/* * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ # include "incls/_precompiled.incl" # include "incls/_frame.cpp.incl" RegisterMap::RegisterMap(JavaThread *thread, bool update_map) { _thread = thread; _update_map = update_map; clear(); debug_only(_update_for_id = NULL;) #ifndef PRODUCT for (int i = 0; i < reg_count ; i++ ) _location[i] = NULL; #endif /* PRODUCT */ } RegisterMap::RegisterMap(const RegisterMap* map) { assert(map != this, "bad initialization parameter"); assert(map != NULL, "RegisterMap must be present"); _thread = map->thread(); _update_map = map->update_map(); _include_argument_oops = map->include_argument_oops(); debug_only(_update_for_id = map->_update_for_id;) pd_initialize_from(map); if (update_map()) { for(int i = 0; i < location_valid_size; i++) { LocationValidType bits = !update_map() ? 0 : map->_location_valid[i]; _location_valid[i] = bits; // for whichever bits are set, pull in the corresponding map->_location int j = i*location_valid_type_size; while (bits != 0) { if ((bits & 1) != 0) { assert(0 <= j && j < reg_count, "range check"); _location[j] = map->_location[j]; } bits >>= 1; j += 1; } } } } void RegisterMap::clear() { set_include_argument_oops(true); if (_update_map) { for(int i = 0; i < location_valid_size; i++) { _location_valid[i] = 0; } pd_clear(); } else { pd_initialize(); } } #ifndef PRODUCT void RegisterMap::print_on(outputStream* st) const { st->print_cr("Register map"); for(int i = 0; i < reg_count; i++) { VMReg r = VMRegImpl::as_VMReg(i); intptr_t* src = (intptr_t*) location(r); if (src != NULL) { r->print_on(st); st->print(" [" INTPTR_FORMAT "] = ", src); if (((uintptr_t)src & (sizeof(*src)-1)) != 0) { st->print_cr("<misaligned>"); } else { st->print_cr(INTPTR_FORMAT, *src); } } } } void RegisterMap::print() const { print_on(tty); } #endif // This returns the pc that if you were in the debugger you'd see. Not // the idealized value in the frame object. This undoes the magic conversion // that happens for deoptimized frames. In addition it makes the value the // hardware would want to see in the native frame. The only user (at this point) // is deoptimization. It likely no one else should ever use it. address frame::raw_pc() const { if (is_deoptimized_frame()) { nmethod* nm = cb()->as_nmethod_or_null(); if (nm->is_method_handle_return(pc())) return nm->deopt_mh_handler_begin() - pc_return_offset; else return nm->deopt_handler_begin() - pc_return_offset; } else { return (pc() - pc_return_offset); } } // Change the pc in a frame object. This does not change the actual pc in // actual frame. To do that use patch_pc. // void frame::set_pc(address newpc ) { #ifdef ASSERT if (_cb != NULL && _cb->is_nmethod()) { assert(!((nmethod*)_cb)->is_deopt_pc(_pc), "invariant violation"); } #endif // ASSERT // Unsafe to use the is_deoptimzed tester after changing pc _deopt_state = unknown; _pc = newpc; _cb = CodeCache::find_blob_unsafe(_pc); } // type testers bool frame::is_deoptimized_frame() const { assert(_deopt_state != unknown, "not answerable"); return _deopt_state == is_deoptimized; } bool frame::is_native_frame() const { return (_cb != NULL && _cb->is_nmethod() && ((nmethod*)_cb)->is_native_method()); } bool frame::is_java_frame() const { if (is_interpreted_frame()) return true; if (is_compiled_frame()) return true; return false; } bool frame::is_compiled_frame() const { if (_cb != NULL && _cb->is_nmethod() && ((nmethod*)_cb)->is_java_method()) { return true; } return false; } bool frame::is_runtime_frame() const { return (_cb != NULL && _cb->is_runtime_stub()); } bool frame::is_safepoint_blob_frame() const { return (_cb != NULL && _cb->is_safepoint_stub()); } // testers bool frame::is_first_java_frame() const { RegisterMap map(JavaThread::current(), false); // No update frame s; for (s = sender(&map); !(s.is_java_frame() || s.is_first_frame()); s = s.sender(&map)); return s.is_first_frame(); } bool frame::entry_frame_is_first() const { return entry_frame_call_wrapper()->anchor()->last_Java_sp() == NULL; } bool frame::should_be_deoptimized() const { if (_deopt_state == is_deoptimized || !is_compiled_frame() ) return false; assert(_cb != NULL && _cb->is_nmethod(), "must be an nmethod"); nmethod* nm = (nmethod *)_cb; if (TraceDependencies) { tty->print("checking (%s) ", nm->is_marked_for_deoptimization() ? "true" : "false"); nm->print_value_on(tty); tty->cr(); } if( !nm->is_marked_for_deoptimization() ) return false; // If at the return point, then the frame has already been popped, and // only the return needs to be executed. Don't deoptimize here. return !nm->is_at_poll_return(pc()); } bool frame::can_be_deoptimized() const { if (!is_compiled_frame()) return false; nmethod* nm = (nmethod*)_cb; if( !nm->can_be_deoptimized() ) return