/* * Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved. * Copyright 2013, 2014 SAP AG. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #ifndef CC_INTERP #include "asm/macroAssembler.inline.hpp" #include "interpreter/bytecodeHistogram.hpp" #include "interpreter/interpreter.hpp" #include "interpreter/interpreterGenerator.hpp" #include "interpreter/interpreterRuntime.hpp" #include "interpreter/templateTable.hpp" #include "oops/arrayOop.hpp" #include "oops/methodData.hpp" #include "oops/method.hpp" #include "oops/oop.inline.hpp" #include "prims/jvmtiExport.hpp" #include "prims/jvmtiThreadState.hpp" #include "runtime/arguments.hpp" #include "runtime/deoptimization.hpp" #include "runtime/frame.inline.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/stubRoutines.hpp" #include "runtime/synchronizer.hpp" #include "runtime/timer.hpp" #include "runtime/vframeArray.hpp" #include "utilities/debug.hpp" #include "utilities/macros.hpp" #undef __ #define __ _masm-> #ifdef PRODUCT #define BLOCK_COMMENT(str) /* nothing */ #else #define BLOCK_COMMENT(str) __ block_comment(str) #endif #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") //----------------------------------------------------------------------------- // Actually we should never reach here since we do stack overflow checks before pushing any frame. address TemplateInterpreterGenerator::generate_StackOverflowError_handler() { address entry = __ pc(); __ unimplemented("generate_StackOverflowError_handler"); return entry; } address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) { address entry = __ pc(); __ empty_expression_stack(); __ load_const_optimized(R4_ARG2, (address) name); // Index is in R17_tos. __ mr(R5_ARG3, R17_tos); __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException)); return entry; } #if 0 // Call special ClassCastException constructor taking object to cast // and target class as arguments. address TemplateInterpreterGenerator::generate_ClassCastException_verbose_handler(const char* name) { address entry = __ pc(); // Target class oop is in register R6_ARG4 by convention! // Expression stack must be empty before entering the VM if an // exception happened. __ empty_expression_stack(); // Setup parameters. // Thread will be loaded to R3_ARG1. __ load_const_optimized(R4_ARG2, (address) name); __ mr(R5_ARG3, R17_tos); // R6_ARG4 contains specified class. __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException_verbose)); #ifdef ASSERT // Above call must not return here since exception pending. __ should_not_reach_here(); #endif return entry; } #endif address TemplateInterpreterGenerator::generate_ClassCastException_handler() { address entry = __ pc(); // Expression stack must be empty before entering the VM if an // exception happened. __ empty_expression_stack(); // Load exception object. // Thread will be loaded to R3_ARG1. __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException), R17_tos); #ifdef ASSERT // Above call must not return here since exception pending. __ should_not_reach_here(); #endif return entry; } address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) { address entry = __ pc(); //__ untested("generate_exception_handler_common"); Register Rexception = R17_tos; // Expression stack must be empty before entering the VM if an exception happened. __ empty_expression_stack(); __ load_const_optimized(R4_ARG2, (address) name, R11_scratch1); if (pass_oop) { __ mr(R5_ARG3, Rexception); __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), false); } else { __ load_const_optimized(R5_ARG3, (address) message, R11_scratch1); __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), false); } // Throw exception. __ mr(R3_ARG1, Rexception); __ load_const_optimized(R11_scratch1, Interpreter::throw_exception_entry(), R12_scratch2); __ mtctr(R11_scratch1); __ bctr(); return entry; } address TemplateInterpreterGenerator::generate_continuation_for(TosState state) { address entry = __ pc(); __ unimplemented("generate_continuation_for"); return entry; } // This entry is returned to when a call returns to the interpreter. // When we arrive here, we expect that the callee stack frame is already popped. address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) { address entry = __ pc(); // Move the value out of the return register back to the TOS cache of current frame. switch (state) { case ltos: case btos: case ctos: case stos: case atos: case itos: __ mr(R17_tos, R3_RET); break; // RET -> TOS cache case ftos: case dtos: __ fmr(F15_ftos, F1_RET); break; // TOS cache -> GR_FRET case vtos: break; // Nothing to do, this was a void return. default : ShouldNotReachHere(); } __ restore_interpreter_state(R11_scratch1); // Sets R11_scratch1 = fp. __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1); __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0); // Compiled code destroys templateTableBase, reload. __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R12_scratch2); const Register cache = R11_scratch1; const Register size = R12_scratch2; __ get_cache_and_index_at_bcp(cache, 1, index_size); // Big Endian (get least significant byte of 64 bit value): __ lbz(size, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()) + 7, cache); __ sldi(size, size, Interpreter::logStackElementSize); __ add(R15_esp, R15_esp, size); __ dispatch_next(state, step); return entry; } address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) { address entry = __ pc(); // If state != vtos, we're returning from a native method, which put it's result // into the result register. So move the value out of the return register back // to the TOS cache of current frame. switch (state) { case ltos: case btos: case ctos: case stos: case atos: case itos: __ mr(R17_tos, R3_RET); break; // GR_RET -> TOS cache case ftos: case dtos: __ fmr(F15_ftos, F1_RET); break; // TOS cache -> GR_FRET case vtos: break; // Nothing to do, this was a void return. default : ShouldNotReachHere(); } // Load LcpoolCache @@@ should be already set! __ get_constant_pool_cache(R27_constPoolCache); // Handle a pending exception, fall through if none. __ check_and_forward_exception(R11_scratch1, R12_scratch2); // Start executing bytecodes. __ dispatch_next(state, step); return entry; } // A result handler converts the native result into java format. // Use the shared code between c++ and template interpreter. address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) { return AbstractInterpreterGenerator::generate_result_handler_for(type); } address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) { address entry = __ pc(); __ push(state); __ call_VM(noreg, runtime_entry); __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos)); return entry; } // Helpers for commoning out cases in the various type of method entries. // Increment invocation count & check for overflow. // // Note: checking for negative value instead of overflow // so we have a 'sticky' overflow test. // void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) { // Note: In tiered we increment either counters in method or in MDO depending if we're profiling or not. Register Rscratch1 = R11_scratch1; Register Rscratch2 = R12_scratch2; Register R3_counters = R3_ARG1; Label done; if (TieredCompilation) { const int increment = InvocationCounter::count_increment; const int mask = ((1 << Tier0InvokeNotifyFreqLog) - 1) << InvocationCounter::count_shift; Label no_mdo; if (ProfileInterpreter) { const Register Rmdo = Rscratch1; // If no method data exists, go to profile_continue. __ ld(Rmdo, in_bytes(Method::method_data_offset()), R19_method); __ cmpdi(CCR0, Rmdo, 0); __ beq(CCR0, no_mdo); // Increment backedge counter in the MDO. const int mdo_bc_offs = in_bytes(MethodData::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset()); __ lwz(Rscratch2, mdo_bc_offs, Rmdo); __ addi(Rscratch2, Rscratch2, increment); __ stw(Rscratch2, mdo_bc_offs, Rmdo); __ load_const_optimized(Rscratch1, mask, R0); __ and_(Rscratch1, Rscratch2, Rscratch1); __ bne(CCR0, done); __ b(*overflow); } // Increment