/* * Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * */ class Compile; class Node; class MachNode; class MachTypeNode; class MachOper; //---------------------------Matcher------------------------------------------- class Matcher : public PhaseTransform { friend class VMStructs; // Private arena of State objects ResourceArea _states_arena; VectorSet _visited; // Visit bits // Used to control the Label pass VectorSet _shared; // Shared Ideal Node VectorSet _dontcare; // Nothing the matcher cares about // Private methods which perform the actual matching and reduction // Walks the label tree, generating machine nodes MachNode *ReduceInst( State *s, int rule, Node *&mem); void ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach); uint ReduceInst_Interior(State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds); void ReduceOper( State *s, int newrule, Node *&mem, MachNode *mach ); // If this node already matched using "rule", return the MachNode for it. MachNode* find_shared_node(Node* n, uint rule); // Convert a dense opcode number to an expanded rule number const int *_reduceOp; const int *_leftOp; const int *_rightOp; // Map dense opcode number to info on when rule is swallowed constant. const bool *_swallowed; // Map dense rule number to determine if this is an instruction chain rule const uint _begin_inst_chain_rule; const uint _end_inst_chain_rule; // We want to clone constants and possible CmpI-variants. // If we do not clone CmpI, then we can have many instances of // condition codes alive at once. This is OK on some chips and // bad on others. Hence the machine-dependent table lookup. const char *_must_clone; // Find shared Nodes, or Nodes that otherwise are Matcher roots void find_shared( Node *n ); // Debug and profile information for nodes in old space: GrowableArray* _old_node_note_array; // Node labeling iterator for instruction selection Node *Label_Root( const Node *n, State *svec, Node *control, const Node *mem ); Node *transform( Node *dummy ); Node_List &_proj_list; // For Machine nodes killing many values Node_Array _shared_nodes; debug_only(Node_Array _old2new_map;) // Map roots of ideal-trees to machine-roots debug_only(Node_Array _new2old_map;) // Maps machine nodes back to ideal // Accessors for the inherited field PhaseTransform::_nodes: void grow_new_node_array(uint idx_limit) { _nodes.map(idx_limit-1, NULL); } bool has_new_node(const Node* n) const { return _nodes.at(n->_idx) != NULL; } Node* new_node(const Node* n) const { assert(has_new_node(n), "set before get"); return _nodes.at(n->_idx); } void set_new_node(const Node* n, Node *nn) { assert(!has_new_node(n), "set only once"); _nodes.map(n->_idx, nn); } #ifdef ASSERT // Make sure only new nodes are reachable from this node void verify_new_nodes_only(Node* root); Node* _mem_node; // Ideal memory node consumed by mach node #endif public: int LabelRootDepth; static const int base2reg[]; // Map Types to machine register types // Convert ideal machine register to a register mask for spill-loads static const RegMask *idealreg2regmask[]; RegMask *idealreg2spillmask[_last_machine_leaf]; RegMask *idealreg2debugmask[_last_machine_leaf]; void init_spill_mask( Node *ret ); // Convert machine register number to register mask static uint mreg2regmask_max; static RegMask mreg2regmask[]; static RegMask STACK_ONLY_mask; bool is_shared( Node *n ) { return _shared.test(n->_idx) != 0; } void set_shared( Node *n ) { _shared.set(n->_idx); } bool is_visited( Node *n ) { return _visited.test(n->_idx) != 0; } void set_visited( Node *n ) { _visited.set(n->_idx); } bool is_dontcare( Node *n ) { return _dontcare.test(n->_idx) != 0; } void set_dontcare( Node *n ) { _dontcare.set(n->_idx); } // Mode bit to tell DFA and expand rules whether we are running after // (or during) register selection. Usually, the matcher runs before, // but it will also get called to generate post-allocation spill code. // In this situation, it is a deadly error to attempt to allocate more // temporary registers. bool _allocation_started; // Machine register names static const char *regName[]; // Machine register encodings static const unsigned char _regEncode[]; // Machine Node names const char **_ruleName; // Rules that are cheaper to rematerialize than to spill static const uint _begin_rematerialize; static const uint _end_rematerialize; // An array of chars, from 0 to _last_Mach_Reg. // No Save = 'N' (for register windows) // Save on Entry = 'E' // Save on Call = 'C' // Always Save = 'A' (same as SOE + SOC) const char *_register_save_policy; const char *_c_reg_save_policy; // Convert a machine register to a machine register type, so-as to // properly match spill code. const int *_register_save_type; // Maps