/* * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ // InvocationCounters are used to trigger actions when a limit (threshold) is reached. // For different states, different limits and actions can be defined in the initialization // routine of InvocationCounters. // // Implementation notes: For space reasons, state & counter are both encoded in one word, // The state is encoded using some of the least significant bits, the counter is using the // more significant bits. The counter is incremented before a method is activated and an // action is triggered when when count() > limit(). class InvocationCounter VALUE_OBJ_CLASS_SPEC { friend class VMStructs; private: // bit no: |31 3| 2 | 1 0 | unsigned int _counter; // format: [count|carry|state] enum PrivateConstants { number_of_state_bits = 2, number_of_carry_bits = 1, number_of_noncount_bits = number_of_state_bits + number_of_carry_bits, number_of_count_bits = BitsPerInt - number_of_noncount_bits, state_limit = nth_bit(number_of_state_bits), count_grain = nth_bit(number_of_state_bits + number_of_carry_bits), carry_mask = right_n_bits(number_of_carry_bits) << number_of_state_bits, state_mask = right_n_bits(number_of_state_bits), status_mask = right_n_bits(number_of_state_bits + number_of_carry_bits), count_mask = ((int)(-1) ^ status_mask) }; public: static int InterpreterInvocationLimit; // CompileThreshold scaled for interpreter use static int InterpreterBackwardBranchLimit; // A separate threshold for on stack replacement static int InterpreterProfileLimit; // Profiling threshold scaled for interpreter use typedef address (*Action)(methodHandle method, TRAPS); enum PublicConstants { count_increment = count_grain, // use this value to increment the 32bit _counter word count_mask_value = count_mask, // use this value to mask the backedge counter count_shift = number_of_noncount_bits, count_limit = nth_bit(number_of_count_bits - 1) }; enum State { wait_for_nothing, // do nothing when count() > limit() wait_for_compile, // introduce nmethod when count() > limit() number_of_states // must be <= state_limit }; // Manipulation void reset(); // sets state to wait state void init(); // sets state into original state void set_state(State state); // sets state and initializes counter correspondingly inline void set(State state, int count); // sets state and counter inline void decay(); // decay counter (divide by two) void set_carry(); // set the sticky carry bit void set_carry_flag() { _counter |= carry_mask; } // Accessors State state() const { return (State)(_counter & state_mask); } bool carry() const { return (_counter & carry_mask) != 0; } int limit() const { return CompileThreshold; } Action action() const { return _action[state()]; } int count() const { return _counter >> number_of_noncount_bits; } int get_InvocationLimit() const { return InterpreterInvocationLimit >> number_of_noncount_bits; } int get_BackwardBranchLimit() const { return InterpreterBackwardBranchLimit >> number_of_noncount_bits; } int get_ProfileLimit() const { return InterpreterProfileLimit >> number_of_noncount_bits; } // Test counter using scaled limits like the asm interpreter would do rather than doing // the shifts to normalize the counter. bool reached_InvocationLimit() const { return _counter >= (unsigned int) InterpreterInvocationLimit; } bool reached_BackwardBranchLimit() const { return _counter >= (unsigned int) InterpreterBackwardBranchLimit; } // Do this just like asm interpreter does for max speed bool reached_ProfileLimit(InvocationCounter *back_edge_count) const { return (_counter && count_mask) + back_edge_count->_counter >= (unsigned int) InterpreterProfileLimit; } void increment() { _counter += count_increment; } // Printing void print(); void print_short(); // Miscellaneous static ByteSize counter_offset() { return byte_offset_of(InvocationCounter, _counter); } static void reinitialize(bool delay_overflow); private: static int _init [number_of_states]; // the counter limits static Action _action[number_of_states]; // the actions static void def(State state, int init, Action action); static const char* state_as_string(State state); static const char* state_as_short_string(State state); }; inline void InvocationCounter::set(State state, int count) { assert(0 <= state && state < number_of_states, "illegal state"); int carry = (_counter & carry_mask); // the carry bit is sticky _counter = (count << number_of_noncount_bits) | carry | state; } inline void InvocationCounter::decay() { int c = count(); int new_count = c >> 1; // prevent from going to zero, to distinguish from never-executed methods if (c > 0 && new_count == 0) new_count = 1; set(state(), new_count); }