/* * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef CPU_SPARC_VM_MACROASSEMBLER_SPARC_HPP #define CPU_SPARC_VM_MACROASSEMBLER_SPARC_HPP #include "asm/assembler.hpp" #include "utilities/macros.hpp" // promises that the system will not use traps 16-31 #define ST_RESERVED_FOR_USER_0 0x10 class BiasedLockingCounters; // Register aliases for parts of the system: // 64 bit values can be kept in g1-g5, o1-o5 and o7 and all 64 bits are safe // across context switches in V8+ ABI. Of course, there are no 64 bit regs // in V8 ABI. All 64 bits are preserved in V9 ABI for all registers. // g2-g4 are scratch registers called "application globals". Their // meaning is reserved to the "compilation system"--which means us! // They are are not supposed to be touched by ordinary C code, although // highly-optimized C code might steal them for temps. They are safe // across thread switches, and the ABI requires that they be safe // across function calls. // // g1 and g3 are touched by more modules. V8 allows g1 to be clobbered // across func calls, and V8+ also allows g5 to be clobbered across // func calls. Also, g1 and g5 can get touched while doing shared // library loading. // // We must not touch g7 (it is the thread-self register) and g6 is // reserved for certain tools. g0, of course, is always zero. // // (Sources: SunSoft Compilers Group, thread library engineers.) // %%%% The interpreter should be revisited to reduce global scratch regs. // This global always holds the current JavaThread pointer: REGISTER_DECLARATION(Register, G2_thread , G2); REGISTER_DECLARATION(Register, G6_heapbase , G6); // The following globals are part of the Java calling convention: REGISTER_DECLARATION(Register, G5_method , G5); REGISTER_DECLARATION(Register, G5_megamorphic_method , G5_method); REGISTER_DECLARATION(Register, G5_inline_cache_reg , G5_method); // The following globals are used for the new C1 & interpreter calling convention: REGISTER_DECLARATION(Register, Gargs , G4); // pointing to the last argument // This local is used to preserve G2_thread in the interpreter and in stubs: REGISTER_DECLARATION(Register, L7_thread_cache , L7); // These globals are used as scratch registers in the interpreter: REGISTER_DECLARATION(Register, Gframe_size , G1); // SAME REG as G1_scratch REGISTER_DECLARATION(Register, G1_scratch , G1); // also SAME REGISTER_DECLARATION(Register, G3_scratch , G3); REGISTER_DECLARATION(Register, G4_scratch , G4); // These globals are used as short-lived scratch registers in the compiler: REGISTER_DECLARATION(Register, Gtemp , G5); // JSR 292 fixed register usages: REGISTER_DECLARATION(Register, G5_method_type , G5); REGISTER_DECLARATION(Register, G3_method_handle , G3); REGISTER_DECLARATION(Register, L7_mh_SP_save , L7); // The compiler requires that G5_megamorphic_method is G5_inline_cache_klass, // because a single patchable "set" instruction (NativeMovConstReg, // or NativeMovConstPatching for compiler1) instruction // serves to set up either quantity, depending on whether the compiled // call site is an inline cache or is megamorphic. See the function // CompiledIC::set_to_megamorphic. // // If a inline cache targets an interpreted method, then the // G5 register will be used twice during the call. First, // the call site will be patched to load a compiledICHolder // into G5. (This is an ordered pair of ic_klass, method.) // The c2i adapter will first check the ic_klass, then load // G5_method with the method part of the pair just before // jumping into the interpreter. // // Note that G5_method is only the method-self for the interpreter, // and is logically unrelated to G5_megamorphic_method. // // Invariants on G2_thread (the JavaThread pointer): // - it should not be used for any other purpose anywhere // - it must be re-initialized by StubRoutines::call_stub() // - it must be preserved around every use of call_VM // We can consider using g2/g3/g4 to cache more values than the // JavaThread, such as the card-marking base or perhaps pointers into // Eden. It's something of a waste to use them as scratch temporaries, // since they are not supposed to be volatile. (Of course, if we find // that Java doesn't benefit from application globals, then we can just // use them as ordinary temporaries.) // // Since g1 and g5 (and/or g6) are the volatile (caller-save) registers, // it makes sense to use them routinely for procedure linkage, // whenever the On registers are not applicable. Examples: G5_method, // G5_inline_cache_klass, and a double handful of miscellaneous compiler // stubs. This means that compiler stubs, etc., should be kept to a // maximum of two or three G-register arguments. // stub frames REGISTER_DECLARATION(Register, Lentry_args , L0); // pointer to args passed to callee (interpreter) not stub itself // Interpreter frames #ifdef CC_INTERP REGISTER_DECLARATION(Register, Lstate , L0); // interpreter state object pointer REGISTER_DECLARATION(Register, L1_scratch , L1); // scratch REGISTER_DECLARATION(Register, Lmirror , L1); // mirror (for native methods only) REGISTER_DECLARATION(Register, L2_scratch , L2); REGISTER_DECLARATION(Register, L3_scratch , L3); REGISTER_DECLARATION(Register, L4_scratch , L4); REGISTER_DECLARATION(Register, Lscratch , L5); // C1 uses REGISTER_DECLARATION(Register, Lscratch2 , L6); // C1 uses REGISTER_DECLARATION(Register, L7_scratch , L7); // constant pool cache REGISTER_DECLARATION(Register, O5_savedSP , O5); REGISTER_DECLARATION(Register, I5_savedSP , I5); // Saved SP before bumping for locals. This is simply // a copy SP, so in 64-bit it's a biased value. The bias // is added and removed as needed in the frame code. // Interface to signature handler REGISTER_DECLARATION(Register, Llocals , L7); // pointer to locals for signature handler REGISTER_DECLARATION(Register, Lmethod , L6); // Method* when calling signature handler #else REGISTER_DECLARATION(Register, Lesp , L0); // expression stack pointer REGISTER_DECLARATION(Register, Lbcp , L1); // pointer to next bytecode REGISTER_DECLARATION(Register, Lmethod , L2); REGISTER_DECLARATION(Register, Llocals , L3); REGISTER_DECLARATION(Register, Largs , L3); // pointer to locals for signature handler // must match Llocals in asm interpreter REGISTER_DECLARATION(Register, Lmonitors , L4); REGISTER_DECLARATION(Register, Lbyte_code , L5); // When calling out from the interpreter we record SP so that we can remove any extra stack // space allocated during adapter transitions. This register is only live from the point // of the call until we return. REGISTER_DECLARATION(Register, Llast_SP , L5); REGISTER_DECLARATION(Register, Lscratch , L5); REGISTER_DECLARATION(Register, Lscratch2 , L6); REGISTER_DECLARATION(Register, LcpoolCache , L6); // constant pool cache REGISTER_DECLARATION(Register, O5_savedSP , O5); REGISTER_DECLARATION(Register, I5_savedSP , I5); // Saved SP before bumping for locals. This is simply // a copy SP, so in 64-bit it's a biased value. The bias // is added and removed as needed in the frame code. REGISTER_DECLARATION(Register, IdispatchTables , I4); // Base address