counter in MethodCounters*. const int mo_bc_offs = in_bytes(MethodCounters::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset()); __ bind(no_mdo); __ get_method_counters(R19_method, R3_counters, done); __ lwz(Rscratch2, mo_bc_offs, R3_counters); __ addi(Rscratch2, Rscratch2, increment); __ stw(Rscratch2, mo_bc_offs, R3_counters); __ load_const_optimized(Rscratch1, mask, R0); __ and_(Rscratch1, Rscratch2, Rscratch1); __ beq(CCR0, *overflow); __ bind(done); } else { // Update standard invocation counters. Register Rsum_ivc_bec = R4_ARG2; __ get_method_counters(R19_method, R3_counters, done); __ increment_invocation_counter(R3_counters, Rsum_ivc_bec, R12_scratch2); // Increment interpreter invocation counter. if (ProfileInterpreter) { // %%% Merge this into methodDataOop. __ lwz(R12_scratch2, in_bytes(MethodCounters::interpreter_invocation_counter_offset()), R3_counters); __ addi(R12_scratch2, R12_scratch2, 1); __ stw(R12_scratch2, in_bytes(MethodCounters::interpreter_invocation_counter_offset()), R3_counters); } // Check if we must create a method data obj. if (ProfileInterpreter && profile_method != NULL) { const Register profile_limit = Rscratch1; int pl_offs = __ load_const_optimized(profile_limit, &InvocationCounter::InterpreterProfileLimit, R0, true); __ lwz(profile_limit, pl_offs, profile_limit); // Test to see if we should create a method data oop. __ cmpw(CCR0, Rsum_ivc_bec, profile_limit); __ blt(CCR0, *profile_method_continue); // If no method data exists, go to profile_method. __ test_method_data_pointer(*profile_method); } // Finally check for counter overflow. if (overflow) { const Register invocation_limit = Rscratch1; int il_offs = __ load_const_optimized(invocation_limit, &InvocationCounter::InterpreterInvocationLimit, R0, true); __ lwz(invocation_limit, il_offs, invocation_limit); assert(4 == sizeof(InvocationCounter::InterpreterInvocationLimit), "unexpected field size"); __ cmpw(CCR0, Rsum_ivc_bec, invocation_limit); __ bge(CCR0, *overflow); } __ bind(done); } } // Generate code to initiate compilation on invocation counter overflow. void TemplateInterpreterGenerator::generate_counter_overflow(Label& continue_entry) { // Generate code to initiate compilation on the counter overflow. // InterpreterRuntime::frequency_counter_overflow takes one arguments, // which indicates if the counter overflow occurs at a backwards branch (NULL bcp) // We pass zero in. // The call returns the address of the verified entry point for the method or NULL // if the compilation did not complete (either went background or bailed out). // // Unlike the C++ interpreter above: Check exceptions! // Assumption: Caller must set the flag "do_not_unlock_if_sychronized" if the monitor of a sync'ed // method has not yet been created. Thus, no unlocking of a non-existing monitor can occur. __ li(R4_ARG2, 0); __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R4_ARG2, true); // Returns verified_entry_point or NULL. // We ignore it in any case. __ b(continue_entry); } void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rmem_frame_size, Register Rscratch1) { assert_different_registers(Rmem_frame_size, Rscratch1); __ generate_stack_overflow_check_with_compare_and_throw(Rmem_frame_size, Rscratch1); } void TemplateInterpreterGenerator::unlock_method(bool check_exceptions) { __ unlock_object(R26_monitor, check_exceptions); } // Lock the current method, interpreter register window must be set up! void TemplateInterpreterGenerator::lock_method(Register Rflags, Register Rscratch1, Register Rscratch2, bool flags_preloaded) { const Register Robj_to_lock = Rscratch2; { if (!flags_preloaded) { __ lwz(Rflags, method_(access_flags)); } #ifdef ASSERT // Check if methods needs synchronization. { Label Lok; __ testbitdi(CCR0, R0, Rflags, JVM_ACC_SYNCHRONIZED_BIT); __ btrue(CCR0,Lok); __ stop("method doesn't need synchronization"); __ bind(Lok); } #endif // ASSERT } // Get synchronization object to Rscratch2. { const int mirror_offset = in_bytes(Klass::java_mirror_offset()); Label Lstatic; Label Ldone; __ testbitdi(CCR0, R0, Rflags, JVM_ACC_STATIC_BIT); __ btrue(CCR0, Lstatic); // Non-static case: load receiver obj from stack and we're done. __ ld(Robj_to_lock, R18_locals); __ b(Ldone); __ bind(Lstatic); // Static case: Lock the java mirror __ ld(Robj_to_lock, in_bytes(Method::const_offset()), R19_method); __ ld(Robj_to_lock, in_bytes(ConstMethod::constants_offset()), Robj_to_lock); __ ld(Robj_to_lock, ConstantPool::pool_holder_offset_in_bytes(), Robj_to_lock); __ ld(Robj_to_lock, mirror_offset, Robj_to_lock); __ bind(Ldone); __ verify_oop(Robj_to_lock); } // Got the oop to lock => execute! __ add_monitor_to_stack(true, Rscratch1, R0); __ std(Robj_to_lock, BasicObjectLock::obj_offset_in_bytes(), R26_monitor); __ lock_object(R26_monitor, Robj_to_lock); } // Generate a fixed interpreter frame for pure interpreter // and I2N native transition frames. // // Before (stack grows downwards): // // | ... | // |------------- | // | java arg0 | // | ... | // | java argn | // | | <- R15_esp // | | // |--------------| // | abi_112 | // | | <- R1_SP // |==============| // // // After: // // | ... | // | java arg0 |<- R18_locals // | ... | // | java argn | // |--------------| // | | // | java locals | // | | // |--------------| // | abi_48 | // |==============| // | | // | istate | // | | // |--------------| // | monitor |<- R26_monitor // |--------------| // | |<- R15_esp // | expression | // | stack | // | | // |--------------| // | | // | abi_112 |<- R1_SP // |==============| // // The top most frame needs an abi space of 112 bytes. This space is needed, // since we call to c. The c function may spill their arguments to the caller // frame. When we call to java, we don't need these spill slots. In order to save // space on the stack, we resize the caller. However, java local reside in // the caller frame and the frame has to be increased. The frame_size for the // current frame was calculated based on max_stack as size for the expression // stack. At the call, just a part of the expression stack might be used. // We don't want to waste this space and cut the frame back accordingly. // The resulting amount for resizing is calculated as follows: // resize = (number_of_locals - number_of_arguments) * slot_size // + (R1_SP - R15_esp) + 48 // // The size for the callee frame is calculated: // framesize = 112 + max_stack + monitor + state_size // // maxstack: Max number of slots on the expression stack, loaded from the method. // monitor: We statically reserve room for one monitor object. // state_size: We save the current state of the interpreter to this area. // void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call, Register Rsize_of_parameters, Register Rsize_of_locals) { Register parent_frame_resize = R6_ARG4, // Frame will grow by this number of bytes. top_frame_size = R7_ARG5, Rconst_method = R8_ARG6; assert_different_registers(Rsize_of_parameters, Rsize_of_locals, parent_frame_resize, top_frame_size); __ ld(Rconst_method, method_(const)); __ lhz(Rsize_of_parameters /* number of params */, in_bytes(ConstMethod::size_of_parameters_offset()), Rconst_method); if (native_call) { // If we're calling a native method, we reserve space for the worst-case signature // handler varargs vector, which is max(Argument::n_register_parameters, parameter_count+2). // We add two slots to the parameter_count, one for the jni // environment and one for a possible native mirror. Label skip_native_calculate_max_stack; __ addi(top_frame_size, Rsize_of_parameters, 2); __ cmpwi(CCR0, top_frame_size, Argument::n_register_parameters); __ bge(CCR0, skip_native_calculate_max_stack); __ li(top_frame_size, Argument::n_register_parameters); __ bind(skip_native_calculate_max_stack); __ sldi(Rsize_of_parameters, Rsize_of_parameters, Interpreter::logStackElementSize); __ sldi(top_frame_size, top_frame_size, Interpreter::logStackElementSize); __ sub(parent_frame_resize, R1_SP, R15_esp); // <0, off by Interpreter::stackElementSize! assert(Rsize_of_locals == noreg, "Rsize_of_locals