/* * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "asm/macroAssembler.hpp" #include "interpreter/bytecodeHistogram.hpp" #include "interpreter/interpreter.hpp" #include "interpreter/interpreterGenerator.hpp" #include "interpreter/interpreterRuntime.hpp" #include "interpreter/templateTable.hpp" #include "oops/arrayOop.hpp" #include "oops/methodData.hpp" #include "oops/method.hpp" #include "oops/oop.inline.hpp" #include "prims/jvmtiExport.hpp" #include "prims/jvmtiThreadState.hpp" #include "runtime/arguments.hpp" #include "runtime/deoptimization.hpp" #include "runtime/frame.inline.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/stubRoutines.hpp" #include "runtime/synchronizer.hpp" #include "runtime/timer.hpp" #include "runtime/vframeArray.hpp" #include "utilities/debug.hpp" #include "utilities/macros.hpp" #ifndef CC_INTERP #ifndef FAST_DISPATCH #define FAST_DISPATCH 1 #endif #undef FAST_DISPATCH // Generation of Interpreter // // The InterpreterGenerator generates the interpreter into Interpreter::_code. #define __ _masm-> //---------------------------------------------------------------------------------------------------- void InterpreterGenerator::save_native_result(void) { // result potentially in O0/O1: save it across calls const Address& l_tmp = InterpreterMacroAssembler::l_tmp; // result potentially in F0/F1: save it across calls const Address& d_tmp = InterpreterMacroAssembler::d_tmp; // save and restore any potential method result value around the unlocking operation __ stf(FloatRegisterImpl::D, F0, d_tmp); #ifdef _LP64 __ stx(O0, l_tmp); #else __ std(O0, l_tmp); #endif } void InterpreterGenerator::restore_native_result(void) { const Address& l_tmp = InterpreterMacroAssembler::l_tmp; const Address& d_tmp = InterpreterMacroAssembler::d_tmp; // Restore any method result value __ ldf(FloatRegisterImpl::D, d_tmp, F0); #ifdef _LP64 __ ldx(l_tmp, O0); #else __ ldd(l_tmp, O0); #endif } address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) { assert(!pass_oop || message == NULL, "either oop or message but not both"); address entry = __ pc(); // expression stack must be empty before entering the VM if an exception happened __ empty_expression_stack(); // load exception object __ set((intptr_t)name, G3_scratch); if (pass_oop) { __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), G3_scratch, Otos_i); } else { __ set((intptr_t)message, G4_scratch); __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), G3_scratch, G4_scratch); } // throw exception assert(Interpreter::throw_exception_entry() != NULL, "generate it first"); AddressLiteral thrower(Interpreter::throw_exception_entry()); __ jump_to(thrower, G3_scratch); __ delayed()->nop(); return entry; } address TemplateInterpreterGenerator::generate_ClassCastException_handler() { address entry = __ pc(); // expression stack must be empty before entering the VM if an exception // happened __ empty_expression_stack(); // load exception object __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException), Otos_i); __ should_not_reach_here(); return entry; } address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) { address entry = __ pc(); // expression stack must be empty before entering the VM if an exception happened __ empty_expression_stack(); // convention: expect aberrant index in register G3_scratch, then shuffle the // index to G4_scratch for the VM call __ mov(G3_scratch, G4_scratch); __ set((intptr_t)name, G3_scratch); __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), G3_scratch, G4_scratch); __ should_not_reach_here(); return entry; } address TemplateInterpreterGenerator::generate_StackOverflowError_handler() { address entry = __ pc(); // expression stack must be empty before entering the VM if an exception happened __ empty_expression_stack(); __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError)); __ should_not_reach_here(); return entry; } address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step) { TosState incoming_state = state; Label cont; address compiled_entry = __ pc(); address entry = __ pc(); #if !defined(_LP64) && defined(COMPILER2) // All return values are where we want them, except for Longs. C2 returns // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1. // Since the interpreter will return longs in G1 and O0/O1 in the 32bit // build even if we are returning from interpreted we just do a little // stupid shuffing. // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to // do this here. Unfortunately if we did a rethrow we'd see an machepilog node // first which would move g1 -> O0/O1 and destroy the exception we were throwing. if (incoming_state == ltos) { __ srl (G1, 0, O1); __ srlx(G1, 32, O0); } #endif // !_LP64 && COMPILER2 __ bind(cont); // The callee returns with the stack possibly adjusted by adapter transition // We remove that possible adjustment here. // All interpreter local registers are untouched. Any result is passed back // in the O0/O1 or float registers. Before continuing, the arguments must be // popped from the java expression stack; i.e., Lesp must be adjusted. __ mov(Llast_SP, SP); // Remove any adapter added stack space. Label L_got_cache, L_giant_index; const Register cache = G3_scratch; const Register size = G1_scratch; if (EnableInvokeDynamic) { __ ldub(Address(Lbcp, 0), G1_scratch); // Load current bytecode. __ cmp_and_br_short(G1_scratch, Bytecodes::_invokedynamic, Assembler::equal, Assembler::pn, L_giant_index); } __ get_cache_and_index_at_bcp(cache, G1_scratch, 1); __ bind(L_got_cache); __ ld_ptr(cache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset(), size); __ and3(size, 0xFF, size); // argument size in words __ sll(size, Interpreter::logStackElementSize, size); // each argument size in bytes __ add(Lesp, size, Lesp); // pop arguments __ dispatch_next(state, step); // out of the main line of code... if (EnableInvokeDynamic) { __ bind(L_giant_index); __ get_cache_and_index_at_bcp(cache, G1_scratch, 1, sizeof(u4)); __ ba_short(L_got_cache); } return entry; } address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) { address entry = __ pc(); __ get_constant_pool_cache(LcpoolCache); // load LcpoolCache { Label L; Address exception_addr(G2_thread, Thread::pending_exception_offset()); __ ld_ptr(exception_addr, Gtemp); // Load pending exception. __ br_null_short(Gtemp, Assembler::pt, L); __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception)); __ should_not_reach_here(); __ bind(L); } __ dispatch_next(state, step); return entry; } // A result handler converts/unboxes a native call result into // a java interpreter/compiler result. The current frame is an // interpreter frame. The activation frame unwind code must be // consistent with that of TemplateTable::_return(...). In the // case of native methods, the caller's SP was not modified. address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) { address entry = __ pc(); Register Itos_i = Otos_i ->after_save(); Register Itos_l = Otos_l ->after_save(); Register Itos_l1 = Otos_l1->after_save(); Register Itos_l2 = Otos_l2->after_save(); switch (type) { case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, Itos_i); break; // !0 => true; 0 => false case T_CHAR : __ sll(O0, 16, O0); __ srl(O0, 16, Itos_i); break; // cannot use and3, 0xFFFF too big as immediate value! case T_BYTE : __ sll(O0, 24, O0); __ sra(O0, 24, Itos_i); break; case T_SHORT : __ sll(O0, 16, O0); __ sra(O0, 16, Itos_i); break; case T_LONG : #ifndef _LP64 __ mov(O1, Itos_l2); // move other half of long #endif // ifdef or no ifdef, fall through to the T_INT case case T_INT : __ mov(O0, Itos_i); break; case T_VOID : /* nothing to do */ break; case T_FLOAT : assert(F0 == Ftos_f, "fix this code" ); break; case T_DOUBLE : assert(F0 == Ftos_d, "fix this code" ); break; case T_OBJECT : __ ld_ptr(FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS, Itos_i); __ verify_oop(Itos_i); break; default : ShouldNotReachHere(); } __ ret(); // return from interpreter activation __ delayed()->restore(I5_savedSP, G0, SP); // remove interpreter frame NOT_PRODUCT(__ emit_int32(0);) // marker for disassembly return entry; } address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) { address entry = __ pc(); __ push(state); __ call_VM(noreg, runtime_entry); __ dispatch_via(vtos, Interpreter::normal_table(vtos)); return entry; } address TemplateInterpreterGenerator::generate_continuation_for(TosState state) { address entry = __ pc(); __ dispatch_next(state); return entry; } // // Helpers for commoning out cases in the various type of method entries. // // increment invocation count & check for overflow // // Note: checking for negative value instead of overflow // so we have a 'sticky' overflow test // // Lmethod: method // ??: invocation counter // void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) { // Note: In tiered we increment either counters in Method* or in MDO depending if we're profiling or not. if (TieredCompilation) { const int increment = InvocationCounter::count_increment; const int mask = ((1 << Tier0InvokeNotifyFreqLog) - 1) << InvocationCounter::count_shift; Label no_mdo, done; if (ProfileInterpreter) { // If no method data exists, go to profile_continue. __ ld_ptr(Lmethod, Method::method_data_offset(), G4_scratch); __ br_null_short(G4_scratch, Assembler::pn, no_mdo); // Increment counter Address mdo_invocation_counter(G4_scratch, in_bytes(MethodData::invocation_counter_offset()) + in_bytes(InvocationCounter::counter_offset())); __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, G3_scratch, Lscratch, Assembler::zero, overflow); __ ba_short(done); } // Increment counter in Method* __ bind(no_mdo); Address invocation_counter(Lmethod, in_bytes(Method::invocation_counter_offset()) + in_bytes(InvocationCounter::counter_offset())); __ increment_mask_and_jump(invocation_counter, increment, mask, G3_scratch, Lscratch, Assembler::zero, overflow); __ bind(done); } else { // Update standard invocation counters __ increment_invocation_counter(O0, G3_scratch); if (ProfileInterpreter) { // %%% Merge this into MethodData* Address interpreter_invocation_counter(Lmethod,in_bytes(Method::interpreter_invocation_counter_offset())); __ ld(interpreter_invocation_counter, G3_scratch); __ inc(G3_scratch); __ st(G3_scratch, interpreter_invocation_counter); } if (ProfileInterpreter && profile_method != NULL) { // Test to see if we should create a method data oop AddressLiteral profile_limit((address)&InvocationCounter::InterpreterProfileLimit); __ load_contents(profile_limit, G3_scratch); __ cmp_and_br_short(O0, G3_scratch, Assembler::lessUnsigned, Assembler::pn, *profile_method_continue); // if no method data exists, go to profile_method __ test_method_data_pointer(*profile_method); } AddressLiteral invocation_limit((address)&InvocationCounter::InterpreterInvocationLimit); __ load_contents(invocation_limit, G3_scratch); __ cmp(O0, G3_scratch); __ br(Assembler::greaterEqualUnsigned, false, Assembler::pn, *overflow); // Far distance __ delayed()->nop(); } } // Allocate monitor and lock method (asm interpreter) // ebx - Method* // void InterpreterGenerator::lock_method(void) { __ ld(Lmethod, in_bytes(Method::access_flags_offset()), O0); // Load access flags. #ifdef ASSERT { Label ok; __ btst(JVM_ACC_SYNCHRONIZED, O0); __ br( Assembler::notZero, false, Assembler::pt, ok); __ delayed()->nop(); __ stop("method doesn't need synchronization"); __ bind(ok); } #endif // ASSERT // get synchronization object to O0 { Label done; const int mirror_offset = in_bytes(Klass::java_mirror_offset()); __ btst(JVM_ACC_STATIC, O0); __ br( Assembler::zero, true, Assembler::pt, done); __ delayed()->ld_ptr(Llocals, Interpreter::local_offset_in_bytes(0), O0); // get receiver for not-static case __ ld_ptr( Lmethod, in_bytes(Method::const_offset()), O0); __ ld_ptr( O0, in_bytes(ConstMethod::constants_offset()), O0); __ ld_ptr( O0, ConstantPool::pool_holder_offset_in_bytes(), O0); // lock the mirror, not the Klass* __ ld_ptr( O0, mirror_offset, O0); #ifdef ASSERT __ tst(O0); __ breakpoint_trap(Assembler::zero, Assembler::ptr_cc); #endif // ASSERT __ bind(done); } __ add_monitor_to_stack(true, noreg, noreg); // allocate monitor elem __ st_ptr( O0, Lmonitors, BasicObjectLock::obj_offset_in_bytes()); // store object // __ untested("lock_object from method entry"); __ lock_object(Lmonitors, O0); } void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rframe_size, Register Rscratch, Register Rscratch2) { const int page_size = os::vm_page_size(); Label after_frame_check; assert_different_registers(Rframe_size, Rscratch, Rscratch2); __ set(page_size, Rscratch); __ cmp_and_br_short(Rframe_size, Rscratch, Assembler::lessEqual, Assembler::pt, after_frame_check); // get the stack base, and in debug, verify it is non-zero __ ld_ptr( G2_thread, Thread::stack_base_offset(), Rscratch ); #ifdef ASSERT Label base_not_zero; __ br_notnull_short(Rscratch, Assembler::pn, base_not_zero); __ stop("stack base is zero in generate_stack_overflow_check"); __ bind(base_not_zero); #endif // get the stack size, and in debug, verify it is non-zero assert( sizeof(size_t) == sizeof(intptr_t), "wrong load size" ); __ ld_ptr( G2_thread, Thread::stack_size_offset(), Rscratch2 ); #ifdef ASSERT Label size_not_zero; __ br_notnull_short(Rscratch2, Assembler::pn, size_not_zero); __ stop("stack size is zero in generate_stack_overflow_check"); __ bind(size_not_zero); #endif // compute the beginning of the protected zone minus the requested frame size __ sub( Rscratch, Rscratch2, Rscratch ); __ set( (StackRedPages+StackYellowPages) * page_size, Rscratch2 ); __ add( Rscratch, Rscratch2, Rscratch ); // Add in the size of the frame (which is the same as subtracting it from the // SP, which would take another register __ add( Rscratch, Rframe_size, Rscratch ); // the frame is greater than one page in size, so check against // the bottom of the stack __ cmp_and_brx_short(SP, Rscratch, Assembler::greaterUnsigned, Assembler::pt, after_frame_check); // the stack will overflow, throw an exception // Note that SP is restored to sender's sp (in the delay slot). This // is necessary if the sender's frame is an extended compiled frame // (see gen_c2i_adapter()) and safer anyway in case of JSR292 // adaptations. // Note also that the restored frame is not necessarily interpreted. // Use the shared runtime version of the StackOverflowError. assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated"); AddressLiteral stub(StubRoutines::throw_StackOverflowError_entry()); __ jump_to(stub, Rscratch); __ delayed()->mov(O5_savedSP, SP); // if you get to here, then there is enough stack space __ bind( after_frame_check ); } // // Generate a fixed interpreter frame. This is identical setup for interpreted // methods and for native methods hence the shared code. void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) { // // // The entry code sets up a new interpreter frame in 4 steps: // // 1) Increase caller's SP by for the extra local space needed: // (check for overflow) // Efficient implementation of xload/xstore bytecodes requires // that arguments and non-argument locals are in a contigously // addressable memory block => non-argument locals must be // allocated in the caller's frame. // // 2) Create a new stack frame and register window: // The new stack frame must provide space for the standard // register save area, the maximum java expression stack size, // the monitor slots (0 slots initially), and some frame local // scratch locations. // // 3) The following interpreter activation registers must be setup: // Lesp : expression stack pointer // Lbcp : bytecode pointer // Lmethod : method // Llocals : locals pointer // Lmonitors : monitor pointer // LcpoolCache: constant pool cache // // 4) Initialize the non-argument locals if necessary: // Non-argument locals may need to be initialized to NULL // for GC to work. If the oop-map information is accurate // (in the absence of the JSR problem), no initialization // is necessary. // // (gri - 2/25/2000) int rounded_vm_local_words = round_to( frame::interpreter_frame_vm_local_words, WordsPerLong ); const int extra_space = rounded_vm_local_words + // frame local scratch space //6815692//Method::extra_stack_words() + // extra push slots for MH adapters frame::memory_parameter_word_sp_offset + // register save area (native_call ? frame::interpreter_frame_extra_outgoing_argument_words : 0); const Register Glocals_size = G3; const Register RconstMethod = Glocals_size; const Register Otmp1 = O3; const Register Otmp2 = O4; // Lscratch can't be used as a temporary because the call_stub uses // it to assert that the stack frame was setup correctly. const Address constMethod (G5_method, Method::const_offset()); const Address size_of_parameters(RconstMethod, ConstMethod::size_of_parameters_offset()); __ ld_ptr( constMethod, RconstMethod ); __ lduh( size_of_parameters, Glocals_size); // Gargs points to first local + BytesPerWord // Set the saved SP after the register window save // assert_different_registers(Gargs, Glocals_size, Gframe_size, O5_savedSP); __ sll(Glocals_size, Interpreter::logStackElementSize, Otmp1); __ add(Gargs, Otmp1, Gargs); if (native_call) { __ calc_mem_param_words( Glocals_size, Gframe_size ); __ add( Gframe_size, extra_space, Gframe_size); __ round_to( Gframe_size, WordsPerLong ); __ sll( Gframe_size, LogBytesPerWord, Gframe_size ); } else { // // Compute number of locals in method apart from incoming parameters // const Address size_of_locals (Otmp1, ConstMethod::size_of_locals_offset()); __ ld_ptr( constMethod, Otmp1 ); __ lduh( size_of_locals, Otmp1 ); __ sub( Otmp1, Glocals_size, Glocals_size ); __ round_to( Glocals_size, WordsPerLong ); __ sll( Glocals_size, Interpreter::logStackElementSize, Glocals_size ); // see if the frame is greater than one page in size. If so, // then we need to verify there is enough stack space remaining // Frame_size = (max_stack + extra_space) * BytesPerWord; __ ld_ptr( constMethod, Gframe_size ); __ lduh( Gframe_size, in_bytes(ConstMethod::max_stack_offset()), Gframe_size ); __ add( Gframe_size, extra_space, Gframe_size ); __ round_to( Gframe_size, WordsPerLong ); __ sll( Gframe_size, Interpreter::logStackElementSize, Gframe_size); // Add in java locals size for stack overflow check only __ add( Gframe_size, Glocals_size, Gframe_size ); const Register Otmp2 = O4; assert_different_registers(Otmp1, Otmp2, O5_savedSP); generate_stack_overflow_check(Gframe_size, Otmp1, Otmp2); __ sub( Gframe_size, Glocals_size, Gframe_size); // // bump SP to accomodate the extra locals // __ sub( SP, Glocals_size, SP ); } // // now set up a stack frame with the size computed above // __ neg( Gframe_size ); __ save( SP, Gframe_size, SP ); // // now set up all the local cache registers // // NOTE: At this point, Lbyte_code/Lscratch has been modified. Note // that all present references to Lbyte_code initialize the register // immediately before use if (native_call) { __ mov(G0, Lbcp); } else { __ ld_ptr(G5_method, Method::const_offset(), Lbcp); __ add(Lbcp, in_bytes(ConstMethod::codes_offset()), Lbcp); } __ mov( G5_method, Lmethod); // set Lmethod __ get_constant_pool_cache( LcpoolCache ); // set LcpoolCache __ sub(FP, rounded_vm_local_words * BytesPerWord, Lmonitors ); // set Lmonitors #ifdef _LP64 __ add( Lmonitors, STACK_BIAS, Lmonitors ); // Account for 64 bit stack bias #endif __ sub(Lmonitors, BytesPerWord, Lesp); // set Lesp // setup interpreter activation registers __ sub(Gargs, BytesPerWord, Llocals); // set Llocals if (ProfileInterpreter) { #ifdef FAST_DISPATCH // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since // they both use I2. assert(0, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive"); #endif // FAST_DISPATCH __ set_method_data_pointer(); } } // Empty method, generate a very fast return. address InterpreterGenerator::generate_empty_entry(void) { // A method that does nother but return... address entry = __ pc(); Label slow_path; // do nothing for empty methods (do not even increment invocation counter) if ( UseFastEmptyMethods) { // If we need a safepoint check, generate full interpreter entry. AddressLiteral sync_state(SafepointSynchronize::address_of_state()); __ set(sync_state, G3_scratch); __ cmp_and_br_short(G3_scratch, SafepointSynchronize::_not_synchronized, Assembler::notEqual, Assembler::pn, slow_path); // Code: _return __ retl(); __ delayed()->mov(O5_savedSP, SP); __ bind(slow_path); (void) generate_normal_entry(false); return entry; } return NULL; } // Call an accessor method (assuming it is resolved, otherwise drop into // vanilla (slow path) entry // Generates code to elide accessor methods // Uses G3_scratch and G1_scratch as scratch address InterpreterGenerator::generate_accessor_entry(void) { // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof; // parameter size = 1 // Note: We can only use this code if the getfield has been resolved // and if we don't have a null-pointer exception => check for // these conditions first and use slow path if necessary. address entry = __ pc(); Label slow_path; // XXX: for compressed oops pointer loading and decoding doesn't fit in // delay slot and damages G1 if ( UseFastAccessorMethods && !UseCompressedOops ) { // Check if we need to reach a safepoint and generate full interpreter // frame if so. AddressLiteral sync_state(SafepointSynchronize::address_of_state()); __ load_contents(sync_state, G3_scratch); __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized); __ cmp_and_br_short(G3_scratch, SafepointSynchronize::_not_synchronized, Assembler::notEqual, Assembler::pn, slow_path); // Check if local 0 != NULL __ ld_ptr(Gargs, G0, Otos_i ); // get local 0 // check if local 0 == NULL and go the slow path __ br_null_short(Otos_i, Assembler::pn, slow_path); // read first instruction word and extract bytecode @ 1 and index @ 2 // get first 4 bytes of the bytecodes (big endian!) __ ld_ptr(G5_method, Method::const_offset(), G1_scratch); __ ld(G1_scratch, ConstMethod::codes_offset(), G1_scratch); // move index @ 2 far left then to the right most two bytes. __ sll(G1_scratch, 2*BitsPerByte, G1_scratch); __ srl(G1_scratch, 2*BitsPerByte - exact_log2(in_words( ConstantPoolCacheEntry::size()) * BytesPerWord), G1_scratch); // get constant pool cache __ ld_ptr(G5_method, Method::const_offset(), G3_scratch); __ ld_ptr(G3_scratch, ConstMethod::constants_offset(), G3_scratch); __ ld_ptr(G3_scratch, ConstantPool::cache_offset_in_bytes(), G3_scratch); // get specific constant pool cache entry __ add(G3_scratch, G1_scratch, G3_scratch); // Check the constant Pool cache entry to see if it has been resolved. // If not, need the slow path. ByteSize cp_base_offset = ConstantPoolCache::base_offset(); __ ld_ptr(G3_scratch, cp_base_offset + ConstantPoolCacheEntry::indices_offset(), G1_scratch); __ srl(G1_scratch, 2*BitsPerByte, G1_scratch); __ and3(G1_scratch, 0xFF, G1_scratch); __ cmp_and_br_short(G1_scratch, Bytecodes::_getfield, Assembler::notEqual, Assembler::pn, slow_path); // Get the type and return field offset from the constant pool cache __ ld_ptr(G3_scratch, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), G1_scratch); __ ld_ptr(G3_scratch, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), G3_scratch); Label xreturn_path; // Need to differentiate between igetfield, agetfield, bgetfield etc. // because they are different sizes. // Get the type from the constant pool cache __ srl(G1_scratch, ConstantPoolCacheEntry::tos_state_shift, G1_scratch); // Make sure we don't need to mask G1_scratch after the above shift ConstantPoolCacheEntry::verify_tos_state_shift(); __ cmp(G1_scratch, atos ); __ br(Assembler::equal, true, Assembler::pt, xreturn_path); __ delayed()->ld_ptr(Otos_i, G3_scratch, Otos_i); __ cmp(G1_scratch, itos); __ br(Assembler::equal, true, Assembler::pt, xreturn_path); __ delayed()->ld(Otos_i, G3_scratch, Otos_i); __ cmp(G1_scratch, stos); __ br(Assembler::equal, true, Assembler::pt, xreturn_path); __ delayed()->ldsh(Otos_i, G3_scratch, Otos_i); __ cmp(G1_scratch, ctos); __ br(Assembler::equal, true, Assembler::pt, xreturn_path); __ delayed()->lduh(Otos_i, G3_scratch, Otos_i); #ifdef ASSERT __ cmp(G1_scratch, btos); __ br(Assembler::equal, true, Assembler::pt, xreturn_path); __ delayed()->ldsb(Otos_i, G3_scratch, Otos_i); __ should_not_reach_here(); #endif __ ldsb(Otos_i, G3_scratch, Otos_i); __ bind(xreturn_path); // _ireturn/_areturn __ retl(); // return from leaf routine __ delayed()->mov(O5_savedSP, SP); // Generate regular method entry __ bind(slow_path); (void) generate_normal_entry(false); return entry; } return NULL; } // Method entry for java.lang.ref.Reference.get. address InterpreterGenerator::generate_Reference_get_entry(void) { #if INCLUDE_ALL_GCS // Code: _aload_0, _getfield, _areturn // parameter size = 1 // // The code that gets generated by this routine is split into 2 parts: // 1. The "intrinsified" code for G1 (or any SATB based GC), // 2. The slow path - which is an expansion of the regular method entry. // // Notes:- // * In the G1 code we do not check whether we need to block for // a safepoint. If G1 is enabled then we must execute the specialized // code for Reference.get (except when the Reference object is null) // so that we can log the value in the referent field with an SATB // update buffer. // If the code for the getfield template is modified so that the // G1 pre-barrier code is executed when the current method is // Reference.get() then going through the normal method entry // will be fine. // * The G1 code can, however, check the receiver object (the instance // of java.lang.Reference) and jump to the slow path if null. If the // Reference object is null then we obviously cannot fetch the referent // and so we don't need to call the G1 pre-barrier. Thus we can use the // regular method entry code to generate the NPE. // // This code is based on generate_accessor_enty. address entry = __ pc(); const int referent_offset = java_lang_ref_Reference::referent_offset; guarantee(referent_offset > 0, "referent offset not initialized"); if (UseG1GC) { Label slow_path; // In the G1 code we don't check if we need to reach a safepoint. We // continue and the thread will safepoint at the next bytecode dispatch. // Check if local 0 != NULL // If the receiver is null then it is OK to jump to the slow path. __ ld_ptr(Gargs, G0, Otos_i ); // get local 0 // check if local 0 == NULL and go the slow path __ cmp_and_brx_short(Otos_i, 0, Assembler::equal, Assembler::pn, slow_path); // Load the value of the referent field. if (Assembler::is_simm13(referent_offset)) { __ load_heap_oop(Otos_i, referent_offset, Otos_i); } else { __ set(referent_offset, G3_scratch); __ load_heap_oop(Otos_i, G3_scratch, Otos_i); } // Generate the G1 pre-barrier code to log the value of // the referent field in an SATB buffer. Note with // these parameters the pre-barrier does not generate // the load of the previous value __ g1_write_barrier_pre(noreg /* obj */, noreg /* index */, 0 /* offset */, Otos_i /* pre_val */, G3_scratch /* tmp */, true /* preserve_o_regs */); // _areturn __ retl(); // return from leaf routine __ delayed()->mov(O5_savedSP, SP); // Generate regular method entry __ bind(slow_path); (void) generate_normal_entry(false); return entry; } #endif // INCLUDE_ALL_GCS // If G1 is not enabled then attempt to go through the accessor entry point // Reference.get is an accessor return generate_accessor_entry(); } // // Interpreter stub for calling a native method. (asm interpreter) // This sets up a somewhat different looking stack for calling the native method // than the typical interpreter frame setup. // address InterpreterGenerator::generate_native_entry(bool synchronized) { address entry = __ pc(); // the following temporary registers are used during frame creation const Register Gtmp1 = G3_scratch ; const Register Gtmp2 = G1_scratch; bool inc_counter = UseCompiler || CountCompiledCalls; // make sure registers are different! assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2); const Address Laccess_flags(Lmethod, Method::access_flags_offset()); const Register Glocals_size = G3; assert_different_registers(Glocals_size, G4_scratch, Gframe_size); // make sure method is native & not abstract // rethink these assertions - they can be simplified and shared (gri 2/25/2000) #ifdef ASSERT __ ld(G5_method, Method::access_flags_offset(), Gtmp1); { Label L; __ btst(JVM_ACC_NATIVE, Gtmp1); __ br(Assembler::notZero, false, Assembler::pt, L); __ delayed()->nop(); __ stop("tried to execute non-native method as native"); __ bind(L); } { Label L; __ btst(JVM_ACC_ABSTRACT, Gtmp1); __ br(Assembler::zero, false, Assembler::pt, L); __ delayed()->nop(); __ stop("tried to execute abstract method as non-abstract"); __ bind(L); } #endif // ASSERT // generate the code to allocate the interpreter stack frame generate_fixed_frame(true); // // No locals to initialize for native method // // this slot will be set later, we initialize it to null here just in // case we get a GC before the actual value is stored later __ st_ptr(G0, FP, (frame::interpreter_frame_oop_temp_offset * wordSize) + STACK_BIAS); const Address do_not_unlock_if_synchronized(G2_thread, JavaThread::do_not_unlock_if_synchronized_offset()); // Since at this point in the method invocation the exception handler // would try to exit the monitor of synchronized methods which hasn't // been entered yet, we set the thread local variable // _do_not_unlock_if_synchronized to true. If any exception was thrown by // runtime, exception handling i.e. unlock_if_synchronized_method will // check this thread local flag. // This flag has two effects, one is to force an unwind in the topmost // interpreter frame and not perform an unlock while doing so. __ movbool(true, G3_scratch); __ stbool(G3_scratch, do_not_unlock_if_synchronized); // increment invocation counter and check for overflow // // Note: checking for negative value instead of overflow // so we have a 'sticky' overflow test (may be of // importance as soon as we have true MT/MP) Label invocation_counter_overflow; Label Lcontinue; if (inc_counter) { generate_counter_incr(&invocation_counter_overflow, NULL, NULL); } __ bind(Lcontinue); bang_stack_shadow_pages(true); // reset the _do_not_unlock_if_synchronized flag __ stbool(G0, do_not_unlock_if_synchronized); // check for synchronized methods // Must happen AFTER invocation_counter check and stack overflow check, // so method is not locked if overflows. if (synchronized) { lock_method(); } else { #ifdef ASSERT { Label ok; __ ld(Laccess_flags, O0); __ btst(JVM_ACC_SYNCHRONIZED, O0); __ br( Assembler::zero, false, Assembler::pt, ok); __ delayed()->nop(); __ stop("method needs synchronization"); __ bind(ok); } #endif // ASSERT } // start execution __ verify_thread(); // JVMTI support __ notify_method_entry(); // native call // (note that O0 is never an oop--at most it is a handle) // It is important not to smash any handles created by this call, // until any oop handle in O0 is dereferenced. // (note that the space for outgoing params is preallocated) // get signature handler { Label L; Address signature_handler(Lmethod, Method::signature_handler_offset()); __ ld_ptr(signature_handler, G3_scratch); __ br_notnull_short(G3_scratch, Assembler::pt, L); __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), Lmethod); __ ld_ptr(signature_handler, G3_scratch); __ bind(L); } // Push a new frame so that the args will really be stored in // Copy a few locals across so the new frame has the variables // we need but these values will be dead at the jni call and // therefore not gc volatile like the values in the current // frame (Lmethod in particular) // Flush the method pointer to the register save area __ st_ptr(Lmethod, SP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS); __ mov(Llocals, O1); // calculate where the mirror handle body is allocated in the interpreter frame: __ add(FP, (frame::interpreter_frame_oop_temp_offset * wordSize) + STACK_BIAS, O2); // Calculate current frame size __ sub(SP, FP, O3); // Calculate negative of current frame size __ save(SP, O3, SP); // Allocate an identical sized frame // Note I7 has leftover trash. Slow signature handler will fill it in // should we get there. Normal jni call will set reasonable last_Java_pc // below (and fix I7 so the stack trace doesn't have a meaningless frame // in it). // Load interpreter frame's Lmethod into same register here __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod); __ mov(I1, Llocals); __ mov(I2, Lscratch2); // save the address of the mirror // ONLY Lmethod and Llocals are valid here! // call signature handler, It will move the arg properly since Llocals in current frame // matches that in outer frame __ callr(G3_scratch, 0); __ delayed()->nop(); // Result handler is in Lscratch // Reload interpreter frame's Lmethod since slow signature handler may block __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod); { Label not_static; __ ld(Laccess_flags, O0); __ btst(JVM_ACC_STATIC, O0); __ br( Assembler::zero, false, Assembler::pt, not_static); // get native function entry point(O0 is a good temp until the very end) __ delayed()->ld_ptr(Lmethod, in_bytes(Method::native_function_offset()), O0); // for static methods insert the mirror argument const int mirror_offset = in_bytes(Klass::java_mirror_offset()); __ ld_ptr(Lmethod, Method:: const_offset(), O1); __ ld_ptr(O1, ConstMethod::constants_offset(), O1); __ ld_ptr(O1, ConstantPool::pool_holder_offset_in_bytes(), O1); __ ld_ptr(O1, mirror_offset, O1); #ifdef ASSERT if (!PrintSignatureHandlers) // do not dirty the output with this { Label L; __ br_notnull_short(O1, Assembler::pt, L); __ stop("mirror is missing"); __ bind(L); } #endif // ASSERT __ st_ptr(O1, Lscratch2, 0); __ mov(Lscratch2, O1); __ bind(not_static); } // At this point, arguments have been copied off of stack into // their JNI positions, which are O1..O5 and SP[68..]. // Oops are boxed in-place on the stack, with handles copied to arguments. // The result handler is in Lscratch. O0 will shortly hold the JNIEnv*. #ifdef ASSERT { Label L; __ br_notnull_short(O0, Assembler::pt, L); __ stop("native entry point is missing"); __ bind(L); } #endif // ASSERT // // setup the frame anchor // // The scavenge function only needs to know that the PC of this frame is // in the interpreter method entry code, it doesn't need to know the exact // PC and hence we can use O7 which points to the return address from the // previous call in the code stream (signature handler function) // // The other trick is we set last_Java_sp to FP instead of the usual SP because // we have pushed the extra frame in order to protect the volatile register(s) // in that frame when we return from the jni call // __ set_last_Java_frame(FP, O7); __ mov(O7, I7); // make dummy interpreter frame look like one above, // not meaningless information that'll confuse me. // flush the windows now. We don't care about the current (protection) frame // only the outer frames __ flush_windows(); // mark windows as flushed Address flags(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset()); __ set(JavaFrameAnchor::flushed, G3_scratch); __ st(G3_scratch, flags); // Transition from _thread_in_Java to _thread_in_native. We are already safepoint ready. Address thread_state(G2_thread, JavaThread::thread_state_offset()); #ifdef ASSERT { Label L; __ ld(thread_state, G3_scratch); __ cmp_and_br_short(G3_scratch, _thread_in_Java, Assembler::equal, Assembler::pt, L); __ stop("Wrong thread state in native stub"); __ bind(L); } #endif // ASSERT __ set(_thread_in_native, G3_scratch); __ st(G3_scratch, thread_state); // Call the jni method, using the delay slot to set the JNIEnv* argument. __ save_thread(L7_thread_cache); // save Gthread __ callr(O0, 0); __ delayed()-> add(L7_thread_cache, in_bytes(JavaThread::jni_environment_offset()), O0); // Back from jni method Lmethod in this frame is DEAD, DEAD, DEAD __ restore_thread(L7_thread_cache); // restore G2_thread __ reinit_heapbase(); // must we block? // Block, if necessary, before resuming in _thread_in_Java state. // In order for GC to work, don't clear the last_Java_sp until after blocking. { Label no_block; AddressLiteral sync_state(SafepointSynchronize::address_of_state()); // Switch thread to "native transition" state before reading the synchronization state. // This additional state is necessary because reading and testing the synchronization // state is not atomic w.r.t. GC, as this scenario demonstrates: // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted. // VM thread changes sync state to synchronizing and suspends threads for GC. // Thread A is resumed to finish this native method, but doesn't block here since it // didn't see any synchronization is progress, and escapes. __ set(_thread_in_native_trans, G3_scratch); __ st(G3_scratch, thread_state); if(os::is_MP()) { if (UseMembar) { // Force this write out before the read below __ membar(Assembler::StoreLoad); } else { // Write serialization page so VM thread can do a pseudo remote membar. // We use the current thread pointer to calculate a thread specific // offset to write to within the page. This minimizes bus traffic // due to cache line collision. __ serialize_memory(G2_thread, G1_scratch, G3_scratch); } } __ load_contents(sync_state, G3_scratch); __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized); Label L; __ br(Assembler::notEqual, false, Assembler::pn, L); __ delayed()->ld(G2_thread, JavaThread::suspend_flags_offset(), G3_scratch); __ cmp_and_br_short(G3_scratch, 0, Assembler::equal, Assembler::pt, no_block); __ bind(L); // Block. Save any potential method result value before the operation and // use a leaf call to leave the last_Java_frame setup undisturbed. save_native_result(); __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans), G2_thread); // Restore any method result value restore_native_result(); __ bind(no_block); } // Clear the frame anchor now __ reset_last_Java_frame(); // Move the result handler address __ mov(Lscratch, G3_scratch); // return possible result to the outer frame #ifndef __LP64 __ mov(O0, I0); __ restore(O1, G0, O1); #else __ restore(O0, G0, O0); #endif /* __LP64 */ // Move result handler to expected register __ mov(G3_scratch, Lscratch); // Back in normal (native) interpreter frame. State is thread_in_native_trans // switch to thread_in_Java. __ set(_thread_in_Java, G3_scratch); __ st(G3_scratch, thread_state); // reset handle block __ ld_ptr(G2_thread, JavaThread::active_handles_offset(), G3_scratch); __ st_ptr(G0, G3_scratch, JNIHandleBlock::top_offset_in_bytes()); // If we have an oop result store it where it will be safe for any further gc // until we return now that we've released the handle it might be protected by { Label no_oop, store_result; __ set((intptr_t)AbstractInterpreter::result_handler(T_OBJECT), G3_scratch); __ cmp_and_brx_short(G3_scratch, Lscratch, Assembler::notEqual, Assembler::pt, no_oop); __ addcc(G0, O0, O0); __ brx(Assembler::notZero, true, Assembler::pt, store_result); // if result is not NULL: __ delayed()->ld_ptr(O0, 0, O0); // unbox it __ mov(G0, O0); __ bind(store_result); // Store it where gc will look for it and result handler expects it. __ st_ptr(O0, FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS); __ bind(no_oop); } // handle exceptions (exception handling will handle unlocking!) { Label L; Address exception_addr(G2_thread, Thread::pending_exception_offset()); __ ld_ptr(exception_addr, Gtemp); __ br_null_short(Gtemp, Assembler::pt, L); // Note: This could be handled more efficiently since we know that the native // method doesn't have an exception handler. We could directly return // to the exception handler for the caller. __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception)); __ should_not_reach_here(); __ bind(L); } // JVMTI support (preserves thread register) __ notify_method_exit(true, ilgl, InterpreterMacroAssembler::NotifyJVMTI); if (synchronized) { // save and restore any potential method result value around the unlocking operation save_native_result(); __ add( __ top_most_monitor(), O1); __ unlock_object(O1); restore_native_result(); } #if defined(COMPILER2) && !defined(_LP64) // C2 expects long results in G1 we can't tell if we're returning to interpreted // or compiled so just be safe. __ sllx(O0, 32, G1); // Shift bits into high G1 __ srl (O1, 0, O1); // Zero extend O1 __ or3 (O1, G1, G1); // OR 64 bits into G1 #endif /* COMPILER2 && !_LP64 */ // dispose of return address and remove activation #ifdef ASSERT { Label ok; __ cmp_and_brx_short(I5_savedSP, FP, Assembler::greaterEqualUnsigned, Assembler::pt, ok); __ stop("bad I5_savedSP value"); __ should_not_reach_here(); __ bind(ok); } #endif if (TraceJumps) { // Move target to register that is recordable __ mov(Lscratch, G3_scratch); __ JMP(G3_scratch, 0); } else { __ jmp(Lscratch, 0); } __ delayed()->nop(); if (inc_counter) { // handle invocation counter overflow __ bind(invocation_counter_overflow); generate_counter_overflow(Lcontinue); } return entry; } // Generic method entry to (asm) interpreter //------------------------------------------------------------------------------------------------------------------------ // address InterpreterGenerator::generate_normal_entry(bool synchronized) { address entry = __ pc(); bool inc_counter = UseCompiler || CountCompiledCalls; // the following temporary registers are used during frame creation const Register Gtmp1 = G3_scratch ; const Register Gtmp2 = G1_scratch; // make sure registers are different! assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2); const Address constMethod (G5_method, Method::const_offset()); // Seems like G5_method is live at the point this is used. So we could make this look consistent // and use in the asserts. const Address access_flags (Lmethod, Method::access_flags_offset()); const Register Glocals_size = G3; assert_different_registers(Glocals_size, G4_scratch, Gframe_size); // make sure method is not native & not abstract // rethink these assertions - they can be simplified and shared (gri 2/25/2000) #ifdef ASSERT __ ld(G5_method, Method::access_flags_offset(), Gtmp1); { Label L; __ btst(JVM_ACC_NATIVE, Gtmp1); __ br(Assembler::zero, false, Assembler::pt, L); __ delayed()->nop(); __ stop("tried to execute native method as non-native"); __ bind(L); } { Label L; __ btst(JVM_ACC_ABSTRACT, Gtmp1); __ br(Assembler::zero, false, Assembler::pt, L); __ delayed()->nop(); __ stop("tried to execute abstract method as non-abstract"); __ bind(L); } #endif // ASSERT // generate the code to allocate the interpreter stack frame generate_fixed_frame(false); #ifdef FAST_DISPATCH __ set((intptr_t)Interpreter::dispatch_table(), IdispatchTables); // set bytecode dispatch table base #endif // // Code to initialize the extra (i.e. non-parm) locals // Register init_value = noreg; // will be G0 if we must clear locals // The way the code was setup before zerolocals was always true for vanilla java entries. // It could only be false for the specialized entries like accessor or empty which have // no extra locals so the testing was a waste of time and the extra locals were always // initialized. We removed this extra complication to already over complicated code. init_value = G0; Label clear_loop; const Register RconstMethod = O1; const Address size_of_parameters(RconstMethod, ConstMethod::size_of_parameters_offset()); const Address size_of_locals (RconstMethod, ConstMethod::size_of_locals_offset()); // NOTE: If you change the frame layout, this code will need to // be updated! __ ld_ptr( constMethod, RconstMethod ); __ lduh( size_of_locals, O2 ); __ lduh( size_of_parameters, O1 ); __ sll( O2, Interpreter::logStackElementSize, O2); __ sll( O1, Interpreter::logStackElementSize, O1 ); __ sub( Llocals, O2, O2 ); __ sub( Llocals, O1, O1 ); __ bind( clear_loop ); __ inc( O2, wordSize ); __ cmp( O2, O1 ); __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, clear_loop ); __ delayed()->st_ptr( init_value, O2, 0 ); const Address do_not_unlock_if_synchronized(G2_thread, JavaThread::do_not_unlock_if_synchronized_offset()); // Since at this point in the method invocation the exception handler // would try to exit the monitor of synchronized methods which hasn't // been entered yet, we set the thread local variable // _do_not_unlock_if_synchronized to true. If any exception was thrown by // runtime, exception handling i.e. unlock_if_synchronized_method will // check this thread local flag. __ movbool(true, G3_scratch); __ stbool(G3_scratch, do_not_unlock_if_synchronized); // increment invocation counter and check for overflow // // Note: checking for negative value instead of overflow // so we have a 'sticky' overflow test (may be of // importance as soon as we have true MT/MP) Label invocation_counter_overflow; Label profile_method; Label profile_method_continue; Label Lcontinue; if (inc_counter) { generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue); if (ProfileInterpreter) { __ bind(profile_method_continue); } } __ bind(Lcontinue); bang_stack_shadow_pages(false); // reset the _do_not_unlock_if_synchronized flag __ stbool(G0, do_not_unlock_if_synchronized); // check for synchronized methods // Must happen AFTER invocation_counter check and stack overflow check, // so method is not locked if overflows. if (synchronized) { lock_method(); } else { #ifdef ASSERT { Label ok; __ ld(access_flags, O0); __ btst(JVM_ACC_SYNCHRONIZED, O0); __ br( Assembler::zero, false, Assembler::pt, ok); __ delayed()->nop(); __ stop("method needs synchronization"); __ bind(ok); } #endif // ASSERT } // start execution __ verify_thread(); // jvmti support __ notify_method_entry(); // start executing instructions __ dispatch_next(vtos); if (inc_counter) { if (ProfileInterpreter) { // We have decided to profile this method in the interpreter __ bind(profile_method); __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method)); __ set_method_data_pointer_for_bcp(); __ ba_short(profile_method_continue); } // handle invocation counter overflow __ bind(invocation_counter_overflow); generate_counter_overflow(Lcontinue); } return entry; } //---------------------------------------------------------------------------------------------------- // Entry points & stack frame layout // // Here we generate the various kind of entries into the interpreter. // The two main entry type are generic bytecode methods and native call method. // These both come in synchronized and non-synchronized versions but the // frame layout they create is very similar. The other method entry // types are really just special purpose entries that are really entry // and interpretation all in one. These are for trivial methods like // accessor, empty, or special math methods. // // When control flow reaches any of the entry types for the interpreter // the following holds -> // // C2 Calling Conventions: // // The entry code below assumes that the following registers are set // when coming in: // G5_method: holds the Method* of the method to call // Lesp: points to the TOS of the callers expression stack // after having pushed all the parameters // // The entry code does the following to setup an interpreter frame // pop parameters from the callers stack by adjusting Lesp // set O0 to Lesp // compute X = (max_locals - num_parameters) // bump SP up by X to accomadate the extra locals // compute X = max_expression_stack // + vm_local_words // + 16 words of register save area // save frame doing a save sp, -X, sp growing towards lower addresses // set Lbcp, Lmethod, LcpoolCache // set Llocals to i0 // set Lmonitors to FP - rounded_vm_local_words // set Lesp to Lmonitors - 4 // // The frame has now been setup to do the rest of the entry code // Try this optimization: Most method entries could live in a // "one size fits all" stack frame without all the dynamic size // calculations. It might be profitable to do all this calculation // statically and approximately for "small enough" methods. //----------------------------------------------------------------------------------------------- // C1 Calling conventions // // Upon method entry, the following registers are setup: // // g2 G2_thread: current thread // g5 G5_method: method to activate // g4 Gargs : pointer to last argument // // // Stack: // // +---------------+ <--- sp // | | // : reg save area : // | | // +---------------+ <--- sp + 0x40 // | | // : extra 7 slots : note: these slots are not really needed for the interpreter (fix later) // | | // +---------------+ <--- sp + 0x5c // | | // : free : // | | // +---------------+ <--- Gargs // | | // : arguments : // | | // +---------------+ // | | // // // // AFTER FRAME HAS BEEN SETUP for method interpretation the stack looks like: // // +---------------+ <--- sp // | | // : reg save area : // | | // +---------------+ <--- sp + 0x40 // | | // : extra 7 slots : note: these slots are not really needed for the interpreter (fix later) // | | // +---------------+ <--- sp + 0x5c // | | // : : // | | <--- Lesp // +---------------+ <--- Lmonitors (fp - 0x18) // | VM locals | // +---------------+ <--- fp // | | // : reg save area : // | | // +---------------+ <--- fp + 0x40 // | | // : extra 7 slots : note: these slots are not really needed for the interpreter (fix later) // | | // +---------------+ <--- fp + 0x5c // | | // : free : // | | // +---------------+ // | | // : nonarg locals : // | | // +---------------+ // | | // : arguments : // | | <--- Llocals // +---------------+ <--- Gargs // | | static int size_activation_helper(int callee_extra_locals, int max_stack, int monitor_size) { // Figure out the size of an interpreter frame (in words) given that we have a fully allocated // expression stack, the callee will have callee_extra_locals (so we can account for // frame extension) and monitor_size for monitors. Basically we need to calculate // this exactly like generate_fixed_frame/generate_compute_interpreter_state. // // // The big complicating thing here is that we must ensure that the stack stays properly // aligned. This would be even uglier if monitor size wasn't modulo what the stack // needs to be aligned for). We are given that the sp (fp) is already aligned by // the caller so we must ensure that it is properly aligned for our callee. // const int rounded_vm_local_words = round_to(frame::interpreter_frame_vm_local_words,WordsPerLong); // callee_locals and max_stack are counts, not the size in frame. const int locals_size = round_to(callee_extra_locals * Interpreter::stackElementWords, WordsPerLong); const int max_stack_words = max_stack * Interpreter::stackElementWords; return (round_to((max_stack_words //6815692//+ Method::extra_stack_words() + rounded_vm_local_words + frame::memory_parameter_word_sp_offset), WordsPerLong) // already rounded + locals_size + monitor_size); } // How much stack a method top interpreter activation needs in words. int AbstractInterpreter::size_top_interpreter_activation(Method* method) { // See call_stub code int call_stub_size = round_to(7 + frame::memory_parameter_word_sp_offset, WordsPerLong); // 7 + register save area // Save space for one monitor to get into the interpreted method in case // the method is synchronized int monitor_size = method->is_synchronized() ? 1*frame::interpreter_frame_monitor_size() : 0; return size_activation_helper(method->max_locals(), method->max_stack(), monitor_size) + call_stub_size; } int AbstractInterpreter::layout_activation(Method* method, int tempcount, int popframe_extra_args, int moncount, int caller_actual_parameters, int callee_param_count, int callee_local_count, frame* caller, frame* interpreter_frame, bool is_top_frame, bool is_bottom_frame) { // Note: This calculation must exactly parallel the frame setup // in InterpreterGenerator::generate_fixed_frame. // If f!=NULL, set up the following variables: // - Lmethod // - Llocals // - Lmonitors (to the indicated number of monitors) // - Lesp (to the indicated number of temps) // The frame f (if not NULL) on entry is a description of the caller of the frame // we are about to layout. We are guaranteed that we will be able to fill in a // new interpreter frame as its callee (i.e. the stack space is allocated and // the amount was determined by an earlier call to this method with f == NULL). // On return f (if not NULL) while describe the interpreter frame we just layed out. int monitor_size = moncount * frame::interpreter_frame_monitor_size(); int rounded_vm_local_words = round_to(frame::interpreter_frame_vm_local_words,WordsPerLong); assert(monitor_size == round_to(monitor_size, WordsPerLong), "must align"); // // Note: if you look closely this appears to be doing something much different // than generate_fixed_frame. What is happening is this. On sparc we have to do // this dance with interpreter_sp_adjustment because the window save area would // appear just below the bottom (tos) of the caller's java expression stack. Because // the interpreter want to have the locals completely contiguous generate_fixed_frame // will adjust the caller's sp for the "extra locals" (max_locals - parameter_size). // Now in generate_fixed_frame the extension of the caller's sp happens in the callee. // In this code the opposite occurs the caller adjusts it's own stack base on the callee. // This is mostly ok but it does cause a problem when we get to the initial frame (the oldest) // because the oldest frame would have adjust its callers frame and yet that frame // already exists and isn't part of this array of frames we are unpacking. So at first // glance this would seem to mess up that frame. However Deoptimization::fetch_unroll_info_helper() // will after it calculates all of the frame's on_stack_size()'s will then figure out the // amount to adjust the caller of the initial (oldest) frame and the calculation will all // add up. It does seem like it simpler to account for the adjustment here (and remove the // callee... parameters here). However this would mean that this routine would have to take // the caller frame as input so we could adjust its sp (and set it's interpreter_sp_adjustment) // and run the calling loop in the reverse order. This would also would appear to mean making // this code aware of what the interactions are when that initial caller fram was an osr or // other adapter frame. deoptimization is complicated enough and hard enough to debug that // there is no sense in messing working code. // int rounded_cls = round_to((callee_local_count - callee_param_count), WordsPerLong); assert(rounded_cls == round_to(rounded_cls, WordsPerLong), "must align"); int raw_frame_size = size_activation_helper(rounded_cls, method->max_stack(), monitor_size); if (interpreter_frame != NULL) { // The skeleton frame must already look like an interpreter frame // even if not fully filled out. assert(interpreter_frame->is_interpreted_frame(), "Must be interpreted frame"); intptr_t* fp = interpreter_frame->fp(); JavaThread* thread = JavaThread::current(); RegisterMap map(thread, false); // More verification that skeleton frame is properly walkable assert(fp == caller->sp(), "fp must match"); intptr_t* montop = fp - rounded_vm_local_words; // preallocate monitors (cf. __ add_monitor_to_stack) intptr_t* monitors = montop - monitor_size; // preallocate stack space intptr_t* esp = monitors - 1 - (tempcount * Interpreter::stackElementWords) - popframe_extra_args; int local_words = method->max_locals() * Interpreter::stackElementWords; NEEDS_CLEANUP; intptr_t* locals; if (caller->is_interpreted_frame()) { // Can force the locals area to end up properly overlapping the top of the expression stack. intptr_t* Lesp_ptr = caller->interpreter_frame_tos_address() - 1; // Note that this computation means we replace size_of_parameters() values from the caller // interpreter frame's expression stack with our argument locals int parm_words = caller_actual_parameters * Interpreter::stackElementWords; locals = Lesp_ptr + parm_words; int delta = local_words - parm_words; int computed_sp_adjustment = (delta > 0) ? round_to(delta, WordsPerLong) : 0; *interpreter_frame->register_addr(I5_savedSP) = (intptr_t) (fp + computed_sp_adjustment) - STACK_BIAS; if (!is_bottom_frame) { // Llast_SP is set below for the current frame to SP (with the // extra space for the callee's locals). Here we adjust // Llast_SP for the caller's frame, removing the extra space // for the current method's locals. *caller->register_addr(Llast_SP) = *interpreter_frame->register_addr(I5_savedSP); } else { assert(*caller->register_addr(Llast_SP) >= *interpreter_frame->register_addr(I5_savedSP), "strange Llast_SP"); } } else { assert(caller->is_compiled_frame() || caller->is_entry_frame(), "only possible cases"); // Don't have Lesp available; lay out locals block in the caller // adjacent to the register window save area. // // Compiled frames do not allocate a varargs area which is why this if // statement is needed. // if (caller->is_compiled_frame()) { locals = fp + frame::register_save_words + local_words - 1; } else { locals = fp + frame::memory_parameter_word_sp_offset + local_words - 1; } if (!caller->is_entry_frame()) { // Caller wants his own SP back int caller_frame_size = caller->cb()->frame_size(); *interpreter_frame->register_addr(I5_savedSP) = (intptr_t)(caller->fp() - caller_frame_size) - STACK_BIAS; } } if (TraceDeoptimization) { if (caller->is_entry_frame()) { // make sure I5_savedSP and the entry frames notion of saved SP // agree. This assertion duplicate a check in entry frame code // but catches the failure earlier. assert(*caller->register_addr(Lscratch) == *interpreter_frame->register_addr(I5_savedSP), "would change callers SP"); } if (caller->is_entry_frame()) { tty->print("entry "); } if (caller->is_compiled_frame()) { tty->print("compiled "); if (caller->is_deoptimized_frame()) { tty->print("(deopt) "); } } if (caller->is_interpreted_frame()) { tty->print("interpreted "); } tty->print_cr("caller fp=0x%x sp=0x%x", caller->fp(), caller->sp()); tty->print_cr("save area = 0x%x, 0x%x", caller->sp(), caller->sp() + 16); tty->print_cr("save area = 0x%x, 0x%x", caller->fp(), caller->fp() + 16); tty->print_cr("interpreter fp=0x%x sp=0x%x", interpreter_frame->fp(), interpreter_frame->sp()); tty->print_cr("save area = 0x%x, 0x%x", interpreter_frame->sp(), interpreter_frame->sp() + 16); tty->print_cr("save area = 0x%x, 0x%x", interpreter_frame->fp(), interpreter_frame->fp() + 16); tty->print_cr("Llocals = 0x%x", locals); tty->print_cr("Lesp = 0x%x", esp); tty->print_cr("Lmonitors = 0x%x", monitors); } if (method->max_locals() > 0) { assert(locals < caller->sp() || locals >= (caller->sp() + 16), "locals in save area"); assert(locals < caller->fp() || locals > (caller->fp() + 16), "locals in save area"); assert(locals < interpreter_frame->sp() || locals > (interpreter_frame->sp() + 16), "locals in save area"); assert(locals < interpreter_frame->fp() || locals >= (interpreter_frame->fp() + 16), "locals in save area"); } #ifdef _LP64 assert(*interpreter_frame->register_addr(I5_savedSP) & 1, "must be odd"); #endif *interpreter_frame->register_addr(Lmethod) = (intptr_t) method; *interpreter_frame->register_addr(Llocals) = (intptr_t) locals; *interpreter_frame->register_addr(Lmonitors) = (intptr_t) monitors; *interpreter_frame->register_addr(Lesp) = (intptr_t) esp; // Llast_SP will be same as SP as there is no adapter space *interpreter_frame->register_addr(Llast_SP) = (intptr_t) interpreter_frame->sp() - STACK_BIAS; *interpreter_frame->register_addr(LcpoolCache) = (intptr_t) method->constants()->cache(); #ifdef FAST_DISPATCH *interpreter_frame->register_addr(IdispatchTables) = (intptr_t) Interpreter::dispatch_table(); #endif #ifdef ASSERT BasicObjectLock* mp = (BasicObjectLock*)monitors; assert(interpreter_frame->interpreter_frame_method() == method, "method matches"); assert(interpreter_frame->interpreter_frame_local_at(9) == (intptr_t *)((intptr_t)locals - (9 * Interpreter::stackElementSize)), "locals match"); assert(interpreter_frame->interpreter_frame_monitor_end() == mp, "monitor_end matches"); assert(((intptr_t *)interpreter_frame->interpreter_frame_monitor_begin()) == ((intptr_t *)mp)+monitor_size, "monitor_begin matches"); assert(interpreter_frame->interpreter_frame_tos_address()-1 == esp, "esp matches"); // check bounds intptr_t* lo = interpreter_frame->sp() + (frame::memory_parameter_word_sp_offset - 1); intptr_t* hi = interpreter_frame->fp() - rounded_vm_local_words; assert(lo < monitors && montop <= hi, "monitors in bounds"); assert(lo <= esp && esp < monitors, "esp in bounds"); #endif // ASSERT } return raw_frame_size; } //---------------------------------------------------------------------------------------------------- // Exceptions void TemplateInterpreterGenerator::generate_throw_exception() { // Entry point in previous activation (i.e., if the caller was interpreted) Interpreter::_rethrow_exception_entry = __ pc(); // O0: exception // entry point for exceptions thrown within interpreter code Interpreter::_throw_exception_entry = __ pc(); __ verify_thread(); // expression stack is undefined here // O0: exception, i.e. Oexception // Lbcp: exception bcx __ verify_oop(Oexception); // expression stack must be empty before entering the VM in case of an exception __ empty_expression_stack(); // find exception handler address and preserve exception oop // call C routine to find handler and jump to it __ call_VM(O1, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Oexception); __ push_ptr(O1); // push exception for exception handler bytecodes __ JMP(O0, 0); // jump to exception handler (may be remove activation entry!) __ delayed()->nop(); // if the exception is not handled in the current frame // the frame is removed and the exception is rethrown // (i.e. exception continuation is _rethrow_exception) // // Note: At this point the bci is still the bxi for the instruction which caused // the exception and the expression stack is empty. Thus, for any VM calls // at this point, GC will find a legal oop map (with empty expression stack). // in current activation // tos: exception // Lbcp: exception bcp // // JVMTI PopFrame support // Interpreter::_remove_activation_preserving_args_entry = __ pc(); Address popframe_condition_addr(G2_thread, JavaThread::popframe_condition_offset()); // Set the popframe_processing bit in popframe_condition indicating that we are // currently handling popframe, so that call_VMs that may happen later do not trigger new // popframe handling cycles. __ ld(popframe_condition_addr, G3_scratch); __ or3(G3_scratch, JavaThread::popframe_processing_bit, G3_scratch); __ stw(G3_scratch, popframe_condition_addr); // Empty the expression stack, as in normal exception handling __ empty_expression_stack(); __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false); { // Check to see whether we are returning to a deoptimized frame. // (The PopFrame call ensures that the caller of