of the bytecode dispatch tables REGISTER_DECLARATION(Register, IdispatchAddress , I3); // Register which saves the dispatch address for each bytecode REGISTER_DECLARATION(Register, ImethodDataPtr , I2); // Pointer to the current method data #endif /* CC_INTERP */ // NOTE: Lscratch2 and LcpoolCache point to the same registers in // the interpreter code. If Lscratch2 needs to be used for some // purpose than LcpoolCache should be restore after that for // the interpreter to work right // (These assignments must be compatible with L7_thread_cache; see above.) // Since Lbcp points into the middle of the method object, // it is temporarily converted into a "bcx" during GC. // Exception processing // These registers are passed into exception handlers. // All exception handlers require the exception object being thrown. // In addition, an nmethod's exception handler must be passed // the address of the call site within the nmethod, to allow // proper selection of the applicable catch block. // (Interpreter frames use their own bcp() for this purpose.) // // The Oissuing_pc value is not always needed. When jumping to a // handler that is known to be interpreted, the Oissuing_pc value can be // omitted. An actual catch block in compiled code receives (from its // nmethod's exception handler) the thrown exception in the Oexception, // but it doesn't need the Oissuing_pc. // // If an exception handler (either interpreted or compiled) // discovers there is no applicable catch block, it updates // the Oissuing_pc to the continuation PC of its own caller, // pops back to that caller's stack frame, and executes that // caller's exception handler. Obviously, this process will // iterate until the control stack is popped back to a method // containing an applicable catch block. A key invariant is // that the Oissuing_pc value is always a value local to // the method whose exception handler is currently executing. // // Note: The issuing PC value is __not__ a raw return address (I7 value). // It is a "return pc", the address __following__ the call. // Raw return addresses are converted to issuing PCs by frame::pc(), // or by stubs. Issuing PCs can be used directly with PC range tables. // REGISTER_DECLARATION(Register, Oexception , O0); // exception being thrown REGISTER_DECLARATION(Register, Oissuing_pc , O1); // where the exception is coming from // These must occur after the declarations above #ifndef DONT_USE_REGISTER_DEFINES #define Gthread AS_REGISTER(Register, Gthread) #define Gmethod AS_REGISTER(Register, Gmethod) #define Gmegamorphic_method AS_REGISTER(Register, Gmegamorphic_method) #define Ginline_cache_reg AS_REGISTER(Register, Ginline_cache_reg) #define Gargs AS_REGISTER(Register, Gargs) #define Lthread_cache AS_REGISTER(Register, Lthread_cache) #define Gframe_size AS_REGISTER(Register, Gframe_size) #define Gtemp AS_REGISTER(Register, Gtemp) #ifdef CC_INTERP #define Lstate AS_REGISTER(Register, Lstate) #define Lesp AS_REGISTER(Register, Lesp) #define L1_scratch AS_REGISTER(Register, L1_scratch) #define Lmirror AS_REGISTER(Register, Lmirror) #define L2_scratch AS_REGISTER(Register, L2_scratch) #define L3_scratch AS_REGISTER(Register, L3_scratch) #define L4_scratch AS_REGISTER(Register, L4_scratch) #define Lscratch AS_REGISTER(Register, Lscratch) #define Lscratch2 AS_REGISTER(Register, Lscratch2) #define L7_scratch AS_REGISTER(Register, L7_scratch) #define Ostate AS_REGISTER(Register, Ostate) #else #define Lesp AS_REGISTER(Register, Lesp) #define Lbcp AS_REGISTER(Register, Lbcp) #define Lmethod AS_REGISTER(Register, Lmethod) #define Llocals AS_REGISTER(Register, Llocals) #define Lmonitors AS_REGISTER(Register, Lmonitors) #define Lbyte_code AS_REGISTER(Register, Lbyte_code) #define Lscratch AS_REGISTER(Register, Lscratch) #define Lscratch2 AS_REGISTER(Register, Lscratch2) #define LcpoolCache AS_REGISTER(Register, LcpoolCache) #endif /* ! CC_INTERP */ #define Lentry_args AS_REGISTER(Register, Lentry_args) #define I5_savedSP AS_REGISTER(Register, I5_savedSP) #define O5_savedSP AS_REGISTER(Register, O5_savedSP) #define IdispatchAddress AS_REGISTER(Register, IdispatchAddress) #define ImethodDataPtr AS_REGISTER(Register, ImethodDataPtr) #define IdispatchTables AS_REGISTER(Register, IdispatchTables) #define Oexception AS_REGISTER(Register, Oexception) #define Oissuing_pc AS_REGISTER(Register, Oissuing_pc) #endif // Address is an abstraction used to represent a memory location. // // Note: A register location is represented via a Register, not // via an address for efficiency & simplicity reasons. class Address VALUE_OBJ_CLASS_SPEC { private: Register _base; // Base register. RegisterOrConstant _index_or_disp; // Index register or constant displacement. RelocationHolder _rspec; public: Address() : _base(noreg), _index_or_disp(noreg) {} Address(Register base, RegisterOrConstant index_or_disp) : _base(base), _index_or_disp(index_or_disp) { } Address(Register base, Register index) : _base(base), _index_or_disp(index) { } Address(Register base, int disp) : _base(base), _index_or_disp(disp) { } #ifdef ASSERT // ByteSize is only a class when ASSERT is defined, otherwise it's an int. Address(Register base, ByteSize disp) : _base(base), _index_or_disp(in_bytes(disp)) { } #endif // accessors Register base() const { return _base; } Register index() const { return _index_or_disp.as_register(); } int disp() const { return _index_or_disp.as_constant(); } bool has_index() const { return _index_or_disp.is_register(); } bool has_disp() const { return _index_or_disp.is_constant(); } bool uses(Register reg) const { return base() == reg || (has_index() && index() == reg); } const relocInfo::relocType rtype() { return _rspec.type(); } const RelocationHolder& rspec() { return _rspec; } RelocationHolder rspec(int offset) const { return offset == 0 ? _rspec : _rspec.plus(offset); } inline bool is_simm13(int offset = 0); // check disp+offset for overflow Address plus_disp(int plusdisp) const { // bump disp by a small amount assert(_index_or_disp.is_constant(), "must have a displacement"); Address a(base(), disp() + plusdisp); return a; } bool is_same_address(Address a) const { // disregard _rspec return base() == a.base() && (has_index() ? index() == a.index() : disp() == a.disp()); } Address after_save() const { Address a = (*this); a._base = a._base->after_save(); return a; } Address after_restore() const { Address a = (*this); a._base = a._base->after_restore(); return a; } // Convert the raw encoding form into the form expected by the // constructor for Address. static Address make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc); friend class Assembler; }; class AddressLiteral VALUE_OBJ_CLASS_SPEC { private: address _address; RelocationHolder _rspec; RelocationHolder rspec_from_rtype(relocInfo::relocType rtype, address addr) { switch (rtype) { case relocInfo::external_word_type: return external_word_Relocation::spec(addr); case relocInfo::internal_word_type: return internal_word_Relocation::spec(addr); #ifdef _LP64 case relocInfo::opt_virtual_call_type: return opt_virtual_call_Relocation::spec(); case