/* * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "incls/_precompiled.incl" #include "incls/_methodHandles_x86.cpp.incl" #define __ _masm-> #ifdef PRODUCT #define BLOCK_COMMENT(str) /* nothing */ #else #define BLOCK_COMMENT(str) __ block_comment(str) #endif #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") address MethodHandleEntry::start_compiled_entry(MacroAssembler* _masm, address interpreted_entry) { // Just before the actual machine code entry point, allocate space // for a MethodHandleEntry::Data record, so that we can manage everything // from one base pointer. __ align(wordSize); address target = __ pc() + sizeof(Data); while (__ pc() < target) { __ nop(); __ align(wordSize); } MethodHandleEntry* me = (MethodHandleEntry*) __ pc(); me->set_end_address(__ pc()); // set a temporary end_address me->set_from_interpreted_entry(interpreted_entry); me->set_type_checking_entry(NULL); return (address) me; } MethodHandleEntry* MethodHandleEntry::finish_compiled_entry(MacroAssembler* _masm, address start_addr) { MethodHandleEntry* me = (MethodHandleEntry*) start_addr; assert(me->end_address() == start_addr, "valid ME"); // Fill in the real end_address: __ align(wordSize); me->set_end_address(__ pc()); return me; } #ifdef ASSERT static void verify_argslot(MacroAssembler* _masm, Register argslot_reg, const char* error_message) { // Verify that argslot lies within (rsp, rbp]. Label L_ok, L_bad; BLOCK_COMMENT("{ verify_argslot"); __ cmpptr(argslot_reg, rbp); __ jccb(Assembler::above, L_bad); __ cmpptr(rsp, argslot_reg); __ jccb(Assembler::below, L_ok); __ bind(L_bad); __ stop(error_message); __ bind(L_ok); BLOCK_COMMENT("} verify_argslot"); } #endif // Code generation address MethodHandles::generate_method_handle_interpreter_entry(MacroAssembler* _masm) { // rbx: methodOop // rcx: receiver method handle (must load from sp[MethodTypeForm.vmslots]) // rsi/r13: sender SP (must preserve; see prepare_to_jump_from_interpreted) // rdx, rdi: garbage temp, blown away Register rbx_method = rbx; Register rcx_recv = rcx; Register rax_mtype = rax; Register rdx_temp = rdx; Register rdi_temp = rdi; // emit WrongMethodType path first, to enable jccb back-branch from main path Label wrong_method_type; __ bind(wrong_method_type); Label invoke_generic_slow_path; assert(methodOopDesc::intrinsic_id_size_in_bytes() == sizeof(u1), "");; __ cmpb(Address(rbx_method, methodOopDesc::intrinsic_id_offset_in_bytes()), (int) vmIntrinsics::_invokeExact); __ jcc(Assembler::notEqual, invoke_generic_slow_path); __ push(rax_mtype); // required mtype __ push(rcx_recv); // bad mh (1st stacked argument) __ jump(ExternalAddress(Interpreter::throw_WrongMethodType_entry())); // here's where control starts out: __ align(CodeEntryAlignment); address entry_point = __ pc(); // fetch the MethodType from the method handle into rax (the 'check' register) { Register tem = rbx_method; for (jint* pchase = methodOopDesc::method_type_offsets_chain(); (*pchase) != -1; pchase++) { __ movptr(rax_mtype, Address(tem, *pchase)); tem = rax_mtype; // in case there is another indirection } } // given the MethodType, find out where the MH argument is buried __ movptr(rdx_temp, Address(rax_mtype, __ delayed_value(java_dyn_MethodType::form_offset_in_bytes, rdi_temp))); Register rdx_vmslots = rdx_temp; __ movl(rdx_vmslots, Address(rdx_temp, __ delayed_value(java_dyn_MethodTypeForm::vmslots_offset_in_bytes, rdi_temp))); __ movptr(rcx_recv, __ argument_address(rdx_vmslots)); trace_method_handle(_masm, "invokeExact"); __ check_method_handle_type(rax_mtype, rcx_recv, rdi_temp, wrong_method_type); __ jump_to_method_handle_entry(rcx_recv, rdi_temp); // for invokeGeneric (only), apply argument and result conversions on the fly __ bind(invoke_generic_slow_path); #ifdef ASSERT { Label L; __ cmpb(Address(rbx_method, methodOopDesc::intrinsic_id_offset_in_bytes()), (int) vmIntrinsics::_invokeGeneric); __ jcc(Assembler::equal, L); __ stop("bad methodOop::intrinsic_id"); __ bind(L); } #endif //ASSERT