/* * Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "asm/assembler.hpp" #include "interpreter/bytecodeHistogram.hpp" #include "interpreter/cppInterpreter.hpp" #include "interpreter/interpreter.hpp" #include "interpreter/interpreterGenerator.hpp" #include "interpreter/interpreterRuntime.hpp" #include "oops/arrayOop.hpp" #include "oops/methodDataOop.hpp" #include "oops/methodOop.hpp" #include "oops/oop.inline.hpp" #include "prims/jvmtiExport.hpp" #include "prims/jvmtiThreadState.hpp" #include "runtime/arguments.hpp" #include "runtime/deoptimization.hpp" #include "runtime/frame.inline.hpp" #include "runtime/interfaceSupport.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/stubRoutines.hpp" #include "runtime/synchronizer.hpp" #include "runtime/timer.hpp" #include "runtime/vframeArray.hpp" #include "utilities/debug.hpp" #ifdef SHARK #include "shark/shark_globals.hpp" #endif #ifdef CC_INTERP // Routine exists to make tracebacks look decent in debugger // while "shadow" interpreter frames are on stack. It is also // used to distinguish interpreter frames. extern "C" void RecursiveInterpreterActivation(interpreterState istate) { ShouldNotReachHere(); } bool CppInterpreter::contains(address pc) { return ( _code->contains(pc) || ( pc == (CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation) + frame::pc_return_offset))); } #define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name)) #define __ _masm-> Label frame_manager_entry; Label fast_accessor_slow_entry_path; // fast accessor methods need to be able to jmp to unsynchronized // c++ interpreter entry point this holds that entry point label. static address unctrap_frame_manager_entry = NULL; static address interpreter_return_address = NULL; static address deopt_frame_manager_return_atos = NULL; static address deopt_frame_manager_return_btos = NULL; static address deopt_frame_manager_return_itos = NULL; static address deopt_frame_manager_return_ltos = NULL; static address deopt_frame_manager_return_ftos = NULL; static address deopt_frame_manager_return_dtos = NULL; static address deopt_frame_manager_return_vtos = NULL; const Register prevState = G1_scratch; void InterpreterGenerator::save_native_result(void) { // result potentially in O0/O1: save it across calls __ stf(FloatRegisterImpl::D, F0, STATE(_native_fresult)); #ifdef _LP64 __ stx(O0, STATE(_native_lresult)); #else __ std(O0, STATE(_native_lresult)); #endif } void InterpreterGenerator::restore_native_result(void) { // Restore any method result value __ ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0); #ifdef _LP64 __ ldx(STATE(_native_lresult), O0); #else __ ldd(STATE(_native_lresult), O0); #endif } // A result handler converts/unboxes a native call result into // a java interpreter/compiler result. The current frame is an // interpreter frame. The activation frame unwind code must be // consistent with that of TemplateTable::_return(...). In the // case of native methods, the caller's SP was not modified. address CppInterpreterGenerator::generate_result_handler_for(BasicType type) { address entry = __ pc(); Register Itos_i = Otos_i ->after_save(); Register Itos_l = Otos_l ->after_save(); Register Itos_l1 = Otos_l1->after_save(); Register Itos_l2 = Otos_l2->after_save(); switch (type) { case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, Itos_i); break; // !0 => true; 0 => false case T_CHAR : __ sll(O0, 16, O0); __ srl(O0, 16, Itos_i); break; // cannot use and3, 0xFFFF too big as immediate value! case T_BYTE : __ sll(O0, 24, O0); __ sra(O0, 24, Itos_i); break; case T_SHORT : __ sll(O0, 16, O0); __ sra(O0, 16, Itos_i); break; case T_LONG : #ifndef _LP64 __ mov(O1, Itos_l2); // move other half of long #endif // ifdef or no ifdef, fall through to the T_INT case case T_INT : __ mov(O0, Itos_i); break; case T_VOID : /* nothing to do */ break; case T_FLOAT : assert(F0 == Ftos_f, "fix this code" ); break; case T_DOUBLE : assert(F0 == Ftos_d, "fix this code" ); break; case T_OBJECT : __ ld_ptr(STATE(_oop_temp), Itos_i); __ verify_oop(Itos_i); break; default : ShouldNotReachHere(); } __ ret(); // return from interpreter activation __ delayed()->restore(I5_savedSP, G0, SP); // remove interpreter frame NOT_PRODUCT(__ emit_long(0);) // marker for disassembly return entry; } // tosca based result to c++ interpreter stack based result. // Result goes to address in L1_scratch address CppInterpreterGenerator::generate_tosca_to_stack_converter(BasicType type) { // A result is in the native abi result register from a native method call. // We need to return this result to the interpreter by pushing the result on the interpreter's // stack. This is relatively simple the destination is in L1_scratch // i.e. L1_scratch is the first free element on the stack. If we "push" a return value we must // adjust L1_scratch address entry = __ pc(); switch (type) { case T_BOOLEAN: // !0 => true; 0 => false __ subcc(G0, O0, G0); __ addc(G0, 0, O0); __ st(O0, L1_scratch, 0); __ sub(L1_scratch, wordSize, L1_scratch); break; // cannot use and3, 0xFFFF too big as immediate value! case T_CHAR : __ sll(O0, 16, O0); __ srl(O0, 16, O0); __ st(O0, L1_scratch, 0); __ sub(L1_scratch, wordSize, L1_scratch); break; case T_BYTE : __ sll(O0, 24, O0); __ sra(O0, 24, O0); __ st(O0, L1_scratch, 0); __ sub(L1_scratch, wordSize, L1_scratch); break; case T_SHORT : __ sll(O0, 16, O0); __ sra(O0, 16, O0); __ st(O0, L1_scratch, 0); __ sub(L1_scratch, wordSize, L1_scratch); break; case T_LONG : #ifndef _LP64 #if defined(COMPILER2) // All return values are where we want them, except for Longs. C2 returns // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1. // Since the interpreter will return longs in G1 and O0/O1 in the 32bit // build even if we are returning from interpreted we just do a little // stupid shuffing. // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to // do this here. Unfortunately if we did a rethrow we'd see an machepilog node // first which would move g1 -> O0/O1 and destroy the exception we were throwing. __ stx(G1, L1_scratch, -wordSize); #else // native result is in O0, O1 __ st(O1, L1_scratch, 0); // Low order __ st(O0, L1_scratch, -wordSize); // High order #endif /* COMPILER2 */ #else __ stx(O0, L1_scratch, -wordSize); #endif __ sub(L1_scratch, 2*wordSize, L1_scratch); break; case T_INT : __ st(O0, L1_scratch, 0); __ sub(L1_scratch, wordSize, L1_scratch); break; case T_VOID : /* nothing to do */ break; case T_FLOAT : __ stf(FloatRegisterImpl::S, F0, L1_scratch, 0); __ sub(L1_scratch, wordSize, L1_scratch); break; case T_DOUBLE : // Every stack slot is aligned on 64 bit, However is this // the correct stack slot on 64bit?? QQQ __ stf(FloatRegisterImpl::D, F0, L1_scratch, -wordSize); __ sub(L1_scratch, 2*wordSize, L1_scratch); break; case T_OBJECT : __ verify_oop(O0); __ st_ptr(O0, L1_scratch, 0); __ sub(L1_scratch, wordSize, L1_scratch); break; default : ShouldNotReachHere(); } __ retl(); // return from interpreter activation __ delayed()->nop(); // schedule this better NOT_PRODUCT(__ emit_long(0);) // marker for disassembly return entry; } address CppInterpreterGenerator::generate_stack_to_stack_converter(BasicType type) { // A result is in the java expression stack of the interpreted method that has just // returned. Place this result on the java expression stack of the caller. // // The current interpreter activation in Lstate is for the method just returning its // result. So we know that the result of this method is on the top of the current // execution stack (which is pre-pushed) and will be return to the top of the caller // stack. The top of the callers stack is the bottom of the locals of the current // activation. // Because of the way activation are managed by the frame manager the value of esp is // below both the stack top of the current activation and naturally the stack top // of the calling activation. This enable this routine to leave the return address // to the frame manager on the stack and do a vanilla return. // // On entry: O0 - points to source (callee stack top) // O1 - points to destination (caller stack top [i.e. free location]) // destroys O2, O3 // address entry = __ pc(); switch (type) { case T_VOID: break; break; case T_FLOAT : case T_BOOLEAN: case T_CHAR : case T_BYTE : case T_SHORT : case T_INT : // 1 word result __ ld(O0, 0, O2); __ st(O2, O1, 0); __ sub(O1, wordSize, O1); break; case T_DOUBLE : case T_LONG : // return top two words on current expression stack to caller's expression stack // The caller's expression stack is adjacent to the current frame manager's intepretState // except we allocated one extra word for this intepretState so we won't overwrite it // when we return a two word result. #ifdef _LP64 __ ld_ptr(O0, 0, O2); __ st_ptr(O2, O1, -wordSize); #else __ ld(O0, 0, O2); __ ld(O0, wordSize, O3); __ st(O3, O1, 0); __ st(O2, O1, -wordSize); #endif __ sub(O1, 2*wordSize, O1); break; case T_OBJECT : __ ld_ptr(O0, 0, O2); __ verify_oop(O2); // verify it __ st_ptr(O2, O1, 0); __ sub(O1, wordSize, O1); break; default : ShouldNotReachHere(); } __ retl(); __ delayed()->nop(); // QQ schedule this better return entry; } address CppInterpreterGenerator::generate_stack_to_native_abi_converter(BasicType type) { // A result is in the java expression stack of the interpreted method that has just // returned. Place this result in the native abi that the caller expects. // We are in a new frame registers we set must be in caller (i.e. callstub) frame. // // Similar to generate_stack_to_stack_converter above. Called at a similar time from the // frame manager execept in this situation the caller is native code (c1/c2/call_stub) // and so rather than return result onto caller's java expression stack we return the // result in the