relocInfo::static_call_type: return static_call_Relocation::spec(); case relocInfo::runtime_call_type: return runtime_call_Relocation::spec(); #endif case relocInfo::none: return RelocationHolder(); default: ShouldNotReachHere(); return RelocationHolder(); } } protected: // creation AddressLiteral() : _address(NULL), _rspec(NULL) {} public: AddressLiteral(address addr, RelocationHolder const& rspec) : _address(addr), _rspec(rspec) {} // Some constructors to avoid casting at the call site. AddressLiteral(jobject obj, RelocationHolder const& rspec) : _address((address) obj), _rspec(rspec) {} AddressLiteral(intptr_t value, RelocationHolder const& rspec) : _address((address) value), _rspec(rspec) {} AddressLiteral(address addr, relocInfo::relocType rtype = relocInfo::none) : _address((address) addr), _rspec(rspec_from_rtype(rtype, (address) addr)) {} // Some constructors to avoid casting at the call site. AddressLiteral(address* addr, relocInfo::relocType rtype = relocInfo::none) : _address((address) addr), _rspec(rspec_from_rtype(rtype, (address) addr)) {} AddressLiteral(bool* addr, relocInfo::relocType rtype = relocInfo::none) : _address((address) addr), _rspec(rspec_from_rtype(rtype, (address) addr)) {} AddressLiteral(const bool* addr, relocInfo::relocType rtype = relocInfo::none) : _address((address) addr), _rspec(rspec_from_rtype(rtype, (address) addr)) {} AddressLiteral(signed char* addr, relocInfo::relocType rtype = relocInfo::none) : _address((address) addr), _rspec(rspec_from_rtype(rtype, (address) addr)) {} AddressLiteral(int* addr, relocInfo::relocType rtype = relocInfo::none) : _address((address) addr), _rspec(rspec_from_rtype(rtype, (address) addr)) {} AddressLiteral(intptr_t addr, relocInfo::relocType rtype = relocInfo::none) : _address((address) addr), _rspec(rspec_from_rtype(rtype, (address) addr)) {} #ifdef _LP64 // 32-bit complains about a multiple declaration for int*. AddressLiteral(intptr_t* addr, relocInfo::relocType rtype = relocInfo::none) : _address((address) addr), _rspec(rspec_from_rtype(rtype, (address) addr)) {} #endif AddressLiteral(Metadata* addr, relocInfo::relocType rtype = relocInfo::none) : _address((address) addr), _rspec(rspec_from_rtype(rtype, (address) addr)) {} AddressLiteral(Metadata** addr, relocInfo::relocType rtype = relocInfo::none) : _address((address) addr), _rspec(rspec_from_rtype(rtype, (address) addr)) {} AddressLiteral(float* addr, relocInfo::relocType rtype = relocInfo::none) : _address((address) addr), _rspec(rspec_from_rtype(rtype, (address) addr)) {} AddressLiteral(double* addr, relocInfo::relocType rtype = relocInfo::none) : _address((address) addr), _rspec(rspec_from_rtype(rtype, (address) addr)) {} intptr_t value() const { return (intptr_t) _address; } int low10() const; const relocInfo::relocType rtype() const { return _rspec.type(); } const RelocationHolder& rspec() const { return _rspec; } RelocationHolder rspec(int offset) const { return offset == 0 ? _rspec : _rspec.plus(offset); } }; // Convenience classes class ExternalAddress: public AddressLiteral { private: static relocInfo::relocType reloc_for_target(address target) { // Sometimes ExternalAddress is used for values which aren't // exactly addresses, like the card table base. // external_word_type can't be used for values in the first page // so just skip the reloc in that case. return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none; } public: ExternalAddress(address target) : AddressLiteral(target, reloc_for_target( target)) {} ExternalAddress(Metadata** target) : AddressLiteral(target, reloc_for_target((address) target)) {} }; inline Address RegisterImpl::address_in_saved_window() const { return (Address(SP, (sp_offset_in_saved_window() * wordSize) + STACK_BIAS)); } // Argument is an abstraction used to represent an outgoing // actual argument or an incoming formal parameter, whether // it resides in memory or in a register, in a manner consistent // with the SPARC Application Binary Interface, or ABI. This is // often referred to as the native or C calling convention. class Argument VALUE_OBJ_CLASS_SPEC { private: int _number; bool _is_in; public: #ifdef _LP64 enum { n_register_parameters = 6, // only 6 registers may contain integer parameters n_float_register_parameters = 16 // Can have up to 16 floating registers }; #else enum { n_register_parameters = 6 // only 6 registers may contain integer parameters }; #endif // creation Argument(int number, bool is_in) : _number(number), _is_in(is_in) {} int number() const { return _number; } bool is_in() const { return _is_in; } bool is_out() const { return !is_in(); } Argument successor() const { return Argument(number() + 1, is_in()); } Argument as_in() const { return Argument(number(), true ); } Argument as_out() const { return Argument(number(), false); } // locating register-based arguments: bool is_register() const { return _number < n_register_parameters; } #ifdef _LP64 // locating Floating Point register-based arguments: bool is_float_register() const { return _number < n_float_register_parameters; } FloatRegister as_float_register() const { assert(is_float_register(), "must be a register argument"); return as_FloatRegister(( number() *2 ) + 1); } FloatRegister as_double_register() const { assert(is_float_register(), "must be a register argument"); return as_FloatRegister(( number() *2 )); } #endif Register as_register() const { assert(is_register(), "must be a register argument"); return is_in() ? as_iRegister(number()) : as_oRegister(number()); } // locating memory-based arguments Address as_address() const { assert(!is_register(), "must be a memory argument"); return address_in_frame(); } // When applied to a register-based argument, give the corresponding address // into the 6-word area "into which callee may store register arguments" // (This is a different place than the corresponding register-save area location.) Address address_in_frame() const; // debugging const char* name() const; friend class Assembler; }; class RegistersForDebugging : public StackObj { public: intptr_t i[8], l[8], o[8], g[8]; float f[32]; double d[32]; void print(outputStream* s); static int i_offset(int j) { return offset_of(RegistersForDebugging, i[j]); } static int l_offset(int j) { return offset_of(RegistersForDebugging, l[j]); } static int o_offset(int j) { return offset_of(RegistersForDebugging, o[j]); } static int g_offset(int j) { return offset_of(RegistersForDebugging, g[j]); } static int f_offset(int j) { return offset_of(RegistersForDebugging, f[j]); } static int d_offset(int j) { return offset_of(RegistersForDebugging, d[j / 2]); } // gen asm code to save regs static void save_registers(MacroAssembler* a); // restore global registers in case C code disturbed them static void restore_registers(MacroAssembler* a, Register r); }; // MacroAssembler extends Assembler by a few frequently used macros. // // Most of the standard SPARC synthetic ops are defined here. // Instructions for which a 'better' code sequence exists depending // on arguments should also go in here. #define JMP2(r1, r2) jmp(r1, r2, __FILE__, __LINE__) #define