/* * Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "runtime/mutexLocker.hpp" #include "utilities/decoder.hpp" #include "services/memBaseline.hpp" #include "services/memPtr.hpp" #include "services/memPtrArray.hpp" #include "services/memSnapshot.hpp" #include "services/memTracker.hpp" static int sort_in_seq_order(const void* p1, const void* p2) { assert(p1 != NULL && p2 != NULL, "Sanity check"); const MemPointerRecord* mp1 = (MemPointerRecord*)p1; const MemPointerRecord* mp2 = (MemPointerRecord*)p2; return (mp1->seq() - mp2->seq()); } bool StagingArea::init() { if (MemTracker::track_callsite()) { _malloc_data = new (std::nothrow)MemPointerArrayImpl(); _vm_data = new (std::nothrow)MemPointerArrayImpl(); } else { _malloc_data = new (std::nothrow)MemPointerArrayImpl(); _vm_data = new (std::nothrow)MemPointerArrayImpl(); } if (_malloc_data != NULL && _vm_data != NULL && !_malloc_data->out_of_memory() && !_vm_data->out_of_memory()) { return true; } else { if (_malloc_data != NULL) delete _malloc_data; if (_vm_data != NULL) delete _vm_data; _malloc_data = NULL; _vm_data = NULL; return false; } } MemPointerArrayIteratorImpl StagingArea::virtual_memory_record_walker() { MemPointerArray* arr = vm_data(); // sort into seq number order arr->sort((FN_SORT)sort_in_seq_order); return MemPointerArrayIteratorImpl(arr); } MemSnapshot::MemSnapshot() { if (MemTracker::track_callsite()) { _alloc_ptrs = new (std::nothrow) MemPointerArrayImpl(); _vm_ptrs = new (std::nothrow)MemPointerArrayImpl(64, true); } else { _alloc_ptrs = new (std::nothrow) MemPointerArrayImpl(); _vm_ptrs = new (std::nothrow)MemPointerArrayImpl(64, true); } _staging_area.init(); _lock = new (std::nothrow) Mutex(Monitor::max_nonleaf - 1, "memSnapshotLock"); NOT_PRODUCT(_untracked_count = 0;) } MemSnapshot::~MemSnapshot() { assert(MemTracker::shutdown_in_progress(), "native memory tracking still on"); { MutexLockerEx locker(_lock); if (_alloc_ptrs != NULL) { delete _alloc_ptrs; _alloc_ptrs = NULL; } if (_vm_ptrs != NULL) { delete _vm_ptrs; _vm_ptrs = NULL; } } if (_lock != NULL) { delete _lock; _lock = NULL; } } void MemSnapshot::copy_pointer(MemPointerRecord* dest, const MemPointerRecord* src) { assert(dest != NULL && src != NULL, "Just check"); assert(dest->addr() == src->addr(), "Just check"); MEMFLAGS flags = dest->flags(); if (MemTracker::track_callsite()) { *(MemPointerRecordEx*)dest = *(MemPointerRecordEx*)src; } else { *dest = *src; } } // merge a per-thread memory recorder to the staging area bool MemSnapshot::merge(MemRecorder* rec) { assert(rec != NULL && !rec->out_of_memory(), "Just check"); SequencedRecordIterator itr(rec->pointer_itr()); MutexLockerEx lock(_lock, true); MemPointerIterator malloc_staging_itr(_staging_area.malloc_data()); MemPointerRecord *p1, *p2; p1 = (MemPointerRecord*) itr.current(); while (p1 != NULL) { if (p1->is_vm_pointer()) { // we don't do anything with virtual memory records during merge if (!