/* * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ class ciMethod; class CallingConvention; class BasicTypeArray; class BasicTypeList; //-------------------------------------------------------- // FrameMap //-------------------------------------------------------- // This class is responsible of mapping items (locals, monitors, spill // slots and registers to their frame location // // The monitors are specified by a consecutive index, although each monitor entry // occupies two words. The monitor_index is 0.._num_monitors // The spill index is similar to local index; it is in range 0..(open) // // The CPU registers are mapped using a fixed table; register with number 0 // is the most used one. // stack grow direction --> SP // +----------+---+----------+-------+------------------------+-----+ // |arguments | x | monitors | spill | reserved argument area | ABI | // +----------+---+----------+-------+------------------------+-----+ // // x = ABI area (SPARC) or return adress and link (i486) // ABI = ABI area (SPARC) or nothing (i486) class LIR_OprDesc; typedef LIR_OprDesc* LIR_Opr; class FrameMap : public CompilationResourceObj { public: enum { nof_cpu_regs = pd_nof_cpu_regs_frame_map, nof_fpu_regs = pd_nof_fpu_regs_frame_map, nof_cpu_regs_reg_alloc = pd_nof_cpu_regs_reg_alloc, nof_fpu_regs_reg_alloc = pd_nof_fpu_regs_reg_alloc, nof_caller_save_cpu_regs = pd_nof_caller_save_cpu_regs_frame_map, nof_caller_save_fpu_regs = pd_nof_caller_save_fpu_regs_frame_map, spill_slot_size_in_bytes = 4 }; # include "incls/_c1_FrameMap_pd.hpp.incl" // platform dependent declarations friend class LIR_OprDesc; private: static bool _init_done; static Register _cpu_rnr2reg [nof_cpu_regs]; static int _cpu_reg2rnr [nof_cpu_regs]; static LIR_Opr _caller_save_cpu_regs [nof_caller_save_cpu_regs]; static LIR_Opr _caller_save_fpu_regs [nof_caller_save_fpu_regs]; int _framesize; int _argcount; int _num_monitors; int _num_spills; int _reserved_argument_area_size; int _oop_map_arg_count; CallingConvention* _incoming_arguments; intArray* _argument_locations; void check_spill_index (int spill_index) const { assert(spill_index >= 0, "bad index"); } void check_monitor_index (int monitor_index) const { assert(monitor_index >= 0 && monitor_index < _num_monitors, "bad index"); } static Register cpu_rnr2reg (int rnr) { assert(_init_done, "tables not initialized"); debug_only(cpu_range_check(rnr);) return _cpu_rnr2reg[rnr]; } static int cpu_reg2rnr (Register reg) { assert(_init_done, "tables not initialized"); debug_only(cpu_range_check(reg->encoding());) return _cpu_reg2rnr[reg->encoding()]; } static void map_register(int rnr, Register reg) { debug_only(cpu_range_check(rnr);) debug_only(cpu_range_check(reg->encoding());) _cpu_rnr2reg[rnr] = reg; _cpu_reg2rnr[reg->encoding()] = rnr; } void update_reserved_argument_area_size (int size) { assert(size >= 0, "check"); _reserved_argument_area_size = MAX2(_reserved_argument_area_size, size); } protected: #ifndef PRODUCT static void cpu_range_check (int rnr) { assert(0 <= rnr && rnr < nof_cpu_regs, "cpu register number is too big"); } static void fpu_range_check (int rnr) { assert(0 <= rnr && rnr < nof_fpu_regs, "fpu register number is too big"); } #endif ByteSize sp_offset_for_monitor_base(const int idx) const; Address make_new_address(ByteSize sp_offset) const; ByteSize sp_offset_for_slot(const int idx) const; ByteSize sp_offset_for_double_slot(const int idx) const; ByteSize sp_offset_for_spill(const int idx) const; ByteSize sp_offset_for_monitor_lock(int monitor_index) const; ByteSize sp_offset_for_monitor_object(int monitor_index) const; VMReg sp_offset2vmreg(ByteSize offset) const; // platform dependent hook used to check that frame is properly // addressable on the platform. Used by sparc to verify that all // stack addresses are expressable in a simm13. bool validate_frame(); static LIR_Opr map_to_opr(BasicType type, VMRegPair* reg, bool incoming); public: // Opr representing the stack_pointer on this platform static LIR_Opr stack_pointer(); // JSR 292 static LIR_Opr method_handle_invoke_SP_save_opr(); static BasicTypeArray* signature_type_array_for(const