false; return !nm->is_at_poll_return(pc()); } void frame::deoptimize(JavaThread* thread, bool thread_is_known_safe) { // Schedule deoptimization of an nmethod activation with this frame. // Store the original pc before an patch (or request to self-deopt) // in the published location of the frame. assert(_cb != NULL && _cb->is_nmethod(), "must be"); nmethod* nm = (nmethod*)_cb; // This is a fix for register window patching race if (NeedsDeoptSuspend && !thread_is_known_safe) { // It is possible especially with DeoptimizeALot/DeoptimizeRandom that // we could see the frame again and ask for it to be deoptimized since // it might move for a long time. That is harmless and we just ignore it. if (id() == thread->must_deopt_id()) { assert(thread->is_deopt_suspend(), "lost suspension"); return; } // We are at a safepoint so the target thread can only be // in 4 states: // blocked - no problem // blocked_trans - no problem (i.e. could have woken up from blocked // during a safepoint). // native - register window pc patching race // native_trans - momentary state // // We could just wait out a thread in native_trans to block. // Then we'd have all the issues that the safepoint code has as to // whether to spin or block. It isn't worth it. Just treat it like // native and be done with it. // JavaThreadState state = thread->thread_state(); if (state == _thread_in_native || state == _thread_in_native_trans) { // Since we are at a safepoint the target thread will stop itself // before it can return to java as long as we remain at the safepoint. // Therefore we can put an additional request for the thread to stop // no matter what no (like a suspend). This will cause the thread // to notice it needs to do the deopt on its own once it leaves native. // // The only reason we must do this is because on machine with register // windows we have a race with patching the return address and the // window coming live as the thread returns to the Java code (but still // in native mode) and then blocks. It is only this top most frame // that is at risk. So in truth we could add an additional check to // see if this frame is one that is at risk. RegisterMap map(thread, false); frame at_risk = thread->last_frame().sender(&map); if (id() == at_risk.id()) { thread->set_must_deopt_id(id()); thread->set_deopt_suspend(); return; } } } // NeedsDeoptSuspend // If the call site is a MethodHandle call site use the MH deopt // handler. address deopt = nm->is_method_handle_return(pc()) ? nm->deopt_mh_handler_begin() : nm->deopt_handler_begin(); // Save the original pc before we patch in the new one nm->set_original_pc(this, pc()); patch_pc(thread, deopt); #ifdef ASSERT { RegisterMap map(thread, false); frame check = thread->last_frame(); while (id() != check.id()) { check = check.sender(&map); } assert(check.is_deoptimized_frame(), "missed deopt"); } #endif // ASSERT } frame frame::java_sender() const { RegisterMap map(JavaThread::current(), false); frame s; for (s = sender(&map); !(s.is_java_frame() || s.is_first_frame()); s = s.sender(&map)) ; guarantee(s.is_java_frame(), "tried to get caller of first java frame"); return s; } frame frame::real_sender(RegisterMap* map) const { frame result = sender(map); while (result.is_runtime_frame()) { result = result.sender(map); } return result; } // Note: called by profiler - NOT for current thread frame frame::profile_find_Java_sender_frame(JavaThread *thread) { // If we don't recognize this frame, walk back up the stack until we do RegisterMap map(thread, false); frame first_java_frame = frame(); // Find the first Java frame on the stack starting with input frame if (is_java_frame()) { // top frame is compiled frame or deoptimized frame first_java_frame = *this; } else if (safe_for_sender(thread)) { for (frame sender_frame = sender(&map); sender_frame.safe_for_sender(thread) && !sender_frame.is_first_frame(); sender_frame = sender_frame.sender(&map)) { if (sender_frame.is_java_frame()) { first_java_frame = sender_frame; break; } } } return first_java_frame; } // Interpreter frames void frame::interpreter_frame_set_locals(intptr_t* locs) { assert(is_interpreted_frame(), "Not an interpreted frame"); *interpreter_frame_locals_addr() = locs; } methodOop frame::interpreter_frame_method() const { assert(is_interpreted_frame(), "interpreted frame expected"); methodOop m = *interpreter_frame_method_addr(); assert(m->is_perm(), "bad methodOop in interpreter frame"); assert(m->is_method(), "not a methodOop"); return m; } void frame::interpreter_frame_set_method(methodOop method) { assert(is_interpreted_frame(), "interpreted frame expected"); *interpreter_frame_method_addr() = method; } void frame::interpreter_frame_set_bcx(intptr_t bcx) { assert(is_interpreted_frame(), "Not