JMP(r1, off) jmp(r1, off, __FILE__, __LINE__) #define JUMP(a, temp, off) jump(a, temp, off, __FILE__, __LINE__) #define JUMPL(a, temp, d, off) jumpl(a, temp, d, off, __FILE__, __LINE__) class MacroAssembler : public Assembler { // code patchers need various routines like inv_wdisp() friend class NativeInstruction; friend class NativeGeneralJump; friend class Relocation; friend class Label; protected: static int patched_branch(int dest_pos, int inst, int inst_pos); static int branch_destination(int inst, int pos); // Support for VM calls // This is the base routine called by the different versions of call_VM_leaf. The interpreter // may customize this version by overriding it for its purposes (e.g., to save/restore // additional registers when doing a VM call). #ifdef CC_INTERP #define VIRTUAL #else #define VIRTUAL virtual #endif VIRTUAL void call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments); // // It is imperative that all calls into the VM are handled via the call_VM macros. // They make sure that the stack linkage is setup correctly. call_VM's correspond // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points. // // This is the base routine called by the different versions of call_VM. The interpreter // may customize this version by overriding it for its purposes (e.g., to save/restore // additional registers when doing a VM call). // // A non-volatile java_thread_cache register should be specified so // that the G2_thread value can be preserved across the call. // (If java_thread_cache is noreg, then a slow get_thread call // will re-initialize the G2_thread.) call_VM_base returns the register that contains the // thread. // // If no last_java_sp is specified (noreg) than SP will be used instead. virtual void call_VM_base( Register oop_result, // where an oop-result ends up if any; use noreg otherwise Register java_thread_cache, // the thread if computed before ; use noreg otherwise Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise address entry_point, // the entry point int number_of_arguments, // the number of arguments (w/o thread) to pop after call bool check_exception=true // flag which indicates if exception should be checked ); // This routine should emit JVMTI PopFrame and ForceEarlyReturn handling code. // The implementation is only non-empty for the InterpreterMacroAssembler, // as only the interpreter handles and ForceEarlyReturn PopFrame requests. virtual void check_and_handle_popframe(Register scratch_reg); virtual void check_and_handle_earlyret(Register scratch_reg); public: MacroAssembler(CodeBuffer* code) : Assembler(code) {} // Support for NULL-checks // // Generates code that causes a NULL OS exception if the content of reg is NULL. // If the accessed location is M[reg + offset] and the offset is known, provide the // offset. No explicit code generation is needed if the offset is within a certain // range (0 <= offset <= page_size). // // %%%%%% Currently not done for SPARC void null_check(Register reg, int offset = -1); static bool needs_explicit_null_check(intptr_t offset); // support for delayed instructions MacroAssembler* delayed() { Assembler::delayed(); return this; } // branches that use right instruction for v8 vs. v9 inline void br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none ); inline void br( Condition c, bool a, Predict p, Label& L ); inline void fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none ); inline void fb( Condition c, bool a, Predict p, Label& L ); // compares register with zero (32 bit) and branches (V9 and V8 instructions) void cmp_zero_and_br( Condition c, Register s1, Label& L, bool a = false, Predict p = pn ); // Compares a pointer register with zero and branches on (not)null. // Does a test & branch on 32-bit systems and a register-branch on 64-bit. void br_null ( Register s1, bool a, Predict p, Label& L ); void br_notnull( Register s1, bool a, Predict p, Label& L ); // // Compare registers and branch with nop in delay slot or cbcond without delay slot. // // ATTENTION: use these instructions with caution because cbcond instruction // has very short distance: 512 instructions (2Kbyte). // Compare integer (32 bit) values (icc only). void cmp_and_br_short(Register s1, Register s2, Condition c, Predict p, Label& L); void cmp_and_br_short(Register s1, int simm13a, Condition c, Predict p, Label& L); // Platform depending version for pointer compare (icc on !LP64 and xcc on LP64). void cmp_and_brx_short(Register s1, Register s2, Condition c, Predict p, Label& L); void cmp_and_brx_short(Register s1, int simm13a, Condition c, Predict p, Label& L); // Short branch version for compares a pointer pwith zero. void br_null_short ( Register s1, Predict p, Label& L ); void br_notnull_short( Register s1, Predict p, Label& L ); // unconditional short branch void ba_short(Label& L); inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none ); inline void bp( Condition c, bool a, CC cc, Predict p, Label& L ); // Branch that tests xcc in LP64 and icc in !LP64 inline void brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none ); inline void brx( Condition c, bool a, Predict p, Label& L ); // unconditional branch inline void ba( Label& L ); // Branch that tests fp condition codes inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none ); inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L ); // get PC the best way inline int get_pc( Register d ); // Sparc shorthands(pp 85, V8 manual, pp 289 V9 manual) inline void cmp( Register s1, Register s2 ) { subcc( s1, s2, G0 ); } inline void cmp( Register s1, int simm13a ) { subcc( s1, simm13a, G0 ); } inline void jmp( Register s1, Register s2 ); inline void jmp( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() ); // Check if the call target is out of wdisp30 range (relative to the code cache) static inline bool is_far_target(address d); inline void call( address d, relocInfo::relocType rt = relocInfo::runtime_call_type ); inline void call( Label& L, relocInfo::relocType rt = relocInfo::runtime_call_type ); inline void callr( Register s1, Register s2 ); inline void callr( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() ); // Emits nothing on V8 inline void iprefetch( address d, relocInfo::relocType rt = relocInfo::none ); inline void iprefetch( Label& L); inline void tst( Register s ) { orcc( G0, s, G0 ); } #ifdef PRODUCT inline void ret( bool trace = TraceJumps ) { if (trace) { mov(I7, O7); // traceable register JMP(O7, 2 * BytesPerInstWord); } else { jmpl( I7, 2 * BytesPerInstWord, G0 ); } } inline void retl( bool trace = TraceJumps ) { if (trace) JMP(O7, 2 * BytesPerInstWord); else jmpl( O7, 2 * BytesPerInstWord, G0 ); } #else void ret( bool trace = TraceJumps ); void retl( bool trace = TraceJumps ); #endif /* PRODUCT */ // Required platform-specific helpers for Label::patch_instructions. // They _shadow_ the declarations in AbstractAssembler, which are undefined. void pd_patch_instruction(address branch, address target); // sethi Macro handles optimizations and relocations private: void internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable); public: void sethi(const AddressLiteral& addrlit, Register d); void patchable_sethi(const AddressLiteral& addrlit, Register d); // compute the number of instructions for a sethi/set static int insts_for_sethi( address a, bool worst_case = false ); static int worst_case_insts_for_set(); // set may be either setsw or setuw (high 32 bits may be zero or sign) private: void internal_set(const AddressLiteral& al, Register d, bool ForceRelocatable); static int insts_for_internal_set(intptr_t value); public: void set(const AddressLiteral& addrlit, Register d); void set(intptr_t value, Register d); void set(address addr, Register d, RelocationHolder const& rspec); static int insts_for_set(intptr_t value) { return insts_for_internal_set(value); } void patchable_set(const AddressLiteral& addrlit, Register d); void patchable_set(intptr_t value, Register d); void set64(jlong value, Register d, Register tmp); static int insts_for_set64(jlong value); // sign-extend 32 to 64 inline void signx( Register s, Register d ) { sra( s, G0, d); } inline void signx( Register d ) { sra( d, G0, d); } inline void not1( Register s, Register d ) { xnor( s, G0, d ); } inline void not1( Register d ) { xnor( d, G0, d ); } inline void neg( Register s, Register d ) { sub( G0, s, d ); } inline void neg( Register d ) { sub( G0, d, d ); } inline void cas( Register s1, Register s2, Register d) { casa( s1, s2, d, ASI_PRIMARY); } inline void casx( Register s1, Register s2, Register d) { casxa(s1, s2, d, ASI_PRIMARY); } // Functions for isolating 64 bit atomic swaps for LP64 // cas_ptr will perform cas for 32 bit VM's and casx for 64 bit VM's inline void cas_ptr( Register s1, Register s2, Register d) { #ifdef _LP64 casx( s1, s2, d ); #else cas( s1, s2, d ); #endif } // Functions for isolating 64 bit shifts for LP64 inline void sll_ptr( Register s1, Register s2, Register d ); inline void sll_ptr( Register s1, int imm6a, Register d ); inline void sll_ptr( Register s1, RegisterOrConstant s2, Register d ); inline void srl_ptr( Register s1, Register s2, Register d ); inline void srl_ptr( Register s1, int imm6a, Register d ); // little-endian inline void casl( Register s1, Register s2, Register d) { casa( s1, s2, d, ASI_PRIMARY_LITTLE); } inline void casxl( Register s1, Register s2, Register d) { casxa(s1, s2, d, ASI_PRIMARY_LITTLE); } inline void inc( Register d, int const13 = 1 ) { add( d, const13, d); } inline void inccc( Register d, int const13 = 1 ) { addcc( d, const13, d); } inline void dec( Register d, int const13 = 1 ) { sub( d, const13, d); } inline void deccc( Register d, int const13 = 1 ) { subcc( d, const13, d); } using Assembler::add; inline void add(Register s1, int simm13a, Register d, relocInfo::relocType rtype); inline void add(Register s1, int simm13a, Register d, RelocationHolder const& rspec); inline void add(Register s1, RegisterOrConstant s2, Register d, int offset = 0); inline void add(const Address& a, Register d, int offset = 0); using Assembler::andn; inline void andn( Register s1, RegisterOrConstant s2, Register d); inline void btst( Register s1, Register s2 ) { andcc( s1, s2, G0 ); } inline void btst( int simm13a, Register s ) { andcc( s, simm13a, G0 ); } inline void bset( Register s1, Register s2 ) { or3( s1, s2, s2 ); } inline void bset( int simm13a, Register s ) { or3( s, simm13a, s ); } inline void bclr( Register s1, Register s2 ) { andn( s1, s2, s2 ); } inline void bclr( int simm13a, Register s ) { andn( s, simm13a, s ); } inline void btog( Register s1, Register s2 ) { xor3( s1, s2, s2 ); } inline void btog( int simm13a, Register s ) { xor3( s, simm13a, s ); } inline void clr( Register d ) { or3( G0, G0, d ); } inline void clrb( Register s1, Register s2); inline void clrh( Register s1, Register s2); inline void clr( Register s1, Register s2); inline void clrx( Register s1, Register s2); inline void clrb( Register s1, int simm13a); inline void clrh( Register s1, int simm13a); inline void clr( Register s1, int simm13a); inline void clrx( Register s1, int simm13a); // copy & clear upper word inline void clruw( Register s, Register d ) { srl( s, G0, d); } // clear upper word inline void clruwu( Register d ) { srl( d, G0, d); } using Assembler::ldsb; using Assembler::ldsh; using Assembler::ldsw; using Assembler::ldub; using Assembler::lduh; using Assembler::lduw; using Assembler::ldx; using Assembler::ldd; #ifdef ASSERT // ByteSize is only a class when ASSERT is defined, otherwise it's an int. inline void ld(Register s1, ByteSize simm13a, Register d); #endif inline void ld(Register s1, Register s2, Register d); inline void ld(Register s1, int simm13a, Register d); inline void ldsb(const Address& a, Register d, int offset = 0); inline void ldsh(const Address& a, Register d, int offset = 0); inline void ldsw(const Address& a, Register d, int offset = 0); inline void ldub(const Address& a, Register d, int offset = 0); inline void lduh(const Address& a, Register d, int offset = 0); inline void lduw(const Address& a, Register d, int offset = 0); inline void ldx( const Address& a, Register d, int offset = 0); inline void ld( const Address& a, Register d, int offset = 0); inline void ldd( const Address& a, Register d, int offset = 0); inline void ldub(Register s1, RegisterOrConstant s2, Register d ); inline void ldsb(Register s1, RegisterOrConstant s2, Register d ); inline void lduh(Register s1, RegisterOrConstant s2, Register d ); inline void ldsh(Register s1, RegisterOrConstant s2, Register d ); inline void lduw(Register s1, RegisterOrConstant s2, Register d ); inline void ldsw(Register s1, RegisterOrConstant s2, Register d ); inline void ldx( Register s1, RegisterOrConstant s2, Register d ); inline void ld( Register s1, RegisterOrConstant s2, Register d ); inline void ldd( Register s1, RegisterOrConstant s2, Register d ); using Assembler::ldf; inline void ldf(FloatRegisterImpl::Width w, Register s1, RegisterOrConstant s2, FloatRegister d); inline void ldf(FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset = 0); // membar psuedo instruction. takes into account target memory model. inline void membar( Assembler::Membar_mask_bits const7a ); // returns if membar generates anything. inline bool membar_has_effect( Assembler::Membar_mask_bits const7a ); // mov pseudo instructions inline void mov( Register s, Register d) { if ( s != d ) or3( G0, s, d); else assert_not_delayed(); // Put something useful in the delay slot! } inline void mov_or_nop( Register s, Register d) { if ( s != d ) or3( G0, s, d); else nop(); } inline void mov( int simm13a, Register d) { or3( G0, simm13a, d); } using Assembler::prefetch; inline void prefetch(const Address& a, PrefetchFcn F, int offset = 0); using Assembler::stb; using Assembler::sth; using Assembler::stw; using Assembler::stx; using Assembler::std; #ifdef ASSERT // ByteSize is only a class when ASSERT is defined, otherwise it's an int. inline void st(Register d, Register s1, ByteSize simm13a); #endif inline void st(Register d, Register s1, Register s2); inline void st(Register d, Register s1, int simm13a); inline void