expected location based on the native abi. // On entry: O0 - source (stack top) // On exit result in expected output register // QQQ schedule this better address entry = __ pc(); switch (type) { case T_VOID: break; break; case T_FLOAT : __ ldf(FloatRegisterImpl::S, O0, 0, F0); break; case T_BOOLEAN: case T_CHAR : case T_BYTE : case T_SHORT : case T_INT : // 1 word result __ ld(O0, 0, O0->after_save()); break; case T_DOUBLE : __ ldf(FloatRegisterImpl::D, O0, 0, F0); break; case T_LONG : // return top two words on current expression stack to caller's expression stack // The caller's expression stack is adjacent to the current frame manager's interpretState // except we allocated one extra word for this intepretState so we won't overwrite it // when we return a two word result. #ifdef _LP64 __ ld_ptr(O0, 0, O0->after_save()); #else __ ld(O0, wordSize, O1->after_save()); __ ld(O0, 0, O0->after_save()); #endif #if defined(COMPILER2) && !defined(_LP64) // C2 expects long results in G1 we can't tell if we're returning to interpreted // or compiled so just be safe use G1 and O0/O1 // Shift bits into high (msb) of G1 __ sllx(Otos_l1->after_save(), 32, G1); // Zero extend low bits __ srl (Otos_l2->after_save(), 0, Otos_l2->after_save()); __ or3 (Otos_l2->after_save(), G1, G1); #endif /* COMPILER2 */ break; case T_OBJECT : __ ld_ptr(O0, 0, O0->after_save()); __ verify_oop(O0->after_save()); // verify it break; default : ShouldNotReachHere(); } __ retl(); __ delayed()->nop(); return entry; } address CppInterpreter::return_entry(TosState state, int length) { // make it look good in the debugger return CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation) + frame::pc_return_offset; } address CppInterpreter::deopt_entry(TosState state, int length) { address ret = NULL; if (length != 0) { switch (state) { case atos: ret = deopt_frame_manager_return_atos; break; case btos: ret = deopt_frame_manager_return_btos; break; case ctos: case stos: case itos: ret = deopt_frame_manager_return_itos; break; case ltos: ret = deopt_frame_manager_return_ltos; break; case ftos: ret = deopt_frame_manager_return_ftos; break; case dtos: ret = deopt_frame_manager_return_dtos; break; case vtos: ret = deopt_frame_manager_return_vtos; break; } } else { ret = unctrap_frame_manager_entry; // re-execute the bytecode ( e.g. uncommon trap) } assert(ret != NULL, "Not initialized"); return ret; } // // Helpers for commoning out cases in the various type of method entries. // // increment invocation count & check for overflow // // Note: checking for negative value instead of overflow // so we have a 'sticky' overflow test // // Lmethod: method // ??: invocation counter // void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) { // Update standard invocation counters __ increment_invocation_counter(O0, G3_scratch); if (ProfileInterpreter) { // %%% Merge this into methodDataOop __ ld_ptr(STATE(_method), G3_scratch); Address interpreter_invocation_counter(G3_scratch, 0, in_bytes(methodOopDesc::interpreter_invocation_counter_offset())); __ ld(interpreter_invocation_counter, G3_scratch); __ inc(G3_scratch); __ st(G3_scratch, interpreter_invocation_counter); } Address invocation_limit(G3_scratch, (address)&InvocationCounter::InterpreterInvocationLimit); __ sethi(invocation_limit); __ ld(invocation_limit, G3_scratch); __ cmp(O0, G3_scratch); __ br(Assembler::greaterEqualUnsigned, false, Assembler::pn, *overflow); __ delayed()->nop(); } address InterpreterGenerator::generate_empty_entry(void) { // A method that does nothing but return... address entry = __ pc(); Label slow_path; __ verify_oop(G5_method); // do nothing for empty methods (do not even increment invocation counter) if ( UseFastEmptyMethods) { // If we need a safepoint check, generate full interpreter entry. Address sync_state(G3_scratch, SafepointSynchronize::address_of_state()); __ load_contents(sync_state, G3_scratch); __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized); __ br(Assembler::notEqual, false, Assembler::pn, frame_manager_entry); __ delayed()->nop(); // Code: _return __ retl(); __ delayed()->mov(O5_savedSP, SP); return entry; } return NULL; } // Call an accessor method (assuming it is resolved, otherwise drop into // vanilla (slow path) entry // Generates code to elide accessor methods // Uses G3_scratch and G1_scratch as scratch address InterpreterGenerator::generate_accessor_entry(void) { // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof; // parameter size = 1 // Note: We can only use this code if the getfield has been resolved // and if we don't have a null-pointer exception => check for // these conditions first and use slow path if necessary. address entry = __ pc(); Label slow_path; if ( UseFastAccessorMethods) { // Check if we need to reach a safepoint and generate full interpreter // frame if so. Address sync_state(G3_scratch, SafepointSynchronize::address_of_state()); __ load_contents(sync_state, G3_scratch); __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized); __ br(Assembler::notEqual, false, Assembler::pn, slow_path); __ delayed()->nop(); // Check if local 0 != NULL __ ld_ptr(Gargs, G0, Otos_i ); // get local 0 __ tst(Otos_i); // check if local 0 == NULL and go the slow path __ brx(Assembler::zero, false, Assembler::pn, slow_path); __ delayed()->nop(); // read first instruction word and extract bytecode @ 1 and index @ 2 // get first 4 bytes of the bytecodes (big endian!) __ ld_ptr(Address(G5_method, 0, in_bytes(methodOopDesc::const_offset())), G1_scratch); __ ld(Address(G1_scratch, 0, in_bytes(constMethodOopDesc::codes_offset())), G1_scratch); // move index @ 2 far left then to the right most two bytes. __ sll(G1_scratch, 2*BitsPerByte, G1_scratch); __ srl(G1_scratch, 2*BitsPerByte - exact_log2(in_words( ConstantPoolCacheEntry::size()) * BytesPerWord), G1_scratch); // get constant pool cache __ ld_ptr(G5_method, in_bytes(methodOopDesc::constants_offset()), G3_scratch); __ ld_ptr(G3_scratch, constantPoolOopDesc::cache_offset_in_bytes(), G3_scratch); // get specific constant pool cache entry __ add(G3_scratch, G1_scratch, G3_scratch); // Check the constant Pool cache entry to see if it has been resolved. // If not, need the slow path. ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset(); __ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::indices_offset()), G1_scratch); __ srl(G1_scratch, 2*BitsPerByte, G1_scratch); __ and3(G1_scratch, 0xFF, G1_scratch); __ cmp(G1_scratch, Bytecodes::_getfield); __ br(Assembler::notEqual, false, Assembler::pn, slow_path); __ delayed()->nop(); // Get the type and return field offset from the constant pool cache __ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset()), G1_scratch); __ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset()), G3_scratch); Label xreturn_path; // Need to differentiate between igetfield, agetfield, bgetfield etc. // because they are different sizes. // Get the type from the constant pool cache __ srl(G1_scratch, ConstantPoolCacheEntry::tosBits, G1_scratch); // Make sure we don't need to mask G1_scratch for tosBits after the above shift ConstantPoolCacheEntry::verify_tosBits(); __ cmp(G1_scratch, atos ); __ br(Assembler::equal, true, Assembler::pt, xreturn_path); __ delayed()->ld_ptr(Otos_i, G3_scratch, Otos_i); __ cmp(G1_scratch, itos); __ br(Assembler::equal, true, Assembler::pt, xreturn_path); __ delayed()->ld(Otos_i, G3_scratch, Otos_i); __ cmp(G1_scratch, stos); __ br(Assembler::equal, true, Assembler::pt, xreturn_path); __ delayed()->ldsh(Otos_i, G3_scratch, Otos_i); __ cmp(G1_scratch, ctos); __ br(Assembler::equal, true, Assembler::pt, xreturn_path); __ delayed()->lduh(Otos_i, G3_scratch, Otos_i); #ifdef ASSERT __ cmp(G1_scratch, btos); __ br(Assembler::equal, true, Assembler::pt, xreturn_path); __ delayed()->ldsb(Otos_i, G3_scratch, Otos_i); __ should_not_reach_here(); #endif __ ldsb(Otos_i, G3_scratch, Otos_i); __ bind(xreturn_path); // _ireturn/_areturn __ retl(); // return from leaf routine __ delayed()->mov(O5_savedSP, SP); // Generate regular method entry __ bind(slow_path); __ ba(false, fast_accessor_slow_entry_path); __ delayed()->nop(); return entry; } return NULL; } address InterpreterGenerator::generate_Reference_get_entry(void) { #ifndef SERIALGC if (UseG1GC) { // We need to generate have a routine that generates code to: // * load the value in the referent field // * passes that value to the pre-barrier. // // In the case of G1 this will record the value of the // referent in an SATB buffer if marking is active. // This will cause concurrent marking to mark the referent // field as live. Unimplemented(); } #endif // SERIALGC // If G1 is not enabled then attempt to go through the accessor entry point // Reference.get is an accessor return generate_accessor_entry(); } // // Interpreter stub for calling a native method. (C++ interpreter) // This sets up a somewhat different looking stack for calling the native method // than the typical interpreter frame setup. // address InterpreterGenerator::generate_native_entry(bool synchronized) { address entry = __ pc(); // the following temporary registers are used during frame creation const Register Gtmp1 = G3_scratch ; const Register Gtmp2 = G1_scratch; const Address size_of_parameters(G5_method, 0, in_bytes(methodOopDesc::size_of_parameters_offset())); bool inc_counter = UseCompiler || CountCompiledCalls; // make sure registers are different! assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2); const Address access_flags (G5_method, 0, in_bytes(methodOopDesc::access_flags_offset())); Label Lentry; __ bind(Lentry); __ verify_oop(G5_method); const Register Glocals_size = G3; assert_different_registers(Glocals_size, G4_scratch, Gframe_size); // make sure