the popped frame is // either interpreted or compiled and deoptimizes it if compiled.) // In this case, we can't call dispatch_next() after the frame is // popped, but instead must save the incoming arguments and restore // them after deoptimization has occurred. // // Note that we don't compare the return PC against the // deoptimization blob's unpack entry because of the presence of // adapter frames in C2. Label caller_not_deoptimized; __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), I7); __ br_notnull_short(O0, Assembler::pt, caller_not_deoptimized); const Register Gtmp1 = G3_scratch; const Register Gtmp2 = G1_scratch; const Register RconstMethod = Gtmp1; const Address constMethod(Lmethod, Method::const_offset()); const Address size_of_parameters(RconstMethod, ConstMethod::size_of_parameters_offset()); // Compute size of arguments for saving when returning to deoptimized caller __ ld_ptr(constMethod, RconstMethod); __ lduh(size_of_parameters, Gtmp1); __ sll(Gtmp1, Interpreter::logStackElementSize, Gtmp1); __ sub(Llocals, Gtmp1, Gtmp2); __ add(Gtmp2, wordSize, Gtmp2); // Save these arguments __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), G2_thread, Gtmp1, Gtmp2); // Inform deoptimization that it is responsible for restoring these arguments __ set(JavaThread::popframe_force_deopt_reexecution_bit, Gtmp1); Address popframe_condition_addr(G2_thread, JavaThread::popframe_condition_offset()); __ st(Gtmp1, popframe_condition_addr); // Return from the current method // The caller's SP was adjusted upon method entry to accomodate // the callee's non-argument locals. Undo that adjustment. __ ret(); __ delayed()->restore(I5_savedSP, G0, SP); __ bind(caller_not_deoptimized); } // Clear the popframe condition flag __ stw(G0 /* popframe_inactive */, popframe_condition_addr); // Get out of the current method (how this is done depends on the particular compiler calling // convention that the interpreter currently follows) // The caller's SP was adjusted upon method entry to accomodate // the callee's non-argument locals. Undo that adjustment. __ restore(I5_savedSP, G0, SP); // The method data pointer was incremented already during // call profiling. We have to restore the mdp for the current bcp. if (ProfileInterpreter) { __ set_method_data_pointer_for_bcp(); } // Resume bytecode interpretation at the current bcp __ dispatch_next(vtos); // end of JVMTI PopFrame support Interpreter::_remove_activation_entry = __ pc(); // preserve exception over this code sequence (remove activation calls the vm, but oopmaps are not correct here) __ pop_ptr(Oexception); // get exception // Intel has the following comment: //// remove the activation (without doing throws on illegalMonitorExceptions) // They remove the activation without checking for bad monitor state. // %%% We should make sure this is the right semantics before implementing. __ set_vm_result(Oexception); __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false); __ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI); __ get_vm_result(Oexception); __ verify_oop(Oexception); const int return_reg_adjustment = frame::pc_return_offset; Address issuing_pc_addr(I7, return_reg_adjustment); // We are done with this activation frame; find out where to go next. // The continuation point will be an exception handler, which expects // the following registers set up: // // Oexception: exception // Oissuing_pc: the local call that threw exception // Other On: garbage // In/Ln: the contents of the caller's register window // // We do the required restore at the last possible moment, because we // need to preserve some state across a runtime call. // (Remember that the caller activation is unknown--it might not be // interpreted, so things like Lscratch are useless in the caller.) // Although the Intel version uses call_C, we can use the more // compact call_VM. (The only real difference on SPARC is a // harmlessly ignored [re]set_last_Java_frame, compared with // the Intel code which lacks this.) __ mov(Oexception, Oexception ->after_save()); // get exception in I0 so it will be on O0 after restore __ add(issuing_pc_addr, Oissuing_pc->after_save()); // likewise set I1 to a value local to the caller __ super_call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), G2_thread, Oissuing_pc->after_save()); // The caller's SP was adjusted upon method entry to accomodate // the callee's non-argument locals. Undo that adjustment. __ JMP(O0, 0); // return exception handler in caller __ delayed()->restore(I5_savedSP, G0, SP); // (same old exception object is already in Oexception; see above) // Note that an "issuing PC" is actually the next PC after the call } // // JVMTI ForceEarlyReturn support // address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) { address entry = __ pc(); __ empty_expression_stack(); __ load_earlyret_value(state); __ ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), G3_scratch); Address cond_addr(G3_scratch, JvmtiThreadState::earlyret_state_offset()); // Clear the earlyret state __ stw(G0 /* JvmtiThreadState::earlyret_inactive */, cond_addr); __ remove_activation(state, /* throw_monitor_exception */ false, /* install_monitor_exception */ false); // The caller's SP was adjusted upon method entry to accomodate // the callee's non-argument locals. Undo that adjustment. __ ret(); // return to caller __ delayed()->restore(I5_savedSP, G0, SP); return entry; } // end of JVMTI ForceEarlyReturn support //------------------------------------------------------------------------------------------------------------------------ // Helper for vtos entry point generation void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) { assert(t->is_valid() && t->tos_in() == vtos, "illegal template"); Label L; aep = __ pc(); __ push_ptr(); __ ba_short(L); fep = __ pc(); __ push_f(); __ ba_short(L); dep = __ pc(); __ push_d(); __ ba_short(L); lep = __ pc(); __ push_l(); __ ba_short(L); iep = __ pc(); __ push_i(); bep = cep = sep = iep; // there aren't any vep = __ pc(); __ bind(L); // fall through generate_and_dispatch(t); } // -------------------------------------------------------------------------------- InterpreterGenerator::InterpreterGenerator(StubQueue* code) : TemplateInterpreterGenerator(code) { generate_all(); // down here so it can be "virtual" } // -------------------------------------------------------------------------------- // Non-product code #ifndef PRODUCT address TemplateInterpreterGenerator::generate_trace_code(TosState state) { address entry = __ pc(); __ push(state); __ mov(O7, Lscratch); // protect return address within interpreter // Pass a 0 (not used in sparc) and the top of stack to the bytecode tracer __ mov( Otos_l2, G3_scratch ); __ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), G0, Otos_l1, G3_scratch); __ mov(Lscratch, O7); // restore return address __ pop(state); __ retl(); __ delayed()->nop(); return entry; } // helpers for generate_and_dispatch void TemplateInterpreterGenerator::count_bytecode() { __ inc_counter(&BytecodeCounter::_counter_value, G3_scratch, G4_scratch); } void TemplateInterpreterGenerator::histogram_bytecode(Template* t) { __ inc_counter(&BytecodeHistogram::_counters[t->bytecode()], G3_scratch, G4_scratch); } void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) { AddressLiteral index (&BytecodePairHistogram::_index); AddressLiteral counters((address) &BytecodePairHistogram::_counters); // get index, shift out old bytecode, bring in new bytecode, and store it // _index = (_index >> log2_number_of_codes) | // (bytecode << log2_number_of_codes); __ load_contents(index, G4_scratch); __ srl( G4_scratch, BytecodePairHistogram::log2_number_of_codes, G4_scratch ); __ set( ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes, G3_scratch ); __ or3( G3_scratch, G4_scratch, G4_scratch ); __ store_contents(G4_scratch, index, G3_scratch); // bump bucket contents // _counters[_index] ++; __ set(counters, G3_scratch); // loads into G3_scratch __ sll( G4_scratch, LogBytesPerWord, G4_scratch ); // Index is word address __ add (G3_scratch, G4_scratch, G3_scratch); // Add in index __ ld (G3_scratch, 0, G4_scratch); __ inc (G4_scratch); __ st (G4_scratch, 0, G3_scratch); } void TemplateInterpreterGenerator::trace_bytecode(Template* t) { // Call a little run-time stub to avoid blow-up for each bytecode. // The run-time runtime saves the right registers, depending on // the tosca in-state for the given template. address entry = Interpreter::trace_code(t->tos_in()); guarantee(entry != NULL, "entry must have been generated"); __ call(entry, relocInfo::none); __ delayed()->nop(); } void TemplateInterpreterGenerator::stop_interpreter_at() { AddressLiteral counter(&BytecodeCounter::_counter_value); __ load_contents(counter, G3_scratch); AddressLiteral stop_at(&StopInterpreterAt); __ load_ptr_contents(stop_at, G4_scratch); __ cmp(G3_scratch, G4_scratch); __ breakpoint_trap(Assembler::equal, Assembler::icc); } #endif // not PRODUCT #endif // !CC_INTERP