Register rbx_temp = rbx_method; // don't need it now // make room on the stack for another pointer: Register rcx_argslot = rcx_recv; __ lea(rcx_argslot, __ argument_address(rdx_vmslots, 1)); insert_arg_slots(_masm, 2 * stack_move_unit(), _INSERT_REF_MASK, rcx_argslot, rbx_temp, rdx_temp); // load up an adapter from the calling type (Java weaves this) __ movptr(rdx_temp, Address(rax_mtype, __ delayed_value(java_dyn_MethodType::form_offset_in_bytes, rdi_temp))); Register rdx_adapter = rdx_temp; // movptr(rdx_adapter, Address(rdx_temp, java_dyn_MethodTypeForm::genericInvoker_offset_in_bytes())); // deal with old JDK versions: __ lea(rdi_temp, Address(rdx_temp, __ delayed_value(java_dyn_MethodTypeForm::genericInvoker_offset_in_bytes, rdi_temp))); __ cmpptr(rdi_temp, rdx_temp); Label sorry_no_invoke_generic; __ jccb(Assembler::below, sorry_no_invoke_generic); __ movptr(rdx_adapter, Address(rdi_temp, 0)); __ testptr(rdx_adapter, rdx_adapter); __ jccb(Assembler::zero, sorry_no_invoke_generic); __ movptr(Address(rcx_argslot, 1 * Interpreter::stackElementSize), rdx_adapter); // As a trusted first argument, pass the type being called, so the adapter knows // the actual types of the arguments and return values. // (Generic invokers are shared among form-families of method-type.) __ movptr(Address(rcx_argslot, 0 * Interpreter::stackElementSize), rax_mtype); // FIXME: assert that rdx_adapter is of the right method-type. __ mov(rcx, rdx_adapter); trace_method_handle(_masm, "invokeGeneric"); __ jump_to_method_handle_entry(rcx, rdi_temp); __ bind(sorry_no_invoke_generic); // no invokeGeneric implementation available! __ movptr(rcx_recv, Address(rcx_argslot, -1 * Interpreter::stackElementSize)); // recover original MH __ push(rax_mtype); // required mtype __ push(rcx_recv); // bad mh (1st stacked argument) __ jump(ExternalAddress(Interpreter::throw_WrongMethodType_entry())); return entry_point; } // Helper to insert argument slots into the stack. // arg_slots must be a multiple of stack_move_unit() and <= 0 void MethodHandles::insert_arg_slots(MacroAssembler* _masm, RegisterOrConstant arg_slots, int arg_mask, Register rax_argslot, Register rbx_temp, Register rdx_temp, Register temp3_reg) { assert(temp3_reg == noreg, "temp3 not required"); assert_different_registers(rax_argslot, rbx_temp, rdx_temp, (!arg_slots.is_register() ? rsp : arg_slots.as_register())); #ifdef ASSERT verify_argslot(_masm, rax_argslot, "insertion point must fall within current frame"); if (arg_slots.is_register()) { Label L_ok, L_bad; __ cmpptr(arg_slots.as_register(), (int32_t) NULL_WORD); __ jccb(Assembler::greater, L_bad); __ testl(arg_slots.as_register(), -stack_move_unit() - 1); __ jccb(Assembler::zero, L_ok); __ bind(L_bad); __ stop("assert arg_slots <= 0 and clear low bits"); __ bind(L_ok); } else { assert(arg_slots.as_constant() <= 0, ""); assert(arg_slots.as_constant() % -stack_move_unit() == 0, ""); } #endif //ASSERT #ifdef _LP64 if (arg_slots.is_register()) { // clean high bits of stack motion register (was loaded as an int) __ movslq(arg_slots.as_register(), arg_slots.as_register()); } #endif // Make space on the stack for the inserted argument(s). // Then pull down everything shallower than rax_argslot. // The stacked return address gets pulled down with everything else. // That is, copy [rsp, argslot) downward by -size words. In pseudo-code: // rsp -= size; // for (rdx = rsp + size; rdx < argslot; rdx++) // rdx[-size] = rdx[0] // argslot -= size; BLOCK_COMMENT("insert_arg_slots {"); __ mov(rdx_temp, rsp); // source pointer for copy __ lea(rsp, Address(rsp, arg_slots, Address::times_ptr)); { Label loop; __ BIND(loop); // pull one word down each time through the loop __ movptr(rbx_temp, Address(rdx_temp, 0)); __ movptr(Address(rdx_temp, arg_slots, Address::times_ptr), rbx_temp); __ addptr(rdx_temp, wordSize); __ cmpptr(rdx_temp, rax_argslot); __ jccb(Assembler::less, loop); } // Now move the argslot down, to point to the opened-up space. __ lea(rax_argslot, Address(rax_argslot, arg_slots, Address::times_ptr)); BLOCK_COMMENT("} insert_arg_slots"); } // Helper to remove argument slots from the stack. // arg_slots must be a multiple of stack_move_unit() and >= 0 void MethodHandles::remove_arg_slots(MacroAssembler* _masm, RegisterOrConstant arg_slots, Register rax_argslot, Register rbx_temp, Register rdx_temp, Register temp3_reg) { assert(temp3_reg == noreg, "temp3 not required"); assert_different_registers(rax_argslot, rbx_temp, rdx_temp, (!arg_slots.is_register() ? rsp : arg_slots.as_register())); #ifdef ASSERT // Verify that [argslot..argslot+size) lies within (rsp, rbp). __ lea(rbx_temp, Address(rax_argslot, arg_slots, Address::times_ptr)); verify_argslot(_masm, rbx_temp, "deleted argument(s) must fall within current frame"); if (arg_slots.is_register()) { Label L_ok, L_bad; __ cmpptr(arg_slots.as_register(), (int32_t) NULL_WORD); __ jccb(Assembler::less, L_bad); __ testl(arg_slots.as_register(), -stack_move_unit() - 1); __ jccb(Assembler::zero, L_ok); __ bind(L_bad); __ stop("assert arg_slots >= 0 and clear low bits"); __ bind(L_ok); } else { assert(arg_slots.as_constant() >= 0, ""); assert(arg_slots.as_constant() % -stack_move_unit() == 0, ""); } #endif //ASSERT #ifdef _LP64 if (false) { // not needed, since register is positive // clean high bits of stack motion register (was loaded as an int) if (arg_slots.is_register()) __ movslq(arg_slots.as_register(), arg_slots.as_register()); } #endif BLOCK_COMMENT("remove_arg_slots {"); // Pull up everything shallower than rax_argslot. // Then remove the excess space on the stack. // The stacked return address gets pulled up with everything else. // That is, copy [rsp, argslot) upward by size words. In pseudo-code: // for (rdx = argslot-1; rdx >= rsp; --rdx) // rdx[size] = rdx[0] // argslot += size; // rsp += size; __ lea(rdx_temp, Address(rax_argslot, -wordSize)); // source pointer for copy { Label loop; __ BIND(loop); // pull one word up each time through the loop __ movptr(rbx_temp, Address(rdx_temp, 0)); __ movptr(Address(rdx_temp, arg_slots, Address::times_ptr), rbx_temp); __ addptr(rdx_temp, -wordSize); __ cmpptr(rdx_temp, rsp); __ jccb(Assembler::greaterEqual, loop); } // Now move the argslot up, to point to the just-copied block. __ lea(rsp, Address(rsp, arg_slots, Address::times_ptr)); // And adjust the argslot address to point at the deletion point. __ lea(rax_argslot, Address(rax_argslot, arg_slots, Address::times_ptr)); BLOCK_COMMENT("} remove_arg_slots"); } #ifndef PRODUCT extern "C" void print_method_handle(oop mh); void trace_method_handle_stub(const char* adaptername, oop mh, intptr_t* saved_regs, intptr_t* entry_sp, intptr_t* saved_sp, intptr_t* saved_bp) { // called as a leaf from native code: do not block the JVM! intptr_t* last_sp = (intptr_t*) saved_bp[frame::interpreter_frame_last_sp_offset]; intptr_t* base_sp = (intptr_t*) saved_bp[frame::interpreter_frame_monitor_block_top_offset]; printf("MH %s mh="INTPTR_FORMAT" sp=("INTPTR_FORMAT"+"INTX_FORMAT") stack_size="INTX_FORMAT" bp="INTPTR_FORMAT"\n", adaptername, (intptr_t)mh, (intptr_t)entry_sp, (intptr_t)(saved_sp - entry_sp), (intptr_t)(base_sp - last_sp), (intptr_t)saved_bp); if (last_sp != saved_sp && last_sp != NULL) printf("*** last_sp="INTPTR_FORMAT"\n", (intptr_t)last_sp); if (Verbose) { printf(" reg dump: "); int saved_regs_count = (entry_sp-1) - saved_regs; // 32 bit: rdi rsi rbp rsp; rbx rdx rcx (*) rax int i; for (i = 0; i <= saved_regs_count; i++) { if (i > 0 && i % 4 == 0 && i != saved_regs_count) printf("\n + dump: "); printf(" %d: "INTPTR_FORMAT, i, saved_regs[i]); } printf("\n"); int stack_dump_count = 16; if (stack_dump_count < (int)(saved_bp + 2 - saved_sp)) stack_dump_count = (int)(saved_bp + 2 - saved_sp); if (stack_dump_count > 64) stack_dump_count = 48; for (i = 0; i < stack_dump_count; i += 4) { printf(" dump at SP[%d] "INTPTR_FORMAT": "INTPTR_FORMAT" "INTPTR_FORMAT" "INTPTR_FORMAT" "INTPTR_FORMAT"\n", i, (intptr_t) &entry_sp[i+0], entry_sp[i+0], entry_sp[i+1], entry_sp[i+2], entry_sp[i+3]); } print_method_handle(mh); } } void