method is native & not abstract // rethink these assertions - they can be simplified and shared (gri 2/25/2000) #ifdef ASSERT __ ld(access_flags, Gtmp1); { Label L; __ btst(JVM_ACC_NATIVE, Gtmp1); __ br(Assembler::notZero, false, Assembler::pt, L); __ delayed()->nop(); __ stop("tried to execute non-native method as native"); __ bind(L); } { Label L; __ btst(JVM_ACC_ABSTRACT, Gtmp1); __ br(Assembler::zero, false, Assembler::pt, L); __ delayed()->nop(); __ stop("tried to execute abstract method as non-abstract"); __ bind(L); } #endif // ASSERT __ lduh(size_of_parameters, Gtmp1); __ sll(Gtmp1, LogBytesPerWord, Gtmp2); // parameter size in bytes __ add(Gargs, Gtmp2, Gargs); // points to first local + BytesPerWord // NEW __ add(Gargs, -wordSize, Gargs); // points to first local[0] // generate the code to allocate the interpreter stack frame // NEW FRAME ALLOCATED HERE // save callers original sp // __ mov(SP, I5_savedSP->after_restore()); generate_compute_interpreter_state(Lstate, G0, true); // At this point Lstate points to new interpreter state // const Address do_not_unlock_if_synchronized(G2_thread, 0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); // Since at this point in the method invocation the exception handler // would try to exit the monitor of synchronized methods which hasn't // been entered yet, we set the thread local variable // _do_not_unlock_if_synchronized to true. If any exception was thrown by // runtime, exception handling i.e. unlock_if_synchronized_method will // check this thread local flag. // This flag has two effects, one is to force an unwind in the topmost // interpreter frame and not perform an unlock while doing so. __ movbool(true, G3_scratch); __ stbool(G3_scratch, do_not_unlock_if_synchronized); // increment invocation counter and check for overflow // // Note: checking for negative value instead of overflow // so we have a 'sticky' overflow test (may be of // importance as soon as we have true MT/MP) Label invocation_counter_overflow; if (inc_counter) { generate_counter_incr(&invocation_counter_overflow, NULL, NULL); } Label Lcontinue; __ bind(Lcontinue); bang_stack_shadow_pages(true); // reset the _do_not_unlock_if_synchronized flag __ stbool(G0, do_not_unlock_if_synchronized); // check for synchronized methods // Must happen AFTER invocation_counter check, so method is not locked // if counter overflows. if (synchronized) { lock_method(); // Don't see how G2_thread is preserved here... // __ verify_thread(); QQQ destroys L0,L1 can't use } else { #ifdef ASSERT { Label ok; __ ld_ptr(STATE(_method), G5_method); __ ld(access_flags, O0); __ btst(JVM_ACC_SYNCHRONIZED, O0); __ br( Assembler::zero, false, Assembler::pt, ok); __ delayed()->nop(); __ stop("method needs synchronization"); __ bind(ok); } #endif // ASSERT } // start execution // __ verify_thread(); kills L1,L2 can't use at the moment // jvmti/jvmpi support __ notify_method_entry(); // native call // (note that O0 is never an oop--at most it is a handle) // It is important not to smash any handles created by this call, // until any oop handle in O0 is dereferenced. // (note that the space for outgoing params is preallocated) // get signature handler Label pending_exception_present; { Label L; __ ld_ptr(STATE(_method), G5_method); __ ld_ptr(Address(G5_method, 0, in_bytes(methodOopDesc::signature_handler_offset())), G3_scratch); __ tst(G3_scratch); __ brx(Assembler::notZero, false, Assembler::pt, L); __ delayed()->nop(); __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), G5_method, false); __ ld_ptr(STATE(_method), G5_method); Address exception_addr(G2_thread, 0, in_bytes(Thread::pending_exception_offset())); __ ld_ptr(exception_addr, G3_scratch); __ br_notnull(G3_scratch, false, Assembler::pn, pending_exception_present); __ delayed()->nop(); __ ld_ptr(Address(G5_method, 0, in_bytes(methodOopDesc::signature_handler_offset())), G3_scratch); __ bind(L); } // Push a new frame so that the args will really be stored in // Copy a few locals across so the new frame has the variables // we need but these values will be dead at the jni call and // therefore not gc volatile like the values in the current // frame (Lstate in particular) // Flush the state pointer to the register save area // Which is the only register we need for a stack walk. __ st_ptr(Lstate, SP, (Lstate->sp_offset_in_saved_window() * wordSize) + STACK_BIAS); __ mov(Lstate, O1); // Need to pass the state pointer across the frame // Calculate current frame size __ sub(SP, FP, O3); // Calculate negative of current frame size __ save(SP, O3, SP); // Allocate an identical sized frame __ mov(I1, Lstate); // In the "natural" register. // Note I7 has leftover trash. Slow signature handler will fill it in // should we get there. Normal jni call will set reasonable last_Java_pc // below (and fix I7 so the stack trace doesn't have a meaningless frame // in it). // call signature handler __ ld_ptr(STATE(_method), Lmethod); __ ld_ptr(STATE(_locals), Llocals); __ callr(G3_scratch, 0); __ delayed()->nop(); __ ld_ptr(STATE(_thread), G2_thread); // restore thread (shouldn't be needed) { Label not_static; __ ld_ptr(STATE(_method), G5_method); __ ld(access_flags, O0); __ btst(JVM_ACC_STATIC, O0); __ br( Assembler::zero, false, Assembler::pt, not_static); __ delayed()-> // get native function entry point(O0 is a good temp until the very end) ld_ptr(Address(G5_method, 0, in_bytes(methodOopDesc::native_function_offset())), O0); // for static methods insert the mirror argument const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes(); __ ld_ptr(Address(G5_method, 0, in_bytes(methodOopDesc:: constants_offset())), O1); __ ld_ptr(Address(O1, 0, constantPoolOopDesc::pool_holder_offset_in_bytes()), O1); __ ld_ptr(O1, mirror_offset, O1); // where the mirror handle body is allocated: #ifdef ASSERT if (!PrintSignatureHandlers) // do not dirty the output with this { Label L; __ tst(O1); __ brx(Assembler::notZero, false, Assembler::pt, L); __ delayed()->nop(); __ stop("mirror is missing"); __ bind(L); } #endif // ASSERT __ st_ptr(O1, STATE(_oop_temp)); __ add(STATE(_oop_temp), O1); // this is really an LEA not an add __ bind(not_static); } // At this point, arguments have been copied off of stack into // their JNI positions, which are O1..O5 and SP[68..]. // Oops are boxed in-place on the stack, with handles copied to arguments. // The result handler is in Lscratch. O0 will shortly hold the JNIEnv*. #ifdef ASSERT { Label L; __ tst(O0); __ brx(Assembler::notZero, false, Assembler::pt, L); __ delayed()->nop(); __ stop("native entry point is missing"); __ bind(L); } #endif // ASSERT // // setup the java frame anchor // // The scavenge function only needs to know that the PC of this frame is // in the interpreter method entry code, it doesn't need to know the exact // PC and hence we can use O7 which points to the return address from the // previous call in the code stream (signature handler function) // // The other trick is we set last_Java_sp to FP instead of the usual SP because // we have pushed the extra frame in order to protect the volatile register(s) // in that frame when we return from the jni call // __ set_last_Java_frame(FP, O7); __ mov(O7, I7); // make dummy interpreter frame look like one above, // not meaningless information that'll confuse me. // flush the windows now. We don't care about the current (protection) frame // only the outer frames __ flush_windows(); // mark windows as flushed Address flags(G2_thread, 0, in_bytes(JavaThread::frame_anchor_offset()) + in_bytes(JavaFrameAnchor::flags_offset())); __ set(JavaFrameAnchor::flushed, G3_scratch); __ st(G3_scratch, flags); // Transition from _thread_in_Java to _thread_in_native. We are already safepoint ready. Address thread_state(G2_thread, 0, in_bytes(JavaThread::thread_state_offset())); #ifdef ASSERT { Label L; __ ld(thread_state, G3_scratch); __ cmp(G3_scratch, _thread_in_Java); __ br(Assembler::equal, false, Assembler::pt, L); __ delayed()->nop(); __ stop("Wrong thread state in native stub"); __ bind(L); } #endif // ASSERT __ set(_thread_in_native, G3_scratch); __ st(G3_scratch, thread_state); // Call the jni method, using the delay slot to set the JNIEnv* argument. __ callr(O0, 0); __ delayed()-> add(G2_thread, in_bytes(JavaThread::jni_environment_offset()), O0); __ ld_ptr(STATE(_thread), G2_thread); // restore thread // must we block? // Block, if necessary, before resuming in _thread_in_Java state. // In order for GC to work, don't clear the last_Java_sp until after blocking. { Label no_block; Address sync_state(G3_scratch, SafepointSynchronize::address_of_state()); // Switch thread to "native transition" state before reading the synchronization state. // This additional state is necessary because reading and testing the synchronization // state is not atomic w.r.t. GC, as this scenario demonstrates: // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted. // VM thread changes sync state to synchronizing and suspends threads for GC. // Thread A is resumed to finish this native method, but doesn't block here since it // didn't see any synchronization is progress, and escapes. __ set(_thread_in_native_trans, G3_scratch); __ st(G3_scratch, thread_state); if(os::is_MP()) { // Write serialization page so VM thread can do a pseudo remote membar. // We use the current thread pointer to calculate a thread specific // offset to write to within the page. This minimizes bus traffic // due to cache line collision. __ serialize_memory(G2_thread, G1_scratch, G3_scratch); } __ load_contents(sync_state, G3_scratch); __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized); Label L; Address suspend_state(G2_thread, 0, in_bytes(JavaThread::suspend_flags_offset())); __ br(Assembler::notEqual, false, Assembler::pn, L); __ delayed()-> ld(suspend_state, G3_scratch); __ cmp(G3_scratch, 0); __ br(Assembler::equal, false, Assembler::pt, no_block); __ delayed()->nop(); __ bind(L); // Block. Save any potential method result value before the operation and // use a leaf call to leave the last_Java_frame setup undisturbed. save_native_result(); __ call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, JavaThread::check_safepoint_and_suspend_for_native_trans), G2_thread); __ ld_ptr(STATE(_thread), G2_thread); // restore thread // Restore any method result value restore_native_result(); __ bind(no_block); } // Clear the frame anchor now __ reset_last_Java_frame(); // Move the result handler address __ mov(Lscratch, G3_scratch); // return possible result to the outer frame #ifndef __LP64 __ mov(O0, I0); __ restore(O1, G0, O1); #else __ restore(O0, G0, O0); #endif /* __LP64 */ // Move result handler to expected register __ mov(G3_scratch, Lscratch); // thread state is thread_in_native_trans. Any safepoint blocking has // happened in the trampoline we are ready to switch to thread_in_Java. __ set(_thread_in_Java, G3_scratch); __ st(G3_scratch, thread_state); // If we have an oop result store it where it will be safe for any further gc // until we return now that we've released the handle it might be protected by { Label no_oop, store_result; __ set((intptr_t)AbstractInterpreter::result_handler(T_OBJECT), G3_scratch); __ cmp(G3_scratch, Lscratch); __ brx(Assembler::notEqual, false, Assembler::pt, no_oop); __ delayed()->nop(); __ addcc(G0, O0, O0); __ brx(Assembler::notZero, true, Assembler::pt, store_result); // if result is not NULL: __ delayed()->ld_ptr(O0, 0, O0); // unbox it __ mov(G0, O0); __ bind(store_result); // Store it where gc will look for it and result handler expects it. __ st_ptr(O0, STATE(_oop_temp)); __ bind(no_oop); } // reset handle block __ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), G3_scratch); __ st_ptr(G0, G3_scratch, JNIHandleBlock::top_offset_in_bytes()); // handle exceptions (exception handling will handle unlocking!) { Label L; Address exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset())); __ ld_ptr(exception_addr, Gtemp); __ tst(Gtemp); __ brx(Assembler::equal, false, Assembler::pt, L); __ delayed()->nop(); __ bind(pending_exception_present); // With c++ interpreter we just leave it pending caller will do the correct thing. However... // Like x86 we ignore the result of the native call and leave the method locked. This // seems wrong to leave things locked. __ br(Assembler::always, false, Assembler::pt, StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type); __ delayed()->restore(I5_savedSP, G0, SP); // remove interpreter frame __ bind(L); } // jvmdi/jvmpi support (preserves thread register) __ notify_method_exit(true, ilgl, InterpreterMacroAssembler::NotifyJVMTI); if (synchronized) { // save and restore any potential method result value around the unlocking operation save_native_result(); const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; // Get the initial monitor we allocated __ sub(Lstate, entry_size, O1); // initial monitor __ unlock_object(O1); restore_native_result(); } #if defined(COMPILER2) && !defined(_LP64) // C2 expects long results in G1 we can't tell if we're returning to interpreted // or compiled so just be safe. __ sllx(O0, 32, G1); // Shift bits into high G1 __ srl (O1, 0, O1); // Zero extend O1 __ or3 (O1, G1, G1); // OR 64 bits into G1 #endif /* COMPILER2 && !_LP64 */ #ifdef ASSERT { Label ok; __ cmp(I5_savedSP, FP); __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, ok); __ delayed()->nop(); __ stop("bad I5_savedSP value"); __ should_not_reach_here(); __ bind(ok); } #endif // Calls result handler which POPS FRAME if (TraceJumps) { // Move target to register that is recordable __ mov(Lscratch, G3_scratch); __ JMP(G3_scratch, 0); } else { __ jmp(Lscratch, 0); } __ delayed()->nop(); if (inc_counter) { // handle invocation counter overflow __ bind(invocation_counter_overflow); generate_counter_overflow(Lcontinue); } return entry; } void CppInterpreterGenerator::generate_compute_interpreter_state(const Register state, const Register prev_state, bool native) { // On entry // G5_method - caller's method // Gargs - points to initial parameters (i.e. locals[0]) // G2_thread - valid? (C1 only??) // "prev_state" - contains any previous frame manager state which we must save a link // // On return // "state" is a pointer to the newly allocated state object. We must allocate and initialize // a new interpretState object and the method expression stack. assert_different_registers(state, prev_state); assert_different_registers(prev_state, G3_scratch); const Register Gtmp = G3_scratch; const Address constants (G5_method, 0, in_bytes(methodOopDesc::constants_offset())); const Address access_flags (G5_method, 0, in_bytes(methodOopDesc::access_flags_offset())); const Address size_of_parameters(G5_method, 0, in_bytes(methodOopDesc::size_of_parameters_offset())); const Address max_stack (G5_method, 0, in_bytes(methodOopDesc::max_stack_offset())); const Address size_of_locals (G5_method, 0, in_bytes(methodOopDesc::size_of_locals_offset())); // slop factor is two extra slots on the expression stack so that // we always have room to store a result when returning from a call without parameters // that returns a result. const int slop_factor = 2*wordSize; const int fixed_size = ((sizeof(BytecodeInterpreter) + slop_factor) >> LogBytesPerWord) + // what is the slop factor? //6815692//methodOopDesc::extra_stack_words() + // extra push slots for MH adapters frame::memory_parameter_word_sp_offset + // register save area + param window (native ? frame::interpreter_frame_extra_outgoing_argument_words : 0); // JNI, class // XXX G5_method valid // Now compute new frame size if (native) { __ lduh( size_of_parameters, Gtmp ); __ calc_mem_param_words(Gtmp, Gtmp); // space for native call parameters passed on the stack in words } else { __ lduh(max_stack, Gtmp); // Full size expression stack } __ add(Gtmp, fixed_size, Gtmp); // plus the fixed portion __ neg(Gtmp); // negative space for stack/parameters in words __ and3(Gtmp, -WordsPerLong, Gtmp); // make multiple of 2 (SP must be 2-word aligned) __ sll(Gtmp, LogBytesPerWord, Gtmp); // negative space for frame in bytes // Need to do stack size check here before we fault on large frames Label stack_ok; const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages : (StackRedPages+StackYellowPages); __ ld_ptr(G2_thread, in_bytes(Thread::stack_base_offset()), O0); __ ld_ptr(G2_thread, in_bytes(Thread::stack_size_offset()), O1); // compute stack bottom __ sub(O0, O1, O0); // Avoid touching the guard pages // Also a fudge for frame size of BytecodeInterpreter::run // It varies from 1k->4k depending on build type const int fudge = 6 * K; __ set(fudge + (max_pages * os::vm_page_size()), O1); __ add(O0, O1, O0); __ sub(O0, Gtmp, O0); __ cmp(SP, O0); __ brx(Assembler::greaterUnsigned, false, Assembler::pt, stack_ok); __ delayed()->nop(); // throw exception return address becomes throwing pc __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError)); __ stop("never reached"); __ bind(stack_ok); __ save(SP, Gtmp, SP); // setup new frame and register window // New window I7 call_stub or previous activation // O6 - register save area, BytecodeInterpreter just below it, args/locals just above that // __ sub(FP, sizeof(BytecodeInterpreter), state); // Point to new Interpreter state __ add(state, STACK_BIAS, state ); // Account for 64bit bias #define XXX_STATE(field_name) state, in_bytes(byte_offset_of(BytecodeInterpreter, field_name)) // Initialize a new Interpreter state // orig_sp - caller's original sp // G2_thread - thread // Gargs - &locals[0] (unbiased?) // G5_method - method // SP (biased) - accounts for full size java stack, BytecodeInterpreter object, register save area, and register parameter save window __ set(0xdead0004, O1); __ st_ptr(Gargs, XXX_STATE(_locals)); __ st_ptr(G0, XXX_STATE(_oop_temp)); __ st_ptr(state, XXX_STATE(_self_link)); // point to self __ st_ptr(prev_state->after_save(), XXX_STATE(_prev_link)); // Chain interpreter states __ st_ptr(G2_thread, XXX_STATE(_thread)); // Store javathread if (native) { __ st_ptr(G0, XXX_STATE(_bcp)); } else { __ ld_ptr(G5_method, in_bytes(methodOopDesc::const_offset()), O2); // get constMethodOop __ add(O2, in_bytes(constMethodOopDesc::codes_offset()), O2); // get bcp __ st_ptr(O2, XXX_STATE(_bcp)); } __ st_ptr(G0, XXX_STATE(_mdx)); __ st_ptr(G5_method, XXX_STATE(_method)); __ set((int) BytecodeInterpreter::method_entry, O1); __ st(O1, XXX_STATE(_msg)); __ ld_ptr(constants, O3); __ ld_ptr(O3, constantPoolOopDesc::cache_offset_in_bytes(), O2); __ st_ptr(O2, XXX_STATE(_constants)); __ st_ptr(G0, XXX_STATE(_result._to_call._callee)); // Monitor base is just start of BytecodeInterpreter object; __ mov(state, O2); __ st_ptr(O2, XXX_STATE(_monitor_base)); // Do we need a monitor for synchonized method? { __ ld(access_flags, O1); Label done; Label got_obj; __ btst(JVM_ACC_SYNCHRONIZED, O1); __ br( Assembler::zero, false, Assembler::pt, done); const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes(); __ delayed()->btst(JVM_ACC_STATIC, O1); __ ld_ptr(XXX_STATE(_locals), O1); __ br( Assembler::zero, true, Assembler::pt, got_obj); __ delayed()->ld_ptr(O1, 0, O1); // get receiver for not-static case __ ld_ptr(constants, O1); __ ld_ptr( O1, constantPoolOopDesc::pool_holder_offset_in_bytes(), O1); // lock the mirror, not the klassOop __ ld_ptr( O1, mirror_offset, O1); __ bind(got_obj); #ifdef ASSERT __ tst(O1); __ breakpoint_trap(Assembler::zero); #endif // ASSERT const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; __ sub(SP, entry_size, SP); // account for initial monitor __ sub(O2, entry_size, O2); // initial monitor __ st_ptr(O1, O2, BasicObjectLock::obj_offset_in_bytes()); // and allocate it for interpreter use __ bind(done); } // Remember initial frame bottom __ st_ptr(SP, XXX_STATE(_frame_bottom)); __ st_ptr(O2, XXX_STATE(_stack_base)); __ sub(O2, wordSize, O2); // prepush __ st_ptr(O2, XXX_STATE(_stack)); // PREPUSH __ lduh(max_stack, O3); // Full size expression stack guarantee(!EnableInvokeDynamic, "no support yet for java.lang.invoke.MethodHandle"); //6815692 //6815692//if (EnableInvokeDynamic) //6815692// __ inc(O3, methodOopDesc::extra_stack_entries()); __ sll(O3, LogBytesPerWord, O3); __ sub(O2, O3, O3); // __ sub(O3, wordSize, O3); // so prepush doesn't look out of bounds __ st_ptr(O3, XXX_STATE(_stack_limit)); if (!native) { // // Code to initialize locals // Register init_value = noreg; // will be G0 if we must clear locals // Now zero locals if (true /* zerolocals */ || ClearInterpreterLocals) { // explicitly initialize locals init_value = G0; } else { #ifdef ASSERT // initialize locals to a garbage pattern for better debugging init_value = O3; __ set( 0x0F0F0F0F, init_value ); #endif // ASSERT } if (init_value != noreg) { Label clear_loop; // NOTE: If you change the frame layout, this code will need to // be updated! __ lduh( size_of_locals, O2 ); __ lduh( size_of_parameters, O1 ); __ sll( O2, LogBytesPerWord, O2); __ sll( O1, LogBytesPerWord, O1 ); __ ld_ptr(XXX_STATE(_locals), L2_scratch); __ sub( L2_scratch, O2, O2 ); __ sub( L2_scratch, O1, O1 ); __ bind( clear_loop ); __ inc( O2, wordSize ); __ cmp( O2, O1 ); __ br( Assembler::lessEqualUnsigned, true, Assembler::pt, clear_loop ); __ delayed()->st_ptr( init_value, O2, 0 ); } } } // Find preallocated monitor and lock method (C++ interpreter) // void InterpreterGenerator::lock_method(void) { // Lock the current method. // Destroys registers L2_scratch, L3_scratch, O0 // // Find everything relative to Lstate #ifdef ASSERT __ ld_ptr(STATE(_method), L2_scratch); __ ld(L2_scratch, in_bytes(methodOopDesc::access_flags_offset()), O0); { Label ok; __ btst(JVM_ACC_SYNCHRONIZED, O0); __ br( Assembler::notZero, false, Assembler::pt, ok); __ delayed()->nop(); __ stop("method doesn't need synchronization"); __ bind(ok); } #endif // ASSERT // monitor is already allocated at stack base // and the lockee is already present __ ld_ptr(STATE(_stack_base), L2_scratch); __ ld_ptr(L2_scratch, BasicObjectLock::obj_offset_in_bytes(), O0); // get object __ lock_object(L2_scratch, O0); } // Generate code for handling resuming a deopted method void CppInterpreterGenerator::generate_deopt_handling() { Label return_from_deopt_common; // deopt needs to jump to here to enter the interpreter (return a result) deopt_frame_manager_return_atos = __ pc(); // O0/O1 live __ ba(false, return_from_deopt_common); __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_OBJECT), L3_scratch); // Result stub address array index // deopt needs to jump to here to enter the interpreter (return a result) deopt_frame_manager_return_btos = __ pc(); // O0/O1 live __ ba(false, return_from_deopt_common); __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_BOOLEAN), L3_scratch); // Result stub address array index // deopt needs to jump to here to enter the interpreter (return a result) deopt_frame_manager_return_itos = __ pc(); // O0/O1 live __ ba(false, return_from_deopt_common); __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_INT), L3_scratch); // Result stub address array index // deopt needs to jump to here to enter the interpreter (return a result) deopt_frame_manager_return_ltos = __ pc(); #if !defined(_LP64) && defined(COMPILER2) // All return values are where we want them, except for Longs. C2 returns // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1. // Since the interpreter will return longs in G1 and O0/O1 in the 32bit // build even if we are returning from interpreted we just do a little // stupid shuffing. // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to // do this here. Unfortunately if we did a rethrow we'd see an machepilog node // first which would move g1 -> O0/O1 and destroy the exception we were throwing. __ srl (G1, 0,O1); __ srlx(G1,32,O0); #endif /* !_LP64 && COMPILER2 */ // O0/O1 live __ ba(false, return_from_deopt_common); __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_LONG), L3_scratch); // Result stub address array index // deopt needs to jump to here to enter the interpreter (return a result) deopt_frame_manager_return_ftos = __ pc(); // O0/O1 live __ ba(false, return_from_deopt_common); __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_FLOAT), L3_scratch); // Result stub address array index // deopt needs to jump to here to enter the interpreter (return a result) deopt_frame_manager_return_dtos = __ pc(); // O0/O1 live __ ba(false, return_from_deopt_common); __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_DOUBLE), L3_scratch); // Result stub address array index // deopt needs to jump to here to enter the interpreter (return a result) deopt_frame_manager_return_vtos = __ pc(); // O0/O1 live __ set(AbstractInterpreter::BasicType_as_index(T_VOID), L3_scratch); // Deopt return common // an index is present that lets us move any possible result being // return to the interpreter's stack // __ bind(return_from_deopt_common); // Result if any is in native abi result (O0..O1/F0..F1). The java expression // stack is in the state that the calling convention left it. // Copy the result from native abi result and place it on java expression stack. // Current interpreter state is present in Lstate // Get current pre-pushed top of interpreter stack // Any result (if any) is in native abi // result type index is in L3_scratch __ ld_ptr(STATE(_stack), L1_scratch); // get top of java expr stack __ set((intptr_t)CppInterpreter::_tosca_to_stack, L4_scratch); __ sll(L3_scratch, LogBytesPerWord, L3_scratch); __ ld_ptr(L4_scratch, L3_scratch, Lscratch); // get typed result converter address __ jmpl(Lscratch, G0, O7); // and convert it __ delayed()->nop(); // L1_scratch points to top of stack (prepushed) __ st_ptr(L1_scratch, STATE(_stack)); } // Generate the code to handle a more_monitors message from the c++ interpreter void CppInterpreterGenerator::generate_more_monitors() { Label entry, loop; const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; // 1. compute new pointers // esp: old expression stack top __ delayed()->ld_ptr(STATE(_stack_base), L4_scratch); // current expression stack bottom __ sub(L4_scratch, entry_size, L4_scratch); __ st_ptr(L4_scratch, STATE(_stack_base)); __ sub(SP, entry_size, SP); // Grow stack __ st_ptr(SP, STATE(_frame_bottom)); __ ld_ptr(STATE(_stack_limit), L2_scratch); __ sub(L2_scratch, entry_size, L2_scratch); __ st_ptr(L2_scratch, STATE(_stack_limit)); __ ld_ptr(STATE(_stack), L1_scratch); // Get current stack top __ sub(L1_scratch, entry_size, L1_scratch); __ st_ptr(L1_scratch, STATE(_stack)); __ ba(false, entry); __ delayed()->add(L1_scratch, wordSize, L1_scratch); // first real entry (undo prepush) // 2. move expression stack __ bind(loop); __ st_ptr(L3_scratch, Address(L1_scratch, 0)); __ add(L1_scratch, wordSize, L1_scratch); __ bind(entry); __ cmp(L1_scratch, L4_scratch); __ br(Assembler::notEqual, false, Assembler::pt, loop); __ delayed()->ld_ptr(L1_scratch, entry_size, L3_scratch); // now zero the slot so we can find it. __ st_ptr(G0, L4_scratch, BasicObjectLock::obj_offset_in_bytes()); } // Initial entry to C++ interpreter from the call_stub. // This entry point is called the frame manager since it handles the generation // of interpreter activation frames via requests directly from the vm (via call_stub) // and via requests from the interpreter. The requests from the call_stub happen // directly thru the entry point. Requests from the interpreter happen via returning // from the interpreter and examining the message the interpreter has returned to // the frame manager. The frame manager can take the following requests: // NO_REQUEST - error, should never happen. // MORE_MONITORS - need a new monitor. Shuffle the expression stack on down and // allocate a new monitor. // CALL_METHOD - setup a new activation to call a new method. Very similar to what // happens during entry during the entry via the call stub. // RETURN_FROM_METHOD - remove an activation. Return to interpreter or call stub. // // Arguments: // // ebx: methodOop // ecx: receiver - unused (retrieved from stack as needed) // esi: previous frame manager state (NULL from the call_stub/c1/c2) // // // Stack layout at entry // // [ return address ] <--- esp // [ parameter n ] // ... // [ parameter 1 ] // [ expression stack ] // // // We are free to blow any registers we like because the call_stub which brought us here // initially has preserved the callee save registers already. // // static address interpreter_frame_manager = NULL; #ifdef ASSERT #define VALIDATE_STATE(scratch, marker) \ { \ Label skip; \ __ ld_ptr(STATE(_self_link), scratch); \ __ cmp(Lstate, scratch); \ __ brx(Assembler::equal, false, Assembler::pt, skip); \ __ delayed()->nop(); \ __ breakpoint_trap(); \ __ emit_long(marker); \ __ bind(skip); \ } #else #define VALIDATE_STATE(scratch, marker) #endif /* ASSERT */ void CppInterpreterGenerator::adjust_callers_stack(Register args) { // // Adjust caller's stack so that all the locals can be contiguous with // the parameters. // Worries about stack overflow make this a pain. // // Destroys args, G3_scratch, G3_scratch // In/Out O5_savedSP (sender's original SP) // // assert_different_registers(state, prev_state); const Register Gtmp = G3_scratch; const Register tmp = O2; const Address size_of_parameters(G5_method, 0, in_bytes(methodOopDesc::size_of_parameters_offset())); const Address size_of_locals (G5_method, 0, in_bytes(methodOopDesc::size_of_locals_offset())); __ lduh(size_of_parameters, tmp); __ sll(tmp, LogBytesPerWord, Gtmp); // parameter size in bytes __ add(args, Gtmp, Gargs); // points to first local + BytesPerWord // NEW __ add(Gargs, -wordSize, Gargs); // points to first local[0] // determine extra space for non-argument locals & adjust caller's SP // Gtmp1: parameter size in words __ lduh(size_of_locals, Gtmp); __ compute_extra_locals_size_in_bytes(tmp, Gtmp, Gtmp); #if 1 // c2i adapters place the final interpreter argument in the register save area for O0/I0 // the call_stub will place the final interpreter argument at // frame::memory_parameter_word_sp_offset. This is mostly not noticable for either asm // or c++ interpreter. However with the c++ interpreter when we do a recursive call // and try to make it look good in the debugger we will store the argument to // RecursiveInterpreterActivation in the register argument save area. Without allocating // extra space for the compiler this will overwrite locals in the local array of the // interpreter. // QQQ still needed with frameless adapters??? const int c2i_adjust_words = frame::memory_parameter_word_sp_offset - frame::callee_register_argument_save_area_sp_offset; __ add(Gtmp, c2i_adjust_words*wordSize, Gtmp); #endif // 1 __ sub(SP, Gtmp, SP); // just caller's frame for the additional space we need. } address InterpreterGenerator::generate_normal_entry(bool synchronized) { // G5_method: methodOop // G2_thread: thread (unused) // Gargs: bottom of args (sender_sp) // O5: sender's sp // A single frame manager is plenty as we don't specialize for synchronized. We could and // the code is pretty much ready. Would need to change the test below and for good measure // modify generate_interpreter_state to only do the (pre) sync stuff stuff for synchronized // routines. Not clear this is worth it yet. if (interpreter_frame_manager) { return interpreter_frame_manager; } __ bind(frame_manager_entry); // the following temporary registers are used during frame creation const Register Gtmp1 = G3_scratch; // const Register Lmirror = L1; // native mirror (native calls only) const Address constants (G5_method, 0, in_bytes(methodOopDesc::constants_offset())); const Address access_flags (G5_method, 0, in_bytes(methodOopDesc::access_flags_offset())); const Address size_of_parameters(G5_method, 0, in_bytes(methodOopDesc::size_of_parameters_offset())); const Address max_stack (G5_method, 0, in_bytes(methodOopDesc::max_stack_offset())); const Address size_of_locals (G5_method, 0, in_bytes(methodOopDesc::size_of_locals_offset())); address entry_point = __ pc(); __ mov(G0, prevState); // no current activation Label re_dispatch; __ bind(re_dispatch); // Interpreter needs to have locals completely contiguous. In order to do that // We must adjust the caller's stack pointer for any locals beyond just the // parameters adjust_callers_stack(Gargs); // O5_savedSP still contains sender's sp // NEW FRAME generate_compute_interpreter_state(Lstate, prevState, false); // At this point a new interpreter frame and state object are created and initialized // Lstate has the pointer to the new activation // Any stack banging or limit check should already be done. Label call_interpreter; __ bind(call_interpreter); #if 1 __ set(0xdead002, Lmirror); __ set(0xdead002, L2_scratch); __ set(0xdead003, L3_scratch); __ set(0xdead004, L4_scratch); __ set(0xdead005, Lscratch); __ set(0xdead006, Lscratch2); __ set(0xdead007, L7_scratch); __ set(0xdeaf002, O2); __ set(0xdeaf003, O3); __ set(0xdeaf004, O4); __ set(0xdeaf005, O5); #endif // Call interpreter (stack bang complete) enter here if message is // set and we know stack size is valid Label call_interpreter_2; __ bind(call_interpreter_2); #ifdef ASSERT { Label skip; __ ld_ptr(STATE(_frame_bottom), G3_scratch); __ cmp(G3_scratch, SP); __ brx(Assembler::equal, false, Assembler::pt, skip); __ delayed()->nop(); __ stop("SP not restored to frame bottom"); __ bind(skip); } #endif VALIDATE_STATE(G3_scratch, 4); __ set_last_Java_frame(SP, noreg); __ mov(Lstate, O0); // (arg) pointer to current state __ call(CAST_FROM_FN_PTR(address, JvmtiExport::can_post_interpreter_events() ? BytecodeInterpreter::runWithChecks : BytecodeInterpreter::run), relocInfo::runtime_call_type); __ delayed()->nop(); __ ld_ptr(STATE(_thread), G2_thread); __ reset_last_Java_frame(); // examine msg from interpreter to determine next action __ ld_ptr(STATE(_thread), G2_thread); // restore G2_thread __ ld(STATE(_msg), L1_scratch); // Get new message Label call_method; Label return_from_interpreted_method; Label throw_exception; Label do_OSR; Label bad_msg; Label resume_interpreter; __ cmp(L1_scratch, (int)BytecodeInterpreter::call_method); __ br(Assembler::equal, false, Assembler::pt, call_method); __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::return_from_method); __ br(Assembler::equal, false, Assembler::pt, return_from_interpreted_method); __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::throwing_exception); __ br(Assembler::equal, false, Assembler::pt, throw_exception); __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::do_osr); __ br(Assembler::equal, false, Assembler::pt, do_OSR); __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::more_monitors); __ br(Assembler::notEqual, false, Assembler::pt, bad_msg); // Allocate more monitor space, shuffle expression stack.... generate_more_monitors(); // new monitor slot allocated, resume the interpreter. __ set((int)BytecodeInterpreter::got_monitors, L1_scratch); VALIDATE_STATE(G3_scratch, 5); __ ba(false, call_interpreter); __ delayed()->st(L1_scratch, STATE(_msg)); // uncommon trap needs to jump to here to enter the interpreter (re-execute current bytecode) unctrap_frame_manager_entry = __ pc(); // QQQ what message do we send __ ba(false, call_interpreter); __ delayed()->ld_ptr(STATE(_frame_bottom), SP); // restore to full stack frame //============================================================================= // Returning from a compiled method into a deopted method. The bytecode at the // bcp has completed. The result of the bytecode is in the native abi (the tosca // for the template based interpreter). Any stack space that was used by the // bytecode that has completed has been removed (e.g. parameters for an invoke) // so all that we have to do is place any pending result on the expression stack // and resume execution on the next bytecode. generate_deopt_handling(); // ready to resume the interpreter __ set((int)BytecodeInterpreter::deopt_resume, L1_scratch); __ ba(false, call_interpreter); __ delayed()->st(L1_scratch, STATE(_msg)); // Current frame has caught an exception we need to dispatch to the // handler. We can get here because a native interpreter frame caught // an exception in which case there is no handler and we must rethrow // If it is a vanilla interpreted frame the we simply drop into the // interpreter and let it do the lookup. Interpreter::_rethrow_exception_entry = __ pc(); Label return_with_exception; Label unwind_and_forward; // O0: exception // O7: throwing pc // We want exception in the thread no matter what we ultimately decide about frame type. Address exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset())); __ verify_thread(); __ st_ptr(O0, exception_addr); // get the methodOop __ ld_ptr(STATE(_method), G5_method); // if this current frame vanilla or native? __ ld(access_flags, Gtmp1); __ btst(JVM_ACC_NATIVE, Gtmp1); __ br(Assembler::zero, false, Assembler::pt, return_with_exception); // vanilla interpreted frame handle directly __ delayed()->nop(); // We drop thru to unwind a native interpreted frame with a pending exception // We jump here for the initial interpreter frame with exception pending // We unwind the current acivation and forward it to our caller. __ bind(unwind_and_forward); // Unwind frame and jump to forward exception. unwinding will place throwing pc in O7 // as expected by forward_exception. __ restore(FP, G0, SP); // unwind interpreter state frame __ br(Assembler::always, false, Assembler::pt, StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type); __ delayed()->mov(I5_savedSP->after_restore(), SP); // Return point from a call which returns a result in the native abi // (c1/c2/jni-native). This result must be processed onto the java // expression stack. // // A pending exception may be present in which case there is no result present address return_from_native_method = __ pc(); VALIDATE_STATE(G3_scratch, 6); // Result if any is in native abi result (O0..O1/F0..F1). The java expression // stack is in the state that the calling convention left it. // Copy the result from native abi result and place it on java expression stack. // Current interpreter state is present in Lstate // Exception pending? __ ld_ptr(STATE(_frame_bottom), SP); // restore to full stack frame __ ld_ptr(exception_addr, Lscratch); // get any pending exception __ tst(Lscratch); // exception pending? __ brx(Assembler::notZero, false, Assembler::pt, return_with_exception); __ delayed()->nop(); // Process the native abi result to java expression stack __ ld_ptr(STATE(_result._to_call._callee), L4_scratch); // called method __ ld_ptr(STATE(_stack), L1_scratch); // get top of java expr stack __ lduh(L4_scratch, in_bytes(methodOopDesc::size_of_parameters_offset()), L2_scratch); // get parameter size __ sll(L2_scratch, LogBytesPerWord, L2_scratch ); // parameter size in bytes __ add(L1_scratch, L2_scratch, L1_scratch); // stack destination for result __ ld(L4_scratch, in_bytes(methodOopDesc::result_index_offset()), L3_scratch); // called