_staging_area.vm_data()->append(p1)) { return false; } } else { p2 = (MemPointerRecord*)malloc_staging_itr.locate(p1->addr()); // we have not seen this memory block, so just add to staging area if (p2 == NULL) { if (!malloc_staging_itr.insert(p1)) { return false; } } else if (p1->addr() == p2->addr()) { MemPointerRecord* staging_next = (MemPointerRecord*)malloc_staging_itr.peek_next(); // a memory block can have many tagging records, find right one to replace or // right position to insert while (staging_next != NULL && staging_next->addr() == p1->addr()) { if ((staging_next->flags() & MemPointerRecord::tag_masks) <= (p1->flags() & MemPointerRecord::tag_masks)) { p2 = (MemPointerRecord*)malloc_staging_itr.next(); staging_next = (MemPointerRecord*)malloc_staging_itr.peek_next(); } else { break; } } int df = (p1->flags() & MemPointerRecord::tag_masks) - (p2->flags() & MemPointerRecord::tag_masks); if (df == 0) { assert(p1->seq() > 0, "not sequenced"); assert(p2->seq() > 0, "not sequenced"); if (p1->seq() > p2->seq()) { copy_pointer(p2, p1); } } else if (df < 0) { if (!malloc_staging_itr.insert(p1)) { return false; } } else { if (!malloc_staging_itr.insert_after(p1)) { return false; } } } else if (p1->addr() < p2->addr()) { if (!malloc_staging_itr.insert(p1)) { return false; } } else { if (!malloc_staging_itr.insert_after(p1)) { return false; } } } p1 = (MemPointerRecord*)itr.next(); } NOT_PRODUCT(void check_staging_data();) return true; } // promote data to next generation bool MemSnapshot::promote() { assert(_alloc_ptrs != NULL && _vm_ptrs != NULL, "Just check"); assert(_staging_area.malloc_data() != NULL && _staging_area.vm_data() != NULL, "Just check"); MutexLockerEx lock(_lock, true); MallocRecordIterator malloc_itr = _staging_area.malloc_record_walker(); bool promoted = false; if (promote_malloc_records(&malloc_itr)) { MemPointerArrayIteratorImpl vm_itr = _staging_area.virtual_memory_record_walker(); if (promote_virtual_memory_records(&vm_itr)) { promoted = true; } } NOT_PRODUCT(check_malloc_pointers();) _staging_area.clear(); return promoted; } bool MemSnapshot::promote_malloc_records(MemPointerArrayIterator* itr) { MemPointerIterator malloc_snapshot_itr(_alloc_ptrs); MemPointerRecord* new_rec = (MemPointerRecord*)itr->current(); MemPointerRecord* matched_rec; while (new_rec != NULL) { matched_rec = (MemPointerRecord*)malloc_snapshot_itr.locate(new_rec->addr()); // found matched memory block if (matched_rec != NULL && new_rec->addr() == matched_rec->addr()) { // snapshot already contains 'lived' records assert(matched_rec->is_allocation_record() || matched_rec->is_arena_size_record(), "Sanity check"); // update block states if (new_rec->is_allocation_record() || new_rec->is_arena_size_record()) { copy_pointer(matched_rec, new_rec); } else { // a deallocation record assert(new_rec->is_deallocation_record(), "Sanity check"); // an arena record can be followed by a size record, we need to remove both if (matched_rec->is_arena_record()) { MemPointerRecord* next = (MemPointerRecord*)malloc_snapshot_itr.peek_next(); if (next->is_arena_size_record()) { // it has to match the arena record assert(next->is_size_record_of_arena(matched_rec), "Sanity check"); malloc_snapshot_itr.remove(); } } // the memory is deallocated, remove related record(s) malloc_snapshot_itr.remove(); } } else { // it is a new record, insert into snapshot if (new_rec->is_arena_size_record()) { MemPointerRecord* prev = (MemPointerRecord*)malloc_snapshot_itr.peek_prev(); if (prev == NULL || !prev->is_arena_record() || !new_rec->is_size_record_of_arena(prev)) { // no matched arena record, ignore the