an interpreted frame"); if (ProfileInterpreter) { bool formerly_bci = is_bci(interpreter_frame_bcx()); bool is_now_bci = is_bci(bcx); *interpreter_frame_bcx_addr() = bcx; intptr_t mdx = interpreter_frame_mdx(); if (mdx != 0) { if (formerly_bci) { if (!is_now_bci) { // The bcx was just converted from bci to bcp. // Convert the mdx in parallel. methodDataOop mdo = interpreter_frame_method()->method_data(); assert(mdo != NULL, ""); int mdi = mdx - 1; // We distinguish valid mdi from zero by adding one. address mdp = mdo->di_to_dp(mdi); interpreter_frame_set_mdx((intptr_t)mdp); } } else { if (is_now_bci) { // The bcx was just converted from bcp to bci. // Convert the mdx in parallel. methodDataOop mdo = interpreter_frame_method()->method_data(); assert(mdo != NULL, ""); int mdi = mdo->dp_to_di((address)mdx); interpreter_frame_set_mdx((intptr_t)mdi + 1); // distinguish valid from 0. } } } } else { *interpreter_frame_bcx_addr() = bcx; } } jint frame::interpreter_frame_bci() const { assert(is_interpreted_frame(), "interpreted frame expected"); intptr_t bcx = interpreter_frame_bcx(); return is_bci(bcx) ? bcx : interpreter_frame_method()->bci_from((address)bcx); } void frame::interpreter_frame_set_bci(jint bci) { assert(is_interpreted_frame(), "interpreted frame expected"); assert(!is_bci(interpreter_frame_bcx()), "should not set bci during GC"); interpreter_frame_set_bcx((intptr_t)interpreter_frame_method()->bcp_from(bci)); } address frame::interpreter_frame_bcp() const { assert(is_interpreted_frame(), "interpreted frame expected"); intptr_t bcx = interpreter_frame_bcx(); return is_bci(bcx) ? interpreter_frame_method()->bcp_from(bcx) : (address)bcx; } void frame::interpreter_frame_set_bcp(address bcp) { assert(is_interpreted_frame(), "interpreted frame expected"); assert(!is_bci(interpreter_frame_bcx()), "should not set bcp during GC"); interpreter_frame_set_bcx((intptr_t)bcp); } void frame::interpreter_frame_set_mdx(intptr_t mdx) { assert(is_interpreted_frame(), "Not an interpreted frame"); assert(ProfileInterpreter, "must be profiling interpreter"); *interpreter_frame_mdx_addr() = mdx; } address frame::interpreter_frame_mdp() const { assert(ProfileInterpreter, "must be profiling interpreter"); assert(is_interpreted_frame(), "interpreted frame expected"); intptr_t bcx = interpreter_frame_bcx(); intptr_t mdx = interpreter_frame_mdx(); assert(!is_bci(bcx), "should not access mdp during GC"); return (address)mdx; } void frame::interpreter_frame_set_mdp(address mdp) { assert(is_interpreted_frame(), "interpreted frame expected"); if (mdp == NULL) { // Always allow the mdp to be cleared. interpreter_frame_set_mdx((intptr_t)mdp); } intptr_t bcx = interpreter_frame_bcx(); assert(!is_bci(bcx), "should not set mdp during GC"); interpreter_frame_set_mdx((intptr_t)mdp); } BasicObjectLock* frame::next_monitor_in_interpreter_frame(BasicObjectLock* current) const { assert(is_interpreted_frame(), "Not an interpreted frame"); #ifdef ASSERT interpreter_frame_verify_monitor(current); #endif BasicObjectLock* next = (BasicObjectLock*) (((intptr_t*) current) + interpreter_frame_monitor_size()); return next; } BasicObjectLock* frame::previous_monitor_in_interpreter_frame(BasicObjectLock* current) const { assert(is_interpreted_frame(), "Not an interpreted frame"); #ifdef ASSERT // // This verification needs to be checked before being enabled // interpreter_frame_verify_monitor(current); #endif BasicObjectLock* previous = (BasicObjectLock*) (((intptr_t*) current) - interpreter_frame_monitor_size()); return previous; } // Interpreter locals and expression stack locations. intptr_t* frame::interpreter_frame_local_at(int index) const { const int n = Interpreter::local_offset_in_bytes(index)/wordSize; return &((*interpreter_frame_locals_addr())[n]); } intptr_t* frame::interpreter_frame_expression_stack_at(jint offset) const { const int i = offset * interpreter_frame_expression_stack_direction(); const int n = i * Interpreter::stackElementWords; return &(interpreter_frame_expression_stack()[n]); } jint frame::interpreter_frame_expression_stack_size() const { // Number of elements on the interpreter expression stack // Callers should span by stackElementWords int element_size = Interpreter::stackElementWords; if (frame::interpreter_frame_expression_stack_direction() < 0) { return (interpreter_frame_expression_stack() - interpreter_frame_tos_address() + 1)/element_size; } else { return (interpreter_frame_tos_address() - interpreter_frame_expression_stack() + 1)/element_size; } } // (frame::interpreter_frame_sender_sp accessor is in frame_<arch>.cpp) const char* frame::print_name() const { if (is_native_frame()) return "Native"; if (is_interpreted_frame()) return "Interpreted"; if (is_compiled_frame()) { if (is_deoptimized_frame()) return "Deoptimized"; return "Compiled"; } if (sp() == NULL) return "Empty"; return "C"; } void frame::print_value_on(outputStream* st, JavaThread *thread) const { NOT_PRODUCT(address begin = pc()-40;) NOT_PRODUCT(address end = NULL;) st->print("%s frame (sp=" INTPTR_FORMAT " unextended sp=" INTPTR_FORMAT, print_name(), sp(), unextended_sp()); if (sp() != NULL) st->print(", fp=" INTPTR_FORMAT ", pc=" INTPTR_FORMAT, fp(), pc()); if (StubRoutines::contains(pc())) { st->print_cr(")"); st->print("("); StubCodeDesc* desc = StubCodeDesc::desc_for(pc()); st->print("~Stub::%s", desc->name()); NOT_PRODUCT(begin = desc->begin(); end = desc->end();) } else if (Interpreter::contains(pc())) { st->print_cr(")"); st->print("("); InterpreterCodelet* desc = Interpreter::codelet_containing(pc()); if (desc != NULL) { st->print("~"); desc->print(); NOT_PRODUCT(begin = desc->code_begin(); end = desc->code_end();) } else { st->print("~interpreter"); } } st->print_cr(")"); if (_cb != NULL) { st->print(" "); _cb->print_value_on(st); st->cr(); #ifndef PRODUCT if (end == NULL) { begin = _cb->instructions_begin(); end = _cb->instructions_end(); } #endif } NOT_PRODUCT(if (WizardMode && Verbose) Disassembler::decode(begin, end);) } void frame::print_on(outputStream* st) const { print_value_on(st,NULL); if (is_interpreted_frame()) { interpreter_frame_print_on(st); } } void frame::interpreter_frame_print_on(outputStream* st) const { #ifndef PRODUCT assert(is_interpreted_frame(), "Not an interpreted frame"); jint i; for (i = 0; i < interpreter_frame_method()->max_locals(); i++ ) { intptr_t x = *interpreter_frame_local_at(i); st->print(" - local [" INTPTR_FORMAT "]", x); st->fill_to(23); st->print_cr("; #%d", i); } for (i = interpreter_frame_expression_stack_size() - 1; i >= 0; --i ) { intptr_t x = *interpreter_frame_expression_stack_at(i); st->print(" - stack [" INTPTR_FORMAT "]", x); st->fill_to(23); st->print_cr("; #%d", i); } // locks for synchronization for (BasicObjectLock* current = interpreter_frame_monitor_end(); current < interpreter_frame_monitor_begin(); current = next_monitor_in_interpreter_frame(current)) { st->print(" - obj ["); current->obj()->print_value_on(st); st->print_cr("]"); st->print(" - lock ["); current->lock()->print_on(st); st->print_cr("]"); } // monitor st->print_cr(" - monitor[" INTPTR_FORMAT "]", interpreter_frame_monitor_begin()); // bcp st->print(" - bcp [" INTPTR_FORMAT "]", interpreter_frame_bcp()); st->fill_to(23); st->print_cr("; @%d", interpreter_frame_bci()); // locals st->print_cr(" - locals [" INTPTR_FORMAT "]", interpreter_frame_local_at(0)); // method st->print(" - method [" INTPTR_FORMAT "]", (address)interpreter_frame_method()); st->fill_to(23); st->print("; "); interpreter_frame_method()->print_name(st); st->cr(); #endif } // Return whether the frame is in the VM or os indicating a Hotspot problem. // Otherwise, it's likely a bug in the native library that the Java code calls, // hopefully indicating where to submit bugs. static void print_C_frame(outputStream* st, char* buf, int buflen, address pc) { // C/C++ frame bool in_vm = os::address_is_in_vm(pc); st->print(in_vm ? "V" : "C"); int offset; bool found; // libname found = os::dll_address_to_library_name(pc, buf, buflen, &offset); if (found) { // skip directory names const char *p1, *p2; p1 = buf; int len = (int)strlen(os::file_separator()); while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len; st->print(" [%s+0x%x]", p1, offset); } else { st->print(" " PTR_FORMAT, pc); } // function name - os::dll_address_to_function_name() may return confusing // names if pc is within jvm.dll or libjvm.so, because JVM only has // JVM_xxxx and a few other symbols in the dynamic symbol table. Do this // only for native libraries. if (!in_vm) { found = os::dll_address_to_function_name(pc, buf, buflen, &offset); if (found) { st->print(" %s+0x%x", buf, offset); } } } // frame::print_on_error() is called by fatal error handler. Notice that we may // crash inside this function if stack frame is corrupted. The fatal error // handler can catch and handle the crash. Here we assume the frame is valid. // // First letter indicates type of the frame: // J: Java frame (compiled) // j: Java frame (interpreted) // V: VM frame (C/C++) // v: Other frames running VM generated code (e.g. stubs, adapters, etc.) // C: C/C++ frame // // We don't need detailed frame type as that in frame::print_name(). "C" // suggests the problem is in user lib; everything else is likely a VM bug. void frame::print_on_error(outputStream* st, char* buf, int buflen, bool verbose) const { if (_cb != NULL) { if (Interpreter::contains(pc())) { methodOop m = this->interpreter_frame_method(); if (m != NULL) { m->name_and_sig_as_C_string(buf, buflen); st->print("j %s", buf); st->print("+%d", this->interpreter_frame_bci()); } else { st->print("j " PTR_FORMAT, pc()); } } else if (StubRoutines::contains(pc())) { StubCodeDesc* desc = StubCodeDesc::desc_for(pc()); if (desc != NULL) { st->print("v ~StubRoutines::%s", desc->name()); } else { st->print("v ~StubRoutines::" PTR_FORMAT, pc()); } } else if (_cb->is_buffer_blob()) { st->print("v ~BufferBlob::%s", ((BufferBlob *)_cb)->name()); } else if (_cb->is_nmethod()) { methodOop m = ((nmethod *)_cb)->method(); if (m != NULL) { m->name_and_sig_as_C_string(buf, buflen); st->print("J %s", buf); } else { st->print("J " PTR_FORMAT, pc()); } } else if (_cb->is_runtime_stub()) { st->print("v ~RuntimeStub::%s", ((RuntimeStub *)_cb)->name()); } else if (_cb->is_deoptimization_stub()) { st->print("v ~DeoptimizationBlob"); } else if (_cb->is_exception_stub()) { st->print("v ~ExceptionBlob"); } else if (_cb->is_safepoint_stub()) { st->print("v ~SafepointBlob"); } else { st->print("v blob " PTR_FORMAT, pc()); } } else { print_C_frame(st, buf, buflen, pc()); } } /* The interpreter_frame_expression_stack_at method in the case of SPARC needs the max_stack value of the method in order to compute the expression stack address. It uses the methodOop in order to get the max_stack value but during GC this methodOop value saved on the frame is changed by reverse_and_push and hence cannot be used. So we save the max_stack value in the FrameClosure object and pass it down to the interpreter_frame_expression_stack_at method */ class InterpreterFrameClosure : public OffsetClosure { private: frame* _fr; OopClosure* _f; int _max_locals; int _max_stack; public: InterpreterFrameClosure(frame* fr, int max_locals, int max_stack, OopClosure* f) { _fr = fr; _max_locals = max_locals; _max_stack = max_stack; _f = f; } void offset_do(int offset) { oop* addr; if (offset < _max_locals) { addr = (oop*) _fr->interpreter_frame_local_at(offset); assert((intptr_t*)addr >= _fr->sp(), "must be inside the frame"); _f->do_oop(addr); } else { addr = (oop*) _fr->interpreter_frame_expression_stack_at((offset - _max_locals)); // In case of exceptions, the expression stack is invalid and the esp will be reset to express // this condition. Therefore, we call f only if addr is 'inside' the stack (i.e., addr >= esp for Intel). bool in_stack; if (frame::interpreter_frame_expression_stack_direction() > 0) { in_stack = (intptr_t*)addr <= _fr->interpreter_frame_tos_address(); } else { in_stack = (intptr_t*)addr >= _fr->interpreter_frame_tos_address(); } if (in_stack) { _f->do_oop(addr); } } } int max_locals() { return _max_locals; } frame* fr() { return _fr; } }; class InterpretedArgumentOopFinder: public SignatureInfo { private: OopClosure* _f; // Closure to invoke int _offset; // TOS-relative offset, decremented with each argument bool _has_receiver; // true if the callee has a receiver frame* _fr; void set(int size, BasicType type) { _offset -= size; if (type == T_OBJECT || type == T_ARRAY) oop_offset_do(); } void oop_offset_do() { oop* addr; addr = (oop*)_fr->interpreter_frame_tos_at(_offset); _f->do_oop(addr); } public: InterpretedArgumentOopFinder(symbolHandle signature, bool has_receiver, frame* fr, OopClosure* f) : SignatureInfo(signature), _has_receiver(has_receiver) { // compute size of arguments int args_size = ArgumentSizeComputer(signature).size() + (has_receiver ? 1 : 0); assert(!fr->is_interpreted_frame() || args_size <= fr->interpreter_frame_expression_stack_size(), "args cannot be on stack anymore"); // initialize InterpretedArgumentOopFinder _f = f; _fr = fr; _offset = args_size; } void oops_do() { if (_has_receiver) { --_offset; oop_offset_do(); } iterate_parameters(); } }; // Entry frame has following form (n arguments) // +-----------+ // sp -> | last arg | // +-----------+ // : ::: : // +-----------+ // (sp+n)->| first arg| // +-----------+ // visits and GC's all the arguments in entry frame class EntryFrameOopFinder: public SignatureInfo { private: bool _is_static; int _offset; frame* _fr; OopClosure* _f; void set(int size, BasicType type) { assert (_offset >= 0, "illegal offset"); if (type == T_OBJECT || type == T_ARRAY) oop_at_offset_do(_offset); _offset -= size; } void oop_at_offset_do(int offset) { assert (offset >= 0, "illegal offset"); oop* addr = (oop*) _fr->entry_frame_argument_at(offset); _f->do_oop(addr); } public: EntryFrameOopFinder(frame* frame, symbolHandle signature, bool is_static) : SignatureInfo(signature) { _f = NULL; // will be set later _fr = frame; _is_static = is_static; _offset = ArgumentSizeComputer(signature).size() - 1; // last parameter is at index 0 } void arguments_do(OopClosure* f) { _f = f; if (!