method result type index // tosca is really just native abi __ set((intptr_t)CppInterpreter::_tosca_to_stack, L4_scratch); __ sll(L3_scratch, LogBytesPerWord, L3_scratch); __ ld_ptr(L4_scratch, L3_scratch, Lscratch); // get typed result converter address __ jmpl(Lscratch, G0, O7); // and convert it __ delayed()->nop(); // L1_scratch points to top of stack (prepushed) __ ba(false, resume_interpreter); __ delayed()->mov(L1_scratch, O1); // An exception is being caught on return to a vanilla interpreter frame. // Empty the stack and resume interpreter __ bind(return_with_exception); __ ld_ptr(STATE(_frame_bottom), SP); // restore to full stack frame __ ld_ptr(STATE(_stack_base), O1); // empty java expression stack __ ba(false, resume_interpreter); __ delayed()->sub(O1, wordSize, O1); // account for prepush // Return from interpreted method we return result appropriate to the caller (i.e. "recursive" // interpreter call, or native) and unwind this interpreter activation. // All monitors should be unlocked. __ bind(return_from_interpreted_method); VALIDATE_STATE(G3_scratch, 7); Label return_to_initial_caller; // Interpreted result is on the top of the completed activation expression stack. // We must return it to the top of the callers stack if caller was interpreted // otherwise we convert to native abi result and return to call_stub/c1/c2 // The caller's expression stack was truncated by the call however the current activation // has enough stuff on the stack that we have usable space there no matter what. The // other thing that makes it easy is that the top of the caller's stack is stored in STATE(_locals) // for the current activation __ ld_ptr(STATE(_prev_link), L1_scratch); __ ld_ptr(STATE(_method), L2_scratch); // get method just executed __ ld(L2_scratch, in_bytes(methodOopDesc::result_index_offset()), L2_scratch); __ tst(L1_scratch); __ brx(Assembler::zero, false, Assembler::pt, return_to_initial_caller); __ delayed()->sll(L2_scratch, LogBytesPerWord, L2_scratch); // Copy result to callers java stack __ set((intptr_t)CppInterpreter::_stack_to_stack, L4_scratch); __ ld_ptr(L4_scratch, L2_scratch, Lscratch); // get typed result converter address __ ld_ptr(STATE(_stack), O0); // current top (prepushed) __ ld_ptr(STATE(_locals), O1); // stack destination // O0 - will be source, O1 - will be destination (preserved) __ jmpl(Lscratch, G0, O7); // and convert it __ delayed()->add(O0, wordSize, O0); // get source (top of current expr stack) // O1 == &locals[0] // Result is now on caller's stack. Just unwind current activation and resume Label unwind_recursive_activation; __ bind(unwind_recursive_activation); // O1 == &locals[0] (really callers stacktop) for activation now returning // returning to interpreter method from "recursive" interpreter call // result converter left O1 pointing to top of the( prepushed) java stack for method we are returning // to. Now all we must do is unwind the state from the completed call // Must restore stack VALIDATE_STATE(G3_scratch, 8); // Return to interpreter method after a method call (interpreted/native/c1/c2) has completed. // Result if any is already on the caller's stack. All we must do now is remove the now dead // frame and tell interpreter to resume. __ mov(O1, I1); // pass back new stack top across activation // POP FRAME HERE ================================== __ restore(FP, G0, SP); // unwind interpreter state frame __ ld_ptr(STATE(_frame_bottom), SP); // restore to full stack frame // Resume the interpreter. The current frame contains the current interpreter // state object. // // O1 == new java stack pointer __ bind(resume_interpreter); VALIDATE_STATE(G3_scratch, 10); // A frame we have already used before so no need to bang stack so use call_interpreter_2 entry __ set((int)BytecodeInterpreter::method_resume, L1_scratch); __ st(L1_scratch, STATE(_msg)); __ ba(false, call_interpreter_2); __ delayed()->st_ptr(O1, STATE(_stack)); // Fast accessor methods share this entry point. // This works because frame manager is in the same codelet // This can either be an entry via call_stub/c1/c2 or a recursive interpreter call // we need to do a little register fixup here once we distinguish the two of them if (UseFastAccessorMethods && !synchronized) { // Call stub_return address still in O7 __ bind(fast_accessor_slow_entry_path); __ set((intptr_t)return_from_native_method - 8, Gtmp1); __ cmp(Gtmp1, O7); // returning to interpreter? __ brx(Assembler::equal, true, Assembler::pt, re_dispatch); // yep __ delayed()->nop(); __ ba(false, re_dispatch); __ delayed()->mov(G0, prevState); // initial entry } // interpreter returning to native code (call_stub/c1/c2) // convert result and unwind initial activation // L2_scratch - scaled result type index __ bind(return_to_initial_caller); __ set((intptr_t)CppInterpreter::_stack_to_native_abi, L4_scratch); __ ld_ptr(L4_scratch, L2_scratch, Lscratch); // get typed result converter address __ ld_ptr(STATE(_stack), O0); // current top (prepushed) __ jmpl(Lscratch, G0, O7); // and convert it __ delayed()->add(O0, wordSize, O0); // get source (top of current expr stack) Label unwind_initial_activation; __ bind(unwind_initial_activation); // RETURN TO CALL_STUB/C1/C2 code (result if any in I0..I1/(F0/..F1) // we can return here with an exception that wasn't handled by interpreted code // how does c1/c2 see it on return? // compute resulting sp before/after args popped depending upon calling convention // __ ld_ptr(STATE(_saved_sp), Gtmp1); // // POP FRAME HERE ================================== __ restore(FP, G0, SP); __ retl(); __ delayed()->mov(I5_savedSP->after_restore(), SP); // OSR request, unwind the current frame and transfer to the OSR entry // and enter OSR nmethod __ bind(do_OSR); Label remove_initial_frame; __ ld_ptr(STATE(_prev_link), L1_scratch); __ ld_ptr(STATE(_result._osr._osr_buf), G1_scratch); // We are going to pop this frame. Is there another interpreter frame underneath // it or is it callstub/compiled? __ tst(L1_scratch); __ brx(Assembler::zero, false, Assembler::pt, remove_initial_frame); __ delayed()->ld_ptr(STATE(_result._osr._osr_entry), G3_scratch); // Frame underneath is an interpreter frame simply unwind // POP FRAME HERE ================================== __ restore(FP, G0, SP); // unwind interpreter state frame __ mov(I5_savedSP->after_restore(), SP); // Since we are now calling native need to change our "return address" from the // dummy RecursiveInterpreterActivation to a return from native __ set((intptr_t)return_from_native_method - 8, O7); __ jmpl(G3_scratch, G0, G0); __ delayed()->mov(G1_scratch, O0); __ bind(remove_initial_frame); // POP FRAME HERE ================================== __ restore(FP, G0, SP); __ mov(I5_savedSP->after_restore(), SP); __ jmpl(G3_scratch, G0, G0); __ delayed()->mov(G1_scratch, O0); // Call a new method. All we do is (temporarily) trim the expression stack // push a return address to bring us back to here and leap to the new entry. // At this point we have a topmost frame that was allocated by the frame manager // which contains the current method interpreted state. We trim this frame // of excess java expression stack entries and then recurse. __ bind(call_method); // stack points to next free location and not top element on expression stack // method expects sp to be pointing to topmost element __ ld_ptr(STATE(_thread), G2_thread); __ ld_ptr(STATE(_result._to_call._callee), G5_method); // SP already takes in to account the 2 extra words we use for slop // when we call a "static long no_params()" method. So if // we trim back sp by the amount of unused java expression stack // there will be automagically the 2 extra words we need. // We also have to worry about keeping SP aligned. __ ld_ptr(STATE(_stack), Gargs); __ ld_ptr(STATE(_stack_limit), L1_scratch); // compute the unused java stack size __ sub(Gargs, L1_scratch, L2_scratch); // compute unused space // Round down the unused space to that stack is always 16-byte aligned // by making the unused space a multiple of the size of two longs. __ and3(L2_scratch, -2*BytesPerLong, L2_scratch); // Now trim the stack __ add(SP, L2_scratch, SP); // Now point to the final argument (account for prepush) __ add(Gargs, wordSize, Gargs); #ifdef ASSERT // Make sure we have space for the window __ sub(Gargs, SP, L1_scratch); __ cmp(L1_scratch, 16*wordSize); { Label skip; __ brx(Assembler::greaterEqual, false, Assembler::pt, skip); __ delayed()->nop(); __ stop("killed stack"); __ bind(skip); } #endif // ASSERT // Create a new frame where we can store values that make it look like the interpreter // really recursed. // prepare to recurse or call specialized entry // First link the registers we need // make the pc look good in debugger __ set(CAST_FROM_FN_PTR(intptr_t, RecursiveInterpreterActivation), O7); // argument too __ mov(Lstate, I0); // Record our sending SP __ mov(SP, O5_savedSP); __ ld_ptr(STATE(_result._to_call._callee_entry_point), L2_scratch); __ set((intptr_t) entry_point, L1_scratch); __ cmp(L1_scratch, L2_scratch); __ brx(Assembler::equal, false, Assembler::pt, re_dispatch); __ delayed()->mov(Lstate, prevState); // link activations // method uses specialized entry, push a return so we look like call stub setup // this path will handle fact that result is returned in registers and not // on the java stack. __ set((intptr_t)return_from_native_method - 8, O7); __ jmpl(L2_scratch, G0, G0); // Do specialized entry __ delayed()->nop(); // // Bad Message from interpreter // __ bind(bad_msg); __ stop("Bad message from interpreter"); // Interpreted method "returned" with an exception pass it on... // Pass result, unwind activation and continue/return to