/* * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "asm/macroAssembler.hpp" #include "code/relocInfo.hpp" #include "nativeInst_x86.hpp" #include "oops/oop.inline.hpp" #include "runtime/safepoint.hpp" void Relocation::pd_set_data_value(address x, intptr_t o, bool verify_only) { #ifdef AMD64 x += o; typedef Assembler::WhichOperand WhichOperand; WhichOperand which = (WhichOperand) format(); // that is, disp32 or imm, call32, narrow oop assert(which == Assembler::disp32_operand || which == Assembler::narrow_oop_operand || which == Assembler::imm_operand, "format unpacks ok"); if (which == Assembler::imm_operand) { if (verify_only) { guarantee(*pd_address_in_code() == x, "instructions must match"); } else { *pd_address_in_code() = x; } } else if (which == Assembler::narrow_oop_operand) { address disp = Assembler::locate_operand(addr(), which); // both compressed oops and compressed classes look the same if (Universe::heap()->is_in_reserved((oop)x)) { if (verify_only) { guarantee(*(uint32_t*) disp == oopDesc::encode_heap_oop((oop)x), "instructions must match"); } else { *(int32_t*) disp = oopDesc::encode_heap_oop((oop)x); } } else { if (verify_only) { guarantee(*(uint32_t*) disp == Klass::encode_klass((Klass*)x), "instructions must match"); } else { *(int32_t*) disp = Klass::encode_klass((Klass*)x); } } } else { // Note: Use runtime_call_type relocations for call32_operand. address ip = addr(); address disp = Assembler::locate_operand(ip, which); address next_ip = Assembler::locate_next_instruction(ip); if (verify_only) { guarantee(*(int32_t*) disp == (x - next_ip), "instructions must match"); } else { *(int32_t*) disp = x - next_ip; } } #else if (verify_only) { guarantee(*pd_address_in_code() == (x + o), "instructions must match"); } else { *pd_address_in_code() = x + o; } #endif // AMD64 } address Relocation::pd_call_destination(address orig_addr) { intptr_t adj = 0; if (orig_addr != NULL) { // We just moved this call instruction from orig_addr to addr(). // This means its target will appear to have grown by addr() - orig_addr. adj = -( addr() - orig_addr ); } NativeInstruction* ni = nativeInstruction_at(addr()); if (ni->is_call()) { return nativeCall_at(addr())->destination() + adj; } else if (ni->is_jump()) { return nativeJump_at(addr())->jump_destination() + adj; } else if (ni->is_cond_jump()) { return nativeGeneralJump_at(addr())->jump_destination() + adj; } else if (ni->is_mov_literal64()) { return (address) ((NativeMovConstReg*)ni)->data(); } else { ShouldNotReachHere(); return NULL; } } void Relocation::pd_set_call_destination(address x) { NativeInstruction* ni = nativeInstruction_at(addr()); if (ni->is_call()) { nativeCall_at(addr())->set_destination(x); } else if (ni->is_jump()) { NativeJump* nj = nativeJump_at(addr()); // Unresolved jumps are recognized by a destination of -1 // However 64bit can't actually produce such an address // and encodes a jump to self but jump_destination will // return a -1 as the signal. We must not relocate this // jmp or the ic code will not see it as unresolved. if (nj->jump_destination() == (address) -1) { x = addr(); // jump to self } nj->set_jump_destination(x); } else if (ni->is_cond_jump()) { // %%%% kludge this, for now, until we get a jump_destination method address old_dest = nativeGeneralJump_at(addr())->jump_destination(); address disp = Assembler::locate_operand(addr(), Assembler::call32_operand); *(jint*)disp += (x - old_dest); } else if (ni->is_mov_literal64()) { ((NativeMovConstReg*)ni)->set_data((intptr_t)x); } else { ShouldNotReachHere(); } } address* Relocation::pd_address_in_code() { // All embedded Intel addresses are stored in 32-bit words. // Since the addr points at the start of the instruction, // we must parse the instruction a bit to find the embedded word. assert(is_data(), "must be a DataRelocation"); typedef Assembler::WhichOperand WhichOperand; WhichOperand which = (WhichOperand) format(); // that is, disp32 or imm/imm32 #ifdef AMD64 assert(which == Assembler::disp32_operand || which == Assembler::call32_operand || which == Assembler::imm_operand, "format unpacks ok"); // The "address" in the code is a displacement can't return it as // and address* since it is really a jint* guarantee(which == Assembler::imm_operand, "must be immediate operand"); #else assert(which == Assembler::disp32_operand || which == Assembler::imm_operand, "format unpacks ok"); #endif // AMD64 return (address*) Assembler::locate_operand(addr(), which); } address Relocation::pd_get_address_from_code() { #ifdef AMD64 // All embedded Intel addresses are stored in 32-bit words. // Since the addr points at the start of the instruction, // we must parse the instruction a bit to find the embedded word. assert(is_data(), "must be a DataRelocation"); typedef Assembler::WhichOperand WhichOperand; WhichOperand which = (WhichOperand) format(); // that is, disp32 or imm/imm32 assert(which == Assembler::disp32_operand || which == Assembler::call32_operand || which == Assembler::imm_operand, "format unpacks ok"); if (which != Assembler::imm_operand) { address ip = addr(); address disp = Assembler::locate_operand(ip, which); address next_ip = Assembler::locate_next_instruction(ip); address a = next_ip + *(int32_t*) disp; return a; } #endif // AMD64 return *pd_address_in_code(); } void poll_Relocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) { #ifdef _LP64 if (!Assembler::is_polling_page_far()) { typedef Assembler::WhichOperand WhichOperand; WhichOperand which = (WhichOperand) format(); // This format is imm but it is really disp32 which = Assembler::disp32_operand; address orig_addr = old_addr_for(addr(), src, dest); NativeInstruction* oni = nativeInstruction_at(orig_addr); int32_t* orig_disp = (int32_t*) Assembler::locate_operand(orig_addr, which); // This poll_addr is incorrect by the size of the instruction it is irrelevant intptr_t poll_addr = (intptr_t)oni + *orig_disp; NativeInstruction* ni = nativeInstruction_at(addr()); intptr_t new_disp = poll_addr - (intptr_t) ni; int32_t* disp = (int32_t*) Assembler::locate_operand(addr(), which); * disp = (int32_t)new_disp; } #endif // _LP64 } void poll_return_Relocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) { #ifdef _LP64 if (!Assembler::is_polling_page_far()) { typedef Assembler::WhichOperand WhichOperand; WhichOperand which = (WhichOperand) format(); // This format is imm but it is really disp32 which = Assembler::disp32_operand; address orig_addr = old_addr_for(addr(), src, dest); NativeInstruction* oni = nativeInstruction_at(orig_addr); int32_t* orig_disp = (int32_t*) Assembler::locate_operand(orig_addr, which); // This poll_addr is incorrect by the size of the instruction it is irrelevant intptr_t poll_addr = (intptr_t)oni + *orig_disp; NativeInstruction* ni = nativeInstruction_at(addr()); intptr_t new_disp = poll_addr - (intptr_t) ni; int32_t* disp = (int32_t*) Assembler::locate_operand(addr(), which); * disp = (int32_t)new_disp; } #endif // _LP64 } void metadata_Relocation::pd_fix_value(address x) { }