ciMethod* method); static BasicTypeArray* signature_type_array_for(const char * signature); // for outgoing calls, these also update the reserved area to // include space for arguments and any ABI area. CallingConvention* c_calling_convention (const BasicTypeArray* signature); CallingConvention* java_calling_convention (const BasicTypeArray* signature, bool outgoing); // deopt support ByteSize sp_offset_for_orig_pc() { return sp_offset_for_monitor_base(_num_monitors); } static LIR_Opr as_opr(Register r) { return LIR_OprFact::single_cpu(cpu_reg2rnr(r)); } static LIR_Opr as_oop_opr(Register r) { return LIR_OprFact::single_cpu_oop(cpu_reg2rnr(r)); } FrameMap(ciMethod* method, int monitors, int reserved_argument_area_size); bool finalize_frame(int nof_slots); int reserved_argument_area_size () const { return _reserved_argument_area_size; } int framesize () const { assert(_framesize != -1, "hasn't been calculated"); return _framesize; } ByteSize framesize_in_bytes () const { return in_ByteSize(framesize() * 4); } int num_monitors () const { return _num_monitors; } int num_spills () const { assert(_num_spills >= 0, "not set"); return _num_spills; } int argcount () const { assert(_argcount >= 0, "not set"); return _argcount; } int oop_map_arg_count() const { return _oop_map_arg_count; } CallingConvention* incoming_arguments() const { return _incoming_arguments; } // convenience routines Address address_for_slot(int index, int sp_adjust = 0) const { return make_new_address(sp_offset_for_slot(index) + in_ByteSize(sp_adjust)); } Address address_for_double_slot(int index, int sp_adjust = 0) const { return make_new_address(sp_offset_for_double_slot(index) + in_ByteSize(sp_adjust)); } Address address_for_monitor_lock(int monitor_index) const { return make_new_address(sp_offset_for_monitor_lock(monitor_index)); } Address address_for_monitor_object(int monitor_index) const { return make_new_address(sp_offset_for_monitor_object(monitor_index)); } void print_frame_layout() const; // Creates Location describing desired slot and returns it via pointer // to Location object. Returns true if the stack frame offset was legal // (as defined by Location::legal_offset_in_bytes()), false otherwise. // Do not use the returned location if this returns false. bool location_for_sp_offset(ByteSize byte_offset_from_sp, Location::Type loc_type, Location* loc) const; bool location_for_monitor_lock (int monitor_index, Location* loc) const { return location_for_sp_offset(sp_offset_for_monitor_lock(monitor_index), Location::normal, loc); } bool location_for_monitor_object(int monitor_index, Location* loc) const { return location_for_sp_offset(sp_offset_for_monitor_object(monitor_index), Location::oop, loc); } bool locations_for_slot (int index, Location::Type loc_type, Location* loc, Location* second = NULL) const; VMReg slot_regname(int index) const { return sp_offset2vmreg(sp_offset_for_slot(index)); } VMReg monitor_object_regname(int monitor_index) const { return sp_offset2vmreg(sp_offset_for_monitor_object(monitor_index)); } VMReg regname(LIR_Opr opr) const; static LIR_Opr caller_save_cpu_reg_at(int i) { assert(i >= 0 && i < nof_caller_save_cpu_regs, "out of bounds"); return _caller_save_cpu_regs[i]; } static LIR_Opr caller_save_fpu_reg_at(int i) { assert(i >= 0 && i < nof_caller_save_fpu_regs, "out of bounds"); return _caller_save_fpu_regs[i]; } static void initialize(); }; // CallingConvention //-------------------------------------------------------- class CallingConvention: public ResourceObj { private: LIR_OprList* _args; int _reserved_stack_slots; public: CallingConvention (LIR_OprList* args, int reserved_stack_slots) : _args(args) , _reserved_stack_slots(reserved_stack_slots) {} LIR_OprList* args() { return _args; } LIR_Opr at(int i) const { return _args->at(i); } int length() const { return _args->length(); } // Indicates number of real frame slots used by arguments passed on stack. int reserved_stack_slots() const { return _reserved_stack_slots; } #ifndef PRODUCT void print () const { for (int i = 0; i < length(); i++) { at(i)->print(); } } #endif // PRODUCT };