/* * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "c1/c1_CodeStubs.hpp" #include "c1/c1_FrameMap.hpp" #include "c1/c1_LIRAssembler.hpp" #include "c1/c1_MacroAssembler.hpp" #include "c1/c1_Runtime1.hpp" #include "nativeInst_sparc.hpp" #include "runtime/sharedRuntime.hpp" #include "vmreg_sparc.inline.hpp" #ifndef SERIALGC #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp" #endif #define __ ce->masm()-> RangeCheckStub::RangeCheckStub(CodeEmitInfo* info, LIR_Opr index, bool throw_index_out_of_bounds_exception) : _throw_index_out_of_bounds_exception(throw_index_out_of_bounds_exception) , _index(index) { assert(info != NULL, "must have info"); _info = new CodeEmitInfo(info); } void RangeCheckStub::emit_code(LIR_Assembler* ce) { __ bind(_entry); if (_index->is_register()) { __ mov(_index->as_register(), G4); } else { __ set(_index->as_jint(), G4); } if (_throw_index_out_of_bounds_exception) { __ call(Runtime1::entry_for(Runtime1::throw_index_exception_id), relocInfo::runtime_call_type); } else { __ call(Runtime1::entry_for(Runtime1::throw_range_check_failed_id), relocInfo::runtime_call_type); } __ delayed()->nop(); ce->add_call_info_here(_info); ce->verify_oop_map(_info); #ifdef ASSERT __ should_not_reach_here(); #endif } void CounterOverflowStub::emit_code(LIR_Assembler* ce) { __ bind(_entry); __ set(_bci, G4); __ call(Runtime1::entry_for(Runtime1::counter_overflow_id), relocInfo::runtime_call_type); __ delayed()->mov_or_nop(_method->as_register(), G5); ce->add_call_info_here(_info); ce->verify_oop_map(_info); __ br(Assembler::always, true, Assembler::pt, _continuation); __ delayed()->nop(); } void DivByZeroStub::emit_code(LIR_Assembler* ce) { if (_offset != -1) { ce->compilation()->implicit_exception_table()->append(_offset, __ offset()); } __ bind(_entry); __ call(Runtime1::entry_for(Runtime1::throw_div0_exception_id), relocInfo::runtime_call_type); __ delayed()->nop(); ce->add_call_info_here(_info); ce->verify_oop_map(_info); #ifdef ASSERT __ should_not_reach_here(); #endif } void ImplicitNullCheckStub::emit_code(LIR_Assembler* ce) { ce->compilation()->implicit_exception_table()->append(_offset, __ offset()); __ bind(_entry); __ call(Runtime1::entry_for(Runtime1::throw_null_pointer_exception_id), relocInfo::runtime_call_type); __ delayed()->nop(); ce->add_call_info_here(_info); ce->verify_oop_map(_info); #ifdef ASSERT __ should_not_reach_here(); #endif } // Implementation of SimpleExceptionStub // Note: %g1 and %g3 are already in use void SimpleExceptionStub::emit_code(LIR_Assembler* ce) { __ bind(_entry); __ call(Runtime1::entry_for(_stub), relocInfo::runtime_call_type); if (_obj->is_valid()) { __ delayed()->mov(_obj->as_register(), G4); // _obj contains the optional argument to the stub } else { __ delayed()->mov(G0, G4); } ce->add_call_info_here(_info); #ifdef ASSERT __ should_not_reach_here(); #endif } // Implementation of NewInstanceStub NewInstanceStub::NewInstanceStub(LIR_Opr klass_reg, LIR_Opr result, ciInstanceKlass* klass, CodeEmitInfo* info, Runtime1::StubID stub_id) { _result = result; _klass = klass; _klass_reg = klass_reg; _info = new CodeEmitInfo(info); assert(stub_id == Runtime1::new_instance_id || stub_id == Runtime1::fast_new_instance_id || stub_id == Runtime1::fast_new_instance_init_check_id, "need new_instance id"); _stub_id = stub_id; } void NewInstanceStub::emit_code(LIR_Assembler* ce) { __ bind(_entry); __ call(Runtime1::entry_for(_stub_id), relocInfo::runtime_call_type); __ delayed()->mov_or_nop(_klass_reg->as_register(), G5); ce->add_call_info_here(_info); ce->verify_oop_map(_info); __ br(Assembler::always, false, Assembler::pt, _continuation); __ delayed()->mov_or_nop(O0, _result->as_register()); } // Implementation of NewTypeArrayStub NewTypeArrayStub::NewTypeArrayStub(LIR_Opr klass_reg, LIR_Opr length, LIR_Opr result, CodeEmitInfo* info) { _klass_reg = klass_reg; _length = length; _result = result; _info = new CodeEmitInfo(info); } void NewTypeArrayStub::emit_code(LIR_Assembler* ce) { __ bind(_entry); __ mov(_length->as_register(), G4); __ call(Runtime1::entry_for(Runtime1::new_type_array_id), relocInfo::runtime_call_type); __ delayed()->mov_or_nop(_klass_reg->as_register(), G5); ce->add_call_info_here(_info); ce->verify_oop_map(_info); __ br(Assembler::always, false, Assembler::pt, _continuation); __ delayed()->mov_or_nop(O0, _result->as_register()); } // Implementation of NewObjectArrayStub NewObjectArrayStub::NewObjectArrayStub(LIR_Opr klass_reg, LIR_Opr length, LIR_Opr result, CodeEmitInfo* info) { _klass_reg = klass_reg; _length = length; _result = result; _info = new CodeEmitInfo(info); } void NewObjectArrayStub::emit_code(LIR_Assembler* ce) { __ bind(_entry); __ mov(_length->as_register(), G4); __ call(Runtime1::entry_for(Runtime1::new_object_array_id), relocInfo::runtime_call_type); __ delayed()->mov_or_nop(_klass_reg->as_register(), G5); ce->add_call_info_here(_info); ce->verify_oop_map(_info); __ br(Assembler::always, false, Assembler::pt, _continuation); __ delayed()->mov_or_nop(O0, _result->as_register()); } // Implementation of MonitorAccessStubs MonitorEnterStub::MonitorEnterStub(LIR_Opr obj_reg, LIR_Opr lock_reg, CodeEmitInfo* info) : MonitorAccessStub(obj_reg, lock_reg) { _info = new CodeEmitInfo(info); } void MonitorEnterStub::emit_code(LIR_Assembler* ce) { __ bind(_entry); __ mov(_obj_reg->as_register(), G4); if (ce->compilation()->has_fpu_code()) { __ call(Runtime1::entry_for(Runtime1::monitorenter_id), relocInfo::runtime_call_type); } else { __ call(Runtime1::entry_for(Runtime1::monitorenter_nofpu_id), relocInfo::runtime_call_type); } __ delayed()->mov_or_nop(_lock_reg->as_register(), G5); ce->add_call_info_here(_info); ce->verify_oop_map(_info); __ br(Assembler::always, true, Assembler::pt, _continuation); __ delayed()->nop(); } void MonitorExitStub::emit_code(LIR_Assembler* ce) { __ bind(_entry); if (_compute_lock) { ce->monitor_address(_monitor_ix, _lock_reg); } if (ce->compilation()->has_fpu_code()) { __ call(Runtime1::entry_for(Runtime1::monitorexit_id), relocInfo::runtime_call_type); } else { __ call(Runtime1::entry_for(Runtime1::monitorexit_nofpu_id), relocInfo::runtime_call_type); } __ delayed()->mov_or_nop(_lock_reg->as_register(), G4); __ br(Assembler::always, true, Assembler::pt, _continuation); __ delayed()->nop(); } // Implementation of patching: // - Copy the code at given offset to an inlined buffer (first the bytes, then the number of bytes) // - Replace original code with a call to the stub // At Runtime: // - call to stub, jump to runtime // - in runtime: preserve all registers (especially objects, i.e., source and destination object) // - in runtime: after initializing class, restore original code, reexecute instruction int PatchingStub::_patch_info_offset = -NativeGeneralJump::instruction_size; void PatchingStub::align_patch_site(MacroAssembler* ) { // patch sites on sparc are always properly aligned. } void PatchingStub::emit_code(LIR_Assembler* ce) { // copy original code here assert(NativeCall::instruction_size <= _bytes_to_copy && _bytes_to_copy <= 0xFF, "not enough room for call"); assert((_bytes_to_copy & 0x3) == 0, "must copy a multiple of four bytes"); Label call_patch; int being_initialized_entry = __ offset(); if (_id == load_klass_id) { // produce a copy of the load klass instruction for use by the being initialized case #ifdef ASSERT address start = __ pc(); #endif AddressLiteral addrlit(NULL, oop_Relocation::spec(_oop_index)); __ patchable_set(addrlit, _obj); #ifdef ASSERT for (int i = 0; i < _bytes_to_copy; i++) { address ptr = (address)(_pc_start + i); int a_byte = (*ptr) & 0xFF; assert(a_byte == *start++, "should be the same code"); } #endif } else { // make a copy the code which is going to be patched. for (int i = 0; i < _bytes_to_copy; i++) { address ptr = (address)(_pc_start + i); int a_byte = (*ptr) & 0xFF; __ a_byte (a_byte); } } address end_of_patch = __ pc(); int bytes_to_skip = 0; if (_id == load_klass_id) { int offset = __ offset(); if (CommentedAssembly) { __ block_comment(" being_initialized check"); } // static field accesses have special semantics while the class // initializer is being run so we emit a test which can be used to // check that this code is being executed by the initializing // thread. assert(_obj != noreg, "must be a valid register"); assert(_oop_index >= 0, "must have oop index"); __ load_heap_oop(_obj, java_lang_Class::klass_offset_in_bytes(), G3); __ ld_ptr(G3, instanceKlass::init_thread_offset_in_bytes() + sizeof(klassOopDesc), G3); __ cmp_and_brx_short(G2_thread, G3, Assembler::notEqual, Assembler::pn, call_patch); // load_klass patches may execute the patched code before it's // copied back into place so we need to jump back into the main // code of the nmethod to continue execution. __ br(Assembler::always, false, Assembler::pt, _patch_site_continuation); __ delayed()->nop(); // make sure this extra code gets skipped bytes_to_skip += __ offset() - offset; } // Now emit the patch record telling the runtime how to find the // pieces of the patch. We only need 3 bytes but it has to be // aligned as an instruction so emit 4 bytes. int sizeof_patch_record = 4; bytes_to_skip += sizeof_patch_record; // emit the offsets needed to find the code to patch int being_initialized_entry_offset = __ offset() - being_initialized_entry + sizeof_patch_record; // Emit the patch record. We need to emit a full word, so emit an extra empty byte __ a_byte(0); __ a_byte(being_initialized_entry_offset); __ a_byte(bytes_to_skip); __ a_byte(_bytes_to_copy); address patch_info_pc = __ pc(); assert(patch_info_pc - end_of_patch == bytes_to_skip, "incorrect patch info"); address entry = __ pc(); NativeGeneralJump::insert_unconditional((address)_pc_start, entry); address target = NULL; switch (_id) { case access_field_id: target = Runtime1::entry_for(Runtime1::access_field_patching_id); break; case load_klass_id: target = Runtime1::entry_for(Runtime1::load_klass_patching_id); break; default: ShouldNotReachHere(); } __ bind(call_patch); if (CommentedAssembly) { __ block_comment("patch entry point"); } __ call(target, relocInfo::runtime_call_type); __ delayed()->nop(); assert(_patch_info_offset == (patch_info_pc - __ pc()), "must not change"); ce->add_call_info_here(_info); __ br(Assembler::always, false, Assembler::pt, _patch_site_entry); __ delayed()->nop(); if (_id == load_klass_id) { CodeSection* cs = __ code_section(); address pc = (address)_pc_start; RelocIterator iter(cs, pc, pc + 1); relocInfo::change_reloc_info_for_address(&iter, (address) pc, relocInfo::oop_type, relocInfo::none); pc = (address)(_pc_start + NativeMovConstReg::add_offset); RelocIterator iter2(cs, pc, pc+1); relocInfo::change_reloc_info_for_address(&iter2, (address) pc, relocInfo::oop_type, relocInfo::none); } } void DeoptimizeStub::emit_code(LIR_Assembler* ce) { __ bind(_entry); __ call(SharedRuntime::deopt_blob()->unpack_with_reexecution()); __ delayed()->nop(); ce->add_call_info_here(_info); debug_only(__ should_not_reach_here()); } void ArrayCopyStub::emit_code(LIR_Assembler* ce) { //---------------slow case: call to native----------------- __ bind(_entry); __ mov(src()->as_register(), O0); __ mov(src_pos()->as_register(), O1); __ mov(dst()->as_register(), O2); __ mov(dst_pos()->as_register(), O3); __ mov(length()->as_register(), O4); ce->emit_static_call_stub(); __ call(SharedRuntime::get_resolve_static_call_stub(), relocInfo::static_call_type); __ delayed()->nop(); ce->add_call_info_here(info()); ce->verify_oop_map(info()); #ifndef PRODUCT __ set((intptr_t)&Runtime1::_arraycopy_slowcase_cnt, O0); __ ld(O0, 0, O1); __ inc(O1); __ st(O1, 0, O0); #endif __ br(Assembler::always, false, Assembler::pt, _continuation); __ delayed()->nop(); } /////////////////////////////////////////////////////////////////////////////////// #ifndef SERIALGC void G1PreBarrierStub::emit_code(LIR_Assembler* ce) { // At this point we know that marking is in progress. // If do_load() is true then we have to emit the // load of the previous value; otherwise it has already // been loaded into _pre_val. __ bind(_entry); assert(pre_val()->is_register(), "Precondition."); Register pre_val_reg = pre_val()->as_register(); if (do_load()) { ce->mem2reg(addr(), pre_val(), T_OBJECT, patch_code(), info(), false /*wide*/, false /*unaligned*/); } if (__ is_in_wdisp16_range(_continuation)) { __ br_on_reg_cond(Assembler::rc_z, /*annul*/false, Assembler::pt, pre_val_reg, _continuation); } else { __ cmp(pre_val_reg, G0); __ brx(Assembler::equal, false, Assembler::pn, _continuation); } __ delayed()->nop(); __ call(Runtime1::entry_for(Runtime1::Runtime1::g1_pre_barrier_slow_id)); __ delayed()->mov(pre_val_reg, G4); __ br(Assembler::always, false, Assembler::pt, _continuation); __ delayed()->nop(); } void G1UnsafeGetObjSATBBarrierStub::emit_code(LIR_Assembler* ce) { // At this point we know that offset == referent_offset. // // So we might have to emit: // if (src == null) goto continuation. // // and we definitely have to emit: // if (klass(src).reference_type == REF_NONE) goto continuation // if (!marking_active) goto continuation // if (pre_val == null) goto continuation // call pre_barrier(pre_val) // goto continuation // __ bind(_entry); assert(src()->is_register(), "sanity"); Register src_reg = src()->as_register(); if (gen_src_check()) { // The original src operand was not a constant. // Generate src == null? if (__ is_in_wdisp16_range(_continuation)) { __ br_on_reg_cond(Assembler::rc_z, /*annul*/false, Assembler::pt, src_reg, _continuation); } else { __ cmp(src_reg, G0); __ brx(Assembler::equal, false, Assembler::pt, _continuation); } __ delayed()->nop(); } // Generate src->_klass->_reference_type() == REF_NONE)? assert(tmp()->is_register(), "sanity"); Register tmp_reg = tmp()->as_register(); __ load_klass(src_reg, tmp_reg); Address ref_type_adr(tmp_reg, instanceKlass::reference_type_offset_in_bytes() + sizeof(oopDesc)); __ ld(ref_type_adr, tmp_reg); if (__ is_in_wdisp16_range(_continuation)) { __ br_on_reg_cond(Assembler::rc_z, /*annul*/false, Assembler::pt, tmp_reg, _continuation); } else { __ cmp(tmp_reg, G0); __ brx(Assembler::equal, false, Assembler::pt, _continuation); } __ delayed()->nop(); // Is marking active? assert(thread()->is_register(), "precondition"); Register thread_reg = thread()->as_pointer_register(); Address in_progress(thread_reg, in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active())); if (in_bytes(PtrQueue::byte_width_of_active()) == 4) { __ ld(in_progress, tmp_reg); } else { assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption"); __ ldsb(in_progress, tmp_reg); } if (__ is_in_wdisp16_range(_continuation)) { __ br_on_reg_cond(Assembler::rc_z, /*annul*/false, Assembler::pt, tmp_reg, _continuation); } else { __ cmp(tmp_reg, G0); __ brx(Assembler::equal, false, Assembler::pt, _continuation); } __ delayed()->nop(); // val == null? assert(val()->is_register(), "Precondition."); Register val_reg = val()->as_register(); if (__ is_in_wdisp16_range(_continuation)) { __ br_on_reg_cond(Assembler::rc_z, /*annul*/false, Assembler::pt, val_reg, _continuation); } else { __ cmp(val_reg, G0); __ brx(Assembler::equal, false, Assembler::pt, _continuation); } __ delayed()->nop(); __ call(Runtime1::entry_for(Runtime1::Runtime1::g1_pre_barrier_slow_id)); __ delayed()->mov(val_reg, G4); __ br(Assembler::always, false, Assembler::pt, _continuation); __ delayed()->nop(); } jbyte* G1PostBarrierStub::_byte_map_base = NULL; jbyte* G1PostBarrierStub::byte_map_base_slow() { BarrierSet* bs = Universe::heap()->barrier_set(); assert(bs->is_a(BarrierSet::G1SATBCTLogging), "Must be if we're using this."); return ((G1SATBCardTableModRefBS*)bs)->byte_map_base; } void G1PostBarrierStub::emit_code(LIR_Assembler* ce) { __ bind(_entry); assert(addr()->is_register(), "Precondition."); assert(new_val()->is_register(), "Precondition."); Register addr_reg = addr()->as_pointer_register(); Register new_val_reg = new_val()->as_register(); if (__ is_in_wdisp16_range(_continuation)) { __ br_on_reg_cond(Assembler::rc_z, /*annul*/false, Assembler::pt, new_val_reg, _continuation); } else { __ cmp(new_val_reg, G0); __ brx(Assembler::equal, false, Assembler::pn, _continuation); } __ delayed()->nop(); __ call(Runtime1::entry_for(Runtime1::Runtime1::g1_post_barrier_slow_id)); __ delayed()->mov(addr_reg, G4); __ br(Assembler::always, false, Assembler::pt, _continuation); __ delayed()->nop(); } #endif // SERIALGC /////////////////////////////////////////////////////////////////////////////////// #undef __