size record new_rec = NULL; } } // only 'live' record can go into snapshot if (new_rec != NULL) { if (new_rec->is_allocation_record() || new_rec->is_arena_size_record()) { if (matched_rec != NULL && new_rec->addr() > matched_rec->addr()) { if (!malloc_snapshot_itr.insert_after(new_rec)) { return false; } } else { if (!malloc_snapshot_itr.insert(new_rec)) { return false; } } } #ifndef PRODUCT else if (!has_allocation_record(new_rec->addr())) { // NMT can not track some startup memory, which is allocated before NMT is on _untracked_count ++; } #endif } } new_rec = (MemPointerRecord*)itr->next(); } return true; } bool MemSnapshot::promote_virtual_memory_records(MemPointerArrayIterator* itr) { VMMemPointerIterator vm_snapshot_itr(_vm_ptrs); MemPointerRecord* new_rec = (MemPointerRecord*)itr->current(); VMMemRegionEx new_vm_rec; VMMemRegion* matched_rec; while (new_rec != NULL) { assert(new_rec->is_vm_pointer(), "Sanity check"); if (MemTracker::track_callsite()) { new_vm_rec.init((MemPointerRecordEx*)new_rec); } else { new_vm_rec.init(new_rec); } matched_rec = (VMMemRegion*)vm_snapshot_itr.locate(new_rec->addr()); if (matched_rec != NULL && (matched_rec->contains(&new_vm_rec) || matched_rec->base() == new_vm_rec.base())) { // snapshot can only have 'live' records assert(matched_rec->is_reserve_record(), "Sanity check"); if (new_vm_rec.is_reserve_record() && matched_rec->base() == new_vm_rec.base()) { // resize reserved virtual memory range // resize has to cover committed area assert(new_vm_rec.size() >= matched_rec->committed_size(), "Sanity check"); matched_rec->set_reserved_size(new_vm_rec.size()); } else if (new_vm_rec.is_commit_record()) { // commit memory inside reserved memory range assert(new_vm_rec.committed_size() <= matched_rec->reserved_size(), "Sanity check"); // thread stacks are marked committed, so we ignore 'commit' record for creating // stack guard pages if (FLAGS_TO_MEMORY_TYPE(matched_rec->flags()) != mtThreadStack) { matched_rec->commit(new_vm_rec.committed_size()); } } else if (new_vm_rec.is_uncommit_record()) { if (FLAGS_TO_MEMORY_TYPE(matched_rec->flags()) == mtThreadStack) { // ignore 'uncommit' record from removing stack guard pages, uncommit // thread stack as whole if (matched_rec->committed_size() == new_vm_rec.committed_size()) { matched_rec->uncommit(new_vm_rec.committed_size()); } } else { // uncommit memory inside reserved memory range assert(new_vm_rec.committed_size() <= matched_rec->committed_size(), "Sanity check"); matched_rec->uncommit(new_vm_rec.committed_size()); } } else if (new_vm_rec.is_type_tagging_record()) { // tag this virtual memory range to a memory type // can not re-tag a memory range to different type assert(FLAGS_TO_MEMORY_TYPE(matched_rec->flags()) == mtNone || FLAGS_TO_MEMORY_TYPE(matched_rec->flags()) == FLAGS_TO_MEMORY_TYPE(new_vm_rec.flags()), "Sanity check"); matched_rec->tag(new_vm_rec.flags()); } else if (new_vm_rec.is_release_record()) { // release part or whole memory range if (new_vm_rec.base() == matched_rec->base() && new_vm_rec.size() == matched_rec->size()) { // release whole virtual memory range assert(matched_rec->committed_size() == 0, "Sanity check"); vm_snapshot_itr.remove(); } else { // partial release matched_rec->partial_release(new_vm_rec.base(), new_vm_rec.size()); } } else { // multiple reserve/commit on the same virtual memory range assert((new_vm_rec.is_reserve_record() || new_vm_rec.is_commit_record()) && (new_vm_rec.base() == matched_rec->base() && new_vm_rec.size() == matched_rec->size()), "Sanity check"); matched_rec->tag(new_vm_rec.flags()); } } else { // no matched record if (new_vm_rec.is_reserve_record()) { if (matched_rec == NULL || matched_rec->base() > new_vm_rec.base()) { if (!vm_snapshot_itr.insert(&new_vm_rec)) { return false; } } else { if (!vm_snapshot_itr.insert_after(&new_vm_rec)) { return false; } } } else { // throw out obsolete records, which are the commit/uncommit/release/tag records // on memory regions that are already released. } } new_rec = (MemPointerRecord*)itr->next(); } return true; } #ifndef PRODUCT void MemSnapshot::print_snapshot_stats(outputStream* st) { st->print_cr("Snapshot:"); st->print_cr("\tMalloced: %d/%d [%5.2f%%] %dKB", _alloc_ptrs->length(), _alloc_ptrs->capacity(), (100.0 * (float)_alloc_ptrs->length()) / (float)_alloc_ptrs->capacity(), _alloc_ptrs->instance_size()/K); st->print_cr("\tVM: %d/%d [%5.2f%%] %dKB", _vm_ptrs->length(), _vm_ptrs->capacity(), (100.0 * (float)_vm_ptrs->length()) / (float)_vm_ptrs->capacity(), _vm_ptrs->instance_size()/K); st->print_cr("\tMalloc staging Area: %d/%d [%5.2f%%] %dKB", _staging_area.malloc_data()->length(), _staging_area.malloc_data()->capacity(), (100.0 * (float)_staging_area.malloc_data()->length()) / (float)_staging_area.malloc_data()->capacity(), _staging_area.malloc_data()->instance_size()/K); st->print_cr("\tVirtual memory staging Area: %d/%d [%5.2f%%] %dKB", _staging_area.vm_data()->length(), _staging_area.vm_data()->capacity(), (100.0 * (float)_staging_area.vm_data()->length()) / (float)_staging_area.vm_data()->capacity(), _staging_area.vm_data()->instance_size()/K); st->print_cr("\tUntracked allocation: %d", _untracked_count); } void MemSnapshot::check_malloc_pointers() { MemPointerArrayIteratorImpl mItr(_alloc_ptrs); MemPointerRecord* p = (MemPointerRecord*)mItr.current(); MemPointerRecord* prev = NULL; while (p != NULL) { if (prev != NULL) { assert(p->addr() >= prev->addr(), "sorting order"); } prev = p; p = (MemPointerRecord*)mItr.next(); } } bool MemSnapshot::has_allocation_record(address addr) { MemPointerArrayIteratorImpl itr(_staging_area.malloc_data()); MemPointerRecord* cur = (MemPointerRecord*)itr.current(); while (cur != NULL) { if (cur->addr() == addr && cur->is_allocation_record()) { return true; } cur = (MemPointerRecord*)itr.next(); } return false; } #endif // PRODUCT #ifdef ASSERT void MemSnapshot::check_staging_data() { MemPointerArrayIteratorImpl itr(_staging_area.malloc_data()); MemPointerRecord* cur = (MemPointerRecord*)itr.current(); MemPointerRecord* next = (MemPointerRecord*)itr.next(); while (next != NULL) { assert((next->addr() > cur->addr()) || ((next->flags() & MemPointerRecord::tag_masks) > (cur->flags() & MemPointerRecord::tag_masks)), "sorting order"); cur = next; next = (MemPointerRecord*)itr.next(); } MemPointerArrayIteratorImpl vm_itr(_staging_area.vm_data()); cur = (MemPointerRecord*)vm_itr.current(); while (cur != NULL) { assert(cur->is_vm_pointer(), "virtual memory pointer only"); cur = (MemPointerRecord*)vm_itr.next(); } } #endif // ASSERT