/* * Copyright (c) 2000, 2014, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_UTILITIES_ARRAY_HPP #define SHARE_VM_UTILITIES_ARRAY_HPP #include "memory/allocation.hpp" #include "memory/allocation.inline.hpp" #include "memory/metaspace.hpp" // correct linkage required to compile w/o warnings // (must be on file level - cannot be local) extern "C" { typedef int (*ftype)(const void*, const void*); } class ResourceArray: public ResourceObj { protected: int _length; // the number of array elements void* _data; // the array memory #ifdef ASSERT int _nesting; // the resource area nesting level #endif // creation ResourceArray() { _length = 0; _data = NULL; DEBUG_ONLY(init_nesting();) // client may call initialize, at most once } ResourceArray(size_t esize, int length) { DEBUG_ONLY(_data = NULL); initialize(esize, length); } void initialize(size_t esize, int length) { assert(length >= 0, "illegal length"); assert(StressRewriter || _data == NULL, "must be new object"); _length = length; _data = resource_allocate_bytes(esize * length); DEBUG_ONLY(init_nesting();) } #ifdef ASSERT void init_nesting(); #endif // helper functions void sort (size_t esize, ftype f); // sort the array void expand (size_t esize, int i, int& size);// expand the array to include slot i void remove_at(size_t esize, int i); // remove the element in slot i public: // standard operations int length() const { return _length; } bool is_empty() const { return length() == 0; } }; template class CHeapArray: public CHeapObj { protected: int _length; // the number of array elements void* _data; // the array memory // creation CHeapArray() { _length = 0; _data = NULL; } CHeapArray(size_t esize, int length) { assert(length >= 0, "illegal length"); _length = length; _data = (void*) NEW_C_HEAP_ARRAY(char *, esize * length, F); } void initialize(size_t esize, int length) { // In debug set array to 0? } #ifdef ASSERT void init_nesting(); #endif // helper functions void sort (size_t esize, ftype f); // sort the array void expand (size_t esize, int i, int& size);// expand the array to include slot i void remove_at(size_t esize, int i); // remove the element in slot i public: // standard operations int length() const { return _length; } bool is_empty() const { return length() == 0; } }; #define define_generic_array(array_name,element_type, base_class) \ class array_name: public base_class { \ protected: \ typedef element_type etype; \ enum { esize = sizeof(etype) }; \ \ void base_remove_at(size_t size, int i) { base_class::remove_at(size, i); } \ \ public: \ /* creation */ \ array_name() : base_class() {} \ explicit array_name(const int length) : base_class(esize, length) {} \ array_name(const int length, const etype fx) { initialize(length, fx); } \ void initialize(const int length) { base_class::initialize(esize, length); } \ void initialize(const int length, const etype fx) { \ initialize(length); \ for (int i = 0; i < length; i++) ((etype*)_data)[i] = fx; \ } \ \ /* standard operations */ \ etype& operator [] (const int i) const { \ assert(0 <= i && i < length(), "index out of bounds"); \ return ((etype*)_data)[i]; \ } \ \ int index_of(const etype x) const { \ int i = length(); \ while (i-- > 0 && ((etype*)_data)[i] != x) ; \ /* i < 0 || ((etype*)_data)_data[i] == x */ \ return i; \ } \ \ void sort(int f(etype*, etype*)) { base_class::sort(esize, (ftype)f); } \ bool contains(const etype x) const { return index_of(x) >= 0; } \ \ /* deprecated operations - for compatibility with GrowableArray only */ \ etype at(const int i) const { return (*this)[i]; } \ void at_put(const int i, const etype x) { (*this)[i] = x; } \ etype* adr_at(const int i) { return &(*this)[i]; } \ int find(const etype x) { return index_of(x); } \ }; \ #define define_array(array_name,element_type) \ define_generic_array(array_name, element_type, ResourceArray) #define define_stack(stack_name,array_name) \ class stack_name: public array_name { \ protected: \ int _size; \ \ void grow(const int i, const etype fx) { \ assert(i >= length(), "index too small"); \ if (i >= size()) expand(esize, i, _size); \ for (int j = length(); j <= i; j++) ((etype*)_data)[j] = fx; \ _length = i+1; \ } \ \ public: \ /* creation */ \ stack_name() : array_name() { _size = 0; } \ stack_name(const int size) { initialize(size); } \ stack_name(const int size, const etype fx) { initialize(size, fx); } \ void initialize(const int size, const etype fx) { \ _size = size; \ array_name::initialize(size, fx); \ /* _length == size, allocation and size are the same */ \ } \ void initialize(const int size) { \ _size = size; \ array_name::initialize(size); \ _length = 0; /* reset length to zero; _size records the allocation */ \ } \ \ /* standard operations */ \ int size() const { return _size; } \ \ int push(const etype x) { \ int len = length(); \ if (len >= size()) expand(esize, len, _size); \ ((etype*)_data)[len] = x; \ _length = len+1; \ return len; \ } \ \ etype pop() { \ assert(!is_empty(), "stack is empty"); \ return ((etype*)_data)[--_length]; \ } \ \ etype top() const { \ assert(!is_empty(), "stack is empty"); \ return ((etype*)_data)[length() - 1]; \ } \ \ void push_all(const stack_name* stack) { \ const int l = stack->length(); \ for (int i = 0; i < l; i++) push(((etype*)(stack->_data))[i]); \ } \ \ etype at_grow(const int i, const etype fx) { \ if (i >= length()) grow(i, fx); \ return ((etype*)_data)[i]; \ } \ \ void at_put_grow(const int i, const etype x, const etype fx) { \ if (i >= length()) grow(i, fx); \ ((etype*)_data)[i] = x; \ } \ \ void truncate(const int length) { \ assert(0 <= length && length <= this->length(), "illegal length"); \ _length = length; \ } \ \ void remove_at(int i) { base_remove_at(esize, i); } \ void remove(etype x) { remove_at(index_of(x)); } \ \ /* inserts the given element before the element at index i */ \ void insert_before(const int i, const etype el) { \ int len = length(); \ int new_length = len + 1; \ if (new_length >= size()) expand(esize, new_length, _size); \ for (int j = len - 1; j >= i; j--) { \ ((etype*)_data)[j + 1] = ((etype*)_data)[j]; \ } \ _length = new_length; \ at_put(i, el); \ } \ \ /* inserts contents of the given stack before the element at index i */ \ void insert_before(const int i, const stack_name *st) { \ if (st->length() == 0) return; \ int len = length(); \ int st_len = st->length(); \ int new_length = len + st_len; \ if (new_length >= size()) expand(esize, new_length, _size); \ int j; \ for (j = len - 1; j >= i; j--) { \ ((etype*)_data)[j + st_len] = ((etype*)_data)[j]; \ } \ for (j = 0; j < st_len; j++) { \ ((etype*)_data)[i + j] = ((etype*)st->_data)[j]; \ } \ _length = new_length; \ } \ \ /* deprecated operations - for compatibility with GrowableArray only */ \ int capacity() const { return size(); } \ void clear() { truncate(0); } \ void trunc_to(const int length) { truncate(length); } \ int append(const etype x) { return push(x); } \ void appendAll(const stack_name* stack) { push_all(stack); } \ etype last() const { return top(); } \ }; \ #define define_resource_list(element_type) \ define_generic_array(element_type##Array, element_type, ResourceArray) \ define_stack(element_type##List, element_type##Array) #define define_resource_pointer_list(element_type) \ define_generic_array(element_type##Array, element_type *, ResourceArray) \ define_stack(element_type##List, element_type##Array) #define define_c_heap_list(element_type) \ define_generic_array(element_type##Array, element_type, CHeapArray) \ define_stack(element_type##List, element_type##Array) #define define_c_heap_pointer_list(element_type) \ define_generic_array(element_type##Array, element_type *, CHeapArray) \ define_stack(element_type##List, element_type##Array) // Arrays for basic types define_array(boolArray, bool) define_stack(boolStack, boolArray) define_array(intArray , int ) define_stack(intStack , intArray ) // Array for metadata allocation template class Array: public MetaspaceObj { friend class MetadataFactory; friend class VMStructs; friend class MethodHandleCompiler; // special case protected: int _length; // the number of array elements T _data[1]; // the array memory void initialize(int length) { _length = length; } private: // Turn off copy constructor and assignment operator. Array(const Array&); void operator=(const Array&); void* operator new(size_t size, ClassLoaderData* loader_data, int length, bool read_only, TRAPS) throw() { size_t word_size = Array::size(length); return (void*) Metaspace::allocate(loader_data, word_size, read_only, MetaspaceObj::array_type(sizeof(T)), CHECK_NULL); } static size_t byte_sizeof(int length) { return sizeof(Array) + MAX2(length - 1, 0) * sizeof(T); } explicit Array(int length) : _length(length) { assert(length >= 0, "illegal length"); } Array(int length, T init) : _length(length) { assert(length >= 0, "illegal length"); for (int i = 0; i < length; i++) { _data[i] = init; } } public: // standard operations int length() const { return _length; } T* data() { return _data; } bool is_empty() const { return length() == 0; } int index_of(const T& x) const { int i = length(); while (i-- > 0 && _data[i] != x) ; return i; } // sort the array. bool contains(const T& x) const { return index_of(x) >= 0; } T at(int i) const { assert(i >= 0 && i< _length, err_msg("oob: 0 <= %d < %d", i, _length)); return _data[i]; } void at_put(const int i, const T& x) { assert(i >= 0 && i< _length, err_msg("oob: 0 <= %d < %d", i, _length)); _data[i] = x; } T* adr_at(const int i) { assert(i >= 0 && i< _length, err_msg("oob: 0 <= %d < %d", i, _length)); return &_data[i]; } int find(const T& x) { return index_of(x); } T at_acquire(const int which) { return OrderAccess::load_acquire(adr_at(which)); } void release_at_put(int which, T contents) { OrderAccess::release_store(adr_at(which), contents); } static int size(int length) { return align_size_up(byte_sizeof(length), BytesPerWord) / BytesPerWord; } int size() { return size(_length); } static int length_offset_in_bytes() { return (int) (offset_of(Array, _length)); } // Note, this offset don't have to be wordSize aligned. static int base_offset_in_bytes() { return (int) (offset_of(Array, _data)); }; // FIXME: How to handle this? void print_value_on(outputStream* st) const { st->print("Array(" INTPTR_FORMAT ")", this); } #ifndef PRODUCT void print(outputStream* st) { for (int i = 0; i< _length; i++) { st->print_cr("%d: " INTPTR_FORMAT, i, (intptr_t)at(i)); } } void print() { print(tty); } #endif // PRODUCT }; #endif // SHARE_VM_UTILITIES_ARRAY_HPP