from machine register to boolean; true if machine register can // be holding a call argument in some signature. static bool can_be_java_arg( int reg ); // Maps from machine register to boolean; true if machine register holds // a spillable argument. static bool is_spillable_arg( int reg ); // List of IfFalse or IfTrue Nodes that indicate a taken null test. // List is valid in the post-matching space. Node_List _null_check_tests; void collect_null_checks( Node *proj, Node *orig_proj ); void validate_null_checks( ); Matcher( Node_List &proj_list ); // Select instructions for entire method void match( ); // Helper for match OptoReg::Name warp_incoming_stk_arg( VMReg reg ); // Transform, then walk. Does implicit DCE while walking. // Name changed from "transform" to avoid it being virtual. Node *xform( Node *old_space_node, int Nodes ); // Match a single Ideal Node - turn it into a 1-Node tree; Label & Reduce. MachNode *match_tree( const Node *n ); MachNode *match_sfpt( SafePointNode *sfpt ); // Helper for match_sfpt OptoReg::Name warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ); // Initialize first stack mask and related masks. void init_first_stack_mask(); // If we should save-on-entry this register bool is_save_on_entry( int reg ); // Fixup the save-on-entry registers void Fixup_Save_On_Entry( ); // --- Frame handling --- // Register number of the stack slot corresponding to the incoming SP. // Per the Big Picture in the AD file, it is: // SharedInfo::stack0 + locks + in_preserve_stack_slots + pad2. OptoReg::Name _old_SP; // Register number of the stack slot corresponding to the highest incoming // argument on the stack. Per the Big Picture in the AD file, it is: // _old_SP + out_preserve_stack_slots + incoming argument size. OptoReg::Name _in_arg_limit; // Register number of the stack slot corresponding to the new SP. // Per the Big Picture in the AD file, it is: // _in_arg_limit + pad0 OptoReg::Name _new_SP; // Register number of the stack slot corresponding to the highest outgoing // argument on the stack. Per the Big Picture in the AD file, it is: // _new_SP + max outgoing arguments of all calls OptoReg::Name _out_arg_limit; OptoRegPair *_parm_regs; // Array of machine registers per argument RegMask *_calling_convention_mask; // Array of RegMasks per argument // Does matcher support this ideal node? static const bool has_match_rule(int opcode); static const bool _hasMatchRule[_last_opcode]; // Used to determine if we have fast l2f conversion // USII has it, USIII doesn't static const bool convL2FSupported(void); // Vector width in bytes static const uint vector_width_in_bytes(void); // Vector ideal reg static const uint vector_ideal_reg(void); // Used to determine a "low complexity" 64-bit constant. (Zero is simple.) // The standard of comparison is one (StoreL ConL) vs. two (StoreI ConI). // Depends on the details of 64-bit constant generation on the CPU. static const bool isSimpleConstant64(jlong con); // These calls are all generated by the ADLC // TRUE - grows up, FALSE - grows down (Intel) virtual bool stack_direction() const; // Java-Java calling convention // (what you use when Java calls Java) // Alignment of stack in bytes, standard Intel word alignment is 4. // Sparc probably wants at least double-word (8). static uint stack_alignment_in_bytes(); // Alignment of stack, measured in stack slots. // The size of stack slots is defined by VMRegImpl::stack_slot_size. static uint stack_alignment_in_slots() { return stack_alignment_in_bytes() / (VMRegImpl::stack_slot_size); } // Array mapping arguments to registers. Argument 0 is usually the 'this' // pointer. Registers can include stack-slots and regular registers. static void calling_convention( BasicType *, VMRegPair *, uint len, bool is_outgoing ); // Convert a sig into a calling convention register layout // and find interesting things about it. static OptoReg::Name find_receiver( bool is_outgoing ); // Return address register. On Intel it is a stack-slot. On PowerPC // it is the Link register. On Sparc it is r31? virtual OptoReg::Name return_addr() const; RegMask _return_addr_mask; // Return value register. On Intel it is EAX. On Sparc i0/o0. static OptoRegPair return_value(int ideal_reg, bool is_outgoing); static OptoRegPair c_return_value(int ideal_reg, bool is_outgoing); RegMask _return_value_mask; // Inline Cache Register static OptoReg::Name inline_cache_reg(); static const RegMask &inline_cache_reg_mask(); static int inline_cache_reg_encode(); // Register for DIVI projection of divmodI static RegMask divI_proj_mask(); // Register for MODI projection of divmodI static RegMask modI_proj_mask(); // Register for DIVL projection of divmodL static RegMask divL_proj_mask(); // Register