_is_static) oop_at_offset_do(_offset+1); // do the receiver iterate_parameters(); } }; oop* frame::interpreter_callee_receiver_addr(symbolHandle signature) { ArgumentSizeComputer asc(signature); int size = asc.size(); return (oop *)interpreter_frame_tos_at(size); } void frame::oops_interpreted_do(OopClosure* f, const RegisterMap* map, bool query_oop_map_cache) { assert(is_interpreted_frame(), "Not an interpreted frame"); assert(map != NULL, "map must be set"); Thread *thread = Thread::current(); methodHandle m (thread, interpreter_frame_method()); jint bci = interpreter_frame_bci(); assert(Universe::heap()->is_in(m()), "must be valid oop"); assert(m->is_method(), "checking frame value"); assert((m->is_native() && bci == 0) || (!m->is_native() && bci >= 0 && bci < m->code_size()), "invalid bci value"); // Handle the monitor elements in the activation for ( BasicObjectLock* current = interpreter_frame_monitor_end(); current < interpreter_frame_monitor_begin(); current = next_monitor_in_interpreter_frame(current) ) { #ifdef ASSERT interpreter_frame_verify_monitor(current); #endif current->oops_do(f); } // process fixed part f->do_oop((oop*)interpreter_frame_method_addr()); f->do_oop((oop*)interpreter_frame_cache_addr()); // Hmm what about the mdp? #ifdef CC_INTERP // Interpreter frame in the midst of a call have a methodOop within the // object. interpreterState istate = get_interpreterState(); if (istate->msg() == BytecodeInterpreter::call_method) { f->do_oop((oop*)&istate->_result._to_call._callee); } #endif /* CC_INTERP */ if (m->is_native()) { #ifdef CC_INTERP f->do_oop((oop*)&istate->_oop_temp); #else f->do_oop((oop*)( fp() + interpreter_frame_oop_temp_offset )); #endif /* CC_INTERP */ } int max_locals = m->is_native() ? m->size_of_parameters() : m->max_locals(); symbolHandle signature; bool has_receiver = false; // Process a callee's arguments if we are at a call site // (i.e., if we are at an invoke bytecode) // This is used sometimes for calling into the VM, not for another // interpreted or compiled frame. if (!m->is_native()) { Bytecode_invoke *call = Bytecode_invoke_at_check(m, bci); if (call != NULL) { signature = symbolHandle(thread, call->signature()); has_receiver = call->has_receiver(); if (map->include_argument_oops() && interpreter_frame_expression_stack_size() > 0) { ResourceMark rm(thread); // is this right ??? // we are at a call site & the expression stack is not empty // => process callee's arguments // // Note: The expression stack can be empty if an exception // occurred during method resolution/execution. In all // cases we empty the expression stack completely be- // fore handling the exception (the exception handling // code in the interpreter calls a blocking runtime // routine which can cause this code to be executed). // (was bug gri 7/27/98) oops_interpreted_arguments_do(signature, has_receiver, f); } } } InterpreterFrameClosure blk(this, max_locals, m->max_stack(), f); // process locals & expression stack InterpreterOopMap mask; if (query_oop_map_cache) { m->mask_for(bci, &mask); } else { OopMapCache::compute_one_oop_map(m, bci, &mask); } mask.iterate_oop(&blk); } void frame::oops_interpreted_arguments_do(symbolHandle signature, bool has_receiver, OopClosure* f) { InterpretedArgumentOopFinder finder(signature, has_receiver, this, f); finder.oops_do(); } void frame::oops_code_blob_do(OopClosure* f, CodeBlobClosure* cf, const RegisterMap* reg_map) { assert(_cb != NULL, "sanity check"); if (_cb->oop_maps() != NULL) { OopMapSet::oops_do(this, reg_map, f); // Preserve potential arguments for a callee. We handle this by dispatching // on the codeblob. For c2i, we do if (reg_map->include_argument_oops()) { _cb->preserve_callee_argument_oops(*this, reg_map, f); } } // In cases where perm gen is collected, GC will want to mark // oops referenced from nmethods active on thread stacks so as to // prevent them from being collected. However, this visit should be // restricted to certain phases of the collection only. The // closure decides how it wants nmethods to be traced. if (cf != NULL) cf->do_code_blob(_cb); } class CompiledArgumentOopFinder: public SignatureInfo { protected: OopClosure* _f; int _offset; // the current offset, incremented with each argument bool _has_receiver; // true if the callee has a receiver frame _fr; RegisterMap* _reg_map; int _arg_size; VMRegPair* _regs; // VMReg list of arguments void set(int size, BasicType type) { if (type == T_OBJECT || type == T_ARRAY) handle_oop_offset(); _offset += size; } virtual void handle_oop_offset() { // Extract low order register number from register array. // In LP64-land, the high-order bits are valid but unhelpful. VMReg reg = _regs[_offset].first(); oop *loc = _fr.oopmapreg_to_location(reg, _reg_map); _f->do_oop(loc); } public: CompiledArgumentOopFinder(symbolHandle signature, bool has_receiver, OopClosure* f, frame fr, const RegisterMap* reg_map) : SignatureInfo(signature) { // initialize CompiledArgumentOopFinder _f = f; _offset = 0; _has_receiver = has_receiver; _fr = fr; _reg_map = (RegisterMap*)reg_map; _arg_size = ArgumentSizeComputer(signature).size() + (has_receiver ? 