stb(Register d, const Address& a, int offset = 0 ); inline void sth(Register d, const Address& a, int offset = 0 ); inline void stw(Register d, const Address& a, int offset = 0 ); inline void stx(Register d, const Address& a, int offset = 0 ); inline void st( Register d, const Address& a, int offset = 0 ); inline void std(Register d, const Address& a, int offset = 0 ); inline void stb(Register d, Register s1, RegisterOrConstant s2 ); inline void sth(Register d, Register s1, RegisterOrConstant s2 ); inline void stw(Register d, Register s1, RegisterOrConstant s2 ); inline void stx(Register d, Register s1, RegisterOrConstant s2 ); inline void std(Register d, Register s1, RegisterOrConstant s2 ); inline void st( Register d, Register s1, RegisterOrConstant s2 ); using Assembler::stf; inline void stf(FloatRegisterImpl::Width w, FloatRegister d, Register s1, RegisterOrConstant s2); inline void stf(FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset = 0); // Note: offset is added to s2. using Assembler::sub; inline void sub(Register s1, RegisterOrConstant s2, Register d, int offset = 0); using Assembler::swap; inline void swap(const Address& a, Register d, int offset = 0); // address pseudos: make these names unlike instruction names to avoid confusion inline intptr_t load_pc_address( Register reg, int bytes_to_skip ); inline void load_contents(const AddressLiteral& addrlit, Register d, int offset = 0); inline void load_bool_contents(const AddressLiteral& addrlit, Register d, int offset = 0); inline void load_ptr_contents(const AddressLiteral& addrlit, Register d, int offset = 0); inline void store_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset = 0); inline void store_ptr_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset = 0); inline void jumpl_to(const AddressLiteral& addrlit, Register temp, Register d, int offset = 0); inline void jump_to(const AddressLiteral& addrlit, Register temp, int offset = 0); inline void jump_indirect_to(Address& a, Register temp, int ld_offset = 0, int jmp_offset = 0); // ring buffer traceable jumps void jmp2( Register r1, Register r2, const char* file, int line ); void jmp ( Register r1, int offset, const char* file, int line ); void jumpl(const AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line); void jump (const AddressLiteral& addrlit, Register temp, int offset, const char* file, int line); // argument pseudos: inline void load_argument( Argument& a, Register d ); inline void store_argument( Register s, Argument& a ); inline void store_ptr_argument( Register s, Argument& a ); inline void store_float_argument( FloatRegister s, Argument& a ); inline void store_double_argument( FloatRegister s, Argument& a ); inline void store_long_argument( Register s, Argument& a ); // handy macros: inline void round_to( Register r, int modulus ) { assert_not_delayed(); inc( r, modulus - 1 ); and3( r, -modulus, r ); } // -------------------------------------------------- // Functions for isolating 64 bit loads for LP64 // ld_ptr will perform ld for 32 bit VM's and ldx for 64 bit VM's // st_ptr will perform st for 32 bit VM's and stx for 64 bit VM's inline void ld_ptr(Register s1, Register s2, Register d); inline void ld_ptr(Register s1, int simm13a, Register d); inline void ld_ptr(Register s1, RegisterOrConstant s2, Register d); inline void ld_ptr(const Address& a, Register d, int offset = 0); inline void st_ptr(Register d, Register s1, Register s2); inline void st_ptr(Register d, Register s1, int simm13a); inline void st_ptr(Register d, Register s1, RegisterOrConstant s2); inline void st_ptr(Register d, const Address& a, int offset = 0); #ifdef ASSERT // ByteSize is only a class when ASSERT is defined, otherwise it's an int. inline void ld_ptr(Register s1, ByteSize simm13a, Register d); inline void st_ptr(Register d, Register s1, ByteSize simm13a); #endif // ld_long will perform ldd for 32 bit VM's and ldx for 64 bit VM's // st_long will perform std for 32 bit VM's and stx for 64 bit VM's inline void ld_long(Register s1, Register s2, Register d); inline void ld_long(Register s1, int simm13a, Register d); inline void ld_long(Register s1, RegisterOrConstant s2, Register d); inline void ld_long(const Address& a, Register d, int offset = 0); inline void st_long(Register d, Register s1, Register s2); inline void st_long(Register d, Register s1, int simm13a); inline void st_long(Register d, Register s1, RegisterOrConstant s2); inline void st_long(Register d, const Address& a, int offset = 0); // Helpers for address formation. // - They emit only a move if s2 is a constant zero. // - If dest is a constant and either s1 or s2 is a register, the temp argument is required and becomes the result. // - If dest is a register and either s1 or s2 is a non-simm13 constant, the temp argument is required and used to materialize the constant. RegisterOrConstant regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp = noreg); RegisterOrConstant regcon_inc_ptr( RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp = noreg); RegisterOrConstant regcon_sll_ptr( RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp = noreg); RegisterOrConstant ensure_simm13_or_reg(RegisterOrConstant src, Register temp) { if (is_simm13(src.constant_or_zero())) return src; // register or short constant guarantee(temp != noreg, "constant offset overflow"); set(src.as_constant(), temp); return temp; } // -------------------------------------------------- public: // traps as per trap.h (SPARC ABI?) void breakpoint_trap(); void breakpoint_trap(Condition c, CC cc); // Support for serializing memory accesses between threads void serialize_memory(Register thread, Register tmp1, Register tmp2); // Stack frame creation/removal void enter(); void leave(); // Manipulation of C++ bools // These are idioms to flag the need for care with accessing bools but on // this platform we assume byte size inline void stbool(Register d, const Address& a) { stb(d, a); } inline void ldbool(const Address& a, Register d) { ldub(a, d); } inline void movbool( bool boolconst, Register d) { mov( (int) boolconst, d); } // klass oop manipulations if compressed void load_klass(Register src_oop, Register klass); void store_klass(Register klass, Register dst_oop); void store_klass_gap(Register s, Register dst_oop); // oop manipulations void load_heap_oop(const Address& s, Register d); void load_heap_oop(Register s1, Register s2, Register d); void load_heap_oop(Register s1, int simm13a, Register d); void load_heap_oop(Register s1, RegisterOrConstant s2, Register d); void store_heap_oop(Register d, Register s1, Register s2); void store_heap_oop(Register d, Register s1, int simm13a); void store_heap_oop(Register d, const Address& a, int offset = 0); void encode_heap_oop(Register src, Register dst); void encode_heap_oop(Register r) { encode_heap_oop(r, r); } void decode_heap_oop(Register src, Register dst); void decode_heap_oop(Register r) { decode_heap_oop(r, r); } void encode_heap_oop_not_null(Register r); void decode_heap_oop_not_null(Register r); void encode_heap_oop_not_null(Register src, Register dst); void