MethodHandles::trace_method_handle(MacroAssembler* _masm, const char* adaptername) { if (!TraceMethodHandles) return; BLOCK_COMMENT("trace_method_handle {"); __ push(rax); __ lea(rax, Address(rsp, wordSize*6)); // entry_sp __ pusha(); // arguments: __ push(rbp); // interpreter frame pointer __ push(rsi); // saved_sp __ push(rax); // entry_sp __ push(rcx); // mh __ push(rcx); __ movptr(Address(rsp, 0), (intptr_t) adaptername); __ call_VM_leaf(CAST_FROM_FN_PTR(address, trace_method_handle_stub), 5); __ popa(); __ pop(rax); BLOCK_COMMENT("} trace_method_handle"); } #endif //PRODUCT // which conversion op types are implemented here? int MethodHandles::adapter_conversion_ops_supported_mask() { return ((1<= _bound_ref_direct_mh); BasicType arg_type = T_ILLEGAL; int arg_mask = _INSERT_NO_MASK; int arg_slots = -1; get_ek_bound_mh_info(ek, arg_type, arg_mask, arg_slots); // make room for the new argument: __ movl(rax_argslot, rcx_bmh_vmargslot); __ lea(rax_argslot, __ argument_address(rax_argslot)); insert_arg_slots(_masm, arg_slots * stack_move_unit(), arg_mask, rax_argslot, rbx_temp, rdx_temp); // store bound argument into the new stack slot: __ movptr(rbx_temp, rcx_bmh_argument); Address prim_value_addr(rbx_temp, java_lang_boxing_object::value_offset_in_bytes(arg_type)); if (arg_type == T_OBJECT) { __ movptr(Address(rax_argslot, 0), rbx_temp); } else { __ load_sized_value(rdx_temp, prim_value_addr, type2aelembytes(arg_type), is_signed_subword_type(arg_type)); __ movptr(Address(rax_argslot, 0), rdx_temp); #ifndef _LP64 if (arg_slots == 2) { __ movl(rdx_temp, prim_value_addr.plus_disp(wordSize)); __ movl(Address(rax_argslot, Interpreter::stackElementSize), rdx_temp); } #endif //_LP64 } if (direct_to_method) { Register rbx_method = rbx_temp; __ movptr(rbx_method, rcx_mh_vmtarget); __ verify_oop(rbx_method); __ jmp(rbx_method_fie); } else { __ movptr(rcx_recv, rcx_mh_vmtarget); __ verify_oop(rcx_recv); __ jump_to_method_handle_entry(rcx_recv, rdx_temp); } } break; case _adapter_retype_only: case _adapter_retype_raw: // immediately jump to the next MH layer: __ movptr(rcx_recv, rcx_mh_vmtarget); __ verify_oop(rcx_recv); __ jump_to_method_handle_entry(rcx_recv, rdx_temp); // This is OK when all parameter types widen. // It is also OK when a return type narrows. break; case _adapter_check_cast: { // temps: Register rbx_klass = rbx_temp; // interesting AMH data // check a reference argument before jumping to the next layer of MH: __ movl(rax_argslot, rcx_amh_vmargslot); vmarg = __ argument_address(rax_argslot); // What class are we casting to? __ movptr(rbx_klass, rcx_amh_argument); // this is a Class object! __ movptr(rbx_klass, Address(rbx_klass, java_lang_Class::klass_offset_in_bytes())); Label done; __ movptr(rdx_temp, vmarg); __ testptr(rdx_temp, rdx_temp); __ jccb(Assembler::zero, done); // no cast if null __ load_klass(rdx_temp, rdx_temp); // live at this point: // - rbx_klass: klass required by the target method // - rdx_temp: argument klass to test // - rcx_recv: adapter method handle __ check_klass_subtype(rdx_temp, rbx_klass, rax_argslot, done); // If we get here, the type check failed! // Call the wrong_method_type stub, passing the failing argument type in rax. Register rax_mtype = rax_argslot; __ movl(rax_argslot, rcx_amh_vmargslot); // reload argslot field __ movptr(rdx_temp, vmarg); __ pushptr(rcx_amh_argument); // required class __ push(rdx_temp); // bad object __ push((int)Bytecodes::_checkcast); // who is complaining? __ jump(ExternalAddress(from_interpreted_entry(_raise_exception))); __ bind(done); // get the new MH: __ movptr(rcx_recv, rcx_mh_vmtarget); __ jump_to_method_handle_entry(rcx_recv, rdx_temp); } break; case _adapter_prim_to_prim: case _adapter_ref_to_prim: // handled completely by optimized cases __ stop("init_AdapterMethodHandle should not issue this"); break; case _adapter_opt_i2i: // optimized subcase of adapt_prim_to_prim //case _adapter_opt_f2i: // optimized subcase of adapt_prim_to_prim case _adapter_opt_l2i: // optimized subcase of adapt_prim_to_prim case _adapter_opt_unboxi: // optimized subcase of adapt_ref_to_prim { // perform an in-place conversion to int or an int subword __ movl(rax_argslot, rcx_amh_vmargslot); vmarg = __ argument_address(rax_argslot); switch (ek) { case _adapter_opt_i2i: __ movl(rdx_temp, vmarg); break; case _adapter_opt_l2i: { // just delete the extra slot; on a little-endian machine we keep the first __ lea(rax_argslot, __ argument_address(rax_argslot, 1)); remove_arg_slots(_masm, -stack_move_unit(), rax_argslot, rbx_temp, rdx_temp); vmarg = Address(rax_argslot, -Interpreter::stackElementSize); __ movl(rdx_temp, vmarg); } break; case _adapter_opt_unboxi: { // Load the value up from the heap. __ movptr(rdx_temp, vmarg); int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_INT); #ifdef ASSERT for (int bt = T_BOOLEAN; bt < T_INT; bt++) { if (is_subword_type(BasicType(bt))) assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(BasicType(bt)), ""); } #endif __ null_check(rdx_temp, value_offset); __ movl(rdx_temp, Address(rdx_temp, value_offset)); // We load this as a word. Because we are little-endian, // the low bits will be correct, but the high bits may need cleaning. // The vminfo will guide us to clean those bits. } break; default: ShouldNotReachHere(); } // Do the requested conversion and store the value. Register rbx_vminfo = rbx_temp; __ movl(rbx_vminfo, rcx_amh_conversion); assert(CONV_VMINFO_SHIFT == 0, "preshifted"); // get the new MH: __ movptr(rcx_recv, rcx_mh_vmtarget); // (now we are done with the old MH) // original 32-bit vmdata word must be of this form: // | MBZ:6 | signBitCount:8 | srcDstTypes:8 | conversionOp:8 | __ xchgptr(rcx, rbx_vminfo); // free rcx for shifts __ shll(rdx_temp /*, rcx*/); Label zero_extend, done; __ testl(rcx, CONV_VMINFO_SIGN_FLAG); __ jccb(Assembler::zero, zero_extend); // this path is taken for int->byte, int->short __ sarl(rdx_temp /*, rcx*/); __ jmpb(done); __ bind(zero_extend); // this is taken for int->char __ shrl(rdx_temp /*, rcx*/); __ bind(done); __ movl(vmarg, rdx_temp); // Store the value. __ xchgptr(rcx, rbx_vminfo); // restore rcx_recv __ jump_to_method_handle_entry(rcx_recv, rdx_temp); } break; case _adapter_opt_i2l: // optimized subcase of adapt_prim_to_prim case _adapter_opt_unboxl: // optimized subcase of adapt_ref_to_prim { // perform an in-place int-to-long or ref-to-long conversion __ movl(rax_argslot, rcx_amh_vmargslot); // on a little-endian machine we keep the first slot and add another after __ lea(rax_argslot, __ argument_address(rax_argslot, 1)); insert_arg_slots(_masm, stack_move_unit(), _INSERT_INT_MASK, rax_argslot, rbx_temp, rdx_temp); Address vmarg1(rax_argslot, -Interpreter::stackElementSize); Address vmarg2 = vmarg1.plus_disp(Interpreter::stackElementSize); switch (ek) { case _adapter_opt_i2l: { #ifdef _LP64 __ movslq(rdx_temp, vmarg1); // Load sign-extended __ movq(vmarg1, rdx_temp); // Store into first slot #else __ movl(rdx_temp, vmarg1); __ sarl(rdx_temp, BitsPerInt - 1); // __ extend_sign() __ movl(vmarg2, rdx_temp); // store second word #endif } break; case _adapter_opt_unboxl: { // Load the value up from the heap. __ movptr(rdx_temp, vmarg1); int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_LONG); assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(T_DOUBLE), ""); __ null_check(rdx_temp, value_offset); #ifdef _LP64 __ movq(rbx_temp, Address(rdx_temp, value_offset)); __ movq(vmarg1, rbx_temp); #else __ movl(rbx_temp, Address(rdx_temp, value_offset + 0*BytesPerInt)); __ movl(rdx_temp, Address(rdx_temp, value_offset + 1*BytesPerInt)); __ movl(vmarg1, rbx_temp); __ movl(vmarg2, rdx_temp); #endif } break; default: ShouldNotReachHere(); } __ movptr(rcx_recv, rcx_mh_vmtarget); __ jump_to_method_handle_entry(rcx_recv, rdx_temp); } break; case _adapter_opt_f2d: // optimized subcase of adapt_prim_to_prim case _adapter_opt_d2f: // optimized subcase of