1 : 0); int arg_size; _regs = SharedRuntime::find_callee_arguments(signature(), has_receiver, &arg_size); assert(arg_size == _arg_size, "wrong arg size"); } void oops_do() { if (_has_receiver) { handle_oop_offset(); _offset++; } iterate_parameters(); } }; void frame::oops_compiled_arguments_do(symbolHandle signature, bool has_receiver, const RegisterMap* reg_map, OopClosure* f) { ResourceMark rm; CompiledArgumentOopFinder finder(signature, has_receiver, f, *this, reg_map); finder.oops_do(); } // Get receiver out of callers frame, i.e. find parameter 0 in callers // frame. Consult ADLC for where parameter 0 is to be found. Then // check local reg_map for it being a callee-save register or argument // register, both of which are saved in the local frame. If not found // there, it must be an in-stack argument of the caller. // Note: caller.sp() points to callee-arguments oop frame::retrieve_receiver(RegisterMap* reg_map) { frame caller = *this; // First consult the ADLC on where it puts parameter 0 for this signature. VMReg reg = SharedRuntime::name_for_receiver(); oop r = *caller.oopmapreg_to_location(reg, reg_map); assert( Universe::heap()->is_in_or_null(r), "bad receiver" ); return r; } oop* frame::oopmapreg_to_location(VMReg reg, const RegisterMap* reg_map) const { if(reg->is_reg()) { // If it is passed in a register, it got spilled in the stub frame. return (oop *)reg_map->location(reg); } else { int sp_offset_in_bytes = reg->reg2stack() * VMRegImpl::stack_slot_size; return (oop*)(((address)unextended_sp()) + sp_offset_in_bytes); } } BasicLock* frame::compiled_synchronized_native_monitor(nmethod* nm) { if (nm == NULL) { assert(_cb != NULL && _cb->is_nmethod() && nm->method()->is_native() && nm->method()->is_synchronized(), "should not call this otherwise"); nm = (nmethod*) _cb; } int byte_offset = in_bytes(nm->compiled_synchronized_native_basic_lock_sp_offset()); assert(byte_offset >= 0, "should not see invalid offset"); return (BasicLock*) &sp()[byte_offset / wordSize]; } oop frame::compiled_synchronized_native_monitor_owner(nmethod* nm) { if (nm == NULL) { assert(_cb != NULL && _cb->is_nmethod() && nm->method()->is_native() && nm->method()->is_synchronized(), "should not call this otherwise"); nm = (nmethod*) _cb; } int byte_offset = in_bytes(nm->compiled_synchronized_native_basic_lock_owner_sp_offset()); assert(byte_offset >= 0, "should not see invalid offset"); oop owner = ((oop*) sp())[byte_offset / wordSize]; assert( Universe::heap()->is_in(owner), "bad receiver" ); return owner; } void frame::oops_entry_do(OopClosure* f, const RegisterMap* map) { assert(map != NULL, "map must be set"); if (map->include_argument_oops()) { // must collect argument oops, as nobody else is doing it Thread *thread = Thread::current(); methodHandle m (thread, entry_frame_call_wrapper()->callee_method()); symbolHandle signature (thread, m->signature()); EntryFrameOopFinder finder(this, signature, m->is_static()); finder.arguments_do(f); } // Traverse the Handle Block saved in the entry frame entry_frame_call_wrapper()->oops_do(f); } void frame::oops_do_internal(OopClosure* f, CodeBlobClosure* cf, RegisterMap* map, bool use_interpreter_oop_map_cache) { #ifndef PRODUCT // simulate GC crash here to dump java thread in error report if (CrashGCForDumpingJavaThread) { char *t = NULL; *t = 'c'; } #endif if (is_interpreted_frame()) { oops_interpreted_do(f, map, use_interpreter_oop_map_cache); } else if (is_entry_frame()) { oops_entry_do(f, map); } else if (CodeCache::contains(pc())) { oops_code_blob_do(f, cf, map); } else { ShouldNotReachHere(); } } void frame::nmethods_do(CodeBlobClosure* cf) { if (_cb != NULL && _cb->is_nmethod()) { cf->do_code_blob(_cb); } } void frame::gc_prologue() { if (is_interpreted_frame()) { // set bcx to bci to become methodOop position independent during GC interpreter_frame_set_bcx(interpreter_frame_bci()); } } void frame::gc_epilogue() { if (is_interpreted_frame()) { // set bcx back to bcp for interpreter interpreter_frame_set_bcx((intptr_t)interpreter_frame_bcp()); } // call processor specific epilog function pd_gc_epilog(); } # ifdef ENABLE_ZAP_DEAD_LOCALS void frame::CheckValueClosure::do_oop(oop* p) { if (CheckOopishValues && Universe::heap()->is_in_reserved(*p)) { warning("value @ " INTPTR_FORMAT " looks oopish (" INTPTR_FORMAT ") (thread = " INTPTR_FORMAT ")", p, (address)*p, Thread::current()); } } frame::CheckValueClosure frame::_check_value; void frame::CheckOopClosure::do_oop(oop* p) { if (*p != NULL && !