not initialized"); // Only relevant value is Rsize_of_parameters. } else { __ lhz(Rsize_of_locals /* number of params */, in_bytes(ConstMethod::size_of_locals_offset()), Rconst_method); __ sldi(Rsize_of_parameters, Rsize_of_parameters, Interpreter::logStackElementSize); __ sldi(Rsize_of_locals, Rsize_of_locals, Interpreter::logStackElementSize); __ lhz(top_frame_size, in_bytes(ConstMethod::max_stack_offset()), Rconst_method); __ sub(R11_scratch1, Rsize_of_locals, Rsize_of_parameters); // >=0 __ sub(parent_frame_resize, R1_SP, R15_esp); // <0, off by Interpreter::stackElementSize! __ sldi(top_frame_size, top_frame_size, Interpreter::logStackElementSize); __ add(parent_frame_resize, parent_frame_resize, R11_scratch1); } // Compute top frame size. __ addi(top_frame_size, top_frame_size, frame::abi_reg_args_size + frame::ijava_state_size); // Cut back area between esp and max_stack. __ addi(parent_frame_resize, parent_frame_resize, frame::abi_minframe_size - Interpreter::stackElementSize); __ round_to(top_frame_size, frame::alignment_in_bytes); __ round_to(parent_frame_resize, frame::alignment_in_bytes); // parent_frame_resize = (locals-parameters) - (ESP-SP-ABI48) Rounded to frame alignment size. // Enlarge by locals-parameters (not in case of native_call), shrink by ESP-SP-ABI48. { // -------------------------------------------------------------------------- // Stack overflow check Label cont; __ add(R11_scratch1, parent_frame_resize, top_frame_size); generate_stack_overflow_check(R11_scratch1, R12_scratch2); } // Set up interpreter state registers. __ add(R18_locals, R15_esp, Rsize_of_parameters); __ ld(R27_constPoolCache, in_bytes(ConstMethod::constants_offset()), Rconst_method); __ ld(R27_constPoolCache, ConstantPool::cache_offset_in_bytes(), R27_constPoolCache); // Set method data pointer. if (ProfileInterpreter) { Label zero_continue; __ ld(R28_mdx, method_(method_data)); __ cmpdi(CCR0, R28_mdx, 0); __ beq(CCR0, zero_continue); __ addi(R28_mdx, R28_mdx, in_bytes(MethodData::data_offset())); __ bind(zero_continue); } if (native_call) { __ li(R14_bcp, 0); // Must initialize. } else { __ add(R14_bcp, in_bytes(ConstMethod::codes_offset()), Rconst_method); } // Resize parent frame. __ mflr(R12_scratch2); __ neg(parent_frame_resize, parent_frame_resize); __ resize_frame(parent_frame_resize, R11_scratch1); __ std(R12_scratch2, _abi(lr), R1_SP); __ addi(R26_monitor, R1_SP, - frame::ijava_state_size); __ addi(R15_esp, R26_monitor, - Interpreter::stackElementSize); // Store values. // R15_esp, R14_bcp, R26_monitor, R28_mdx are saved at java calls // in InterpreterMacroAssembler::call_from_interpreter. __ std(R19_method, _ijava_state_neg(method), R1_SP); __ std(R21_sender_SP, _ijava_state_neg(sender_sp), R1_SP); __ std(R27_constPoolCache, _ijava_state_neg(cpoolCache), R1_SP); __ std(R18_locals, _ijava_state_neg(locals), R1_SP); // Note: esp, bcp, monitor, mdx live in registers. Hence, the correct version can only // be found in the frame after save_interpreter_state is done. This is always true // for non-top frames. But when a signal occurs, dumping the top frame can go wrong, // because e.g. frame::interpreter_frame_bcp() will not access the correct value // (Enhanced Stack Trace). // The signal handler does not save the interpreter state into the frame. __ li(R0, 0); #ifdef ASSERT // Fill remaining slots with constants. __ load_const_optimized(R11_scratch1, 0x5afe); __ load_const_optimized(R12_scratch2, 0xdead); #endif // We have to initialize some frame slots for native calls (accessed by GC). if (native_call) { __ std(R26_monitor, _ijava_state_neg(monitors), R1_SP); __ std(R14_bcp, _ijava_state_neg(bcp), R1_SP); if (ProfileInterpreter) { __ std(R28_mdx, _ijava_state_neg(mdx), R1_SP); } } #ifdef ASSERT else { __ std(R12_scratch2, _ijava_state_neg(monitors), R1_SP); __ std(R12_scratch2, _ijava_state_neg(bcp), R1_SP); __ std(R12_scratch2, _ijava_state_neg(mdx), R1_SP); } __ std(R11_scratch1, _ijava_state_neg(ijava_reserved), R1_SP); __ std(R12_scratch2, _ijava_state_neg(esp), R1_SP); __ std(R12_scratch2, _ijava_state_neg(lresult), R1_SP); __ std(R12_scratch2, _ijava_state_neg(fresult), R1_SP); #endif __ subf(R12_scratch2, top_frame_size, R1_SP); __ std(R0, _ijava_state_neg(oop_tmp), R1_SP); __ std(R12_scratch2, _ijava_state_neg(top_frame_sp), R1_SP); // Push top frame. __ push_frame(top_frame_size, R11_scratch1); } // End of helpers // ============================================================================ // Various method entries // // Empty method, generate a very fast return. We must skip this entry if // someone's debugging, indicated by the flag // "interp_mode" in the Thread obj. // Note: empty methods are generated mostly methods that do assertions, which are // disabled in the "java opt build". address TemplateInterpreterGenerator::generate_empty_entry(void) { if (!UseFastEmptyMethods) { NOT_PRODUCT(__ should_not_reach_here();) return Interpreter::entry_for_kind(Interpreter::zerolocals); } Label Lslow_path; const Register Rjvmti_mode = R11_scratch1; address entry = __ pc(); __ lwz(Rjvmti_mode, thread_(interp_only_mode)); __ cmpwi(CCR0, Rjvmti_mode, 0); __ bne(CCR0, Lslow_path); // jvmti_mode!=0 // Noone's debuggin: Simply return. // Pop c2i arguments (if any) off when we return. #ifdef ASSERT __ ld(R9_ARG7, 0, R1_SP); __ ld(R10_ARG8, 0, R21_sender_SP); __ cmpd(CCR0, R9_ARG7, R10_ARG8); __ asm_assert_eq("backlink", 0x545); #endif // ASSERT __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started. // And we're done. __ blr(); __ bind(Lslow_path); __ branch_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals), R11_scratch1); __ flush(); return entry; } // Support abs and sqrt like in compiler. // For others we can use a normal (native) entry. inline bool math_entry_available(AbstractInterpreter::MethodKind kind) { // Provide math entry with debugging on demand. // Note: Debugging changes which code will get executed: // Debugging or disabled InlineIntrinsics: java method will get interpreted and performs a native call. // Not debugging and enabled InlineIntrinics: processor instruction will get used. // Result might differ slightly due to rounding etc. if (!InlineIntrinsics && (!FLAG_IS_ERGO(InlineIntrinsics))) return false; // Generate a vanilla entry. return ((kind==Interpreter::java_lang_math_sqrt && VM_Version::has_fsqrt()) || (kind==Interpreter::java_lang_math_abs)); } address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) { if (!math_entry_available(kind)) { NOT_PRODUCT(__ should_not_reach_here();) return Interpreter::entry_for_kind(Interpreter::zerolocals); } Label Lslow_path; const Register Rjvmti_mode = R11_scratch1; address entry = __ pc(); // Provide math entry with debugging on demand. __ lwz(Rjvmti_mode, thread_(interp_only_mode)); __ cmpwi(CCR0, Rjvmti_mode, 0); __ bne(CCR0, Lslow_path); // jvmti_mode!