adapt_prim_to_prim { // perform an in-place floating primitive conversion __ movl(rax_argslot, rcx_amh_vmargslot); __ lea(rax_argslot, __ argument_address(rax_argslot, 1)); if (ek == _adapter_opt_f2d) { insert_arg_slots(_masm, stack_move_unit(), _INSERT_INT_MASK, rax_argslot, rbx_temp, rdx_temp); } Address vmarg(rax_argslot, -Interpreter::stackElementSize); #ifdef _LP64 if (ek == _adapter_opt_f2d) { __ movflt(xmm0, vmarg); __ cvtss2sd(xmm0, xmm0); __ movdbl(vmarg, xmm0); } else { __ movdbl(xmm0, vmarg); __ cvtsd2ss(xmm0, xmm0); __ movflt(vmarg, xmm0); } #else //_LP64 if (ek == _adapter_opt_f2d) { __ fld_s(vmarg); // load float to ST0 __ fstp_s(vmarg); // store single } else { __ fld_d(vmarg); // load double to ST0 __ fstp_s(vmarg); // store single } #endif //_LP64 if (ek == _adapter_opt_d2f) { remove_arg_slots(_masm, -stack_move_unit(), rax_argslot, rbx_temp, rdx_temp); } __ movptr(rcx_recv, rcx_mh_vmtarget); __ jump_to_method_handle_entry(rcx_recv, rdx_temp); } break; case _adapter_prim_to_ref: __ unimplemented(entry_name(ek)); // %%% FIXME: NYI break; case _adapter_swap_args: case _adapter_rot_args: // handled completely by optimized cases __ stop("init_AdapterMethodHandle should not issue this"); break; case _adapter_opt_swap_1: case _adapter_opt_swap_2: case _adapter_opt_rot_1_up: case _adapter_opt_rot_1_down: case _adapter_opt_rot_2_up: case _adapter_opt_rot_2_down: { int swap_bytes = 0, rotate = 0; get_ek_adapter_opt_swap_rot_info(ek, swap_bytes, rotate); // 'argslot' is the position of the first argument to swap __ movl(rax_argslot, rcx_amh_vmargslot); __ lea(rax_argslot, __ argument_address(rax_argslot)); // 'vminfo' is the second Register rbx_destslot = rbx_temp; __ movl(rbx_destslot, rcx_amh_conversion); assert(CONV_VMINFO_SHIFT == 0, "preshifted"); __ andl(rbx_destslot, CONV_VMINFO_MASK); __ lea(rbx_destslot, __ argument_address(rbx_destslot)); DEBUG_ONLY(verify_argslot(_masm, rbx_destslot, "swap point must fall within current frame")); if (!rotate) { for (int i = 0; i < swap_bytes; i += wordSize) { __ movptr(rdx_temp, Address(rax_argslot , i)); __ push(rdx_temp); __ movptr(rdx_temp, Address(rbx_destslot, i)); __ movptr(Address(rax_argslot, i), rdx_temp); __ pop(rdx_temp); __ movptr(Address(rbx_destslot, i), rdx_temp); } } else { // push the first chunk, which is going to get overwritten for (int i = swap_bytes; (i -= wordSize) >= 0; ) { __ movptr(rdx_temp, Address(rax_argslot, i)); __ push(rdx_temp); } if (rotate > 0) { // rotate upward __ subptr(rax_argslot, swap_bytes); #ifdef ASSERT { // Verify that argslot > destslot, by at least swap_bytes. Label L_ok; __ cmpptr(rax_argslot, rbx_destslot); __ jccb(Assembler::aboveEqual, L_ok); __ stop("source must be above destination (upward rotation)"); __ bind(L_ok); } #endif // work argslot down to destslot, copying contiguous data upwards // pseudo-code: // rax = src_addr - swap_bytes // rbx = dest_addr // while (rax >= rbx) *(rax + swap_bytes) = *(rax + 0), rax--; Label loop; __ bind(loop); __ movptr(rdx_temp, Address(rax_argslot, 0)); __ movptr(Address(rax_argslot, swap_bytes), rdx_temp); __ addptr(rax_argslot, -wordSize); __ cmpptr(rax_argslot, rbx_destslot); __ jccb(Assembler::aboveEqual, loop); } else { __ addptr(rax_argslot, swap_bytes); #ifdef ASSERT { // Verify that argslot < destslot, by at least swap_bytes. Label L_ok; __ cmpptr(rax_argslot, rbx_destslot); __ jccb(Assembler::belowEqual, L_ok); __ stop("source must be below destination (downward rotation)"); __ bind(L_ok); } #endif // work argslot up to destslot, copying contiguous data downwards // pseudo-code: // rax = src_addr + swap_bytes // rbx = dest_addr // while (rax <= rbx) *(rax - swap_bytes) = *(rax + 0), rax++; Label loop; __ bind(loop); __ movptr(rdx_temp, Address(rax_argslot, 0)); __ movptr(Address(rax_argslot, -swap_bytes), rdx_temp); __ addptr(rax_argslot, wordSize); __ cmpptr(rax_argslot, rbx_destslot); __ jccb(Assembler::belowEqual, loop); } // pop the original first chunk into the destination