/* * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_C1_C1_GRAPHBUILDER_HPP #define SHARE_VM_C1_C1_GRAPHBUILDER_HPP #include "c1/c1_IR.hpp" #include "c1/c1_Instruction.hpp" #include "c1/c1_ValueMap.hpp" #include "c1/c1_ValueStack.hpp" #include "ci/ciMethodData.hpp" #include "ci/ciStreams.hpp" class MemoryBuffer; class GraphBuilder VALUE_OBJ_CLASS_SPEC { private: // Per-scope data. These are pushed and popped as we descend into // inlined methods. Currently in order to generate good code in the // inliner we have to attempt to inline methods directly into the // basic block we are parsing; this adds complexity. class ScopeData: public CompilationResourceObj { private: ScopeData* _parent; // bci-to-block mapping BlockList* _bci2block; // Scope IRScope* _scope; // Whether this scope or any parent scope has exception handlers bool _has_handler; // The bytecodes ciBytecodeStream* _stream; // Work list BlockList* _work_list; // Maximum inline size for this scope intx _max_inline_size; // Expression stack depth at point where inline occurred int _caller_stack_size; // The continuation point for the inline. Currently only used in // multi-block inlines, but eventually would like to use this for // all inlines for uniformity and simplicity; in this case would // get the continuation point from the BlockList instead of // fabricating it anew because Invokes would be considered to be // BlockEnds. BlockBegin* _continuation; // Was this ScopeData created only for the parsing and inlining of // a jsr? bool _parsing_jsr; // We track the destination bci of the jsr only to determine // bailout conditions, since we only handle a subset of all of the // possible jsr-ret control structures. Recursive invocations of a // jsr are disallowed by the verifier. int _jsr_entry_bci; // We need to track the local variable in which the return address // was stored to ensure we can handle inlining the jsr, because we // don't handle arbitrary jsr/ret constructs. int _jsr_ret_addr_local; // If we are parsing a jsr, the continuation point for rets BlockBegin* _jsr_continuation; // Cloned XHandlers for jsr-related ScopeDatas XHandlers* _jsr_xhandlers; // Number of returns seen in this scope int _num_returns; // In order to generate profitable code for inlining, we currently // have to perform an optimization for single-block inlined // methods where we continue parsing into the same block. This // allows us to perform CSE across inlined scopes and to avoid // storing parameters to the stack. Having a global register // allocator and being able to perform global CSE would allow this // code to be removed and thereby simplify the inliner. BlockBegin* _cleanup_block; // The block to which the return was added Instruction* _cleanup_return_prev; // Instruction before return instruction ValueStack* _cleanup_state; // State of that block (not yet pinned) public: ScopeData(ScopeData* parent); ScopeData* parent() const { return _parent; } BlockList* bci2block() const { return _bci2block; } void set_bci2block(BlockList* bci2block) { _bci2block = bci2block; } // NOTE: this has a different effect when parsing jsrs BlockBegin* block_at(int bci); IRScope* scope() const { return _scope; } // Has side-effect of setting has_handler flag void set_scope(IRScope* scope); // Whether this or any parent scope has exception handlers bool has_handler() const { return _has_handler; } void set_has_handler() { _has_handler = true; } // Exception handlers list to be used for this scope XHandlers* xhandlers() const; // How to get a block to be parsed void add_to_work_list(BlockBegin* block); // How to remove the next block to be parsed; returns NULL if none left BlockBegin* remove_from_work_list(); // Indicates parse is over bool is_work_list_empty() const; ciBytecodeStream* stream() { return _stream; } void set_stream(ciBytecodeStream* stream) { _stream = stream; } intx max_inline_size() const { return _max_inline_size; } BlockBegin* continuation() const { return _continuation; } void set_continuation(BlockBegin* cont) { _continuation = cont; } // Indicates whether this ScopeData was pushed only for the // parsing and inlining of a jsr bool parsing_jsr() const { return _parsing_jsr; } void set_parsing_jsr() { _parsing_jsr = true; } int jsr_entry_bci() const { return _jsr_entry_bci; } void set_jsr_entry_bci(int bci) { _jsr_entry_bci = bci; } void set_jsr_return_address_local(int local_no){ _jsr_ret_addr_local = local_no; } int jsr_return_address_local() const { return _jsr_ret_addr_local; } // Must be called after scope is set up for jsr ScopeData void setup_jsr_xhandlers(); // The jsr continuation is only used when parsing_jsr is true, and // is different from the "normal" continuation since we can end up // doing a return (rather than a ret) from within a subroutine BlockBegin* jsr_continuation() const { return _jsr_continuation; } void set_jsr_continuation(BlockBegin* cont) { _jsr_continuation = cont; } int num_returns(); void incr_num_returns(); void set_inline_cleanup_info(BlockBegin* block, Instruction* return_prev, ValueStack* return_state); BlockBegin* inline_cleanup_block() const { return _cleanup_block; } Instruction* inline_cleanup_return_prev() const{ return _cleanup_return_prev; } ValueStack* inline_cleanup_state() const { return _cleanup_state; } }; // for all GraphBuilders static bool _can_trap[Bytecodes::number_of_java_codes]; // for each instance of GraphBuilder ScopeData* _scope_data; // Per-scope data; used for inlining Compilation* _compilation; // the current compilation ValueMap* _vmap; // the map of values encountered (for CSE) MemoryBuffer* _memory; const char* _inline_bailout_msg; // non-null if most recent inline attempt failed int _instruction_count; // for bailing out in pathological jsr/ret cases BlockBegin* _start; // the start block BlockBegin* _osr_entry; // the osr entry block block ValueStack* _initial_state; // The state for the start block // for each call to connect_to_end; can also be set by inliner BlockBegin* _block; // the current block ValueStack* _state; // the current execution state Instruction* _last; // the last instruction added bool _skip_block; // skip processing of the rest of this block // accessors ScopeData* scope_data() const { return _scope_data; } Compilation* compilation() const { return _compilation; } BlockList* bci2block() const { return scope_data()->bci2block(); } ValueMap* vmap() const { assert(UseLocalValueNumbering, "should not access otherwise"); return _vmap; } bool has_handler() const { return scope_data()->has_handler(); } BlockBegin* block() const { return _block; } ValueStack* state() const { return _state; } void set_state(ValueStack* state) { _state = state; } IRScope* scope() const { return scope_data()->scope(); } ciMethod* method() const { return scope()->method(); } ciBytecodeStream* stream() const { return scope_data()->stream(); } Instruction* last() const { return _last; } Bytecodes::Code code() const { return stream()->cur_bc(); } int bci() const { return stream()->cur_bci(); } int next_bci() const { return stream()->next_bci(); } // unified bailout support void bailout(const char* msg) const { compilation()->bailout(msg); } bool bailed_out() const { return compilation()->bailed_out(); } // stack manipulation helpers void ipush(Value t) const { state()->ipush(t); } void lpush(Value t) const { state()->lpush(t); } void fpush(Value t) const { state()->fpush(t); } void dpush(Value t) const { state()->dpush(t); } void apush(Value t) const { state()->apush(t); } void push(ValueType* type, Value t) const { state()-> push(type, t); } Value ipop() { return state()->ipop(); } Value lpop() { return state()->lpop(); } Value fpop() { return state()->fpop(); } Value dpop() { return state()->dpop(); } Value apop() { return state()->apop(); } Value pop(ValueType* type) { return state()-> pop(type); } // instruction helpers void load_constant(); void load_local(ValueType* type, int index); void store_local(ValueType* type, int index); void store_local(ValueStack* state, Value value, ValueType* type, int index); void load_indexed (BasicType type); void store_indexed(BasicType type); void stack_op(Bytecodes::Code code); void arithmetic_op(ValueType* type, Bytecodes::Code code, ValueStack* state_before = NULL); void negate_op(ValueType* type); void shift_op(ValueType* type, Bytecodes::Code code); void logic_op(ValueType* type, Bytecodes::Code code); void compare_op(ValueType* type, Bytecodes::Code code); void convert(Bytecodes::Code op, BasicType from, BasicType to); void increment(); void _goto(int from_bci, int to_bci); void if_node(Value x, If::Condition cond, Value y, ValueStack* stack_before); void if_zero(ValueType* type, If::Condition