=0 __ lfd(F1_RET, Interpreter::stackElementSize, R15_esp); // Pop c2i arguments (if any) off when we return. #ifdef ASSERT __ ld(R9_ARG7, 0, R1_SP); __ ld(R10_ARG8, 0, R21_sender_SP); __ cmpd(CCR0, R9_ARG7, R10_ARG8); __ asm_assert_eq("backlink", 0x545); #endif // ASSERT __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started. if (kind == Interpreter::java_lang_math_sqrt) { __ fsqrt(F1_RET, F1_RET); } else if (kind == Interpreter::java_lang_math_abs) { __ fabs(F1_RET, F1_RET); } else { ShouldNotReachHere(); } // And we're done. __ blr(); // Provide slow path for JVMTI case. __ bind(Lslow_path); __ branch_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals), R12_scratch2); __ flush(); return entry; } // Interpreter stub for calling a native method. (asm interpreter) // This sets up a somewhat different looking stack for calling the // native method than the typical interpreter frame setup. // // On entry: // R19_method - method // R16_thread - JavaThread* // R15_esp - intptr_t* sender tos // // abstract stack (grows up) // [ IJava (caller of JNI callee) ] <-- ASP // ... address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) { address entry = __ pc(); const bool inc_counter = UseCompiler || CountCompiledCalls; // ----------------------------------------------------------------------------- // Allocate a new frame that represents the native callee (i2n frame). // This is not a full-blown interpreter frame, but in particular, the // following registers are valid after this: // - R19_method // - R18_local (points to start of argumuments to native function) // // abstract stack (grows up) // [ IJava (caller of JNI callee) ] <-- ASP // ... const Register signature_handler_fd = R11_scratch1; const Register pending_exception = R0; const Register result_handler_addr = R31; const Register native_method_fd = R11_scratch1; const Register access_flags = R22_tmp2; const Register active_handles = R11_scratch1; // R26_monitor saved to state. const Register sync_state = R12_scratch2; const Register sync_state_addr = sync_state; // Address is dead after use. const Register suspend_flags = R11_scratch1; //============================================================================= // Allocate new frame and initialize interpreter state. Label exception_return; Label exception_return_sync_check; Label stack_overflow_return; // Generate new interpreter state and jump to stack_overflow_return in case of // a stack overflow. //generate_compute_interpreter_state(stack_overflow_return); Register size_of_parameters = R22_tmp2; generate_fixed_frame(true, size_of_parameters, noreg /* unused */); //============================================================================= // Increment invocation counter. On overflow, entry to JNI method // will be compiled. Label invocation_counter_overflow, continue_after_compile; if (inc_counter) { if (synchronized) { // Since at this point in the method invocation the exception handler // would try to exit the monitor of synchronized methods which hasn't // been entered yet, we set the thread local variable // _do_not_unlock_if_synchronized to true. If any exception was thrown by // runtime, exception handling i.e. unlock_if_synchronized_method will // check this thread local flag. // This flag has two effects, one is to force an unwind in the topmost // interpreter frame and not perform an unlock while doing so. __ li(R0, 1); __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread); } generate_counter_incr(&invocation_counter_overflow, NULL, NULL); __ BIND(continue_after_compile); // Reset the _do_not_unlock_if_synchronized flag. if (synchronized) { __ li(R0, 0); __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread); } } // access_flags = method->access_flags(); // Load access flags. assert(access_flags->is_nonvolatile(), "access_flags must be in a non-volatile register"); // Type check. assert(4 == sizeof(AccessFlags), "unexpected field size"); __ lwz(access_flags, method_(access_flags)); // We don't want to reload R19_method and access_flags after calls // to some helper functions. assert(R19_method->is_nonvolatile(), "R19_method must be a non-volatile register"); // Check for synchronized methods. Must happen AFTER invocation counter // check, so method is not locked if counter overflows. if (synchronized) { lock_method(access_flags, R11_scratch1, R12_scratch2, true); // Update monitor in state. __ ld(R11_scratch1, 0, R1_SP); __ std(R26_monitor, _ijava_state_neg(monitors), R11_scratch1); } // jvmti/jvmpi support __ notify_method_entry(); //============================================================================= // Get and call the signature handler. __ ld(signature_handler_fd, method_(signature_handler)); Label call_signature_handler; __ cmpdi(CCR0, signature_handler_fd, 0); __ bne(CCR0, call_signature_handler); // Method has never been called. Either generate a specialized // handler or point to the slow one. // // Pass parameter 'false' to avoid exception check in call_VM. __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), R19_method, false); // Check for an exception while looking up the target method. If we // incurred one, bail. __ ld(pending_exception, thread_(pending_exception)); __ cmpdi(CCR0, pending_exception, 0); __ bne(CCR0, exception_return_sync_check); // Has pending exception. // Reload signature handler, it may have been created/assigned in the meanwhile. __ ld(signature_handler_fd, method_(signature_handler)); __ twi_0(signature_handler_fd); // Order wrt. load of klass mirror and entry point (isync is below). __ BIND(call_signature_handler); // Before we call the signature handler we push a new frame to // protect the interpreter frame volatile registers when we return // from jni but before we can get back to Java. // First set the frame anchor while the SP/FP registers are // convenient and the slow signature handler can use this same frame // anchor. // We have a TOP_IJAVA_FRAME here, which belongs to us. __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R12_scratch2/*tmp*/); // Now the interpreter frame (and its call chain) have been // invalidated and flushed. We are now protected against eager // being enabled in native code. Even if it goes eager the // registers will be reloaded as clean and we will invalidate after // the call so no spurious flush should be possible. // Call signature handler and pass locals address. // // Our signature handlers copy required arguments to the C stack // (outgoing C args), R3_ARG1 to R10_ARG8, and FARG1 to FARG13. __ mr(R3_ARG1, R18_locals); __ ld(signature_handler_fd, 0, signature_handler_fd); __ call_stub(signature_handler_fd); // Remove the register parameter varargs slots we allocated in // compute_interpreter_state. SP+16 ends up pointing to the ABI // outgoing argument area. // // Not needed on PPC64. //__ add(SP, SP, Argument::n_register_parameters*BytesPerWord); assert(result_handler_addr->is_nonvolatile(), "result_handler_addr must be in a non-volatile register"); // Save across call to native method. __ mr(result_handler_addr, R3_RET); __ isync(); // Acquire signature handler before trying to fetch the native entry point and klass mirror. // Set up fixed parameters and call the native method. // If the method is static, get mirror into R4_ARG2. { Label method_is_not_static; // Access_flags is non-volatile and still, no need to restore it. // Restore access flags. __ testbitdi(CCR0, R0, access_flags, JVM_ACC_STATIC_BIT); __ bfalse(CCR0, method_is_not_static); // constants = method->constants(); __ ld(R11_scratch1, in_bytes(Method::const_offset()), R19_method); __ ld(R11_scratch1, in_bytes(ConstMethod::constants_offset()), R11_scratch1); // pool_holder = method->constants()->pool_holder(); __ ld(R11_scratch1/*pool_holder*/, ConstantPool::pool_holder_offset_in_bytes(), R11_scratch1/*constants*/); const int mirror_offset = in_bytes(Klass::java_mirror_offset()); // mirror = pool_holder->klass_part()->java_mirror(); __ ld(R0/*mirror*/, mirror_offset, R11_scratch1/*pool_holder*/); // state->_native_mirror = mirror; __ ld(R11_scratch1, 0, R1_SP); __ std(R0/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1); // R4_ARG2 = &state->_oop_temp; __ addi(R4_ARG2, R11_scratch1, _ijava_state_neg(oop_tmp)); __ BIND(method_is_not_static); } // At this point, arguments have been copied off the stack into // their JNI positions. Oops are boxed in-place on the stack, with // handles copied to arguments. The result handler address is in a // register. // Pass JNIEnv address as first parameter. __ addir(R3_ARG1, thread_(jni_environment)); // Load the native_method entry before we change the thread state. __ ld(native_method_fd, method_(native_function)); //============================================================================= // Transition from _thread_in_Java to _thread_in_native. As soon as // we make this change the safepoint code needs to be certain that // the last Java frame we established is good. The pc in that frame // just needs to be near here not an actual return address. // We use release_store_fence to update values like the thread state, where // we don't want the current thread to continue until all our prior memory // accesses (including the new thread state) are visible