interpreter/call_stub // We handle result (if any) differently based on return to interpreter or call_stub __ bind(throw_exception); __ ld_ptr(STATE(_prev_link), L1_scratch); __ tst(L1_scratch); __ brx(Assembler::zero, false, Assembler::pt, unwind_and_forward); __ delayed()->nop(); __ ld_ptr(STATE(_locals), O1); // get result of popping callee's args __ ba(false, unwind_recursive_activation); __ delayed()->nop(); interpreter_frame_manager = entry_point; return entry_point; } InterpreterGenerator::InterpreterGenerator(StubQueue* code) : CppInterpreterGenerator(code) { generate_all(); // down here so it can be "virtual" } static int size_activation_helper(int callee_extra_locals, int max_stack, int monitor_size) { // Figure out the size of an interpreter frame (in words) given that we have a fully allocated // expression stack, the callee will have callee_extra_locals (so we can account for // frame extension) and monitor_size for monitors. Basically we need to calculate // this exactly like generate_fixed_frame/generate_compute_interpreter_state. // // // The big complicating thing here is that we must ensure that the stack stays properly // aligned. This would be even uglier if monitor size wasn't modulo what the stack // needs to be aligned for). We are given that the sp (fp) is already aligned by // the caller so we must ensure that it is properly aligned for our callee. // // Ths c++ interpreter always makes sure that we have a enough extra space on the // stack at all times to deal with the "stack long no_params()" method issue. This // is "slop_factor" here. const int slop_factor = 2; const int fixed_size = sizeof(BytecodeInterpreter)/wordSize + // interpreter state object frame::memory_parameter_word_sp_offset; // register save area + param window const int extra_stack = 0; //6815692//methodOopDesc::extra_stack_entries(); return (round_to(max_stack + extra_stack + slop_factor + fixed_size + monitor_size + (callee_extra_locals * Interpreter::stackElementWords()), WordsPerLong)); } int AbstractInterpreter::size_top_interpreter_activation(methodOop method) { // See call_stub code int call_stub_size = round_to(7 + frame::memory_parameter_word_sp_offset, WordsPerLong); // 7 + register save area // Save space for one monitor to get into the interpreted method in case // the method is synchronized int monitor_size = method->is_synchronized() ? 1*frame::interpreter_frame_monitor_size() : 0; return size_activation_helper(method->max_locals(), method->max_stack(), monitor_size) + call_stub_size; } void BytecodeInterpreter::layout_interpreterState(interpreterState to_fill, frame* caller, frame* current, methodOop method, intptr_t* locals, intptr_t* stack, intptr_t* stack_base, intptr_t* monitor_base, intptr_t* frame_bottom, bool is_top_frame ) { // What about any vtable? // to_fill->_thread = JavaThread::current(); // This gets filled in later but make it something recognizable for now to_fill->_bcp = method->code_base(); to_fill->_locals = locals; to_fill->_constants = method->constants()->cache(); to_fill->_method = method; to_fill->_mdx = NULL; to_fill->_stack = stack; if (is_top_frame && JavaThread::current()->popframe_forcing_deopt_reexecution() ) { to_fill->_msg = deopt_resume2; } else { to_fill->_msg = method_resume; } to_fill->_result._to_call._bcp_advance = 0; to_fill->_result._to_call._callee_entry_point = NULL; // doesn't matter to anyone to_fill->_result._to_call._callee = NULL; // doesn't matter to anyone to_fill->_prev_link = NULL; // Fill in the registers for the frame // Need to install _sender_sp. Actually not too hard in C++! // When the skeletal frames are layed out we fill in a value // for _sender_sp. That value is only correct for the oldest // skeletal frame constructed (because there is only a single // entry for "caller_adjustment". While the skeletal frames // exist that is good enough. We correct that calculation // here and get all the frames correct. // to_fill->_sender_sp = locals - (method->size_of_parameters() - 1); *current->register_addr(Lstate) = (intptr_t) to_fill; // skeletal already places a useful value here and this doesn't account // for alignment so don't bother. // *current->register_addr(I5_savedSP) = (intptr_t) locals - (method->size_of_parameters() - 1); if (caller->is_interpreted_frame()) { interpreterState prev = caller->get_interpreterState(); to_fill->_prev_link = prev; // Make the prev callee look proper prev->_result._to_call._callee = method; if (*prev->_bcp == Bytecodes::_invokeinterface) { prev->_result._to_call._bcp_advance = 5; } else { prev->_result._to_call._bcp_advance = 3; } } to_fill->_oop_temp = NULL; to_fill->_stack_base = stack_base; // Need +1 here because stack_base points to the word just above the first expr stack entry // and stack_limit is supposed to point to the word just below the last expr stack entry. // See generate_compute_interpreter_state. int extra_stack = 0; //6815692//methodOopDesc::extra_stack_entries(); to_fill->_stack_limit = stack_base - (method->max_stack() + 1 + extra_stack); to_fill->_monitor_base = (BasicObjectLock*) monitor_base; // sparc specific to_fill->_frame_bottom = frame_bottom; to_fill->_self_link = to_fill; #ifdef ASSERT to_fill->_native_fresult = 123456.789; to_fill->_native_lresult = CONST64(0xdeadcafedeafcafe); #endif } void BytecodeInterpreter::pd_layout_interpreterState(interpreterState istate, address last_Java_pc, intptr_t* last_Java_fp) { istate->_last_Java_pc = (intptr_t*) last_Java_pc; } int AbstractInterpreter::layout_activation(methodOop method, int tempcount, // Number of slots on java expression stack in use int popframe_extra_args, int moncount, // Number of active monitors int caller_actual_parameters, int callee_param_size, int callee_locals_size, frame* caller, frame* interpreter_frame, bool is_top_frame) { assert(popframe_extra_args == 0, "NEED TO FIX"); // NOTE this code must exactly mimic what InterpreterGenerator::generate_compute_interpreter_state() // does as far as allocating an interpreter frame. // If interpreter_frame!=NULL, set up the method, locals, and monitors. // The frame interpreter_frame, if not NULL, is guaranteed to be the right size, // as determined by a previous call to this method. // It is also guaranteed to be walkable even though it is in a skeletal state // NOTE: return size is in words not bytes // NOTE: tempcount is the current size of the java expression stack. For top most // frames we will allocate a full sized expression stack and not the curback // version that non-top frames have. // Calculate the amount our frame will be adjust by the callee. For top frame // this is zero. // NOTE: ia64 seems to do this wrong (or at least backwards) in that it // calculates the extra locals based on itself. Not what the callee does // to it. So it ignores last_frame_adjust value. Seems suspicious as far // as getting sender_sp correct. int extra_locals_size = callee_locals_size - callee_param_size; int monitor_size = (sizeof(BasicObjectLock) * moncount) / wordSize; int full_frame_words = size_activation_helper(extra_locals_size, method->max_stack(), monitor_size); int short_frame_words = size_activation_helper(extra_locals_size, method->max_stack(), monitor_size); int frame_words = is_top_frame ? full_frame_words : short_frame_words; /* if we actually have a frame to layout we must now fill in all the pieces. This means both the interpreterState and the registers. */ if (interpreter_frame != NULL) { // MUCHO HACK intptr_t* frame_bottom = interpreter_frame->sp() - (full_frame_words - frame_words); // 'interpreter_frame->sp()' is unbiased while 'frame_bottom' must be a biased value in 64bit mode. assert(((intptr_t)frame_bottom & 0xf) == 0, "SP biased in layout_activation"); frame_bottom = (intptr_t*)((intptr_t)frame_bottom - STACK_BIAS); /* Now fillin the interpreterState object */ interpreterState cur_state = (interpreterState) ((intptr_t)interpreter_frame->fp() - sizeof(BytecodeInterpreter)); intptr_t* locals; // Calculate the postion of locals[0]. This is painful because of // stack alignment (same as ia64). The problem is that we can // not compute the location of locals from fp(). fp() will account // for the extra locals but it also accounts for aligning the stack // and we can't determine if the locals[0] was misaligned but max_locals // was enough to have the // calculate postion of locals. fp already accounts for extra locals. // +2 for the static long no_params() issue. if (caller->is_interpreted_frame()) { // locals must agree with the caller because it will be used to set the // caller's tos when we return. interpreterState prev = caller->get_interpreterState(); // stack() is prepushed. locals = prev->stack() + method->size_of_parameters(); } else { // Lay out locals block in the caller adjacent to the register window save area. // // Compiled frames do not allocate a varargs area which is why this if // statement is needed. // intptr_t* fp = interpreter_frame->fp(); int local_words = method->max_locals() * Interpreter::stackElementWords(); if (caller->is_compiled_frame()) { locals = fp + frame::register_save_words + local_words - 1; } else { locals = fp + frame::memory_parameter_word_sp_offset + local_words - 1; } } // END MUCHO HACK intptr_t* monitor_base = (intptr_t*) cur_state; intptr_t* stack_base = monitor_base - monitor_size; /* +1 because stack is always prepushed */ intptr_t* stack = stack_base - (tempcount + 1); BytecodeInterpreter::layout_interpreterState(cur_state, caller, interpreter_frame, method, locals, stack, stack_base, monitor_base, frame_bottom, is_top_frame); BytecodeInterpreter::pd_layout_interpreterState(cur_state, interpreter_return_address, interpreter_frame->fp()); } return frame_words; } #endif // CC_INTERP