decode_heap_oop_not_null(Register src, Register dst); void encode_klass_not_null(Register r); void decode_klass_not_null(Register r); void encode_klass_not_null(Register src, Register dst); void decode_klass_not_null(Register src, Register dst); // Support for managing the JavaThread pointer (i.e.; the reference to // thread-local information). void get_thread(); // load G2_thread void verify_thread(); // verify G2_thread contents void save_thread (const Register threache); // save to cache void restore_thread(const Register thread_cache); // restore from cache // Support for last Java frame (but use call_VM instead where possible) void set_last_Java_frame(Register last_java_sp, Register last_Java_pc); void reset_last_Java_frame(void); // Call into the VM. // Passes the thread pointer (in O0) as a prepended argument. // Makes sure oop return values are visible to the GC. void call_VM(Register oop_result, address entry_point, int number_of_arguments = 0, bool check_exceptions = true); void call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions = true); void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true); void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true); // these overloadings are not presently used on SPARC: void call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true); void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true); void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true); void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true); void call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments = 0); void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1); void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2); void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3); void get_vm_result (Register oop_result); void get_vm_result_2(Register metadata_result); // vm result is currently getting hijacked to for oop preservation void set_vm_result(Register oop_result); // Emit the CompiledIC call idiom void ic_call(address entry, bool emit_delay = true); // if call_VM_base was called with check_exceptions=false, then call // check_and_forward_exception to handle exceptions when it is safe void check_and_forward_exception(Register scratch_reg); // Write to card table for - register is destroyed afterwards. void card_table_write(jbyte* byte_map_base, Register tmp, Register obj); void card_write_barrier_post(Register store_addr, Register new_val, Register tmp); #if INCLUDE_ALL_GCS // General G1 pre-barrier generator. void g1_write_barrier_pre(Register obj, Register index, int offset, Register pre_val, Register tmp, bool preserve_o_regs); // General G1 post-barrier generator void g1_write_barrier_post(Register store_addr, Register new_val, Register tmp); #endif // INCLUDE_ALL_GCS // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack void push_fTOS(); // pops double TOS element from CPU stack and pushes on FPU stack void pop_fTOS(); void empty_FPU_stack(); void push_IU_state(); void pop_IU_state(); void push_FPU_state(); void pop_FPU_state(); void push_CPU_state(); void pop_CPU_state(); // Returns the byte size of the instructions generated by decode_klass_not_null(). static int instr_size_for_decode_klass_not_null(); // if heap base register is used - reinit it with the correct value void reinit_heapbase(); // Debugging void _verify_oop(Register reg, const char * msg, const char * file, int line); void _verify_oop_addr(Address addr, const char * msg, const char * file, int line); // TODO: verify_method and klass metadata (compare against vptr?) void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {} void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){} #define verify_oop(reg) _verify_oop(reg, "broken oop " #reg, __FILE__, __LINE__) #define verify_oop_addr(addr) _verify_oop_addr(addr, "broken oop addr ", __FILE__, __LINE__) #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__) #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__) // only if +VerifyOops void verify_FPU(int stack_depth, const char* s = "illegal FPU state"); // only if +VerifyFPU void stop(const char* msg); // prints msg, dumps registers and stops execution void warn(const char* msg); // prints msg, but don't stop void untested(const char* what = ""); void unimplemented(const char* what = "") { char* b = new char[1024]; jio_snprintf(b, 1024, "unimplemented: %s", what); stop(b); } void should_not_reach_here() { stop("should not reach here"); } void print_CPU_state(); // oops in code AddressLiteral allocate_oop_address(jobject obj); // allocate_index AddressLiteral constant_oop_address(jobject obj); // find_index inline void set_oop (jobject obj, Register d); // uses allocate_oop_address inline void set_oop_constant (jobject obj, Register d); // uses constant_oop_address inline void set_oop (const AddressLiteral& obj_addr, Register d); // same as load_address // metadata in code that we have to keep track of AddressLiteral allocate_metadata_address(Metadata* obj); // allocate_index AddressLiteral constant_metadata_address(Metadata* obj); // find_index inline void set_metadata (Metadata* obj, Register d); // uses allocate_metadata_address inline void set_metadata_constant (Metadata* obj, Register d); // uses constant_metadata_address inline void set_metadata (const AddressLiteral& obj_addr, Register d); // same as load_address void set_narrow_oop( jobject obj, Register d ); void set_narrow_klass( Klass* k, Register d ); // nop padding void align(int modulus); // declare a safepoint void safepoint(); // factor out part of stop into subroutine to save space void stop_subroutine(); // factor out part of verify_oop into subroutine to save space void verify_oop_subroutine(); // side-door communication with signalHandler in os_solaris.cpp static address _verify_oop_implicit_branch[3]; int total_frame_size_in_bytes(int extraWords); // used when extraWords known statically void save_frame(int extraWords = 0); void save_frame_c1(int size_in_bytes); // make a frame, and simultaneously pass up one or two register value // into the new register window void save_frame_and_mov(int extraWords, Register s1, Register d1, Register s2 = Register(), Register d2 = Register()); // give no. (outgoing) params, calc # of words will need on frame void calc_mem_param_words(Register Rparam_words, Register Rresult); // used to calculate frame size dynamically // result is in bytes and must be negated for save inst void calc_frame_size(Register extraWords, Register resultReg); // calc and also save void calc_frame_size_and_save(Register extraWords, Register resultReg); static void debug(char* msg, RegistersForDebugging* outWindow); // implementations of bytecodes used by both interpreter and compiler void lcmp( Register Ra_hi, Register Ra_low, Register Rb_hi, Register Rb_low, Register Rresult); void lneg( Register Rhi, Register Rlow ); void lshl( Register Rin_high, Register Rin_low, Register Rcount, Register Rout_high, Register Rout_low, Register Rtemp ); void lshr( Register Rin_high, Register Rin_low, Register Rcount, Register Rout_high, Register