to other threads. __ li(R0, _thread_in_native); __ release(); // TODO PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size"); __ stw(R0, thread_(thread_state)); if (UseMembar) { __ fence(); } //============================================================================= // Call the native method. Argument registers must not have been // overwritten since "__ call_stub(signature_handler);" (except for // ARG1 and ARG2 for static methods). __ call_c(native_method_fd); __ li(R0, 0); __ ld(R11_scratch1, 0, R1_SP); __ std(R3_RET, _ijava_state_neg(lresult), R11_scratch1); __ stfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1); __ std(R0/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1); // reset // Note: C++ interpreter needs the following here: // The frame_manager_lr field, which we use for setting the last // java frame, gets overwritten by the signature handler. Restore // it now. //__ get_PC_trash_LR(R11_scratch1); //__ std(R11_scratch1, _top_ijava_frame_abi(frame_manager_lr), R1_SP); // Because of GC R19_method may no longer be valid. // Block, if necessary, before resuming in _thread_in_Java state. // In order for GC to work, don't clear the last_Java_sp until after // blocking. //============================================================================= // Switch thread to "native transition" state before reading the // synchronization state. This additional state is necessary // because reading and testing the synchronization state is not // atomic w.r.t. GC, as this scenario demonstrates: Java thread A, // in _thread_in_native state, loads _not_synchronized and is // preempted. VM thread changes sync state to synchronizing and // suspends threads for GC. Thread A is resumed to finish this // native method, but doesn't block here since it didn't see any // synchronization in progress, and escapes. // We use release_store_fence to update values like the thread state, where // we don't want the current thread to continue until all our prior memory // accesses (including the new thread state) are visible to other threads. __ li(R0/*thread_state*/, _thread_in_native_trans); __ release(); __ stw(R0/*thread_state*/, thread_(thread_state)); if (UseMembar) { __ fence(); } // Write serialization page so that the VM thread can do a pseudo remote // membar. We use the current thread pointer to calculate a thread // specific offset to write to within the page. This minimizes bus // traffic due to cache line collision. else { __ serialize_memory(R16_thread, R11_scratch1, R12_scratch2); } // Now before we return to java we must look for a current safepoint // (a new safepoint can not start since we entered native_trans). // We must check here because a current safepoint could be modifying // the callers registers right this moment. // Acquire isn't strictly necessary here because of the fence, but // sync_state is declared to be volatile, so we do it anyway // (cmp-br-isync on one path, release (same as acquire on PPC64) on the other path). int sync_state_offs = __ load_const_optimized(sync_state_addr, SafepointSynchronize::address_of_state(), /*temp*/R0, true); // TODO PPC port assert(4 == SafepointSynchronize::sz_state(), "unexpected field size"); __ lwz(sync_state, sync_state_offs, sync_state_addr); // TODO PPC port assert(4 == Thread::sz_suspend_flags(), "unexpected field size"); __ lwz(suspend_flags, thread_(suspend_flags)); Label sync_check_done; Label do_safepoint; // No synchronization in progress nor yet synchronized. __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized); // Not suspended. __ cmpwi(CCR1, suspend_flags, 0); __ bne(CCR0, do_safepoint); __ beq(CCR1, sync_check_done); __ bind(do_safepoint); __ isync(); // Block. We do the call directly and leave the current // last_Java_frame setup undisturbed. We must save any possible // native result across the call. No oop is present. __ mr(R3_ARG1, R16_thread); __ call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, JavaThread::check_special_condition_for_native_trans), relocInfo::none); __ bind(sync_check_done); //============================================================================= // <<<<<< Back in Interpreter Frame >>>>> // We are in thread_in_native_trans here and back in the normal // interpreter frame. We don't have to do anything special about // safepoints and we can switch to Java mode anytime we are ready. // Note: frame::interpreter_frame_result has a dependency on how the // method result is saved across the call to post_method_exit. For // native methods it assumes that the non-FPU/non-void result is // saved in _native_lresult and a FPU result in _native_fresult. If // this changes then the interpreter_frame_result implementation // will need to be updated too. // On PPC64, we have stored the result directly after the native call. //============================================================================= // Back in Java // We use release_store_fence to update values like the thread state, where // we don't want the current thread to continue until all our prior memory // accesses (including the new thread state) are visible to other threads. __ li(R0/*thread_state*/, _thread_in_Java); __ release(); __ stw(R0/*thread_state*/, thread_(thread_state)); if (UseMembar) { __ fence(); } __ reset_last_Java_frame(); // Jvmdi/jvmpi support. Whether we've got an exception pending or // not, and whether unlocking throws an exception or not, we notify // on native method exit. If we do have an exception, we'll end up // in the caller's context to handle it, so if we don't do the // notify here, we'll drop it on the floor. __ notify_method_exit(true/*native method*/, ilgl /*illegal state (not used for native methods)*/, InterpreterMacroAssembler::NotifyJVMTI, false /*check_exceptions*/); //============================================================================= // Handle exceptions if (synchronized) { // Don't check for exceptions since we're still in the i2n frame. Do that // manually afterwards. unlock_method(false); } // Reset active handles after returning from native. // thread->active_handles()->clear(); __ ld(active_handles, thread_(active_handles)); // TODO PPC port assert(4 == JNIHandleBlock::top_size_in_bytes(), "unexpected field size"); __ li(R0, 0); __ stw(R0, JNIHandleBlock::top_offset_in_bytes(), active_handles); Label exception_return_sync_check_already_unlocked; __ ld(R0/*pending_exception*/, thread_(pending_exception)); __ cmpdi(CCR0, R0/*pending_exception*/, 0); __ bne(CCR0, exception_return_sync_check_already_unlocked); //----------------------------------------------------------------------------- // No exception pending. // Move native method result back into proper registers and return. // Invoke result handler (may unbox/promote). __ ld(R11_scratch1, 0, R1_SP); __ ld(R3_RET, _ijava_state_neg(lresult), R11_scratch1); __ lfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1); __ call_stub(result_handler_addr); __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2); // Must use the return pc which was loaded from the caller's frame // as the VM uses return-pc-patching for deoptimization. __ mtlr(R0); __ blr(); //----------------------------------------------------------------------------- // An exception is pending. We call into the runtime only if the // caller was not interpreted. If it was interpreted the // interpreter will do the correct thing. If it isn't interpreted // (call stub/compiled code) we will change our return and continue. __ BIND(exception_return_sync_check); if (synchronized) { // Don't check for exceptions since we're still in the i2n frame. Do that // manually afterwards. unlock_method(false); } __ BIND(exception_return_sync_check_already_unlocked); const Register return_pc = R31; __ ld(return_pc, 0, R1_SP); __ ld(return_pc, _abi(lr), return_pc); // Get the address of the exception handler. __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), R16_thread, return_pc /* return pc */); __ merge_frames(/*top_frame_sp*/ R21_sender_SP, noreg, R11_scratch1, R12_scratch2); // Load