for MODL projection of divmodL static RegMask modL_proj_mask(); // Java-Interpreter calling convention // (what you use when calling between compiled-Java and Interpreted-Java // Number of callee-save + always-save registers // Ignores frame pointer and "special" registers static int number_of_saved_registers(); // The Method-klass-holder may be passed in the inline_cache_reg // and then expanded into the inline_cache_reg and a method_oop register static OptoReg::Name interpreter_method_oop_reg(); static const RegMask &interpreter_method_oop_reg_mask(); static int interpreter_method_oop_reg_encode(); static OptoReg::Name compiler_method_oop_reg(); static const RegMask &compiler_method_oop_reg_mask(); static int compiler_method_oop_reg_encode(); // Interpreter's Frame Pointer Register static OptoReg::Name interpreter_frame_pointer_reg(); static const RegMask &interpreter_frame_pointer_reg_mask(); // Java-Native calling convention // (what you use when intercalling between Java and C++ code) // Array mapping arguments to registers. Argument 0 is usually the 'this' // pointer. Registers can include stack-slots and regular registers. static void c_calling_convention( BasicType*, VMRegPair *, uint ); // Frame pointer. The frame pointer is kept at the base of the stack // and so is probably the stack pointer for most machines. On Intel // it is ESP. On the PowerPC it is R1. On Sparc it is SP. OptoReg::Name c_frame_pointer() const; static RegMask c_frame_ptr_mask; // !!!!! Special stuff for building ScopeDescs virtual int regnum_to_fpu_offset(int regnum); // Is this branch offset small enough to be addressed by a short branch? bool is_short_branch_offset(int rule, int offset); // Optional scaling for the parameter to the ClearArray/CopyArray node. static const bool init_array_count_is_in_bytes; // Threshold small size (in bytes) for a ClearArray/CopyArray node. // Anything this size or smaller may get converted to discrete scalar stores. static const int init_array_short_size; // Should the Matcher clone shifts on addressing modes, expecting them to // be subsumed into complex addressing expressions or compute them into // registers? True for Intel but false for most RISCs static const bool clone_shift_expressions; // Is it better to copy float constants, or load them directly from memory? // Intel can load a float constant from a direct address, requiring no // extra registers. Most RISCs will have to materialize an address into a // register first, so they may as well materialize the constant immediately. static const bool rematerialize_float_constants; // If CPU can load and store mis-aligned doubles directly then no fixup is // needed. Else we split the double into 2 integer pieces and move it // piece-by-piece. Only happens when passing doubles into C code or when // calling i2c adapters as the Java calling convention forces doubles to be // aligned. static const bool misaligned_doubles_ok; // Perform a platform dependent implicit null fixup. This is needed // on windows95 to take care of some unusual register constraints. void pd_implicit_null_fixup(MachNode *load, uint idx); // Advertise here if the CPU requires explicit rounding operations // to implement the UseStrictFP mode. static const bool strict_fp_requires_explicit_rounding; // Do floats take an entire double register or just half? static const bool float_in_double; // Do ints take an entire long register or just half? static const bool int_in_long; // This routine is run whenever a graph fails to match. // If it returns, the compiler should bailout to interpreter without error. // In non-product mode, SoftMatchFailure is false to detect non-canonical // graphs. Print a message and exit. static void soft_match_failure() { if( SoftMatchFailure ) return; else { fatal("SoftMatchFailure is not allowed except in product"); } } // Used by the DFA in dfa_sparc.cpp. Check for a prior FastLock // acting as an Acquire and thus we don't need an Acquire here. We // retain the Node to act as a compiler ordering barrier. static bool prior_fast_lock( const Node *acq ); // Used by the DFA in dfa_sparc.cpp. Check for a following // FastUnLock acting as a Release and thus we don't need a Release // here. We retain the Node to act as a compiler ordering barrier. static bool post_fast_unlock( const Node *rel ); // Check for a following volatile memory barrier without an // intervening load and thus we don't need a barrier here. We // retain the Node to act as a compiler ordering barrier. static bool post_store_load_barrier(const Node* mb); #ifdef ASSERT void dump_old2new_map(); // machine-independent to machine-dependent Node* find_old_node(Node* new_node) { return _new2old_map[new_node->_idx]; } #endif };