt(*list, obj, discovered_addr); } else { // If "_discovered_list_needs_post_barrier", we do write barriers when // updating the discovered reference list. Otherwise, we do a raw store // here: the field will be visited later when processing the discovered // references. oop current_head = list->head(); // The last ref must have its discovered field pointing to itself. oop next_discovered = (current_head != NULL) ? current_head : obj; // As in the case further above, since we are over-writing a NULL // pre-value, we can safely elide the pre-barrier here for the case of G1. // e.g.:- oopDesc::bs()->write_ref_field_pre((oop* or narrowOop*)discovered_addr, next_discovered); assert(discovered == NULL, "control point invariant"); assert(!_discovered_list_needs_post_barrier || UseG1GC, "For non-G1 collector, may need a pre-write-barrier for CAS from NULL below"); oop_store_raw(discovered_addr, next_discovered); if (_discovered_list_needs_post_barrier) { oopDesc::bs()->write_ref_field((void*)discovered_addr, next_discovered); } list->set_head(obj); list->inc_length(1); if (TraceReferenceGC) { gclog_or_tty->print_cr("Discovered reference (" INTPTR_FORMAT ": %s)", (void *)obj, obj->klass()->internal_name()); } } assert(obj->is_oop(), "Discovered a bad reference"); verify_referent(obj); return true; } // Preclean the discovered references by removing those // whose referents are alive, and by marking from those that // are not active. These lists can be handled here // in any order and, indeed, concurrently. void ReferenceProcessor::preclean_discovered_references( BoolObjectClosure* is_alive, OopClosure* keep_alive, VoidClosure* complete_gc, YieldClosure* yield, GCTimer* gc_timer) { NOT_PRODUCT(verify_ok_to_handle_reflists()); // Soft references { GCTraceTime tt("Preclean SoftReferences", PrintGCDetails && PrintReferenceGC, false, gc_timer); for (uint i = 0; i < _max_num_q; i++) { if (yield->should_return()) { return; } preclean_discovered_reflist(_discoveredSoftRefs[i], is_alive, keep_alive, complete_gc, yield); } } // Weak references { GCTraceTime tt("Preclean WeakReferences", PrintGCDetails && PrintReferenceGC, false, gc_timer); for (uint i = 0; i < _max_num_q; i++) { if (yield->should_return()) { return; } preclean_discovered_reflist(_discoveredWeakRefs[i], is_alive, keep_alive, complete_gc, yield); } } // Final references { GCTraceTime tt("Preclean FinalReferences", PrintGCDetails && PrintReferenceGC, false, gc_timer); for (uint i = 0; i < _max_num_q; i++) { if (yield->should_return()) { return; } preclean_discovered_reflist(_discoveredFinalRefs[i], is_alive, keep_alive, complete_gc, yield); } } // Phantom references { GCTraceTime tt("Preclean PhantomReferences", PrintGCDetails && PrintReferenceGC, false, gc_timer); for (uint i = 0; i < _max_num_q; i++) { if (yield->should_return()) { return; } preclean_discovered_reflist(_discoveredPhantomRefs[i], is_alive, keep_alive, complete_gc, yield); } } } // Walk the given discovered ref list, and remove all reference objects // whose referents are still alive, whose referents are NULL or which // are not active (have a non-NULL next field). NOTE: When we are // thus precleaning the ref lists (which happens single-threaded today), // we do not disable refs discovery to honour the correct semantics of // java.lang.Reference. As a result, we need to be careful below // that ref removal steps interleave safely with ref discovery steps // (in this thread). void ReferenceProcessor::preclean_discovered_reflist(DiscoveredList& refs_list, BoolObjectClosure* is_alive, OopClosure* keep_alive, VoidClosure* complete_gc, YieldClosure* yield) { DiscoveredListIterator iter(refs_list, keep_alive, is_alive, _discovered_list_needs_post_barrier); while (iter.has_next()) { iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */)); oop obj = iter.obj(); oop next = java_lang_ref_Reference::next(obj); if (iter.referent() == NULL || iter.is_referent_alive() || next != NULL) { // The referent has been cleared, or is alive, or the Reference is not // active; we need to trace and mark its cohort. if (TraceReferenceGC) { gclog_or_tty->print_cr("Precleaning Reference (" INTPTR_FORMAT ": %s)", (void *)iter.obj(), iter.obj()->klass()->internal_name()); } // Remove Reference object from list iter.remove(); // Keep alive its cohort. iter.make_referent_alive(); if (UseCompressedOops) { narrowOop* next_addr = (narrowOop*)java_lang_ref_Reference::next_addr(obj); keep_alive->do_oop(next_addr); } else { oop* next_addr = (oop*)java_lang_ref_Reference::next_addr(obj); keep_alive->do_oop(next_addr); } iter.move_to_next(); } else { iter.next(); } } // Close the reachable set complete_gc->do_void(); NOT_PRODUCT( if (PrintGCDetails && PrintReferenceGC && (iter.processed() > 0)) { gclog_or_tty->print_cr(" Dropped %d Refs out of %d " "Refs in discovered list " INTPTR_FORMAT, iter.removed(), iter.processed(), (address)refs_list.head()); } ) } const char* ReferenceProcessor::list_name(uint i) { assert(i >= 0 && i <= _max_num_q * number_of_subclasses_of_ref(), "Out of bounds index"); int j = i / _max_num_q; switch (j) { case 0: return "SoftRef"; case 1: return "WeakRef"; case 2: return "FinalRef"; case 3: return "PhantomRef"; } ShouldNotReachHere(); return NULL; } #ifndef PRODUCT void ReferenceProcessor::verify_ok_to_handle_reflists() { // empty for now } #endif #ifndef PRODUCT void ReferenceProcessor::clear_discovered_references() { guarantee(!_discovering_refs, "Discovering refs?"); for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) { clear_discovered_references(_discovered_refs[i]); } } #endif // PRODUCT