the PC of the the exception handler into LR. __ mtlr(R3_RET); // Load exception into R3_ARG1 and clear pending exception in thread. __ ld(R3_ARG1/*exception*/, thread_(pending_exception)); __ li(R4_ARG2, 0); __ std(R4_ARG2, thread_(pending_exception)); // Load the original return pc into R4_ARG2. __ mr(R4_ARG2/*issuing_pc*/, return_pc); // Return to exception handler. __ blr(); //============================================================================= // Counter overflow. if (inc_counter) { // Handle invocation counter overflow. __ bind(invocation_counter_overflow); generate_counter_overflow(continue_after_compile); } return entry; } // Generic interpreted method entry to (asm) interpreter. // address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) { bool inc_counter = UseCompiler || CountCompiledCalls; address entry = __ pc(); // Generate the code to allocate the interpreter stack frame. Register Rsize_of_parameters = R4_ARG2, // Written by generate_fixed_frame. Rsize_of_locals = R5_ARG3; // Written by generate_fixed_frame. generate_fixed_frame(false, Rsize_of_parameters, Rsize_of_locals); #ifdef FAST_DISPATCH __ unimplemented("Fast dispatch in generate_normal_entry"); #if 0 __ set((intptr_t)Interpreter::dispatch_table(), IdispatchTables); // Set bytecode dispatch table base. #endif #endif // -------------------------------------------------------------------------- // Zero out non-parameter locals. // Note: *Always* zero out non-parameter locals as Sparc does. It's not // worth to ask the flag, just do it. Register Rslot_addr = R6_ARG4, Rnum = R7_ARG5; Label Lno_locals, Lzero_loop; // Set up the zeroing loop. __ subf(Rnum, Rsize_of_parameters, Rsize_of_locals); __ subf(Rslot_addr, Rsize_of_parameters, R18_locals); __ srdi_(Rnum, Rnum, Interpreter::logStackElementSize); __ beq(CCR0, Lno_locals); __ li(R0, 0); __ mtctr(Rnum); // The zero locals loop. __ bind(Lzero_loop); __ std(R0, 0, Rslot_addr); __ addi(Rslot_addr, Rslot_addr, -Interpreter::stackElementSize); __ bdnz(Lzero_loop); __ bind(Lno_locals); // -------------------------------------------------------------------------- // Counter increment and overflow check. Label invocation_counter_overflow, profile_method, profile_method_continue; if (inc_counter || ProfileInterpreter) { Register Rdo_not_unlock_if_synchronized_addr = R11_scratch1; if (synchronized) { // Since at this point in the method invocation the exception handler // would try to exit the monitor of synchronized methods which hasn't // been entered yet, we set the thread local variable // _do_not_unlock_if_synchronized to true. If any exception was thrown by // runtime, exception handling i.e. unlock_if_synchronized_method will // check this thread local flag. // This flag has two effects, one is to force an unwind in the topmost // interpreter frame and not perform an unlock while doing so. __ li(R0, 1); __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread); } // Increment invocation counter and check for overflow. if (inc_counter) { generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue); } __ bind(profile_method_continue); // Reset the _do_not_unlock_if_synchronized flag. if (synchronized) { __ li(R0, 0); __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread); } } // -------------------------------------------------------------------------- // Locking of synchronized methods. Must happen AFTER invocation_counter // check and stack overflow check, so method is not locked if overflows. if (synchronized) { lock_method(R3_ARG1, R4_ARG2, R5_ARG3); } #ifdef ASSERT else { Label Lok; __ lwz(R0, in_bytes(Method::access_flags_offset()), R19_method); __ andi_(R0, R0, JVM_ACC_SYNCHRONIZED); __ asm_assert_eq("method needs synchronization", 0x8521); __ bind(Lok); } #endif // ASSERT __ verify_thread(); // -------------------------------------------------------------------------- // JVMTI support __ notify_method_entry(); // -------------------------------------------------------------------------- // Start executing instructions. __ dispatch_next(vtos); // -------------------------------------------------------------------------- // Out of line counter overflow and MDO creation code. if (ProfileInterpreter) { // We have decided to profile this method in the interpreter. __ bind(profile_method); __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method)); __ set_method_data_pointer_for_bcp(); __ b(profile_method_continue); } if (inc_counter) { // Handle invocation counter overflow. __ bind(invocation_counter_overflow); generate_counter_overflow(profile_method_continue); } return entry; } // ============================================================================= // Entry points address AbstractInterpreterGenerator::generate_method_entry( AbstractInterpreter::MethodKind kind) { // Determine code generation flags. bool synchronized = false; address entry_point = NULL; switch (kind) { case Interpreter::zerolocals : break; case Interpreter::zerolocals_synchronized: synchronized = true; break; case Interpreter::native : entry_point = ((InterpreterGenerator*) this)->generate_native_entry(false); break; case Interpreter::native_synchronized : entry_point = ((InterpreterGenerator*) this)->generate_native_entry(true); break; case Interpreter::empty : entry_point = ((InterpreterGenerator*) this)->generate_empty_entry(); break; case Interpreter::accessor : entry_point = ((InterpreterGenerator*) this)->generate_accessor_entry(); break; case Interpreter::abstract : entry_point = ((InterpreterGenerator*) this)->generate_abstract_entry(); break; case Interpreter::java_lang_math_sin : // fall thru case Interpreter::java_lang_math_cos : // fall thru case Interpreter::java_lang_math_tan : // fall thru case Interpreter::java_lang_math_abs : // fall thru case Interpreter::java_lang_math_log : // fall thru case Interpreter::java_lang_math_log10 : // fall thru case Interpreter::java_lang_math_sqrt : // fall thru case Interpreter::java_lang_math_pow : // fall thru case Interpreter::java_lang_math_exp : entry_point = ((InterpreterGenerator*) this)->generate_math_entry(kind); break; case Interpreter::java_lang_ref_reference_get : entry_point = ((InterpreterGenerator*)this)->generate_Reference_get_entry(); break; default : ShouldNotReachHere(); break; } if (entry_point) { return entry_point; } return ((InterpreterGenerator*) this)->generate_normal_entry(synchronized); } // These should never be compiled since the interpreter will prefer // the compiled version to the intrinsic version. bool AbstractInterpreter::can_be_compiled(methodHandle m) { return !math_entry_available(method_kind(m)); } // How much stack a method activation needs in stack slots. // We must calc this exactly like in generate_fixed_frame. // Note: This returns the conservative size assuming maximum alignment. int AbstractInterpreter::size_top_interpreter_activation(Method* method) { const int max_alignment_size = 2; const int abi_scratch = frame::abi_reg_args_size; return method->max_locals() + method->max_stack() + frame::interpreter_frame_monitor_size() + max_alignment_size + abi_scratch; } // Fills a sceletal interpreter frame generated during deoptimizations // and returns the frame size in slots. // // Parameters: // // interpreter_frame == NULL: // Only calculate the size of an interpreter activation, no actual layout. // Note: This calculation must exactly parallel the frame setup // in TemplateInterpreter::generate_normal_entry. But it does not // account for the SP alignment, that might further enhance the // frame size, depending on FP. // // interpreter_frame != NULL: // set up the method, locals, and monitors. // The frame interpreter_frame, if not NULL, is guaranteed to be the // right size, as determined by a previous call to this method. // It is also guaranteed to be walkable even though it is in a skeletal state // // is_top_frame == true: // We're processing the *oldest* interpreter frame! // // pop_frame_extra_args: // If this is != 0 we are returning to a deoptimized frame by popping // off the callee frame. We