slot, now free for (int i = 0; i < swap_bytes; i += wordSize) { __ pop(rdx_temp); __ movptr(Address(rbx_destslot, i), rdx_temp); } } __ movptr(rcx_recv, rcx_mh_vmtarget); __ jump_to_method_handle_entry(rcx_recv, rdx_temp); } break; case _adapter_dup_args: { // 'argslot' is the position of the first argument to duplicate __ movl(rax_argslot, rcx_amh_vmargslot); __ lea(rax_argslot, __ argument_address(rax_argslot)); // 'stack_move' is negative number of words to duplicate Register rdx_stack_move = rdx_temp; __ movl2ptr(rdx_stack_move, rcx_amh_conversion); __ sarptr(rdx_stack_move, CONV_STACK_MOVE_SHIFT); int argslot0_num = 0; Address argslot0 = __ argument_address(RegisterOrConstant(argslot0_num)); assert(argslot0.base() == rsp, ""); int pre_arg_size = argslot0.disp(); assert(pre_arg_size % wordSize == 0, ""); assert(pre_arg_size > 0, "must include PC"); // remember the old rsp+1 (argslot[0]) Register rbx_oldarg = rbx_temp; __ lea(rbx_oldarg, argslot0); // move rsp down to make room for dups __ lea(rsp, Address(rsp, rdx_stack_move, Address::times_ptr)); // compute the new rsp+1 (argslot[0]) Register rdx_newarg = rdx_temp; __ lea(rdx_newarg, argslot0); __ push(rdi); // need a temp // (preceding push must be done after arg addresses are taken!) // pull down the pre_arg_size data (PC) for (int i = -pre_arg_size; i < 0; i += wordSize) { __ movptr(rdi, Address(rbx_oldarg, i)); __ movptr(Address(rdx_newarg, i), rdi); } // copy from rax_argslot[0...] down to new_rsp[1...] // pseudo-code: // rbx = old_rsp+1 // rdx = new_rsp+1 // rax = argslot // while (rdx < rbx) *rdx++ = *rax++ Label loop; __ bind(loop); __ movptr(rdi, Address(rax_argslot, 0)); __ movptr(Address(rdx_newarg, 0), rdi); __ addptr(rax_argslot, wordSize); __ addptr(rdx_newarg, wordSize); __ cmpptr(rdx_newarg, rbx_oldarg); __ jccb(Assembler::less, loop); __ pop(rdi); // restore temp __ movptr(rcx_recv, rcx_mh_vmtarget); __ jump_to_method_handle_entry(rcx_recv, rdx_temp); } break; case _adapter_drop_args: { // 'argslot' is the position of the first argument to nuke __ movl(rax_argslot, rcx_amh_vmargslot); __ lea(rax_argslot, __ argument_address(rax_argslot)); __ push(rdi); // need a temp // (must do previous push after argslot address is taken) // 'stack_move' is number of words to drop Register rdi_stack_move = rdi; __ movl2ptr(rdi_stack_move, rcx_amh_conversion); __ sarptr(rdi_stack_move, CONV_STACK_MOVE_SHIFT); remove_arg_slots(_masm, rdi_stack_move, rax_argslot, rbx_temp, rdx_temp); __ pop(rdi); // restore temp __ movptr(rcx_recv, rcx_mh_vmtarget); __ jump_to_method_handle_entry(rcx_recv, rdx_temp); } break; case _adapter_collect_args: __ unimplemented(entry_name(ek)); // %%% FIXME: NYI break; case _adapter_spread_args: // handled completely by optimized cases __ stop("init_AdapterMethodHandle should not issue this"); break; case _adapter_opt_spread_0: case _adapter_opt_spread_1: case _adapter_opt_spread_more: { // spread an array out into a group of arguments int length_constant = get_ek_adapter_opt_spread_info(ek); // find the address of the array argument __ movl(rax_argslot, rcx_amh_vmargslot); __ lea(rax_argslot, __ argument_address(rax_argslot)); // grab some temps { __ push(rsi); __ push(rdi); } // (preceding pushes must be done after argslot address is taken!) #define UNPUSH_RSI_RDI \ { __ pop(rdi); __ pop(rsi); } // arx_argslot points both to the array and to the first output arg vmarg = Address(rax_argslot, 0); // Get the array value. Register rsi_array = rsi; Register rdx_array_klass = rdx_temp; BasicType elem_type = T_OBJECT; int length_offset = arrayOopDesc::length_offset_in_bytes(); int elem0_offset = arrayOopDesc::base_offset_in_bytes(elem_type); __ movptr(rsi_array, vmarg); Label skip_array_check; if (length_constant == 0) { __ testptr(rsi_array, rsi_array); __ jcc(Assembler::zero, skip_array_check); } __ null_check(rsi_array, oopDesc::klass_offset_in_bytes()); __ load_klass(rdx_array_klass, rsi_array); // Check the array type. Register rbx_klass = rbx_temp; __ movptr(rbx_klass, rcx_amh_argument); // this is a Class object! __ movptr(rbx_klass, Address(rbx_klass, java_lang_Class::klass_offset_in_bytes())); Label ok_array_klass, bad_array_klass, bad_array_length; __ check_klass_subtype(rdx_array_klass, rbx_klass, rdi, ok_array_klass); // If we get here, the type check failed! __ jmp(bad_array_klass); __ bind(ok_array_klass); // Check length. if (length_constant >= 0) { __ cmpl(Address(rsi_array, length_offset), length_constant); } else { Register rbx_vminfo = rbx_temp; __ movl(rbx_vminfo, rcx_amh_conversion); assert(CONV_VMINFO_SHIFT == 0, "preshifted"); __ andl(rbx_vminfo, CONV_VMINFO_MASK); __ cmpl(rbx_vminfo, Address(rsi_array, length_offset)); } __ jcc(Assembler::notEqual, bad_array_length); Register rdx_argslot_limit = rdx_temp; // Array length checks out. Now insert any required stack slots. if (length_constant == -1) { // Form a pointer to the end of the affected region. __ lea(rdx_argslot_limit, Address(rax_argslot, Interpreter::stackElementSize)); // 'stack_move' is negative number of words to insert Register rdi_stack_move = rdi; __ movl2ptr(rdi_stack_move, rcx_amh_conversion); __ sarptr(rdi_stack_move, CONV_STACK_MOVE_SHIFT); Register rsi_temp = rsi_array; // spill this insert_arg_slots(_masm, rdi_stack_move, -1, rax_argslot, rbx_temp, rsi_temp); // reload the array (since rsi was killed) __ movptr(rsi_array, vmarg); } else if (length_constant > 1) { int arg_mask = 0; int new_slots = (length_constant - 1); for (int i = 0; i < new_slots; i++) { arg_mask <<= 1; arg_mask |= _INSERT_REF_MASK; } insert_arg_slots(_masm, new_slots * stack_move_unit(), arg_mask, rax_argslot, rbx_temp, rdx_temp); } else if (length_constant == 1) { // no stack resizing required } else if (length_constant == 0) { remove_arg_slots(_masm, -stack_move_unit(), rax_argslot, rbx_temp, rdx_temp); } // Copy from the array to the new slots. // Note: Stack change code preserves integrity of rax_argslot pointer. // So even after slot insertions, rax_argslot still points to first argument. if (length_constant == -1) { // [rax_argslot, rdx_argslot_limit) is the area we are inserting into. Register rsi_source = rsi_array; __ lea(rsi_source, Address(rsi_array, elem0_offset)); Label loop; __ bind(loop); __ movptr(rbx_temp, Address(rsi_source, 0)); __ movptr(Address(rax_argslot, 0), rbx_temp); __ addptr(rsi_source, type2aelembytes(elem_type)); __ addptr(rax_argslot, Interpreter::stackElementSize); __ cmpptr(rax_argslot, rdx_argslot_limit); __ jccb(Assembler::less, loop); } else if (length_constant == 0) { __ bind(skip_array_check); // nothing to copy } else { int elem_offset = elem0_offset; int slot_offset = 0; for (int index = 0; index < length_constant; index++) { __ movptr(rbx_temp, Address(rsi_array, elem_offset)); __ movptr(Address(rax_argslot, slot_offset), rbx_temp); elem_offset += type2aelembytes(elem_type); slot_offset += Interpreter::stackElementSize; } } // Arguments are spread. Move to next method handle. UNPUSH_RSI_RDI; __ movptr(rcx_recv, rcx_mh_vmtarget); __ jump_to_method_handle_entry(rcx_recv, rdx_temp); __ bind(bad_array_klass); UNPUSH_RSI_RDI; __ pushptr(Address(rdx_array_klass, java_mirror_offset)); // required type __ pushptr(vmarg); // bad array __ push((int)Bytecodes::_aaload); // who is complaining? __ jump(ExternalAddress(from_interpreted_entry(_raise_exception))); __ bind(bad_array_length); UNPUSH_RSI_RDI; __ push(rcx_recv); // AMH requiring a certain length __ pushptr(vmarg); // bad array __ push((int)Bytecodes::_arraylength); // who is complaining? __ jump(ExternalAddress(from_interpreted_entry(_raise_exception))); #undef UNPUSH_RSI_RDI } break; case _adapter_flyby: case _adapter_ricochet: __ unimplemented(entry_name(ek)); // %%% FIXME: NYI break; default: ShouldNotReachHere(); } __ hlt(); address me_cookie = MethodHandleEntry::start_compiled_entry(_masm, interp_entry); __ unimplemented(entry_name(ek)); // %%% FIXME: NYI init_entry(ek, MethodHandleEntry::finish_compiled_entry(_masm, me_cookie)); }