Rout_low, Register Rtemp ); void lushr( Register Rin_high, Register Rin_low, Register Rcount, Register Rout_high, Register Rout_low, Register Rtemp ); #ifdef _LP64 void lcmp( Register Ra, Register Rb, Register Rresult); #endif // Load and store values by size and signed-ness void load_sized_value( Address src, Register dst, size_t size_in_bytes, bool is_signed); void store_sized_value(Register src, Address dst, size_t size_in_bytes); void float_cmp( bool is_float, int unordered_result, FloatRegister Fa, FloatRegister Fb, Register Rresult); void save_all_globals_into_locals(); void restore_globals_from_locals(); // These set the icc condition code to equal if the lock succeeded // and notEqual if it failed and requires a slow case void compiler_lock_object(Register Roop, Register Rmark, Register Rbox, Register Rscratch, BiasedLockingCounters* counters = NULL, bool try_bias = UseBiasedLocking); void compiler_unlock_object(Register Roop, Register Rmark, Register Rbox, Register Rscratch, bool try_bias = UseBiasedLocking); // Biased locking support // Upon entry, lock_reg must point to the lock record on the stack, // obj_reg must contain the target object, and mark_reg must contain // the target object's header. // Destroys mark_reg if an attempt is made to bias an anonymously // biased lock. In this case a failure will go either to the slow // case or fall through with the notEqual condition code set with // the expectation that the slow case in the runtime will be called. // In the fall-through case where the CAS-based lock is done, // mark_reg is not destroyed. void biased_locking_enter(Register obj_reg, Register mark_reg, Register temp_reg, Label& done, Label* slow_case = NULL, BiasedLockingCounters* counters = NULL); // Upon entry, the base register of mark_addr must contain the oop. // Destroys temp_reg. // If allow_delay_slot_filling is set to true, the next instruction // emitted after this one will go in an annulled delay slot if the // biased locking exit case failed. void biased_locking_exit(Address mark_addr, Register temp_reg, Label& done, bool allow_delay_slot_filling = false); // allocation void eden_allocate( Register obj, // result: pointer to object after successful allocation Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise int con_size_in_bytes, // object size in bytes if known at compile time Register t1, // temp register Register t2, // temp register Label& slow_case // continuation point if fast allocation fails ); void tlab_allocate( Register obj, // result: pointer to object after successful allocation Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise int con_size_in_bytes, // object size in bytes if known at compile time Register t1, // temp register Label& slow_case // continuation point if fast allocation fails ); void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); void incr_allocated_bytes(RegisterOrConstant size_in_bytes, Register t1, Register t2); // interface method calling void lookup_interface_method(Register recv_klass, Register intf_klass, RegisterOrConstant itable_index, Register method_result, Register temp_reg, Register temp2_reg, Label& no_such_interface, bool return_method = true); // virtual method calling void lookup_virtual_method(Register recv_klass, RegisterOrConstant vtable_index, Register method_result); // Test sub_klass against super_klass, with fast and slow paths. // The fast path produces a tri-state answer: yes / no / maybe-slow. // One of the three labels can be NULL, meaning take the fall-through. // If super_check_offset is -1, the value is loaded up from super_klass. // No registers are killed, except temp_reg and temp2_reg. // If super_check_offset is not -1, temp2_reg is not used and can be noreg. void check_klass_subtype_fast_path(Register sub_klass, Register super_klass, Register temp_reg, Register temp2_reg, Label* L_success, Label* L_failure, Label* L_slow_path, RegisterOrConstant super_check_offset = RegisterOrConstant(-1)); // The rest of the type check; must be wired to a corresponding fast path. // It does not repeat the fast path logic, so don't use it standalone. // The temp_reg can be noreg, if no temps are available. // It can also be sub_klass or super_klass, meaning it's OK to kill that one. // Updates the sub's secondary super cache as necessary. void check_klass_subtype_slow_path(Register sub_klass, Register super_klass, Register temp_reg, Register temp2_reg, Register temp3_reg, Register temp4_reg, Label* L_success, Label* L_failure); // Simplified, combined version, good for typical uses. // Falls through on failure. void check_klass_subtype(Register sub_klass, Register super_klass, Register temp_reg, Register temp2_reg, Label& L_success); // method handles (JSR 292) // offset relative to Gargs of argument at tos[arg_slot]. // (arg_slot == 0 means the last argument, not the first). RegisterOrConstant argument_offset(RegisterOrConstant arg_slot, Register temp_reg, int extra_slot_offset = 0); // Address of Gargs and argument_offset. Address argument_address(RegisterOrConstant arg_slot, Register temp_reg = noreg, int extra_slot_offset = 0); // Stack overflow checking // Note: this clobbers G3_scratch void bang_stack_with_offset(int offset) { // stack grows down, caller passes positive offset assert(offset > 0, "must bang with negative offset"); set((-offset)+STACK_BIAS, G3_scratch); st(G0, SP, G3_scratch); } // Writes to stack successive pages until offset reached to check for // stack overflow + shadow pages. Clobbers tsp and scratch registers. void bang_stack_size(Register Rsize, Register Rtsp, Register Rscratch); virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr, Register tmp, int offset); void verify_tlab(); Condition negate_condition(Condition cond); // Helper functions for statistics gathering. // Conditionally (non-atomically) increments passed counter address, preserving condition codes. void cond_inc(Condition cond, address counter_addr, Register Rtemp1, Register Rtemp2); // Unconditional increment. void inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2); void inc_counter(int* counter_addr, Register Rtmp1, Register Rtmp2); // Compare char[] arrays aligned to 4 bytes. void char_arrays_equals(Register ary1, Register ary2, Register limit, Register result, Register chr1, Register chr2, Label& Ldone); // Use BIS for zeroing void bis_zeroing(Register to, Register count, Register temp, Label& Ldone); #undef VIRTUAL }; /** * class SkipIfEqual: * * Instantiating this class will result in assembly code being output that will * jump around any code emitted between the creation of the instance and it's * automatic destruction at the end of a scope block, depending on the value of * the flag passed to the constructor, which will be checked at run-time. */ class SkipIfEqual : public StackObj { private: MacroAssembler* _masm; Label _label; public: // 'temp' is a temp register that this object can use (and trash) SkipIfEqual(MacroAssembler*, Register temp, const bool* flag_addr, Assembler::Condition condition); ~SkipIfEqual(); }; #endif // CPU_SPARC_VM_MACROASSEMBLER_SPARC_HPP