want to re-execute the call that called the // callee interpreted, but since the return to the interpreter would pop // the arguments off advance the esp by dummy popframe_extra_args slots. // Popping off those will establish the stack layout as it was before the call. // int AbstractInterpreter::layout_activation(Method* method, int tempcount, int popframe_extra_args, int moncount, int caller_actual_parameters, int callee_param_count, int callee_locals, frame* caller, frame* interpreter_frame, bool is_top_frame, bool is_bottom_frame) { const int max_alignment_space = 2; const int abi_scratch = is_top_frame ? (frame::abi_reg_args_size / Interpreter::stackElementSize) : (frame::abi_minframe_size / Interpreter::stackElementSize) ; const int conservative_framesize_in_slots = method->max_stack() + callee_locals - callee_param_count + (moncount * frame::interpreter_frame_monitor_size()) + max_alignment_space + abi_scratch + frame::ijava_state_size / Interpreter::stackElementSize; assert(!is_top_frame || conservative_framesize_in_slots * 8 > frame::abi_reg_args_size + frame::ijava_state_size, "frame too small"); if (interpreter_frame == NULL) { // Since we don't know the exact alignment, we return the conservative size. return (conservative_framesize_in_slots & -2); } else { // Now we know our caller, calc the exact frame layout and size. intptr_t* locals_base = (caller->is_interpreted_frame()) ? caller->interpreter_frame_esp() + caller_actual_parameters : caller->sp() + method->max_locals() - 1 + (frame::abi_minframe_size / Interpreter::stackElementSize) ; intptr_t* monitor_base = caller->sp() - frame::ijava_state_size / Interpreter::stackElementSize ; intptr_t* monitor = monitor_base - (moncount * frame::interpreter_frame_monitor_size()); intptr_t* esp_base = monitor - 1; intptr_t* esp = esp_base - tempcount - popframe_extra_args; intptr_t* sp = (intptr_t *) (((intptr_t) (esp_base- callee_locals + callee_param_count - method->max_stack()- abi_scratch)) & -StackAlignmentInBytes); intptr_t* sender_sp = caller->sp() + (frame::abi_minframe_size - frame::abi_reg_args_size) / Interpreter::stackElementSize; intptr_t* top_frame_sp = is_top_frame ? sp : sp + (frame::abi_minframe_size - frame::abi_reg_args_size) / Interpreter::stackElementSize; interpreter_frame->interpreter_frame_set_method(method); interpreter_frame->interpreter_frame_set_locals(locals_base); interpreter_frame->interpreter_frame_set_cpcache(method->constants()->cache()); interpreter_frame->interpreter_frame_set_esp(esp); interpreter_frame->interpreter_frame_set_monitor_end((BasicObjectLock *)monitor); interpreter_frame->interpreter_frame_set_top_frame_sp(top_frame_sp); if (!is_bottom_frame) { interpreter_frame->interpreter_frame_set_sender_sp(sender_sp); } int framesize_in_slots = caller->sp() - sp; assert(!is_top_frame ||framesize_in_slots >= (frame::abi_reg_args_size / Interpreter::stackElementSize) + frame::ijava_state_size / Interpreter::stackElementSize, "frame too small"); assert(framesize_in_slots <= conservative_framesize_in_slots, "exact frame size must be smaller than the convervative size!"); return framesize_in_slots; } } // ============================================================================= // Exceptions void TemplateInterpreterGenerator::generate_throw_exception() { Register Rexception = R17_tos, Rcontinuation = R3_RET; // -------------------------------------------------------------------------- // Entry point if an method returns with a pending exception (rethrow). Interpreter::_rethrow_exception_entry = __ pc(); { __ restore_interpreter_state(R11_scratch1); // Sets R11_scratch1 = fp. __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1); __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0); // Compiled code destroys templateTableBase, reload. __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1); } // Entry point if a interpreted method throws an exception (throw). Interpreter::_throw_exception_entry = __ pc(); { __ mr(Rexception, R3_RET); __ verify_thread(); __ verify_oop(Rexception); // Expression stack must be empty before entering the VM in case of an exception. __ empty_expression_stack(); // Find exception handler address and preserve exception oop. // Call C routine to find handler and jump to it. __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Rexception); __ mtctr(Rcontinuation); // Push exception for exception handler bytecodes. __ push_ptr(Rexception); // Jump to exception handler (may be remove activation entry!). __ bctr(); } // If the exception is not handled in the current frame the frame is // removed and the exception is rethrown (i.e. exception // continuation is _rethrow_exception). // // Note: At this point the bci is still the bxi for the instruction // which caused the exception and the expression stack is // empty. Thus, for any VM calls at this point, GC will find a legal // oop map (with empty expression stack). // In current activation // tos: exception // bcp: exception bcp // -------------------------------------------------------------------------- // JVMTI PopFrame support Interpreter::_remove_activation_preserving_args_entry = __ pc(); { // Set the popframe_processing bit in popframe_condition indicating that we are // currently handling popframe, so that call_VMs that may happen later do not // trigger new popframe handling cycles. __ lwz(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread); __ ori(R11_scratch1, R11_scratch1, JavaThread::popframe_processing_bit); __ stw(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread); // Empty the expression stack, as in normal exception handling. __ empty_expression_stack(); __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false); // Check to see whether we are returning to a deoptimized frame. // (The PopFrame call ensures that the caller of the popped frame is // either interpreted or compiled and deoptimizes it if compiled.) // Note that we don't compare the return PC against the // deoptimization blob's unpack entry because of the presence of // adapter frames in C2. Label Lcaller_not_deoptimized; Register return_pc = R3_ARG1; __ ld(return_pc, 0, R1_SP); __ ld(return_pc, _abi(lr), return_pc); __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), return_pc); __ cmpdi(CCR0, R3_RET, 0); __ bne(CCR0, Lcaller_not_deoptimized); // The deoptimized case. // In this case, we can't call dispatch_next() after the frame is // popped, but instead must save the incoming arguments and restore // them after deoptimization has occurred. __ ld(R4_ARG2, in_bytes(Method::const_offset()), R19_method); __ lhz(R4_ARG2 /* number of params */, in_bytes(ConstMethod::size_of_parameters_offset()), R4_ARG2); __ slwi(R4_ARG2, R4_ARG2, Interpreter::logStackElementSize); __ addi(R5_ARG3, R18_locals, Interpreter::stackElementSize); __ subf(R5_ARG3, R4_ARG2, R5_ARG3); // Save these arguments. __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), R16_thread, R4_ARG2, R5_ARG3); // Inform deoptimization that it is responsible for restoring these arguments. __ load_const_optimized(R11_scratch1, JavaThread::popframe_force_deopt_reexecution_bit); __ stw(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread); // Return from the current method into the deoptimization blob. Will eventually // end up in the deopt interpeter entry, deoptimization prepared everything that // we will reexecute the call that called us. __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*reload return_pc*/ return_pc, R11_scratch1, R12_scratch2); __ mtlr(return_pc); __ blr(); // The non-deoptimized case. __ bind(Lcaller_not_deoptimized); // Clear the popframe condition flag. __ li(R0, 0); __ stw(R0, in_bytes(JavaThread::popframe_condition_offset()), R16_thread); // Get out of the current method and re-execute the call that called us. __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ return_pc, R11_scratch1, R12_scratch2); __ restore_interpreter_state(R11_scratch1); __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1); __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0); __ mtlr(return_pc); if (ProfileInterpreter) { __ set_method_data_pointer_for_bcp(); } __ dispatch_next(vtos); } // end of JVMTI PopFrame support // -------------------------------------------------------------------------- // Remove activation exception entry. // This is jumped to if an interpreted method can't handle an exception itself // (we come from the throw/rethrow exception entry above). We're going to call // into the VM to find the exception handler in the caller, pop the current // frame and return the handler we calculated. Interpreter::_remove_activation_entry = __ pc(); { __ pop_ptr(Rexception); __ verify_thread(); __ verify_oop(Rexception); __ std(Rexception, in_bytes(JavaThread::vm_result_offset()), R16_thread); __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, true); __ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI, false); __ get_vm_result(Rexception); // We are done with this activation frame; find out where to go next. // The continuation point will be an exception handler, which expects // the following registers set up: // // RET: exception oop // ARG2: Issuing PC (see generate_exception_blob()), only used if the caller is compiled. Register return_pc = R31; // Needs to survive the runtime call. __ ld(return_pc, 0, R1_SP); __ ld(return_pc, _abi(lr), return_pc); __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), R16_thread, return_pc); // Remove the current activation. __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ noreg, R11_scratch1, R12_scratch2); __ mr(R4_ARG2, return_pc); __ mtlr(R3_RET); __ mr(R3_RET, Rexception); __ blr(); } } // JVMTI ForceEarlyReturn support. // Returns "in the middle" of a method with a "fake" return value. address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) { Register Rscratch1 = R11_scratch1, Rscratch2 = R12_scratch2; address entry = __ pc(); __ empty_expression_stack(); __ load_earlyret_value(state, Rscratch1); __ ld(Rscratch1, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread); // Clear the earlyret state. __ li(R0, 0); __ stw(R0, in_bytes(JvmtiThreadState::earlyret_state_offset()), Rscratch1); __ remove_activation(state, false, false); // Copied from TemplateTable::_return. // Restoration of lr done by remove_activation. switch (state) { case ltos: case btos: case ctos: case stos: case atos: case itos: __ mr(R3_RET, R17_tos); break; case ftos: case dtos: __ fmr(F1_RET, F15_ftos); break; case vtos: // This might be a constructor. Final fields (and volatile fields on PPC64) need // to get visible before the reference to the object gets stored anywhere. __ membar(Assembler::StoreStore); break; default : ShouldNotReachHere(); } __ blr(); return entry; } // end of ForceEarlyReturn support //----------------------------------------------------------------------------- // Helper for vtos entry point generation void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) { assert(t->is_valid() && t->tos_in() == vtos, "illegal template"); Label L; aep = __ pc(); __ push_ptr(); __ b(L); fep = __ pc(); __ push_f(); __ b(L); dep = __ pc(); __ push_d(); __ b(L); lep = __ pc(); __ push_l(); __ b(L); __ align(32, 12, 24); // align L bep = cep = sep = iep = __ pc(); __ push_i(); vep = __ pc(); __ bind(L); generate_and_dispatch(t); } //----------------------------------------------------------------------------- // Generation of individual instructions // helpers for generate_and_dispatch InterpreterGenerator::InterpreterGenerator(StubQueue* code) : TemplateInterpreterGenerator(code) { generate_all(); // Down here so it can be "virtual". } //----------------------------------------------------------------------------- // Non-product code #ifndef PRODUCT address TemplateInterpreterGenerator::generate_trace_code(TosState state) { //__ flush_bundle(); address entry = __ pc(); const char *bname = NULL; uint tsize = 0; switch(state) { case ftos: bname = "trace_code_ftos {"; tsize = 2; break; case btos: bname = "trace_code_btos {"; tsize = 2; break; case ctos: bname = "trace_code_ctos {"; tsize = 2; break; case stos: bname = "trace_code_stos {"; tsize = 2; break; case itos: bname = "trace_code_itos {"; tsize = 2; break; case ltos: bname = "trace_code_ltos {"; tsize = 3; break; case atos: bname = "trace_code_atos {"; tsize = 2; break; case vtos: // Note: In case of vtos, the topmost of stack value could be a int or doubl // In case of a double (2 slots) we won't see the 2nd stack value. // Maybe we simply should print the topmost 3 stack slots to cope with the problem. bname = "trace_code_vtos {"; tsize = 2; break; case dtos: bname = "trace_code_dtos {"; tsize = 3; break; default: ShouldNotReachHere(); } BLOCK_COMMENT(bname); // Support short-cut for TraceBytecodesAt. // Don't call into the VM if we don't want to trace to speed up things. Label Lskip_vm_call; if (TraceBytecodesAt > 0 && TraceBytecodesAt < max_intx) { int offs1 = __ load_const_optimized(R11_scratch1, (address) &TraceBytecodesAt, R0, true); int offs2 = __ load_const_optimized(R12_scratch2, (address) &BytecodeCounter::_counter_value, R0, true); __ ld(R11_scratch1, offs1, R11_scratch1); __ lwa(R12_scratch2, offs2, R12_scratch2); __ cmpd(CCR0, R12_scratch2, R11_scratch1); __ blt(CCR0, Lskip_vm_call); } __ push(state); // Load 2 topmost expression stack values. __ ld(R6_ARG4, tsize*Interpreter::stackElementSize, R15_esp); __ ld(R5_ARG3, Interpreter::stackElementSize, R15_esp); __ mflr(R31); __ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), /* unused */ R4_ARG2, R5_ARG3, R6_ARG4, false); __ mtlr(R31); __ pop(state); if (TraceBytecodesAt > 0 && TraceBytecodesAt < max_intx) { __ bind(Lskip_vm_call); } __ blr(); BLOCK_COMMENT("} trace_code"); return entry; } void TemplateInterpreterGenerator::count_bytecode() { int offs = __ load_const_optimized(R11_scratch1, (address) &BytecodeCounter::_counter_value, R12_scratch2, true); __ lwz(R12_scratch2, offs, R11_scratch1); __ addi(R12_scratch2, R12_scratch2, 1); __ stw(R12_scratch2, offs, R11_scratch1); } void TemplateInterpreterGenerator::histogram_bytecode(Template* t) { int offs = __ load_const_optimized(R11_scratch1, (address) &BytecodeHistogram::_counters[t->bytecode()], R12_scratch2, true); __ lwz(R12_scratch2, offs, R11_scratch1); __ addi(R12_scratch2, R12_scratch2, 1); __ stw(R12_scratch2, offs, R11_scratch1); } void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) { const Register addr = R11_scratch1, tmp = R12_scratch2; // Get index, shift out old bytecode, bring in new bytecode, and store it. // _index = (_index >> log2_number_of_codes) | // (bytecode << log2_number_of_codes); int offs1 = __ load_const_optimized(addr, (address)&BytecodePairHistogram::_index, tmp, true); __ lwz(tmp, offs1, addr); __ srwi(tmp, tmp, BytecodePairHistogram::log2_number_of_codes); __ ori(tmp, tmp, ((int) t->bytecode()) << BytecodePairHistogram::log2_number_of_codes); __ stw(tmp, offs1, addr); // Bump bucket contents. // _counters[_index] ++; int offs2 = __ load_const_optimized(addr, (address)&BytecodePairHistogram::_counters, R0, true); __ sldi(tmp, tmp, LogBytesPerInt); __ add(addr, tmp, addr); __ lwz(tmp, offs2, addr); __ addi(tmp, tmp, 1); __ stw(tmp, offs2, addr); } void TemplateInterpreterGenerator::trace_bytecode(Template* t) { // Call a little run-time stub to avoid blow-up for each bytecode. // The run-time runtime saves the right registers, depending on // the tosca in-state for the given template. assert(Interpreter::trace_code(t->tos_in()) != NULL, "entry must have been generated"); // Note: we destroy LR here. __ bl(Interpreter::trace_code(t->tos_in())); } void TemplateInterpreterGenerator::stop_interpreter_at() { Label L; int offs1 = __ load_const_optimized(R11_scratch1, (address) &StopInterpreterAt, R0, true); int offs2 = __ load_const_optimized(R12_scratch2, (address) &BytecodeCounter::_counter_value, R0, true); __ ld(R11_scratch1, offs1, R11_scratch1); __ lwa(R12_scratch2, offs2, R12_scratch2); __ cmpd(CCR0, R12_scratch2, R11_scratch1); __ bne(CCR0, L); __ illtrap(); __ bind(L); } #endif // !PRODUCT #endif // !CC_INTERP