(*p)->is_oop()) { warning("value @ " INTPTR_FORMAT " should be an oop (" INTPTR_FORMAT ") (thread = " INTPTR_FORMAT ")", p, (address)*p, Thread::current()); } } frame::CheckOopClosure frame::_check_oop; void frame::check_derived_oop(oop* base, oop* derived) { _check_oop.do_oop(base); } void frame::ZapDeadClosure::do_oop(oop* p) { if (TraceZapDeadLocals) tty->print_cr("zapping @ " INTPTR_FORMAT " containing " INTPTR_FORMAT, p, (address)*p); // Need cast because on _LP64 the conversion to oop is ambiguous. Constant // can be either long or int. *p = (oop)(int)0xbabebabe; } frame::ZapDeadClosure frame::_zap_dead; void frame::zap_dead_locals(JavaThread* thread, const RegisterMap* map) { assert(thread == Thread::current(), "need to synchronize to do this to another thread"); // Tracing - part 1 if (TraceZapDeadLocals) { ResourceMark rm(thread); tty->print_cr("--------------------------------------------------------------------------------"); tty->print("Zapping dead locals in "); print_on(tty); tty->cr(); } // Zapping if (is_entry_frame ()) zap_dead_entry_locals (thread, map); else if (is_interpreted_frame()) zap_dead_interpreted_locals(thread, map); else if (is_compiled_frame()) zap_dead_compiled_locals (thread, map); else // could be is_runtime_frame // so remove error: ShouldNotReachHere(); ; // Tracing - part 2 if (TraceZapDeadLocals) { tty->cr(); } } void frame::zap_dead_interpreted_locals(JavaThread *thread, const RegisterMap* map) { // get current interpreter 'pc' assert(is_interpreted_frame(), "Not an interpreted frame"); methodOop m = interpreter_frame_method(); int bci = interpreter_frame_bci(); int max_locals = m->is_native() ? m->size_of_parameters() : m->max_locals(); // process dynamic part InterpreterFrameClosure value_blk(this, max_locals, m->max_stack(), &_check_value); InterpreterFrameClosure oop_blk(this, max_locals, m->max_stack(), &_check_oop ); InterpreterFrameClosure dead_blk(this, max_locals, m->max_stack(), &_zap_dead ); // get frame map InterpreterOopMap mask; m->mask_for(bci, &mask); mask.iterate_all( &oop_blk, &value_blk, &dead_blk); } void frame::zap_dead_compiled_locals(JavaThread* thread, const RegisterMap* reg_map) { ResourceMark rm(thread); assert(_cb != NULL, "sanity check"); if (_cb->oop_maps() != NULL) { OopMapSet::all_do(this, reg_map, &_check_oop, check_derived_oop, &_check_value); } } void frame::zap_dead_entry_locals(JavaThread*, const RegisterMap*) { if (TraceZapDeadLocals) warning("frame::zap_dead_entry_locals unimplemented"); } void frame::zap_dead_deoptimized_locals(JavaThread*, const RegisterMap*) { if (TraceZapDeadLocals) warning("frame::zap_dead_deoptimized_locals unimplemented"); } # endif // ENABLE_ZAP_DEAD_LOCALS void frame::verify(const RegisterMap* map) { // for now make sure receiver type is correct if (is_interpreted_frame()) { methodOop method = interpreter_frame_method(); guarantee(method->is_method(), "method is wrong in frame::verify"); if (!method->is_static()) { // fetch the receiver oop* p = (oop*) interpreter_frame_local_at(0); // make sure we have the right receiver type } } COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(), "must be empty before verify");) oops_do_internal(&VerifyOopClosure::verify_oop, NULL, (RegisterMap*)map, false); } #ifdef ASSERT bool frame::verify_return_pc(address x) { if (StubRoutines::returns_to_call_stub(x)) { return true; } if (CodeCache::contains(x)) { return true; } if (Interpreter::contains(x)) { return true; } return false; } #endif #ifdef ASSERT void frame::interpreter_frame_verify_monitor(BasicObjectLock* value) const { assert(is_interpreted_frame(), "Not an interpreted frame"); // verify that the value is in the right part of the frame address low_mark = (address) interpreter_frame_monitor_end(); address high_mark = (address) interpreter_frame_monitor_begin(); address current = (address) value; const int monitor_size = frame::interpreter_frame_monitor_size(); guarantee((high_mark - current) % monitor_size == 0 , "Misaligned top of BasicObjectLock*"); guarantee( high_mark > current , "Current BasicObjectLock* higher than high_mark"); guarantee((current - low_mark) % monitor_size == 0 , "Misaligned bottom of BasicObjectLock*"); guarantee( current >= low_mark , "Current BasicObjectLock* below than low_mark"); } #endif //----------------------------------------------------------------------------------- // StackFrameStream implementation StackFrameStream::StackFrameStream(JavaThread *thread, bool update) : _reg_map(thread, update) { assert(thread->has_last_Java_frame(), "sanity check"); _fr = thread->last_frame(); _is_done = false; }