cond); void if_null(ValueType* type, If::Condition cond); void if_same(ValueType* type, If::Condition cond); void jsr(int dest); void ret(int local_index); void table_switch(); void lookup_switch(); void method_return(Value x); void call_register_finalizer(); void access_field(Bytecodes::Code code); void invoke(Bytecodes::Code code); void new_instance(int klass_index); void new_type_array(); void new_object_array(); void check_cast(int klass_index); void instance_of(int klass_index); void monitorenter(Value x, int bci); void monitorexit(Value x, int bci); void new_multi_array(int dimensions); void throw_op(int bci); Value round_fp(Value fp_value); // stack/code manipulation helpers Instruction* append_with_bci(Instruction* instr, int bci); Instruction* append(Instruction* instr); Instruction* append_split(StateSplit* instr); // other helpers BlockBegin* block_at(int bci) { return scope_data()->block_at(bci); } XHandlers* handle_exception(Instruction* instruction); void connect_to_end(BlockBegin* beg); void null_check(Value value); void eliminate_redundant_phis(BlockBegin* start); BlockEnd* iterate_bytecodes_for_block(int bci); void iterate_all_blocks(bool start_in_current_block_for_inlining = false); Dependencies* dependency_recorder() const; // = compilation()->dependencies() bool direct_compare(ciKlass* k); void kill_all(); // use of state copy routines (try to minimize unnecessary state // object allocations): // - if the instruction unconditionally needs a full copy of the // state (for patching for example), then use copy_state_before* // - if the instruction needs a full copy of the state only for // handler generation (Instruction::needs_exception_state() returns // false) then use copy_state_exhandling* // - if the instruction needs either a full copy of the state for // handler generation and a least a minimal copy of the state (as // returned by Instruction::exception_state()) for debug info // generation (that is when Instruction::needs_exception_state() // returns true) then use copy_state_for_exception* ValueStack* copy_state_before_with_bci(int bci); ValueStack* copy_state_before(); ValueStack* copy_state_exhandling_with_bci(int bci); ValueStack* copy_state_exhandling(); ValueStack* copy_state_for_exception_with_bci(int bci); ValueStack* copy_state_for_exception(); // // Inlining support // // accessors bool parsing_jsr() const { return scope_data()->parsing_jsr(); } BlockBegin* continuation() const { return scope_data()->continuation(); } BlockBegin* jsr_continuation() const { return scope_data()->jsr_continuation(); } void set_continuation(BlockBegin* continuation) { scope_data()->set_continuation(continuation); } void set_inline_cleanup_info(BlockBegin* block, Instruction* return_prev, ValueStack* return_state) { scope_data()->set_inline_cleanup_info(block, return_prev, return_state); } void set_inline_cleanup_info() { set_inline_cleanup_info(_block, _last, _state); } BlockBegin* inline_cleanup_block() const { return scope_data()->inline_cleanup_block(); } Instruction* inline_cleanup_return_prev() const { return scope_data()->inline_cleanup_return_prev(); } ValueStack* inline_cleanup_state() const { return scope_data()->inline_cleanup_state(); } void restore_inline_cleanup_info() { _block = inline_cleanup_block(); _last = inline_cleanup_return_prev(); _state = inline_cleanup_state(); } void incr_num_returns() { scope_data()->incr_num_returns(); } int num_returns() const { return scope_data()->num_returns(); } intx max_inline_size() const { return scope_data()->max_inline_size(); } int inline_level() const { return scope()->level(); } int recursive_inline_level(ciMethod* callee) const; // inlining of synchronized methods void inline_sync_entry(Value lock, BlockBegin* sync_handler); void fill_sync_handler(Value lock, BlockBegin* sync_handler, bool default_handler = false); // inliners bool try_inline( ciMethod* callee, bool holder_known); bool try_inline_intrinsics(ciMethod* callee); bool try_inline_full( ciMethod* callee, bool holder_known, BlockBegin* cont_block = NULL); bool try_inline_jsr(int jsr_dest_bci); // JSR 292 support bool for_method_handle_inline(ciMethod* callee); bool for_invokedynamic_inline(ciMethod* callee); // helpers void inline_bailout(const char* msg); BlockBegin* header_block(BlockBegin* entry, BlockBegin::Flag f, ValueStack* state); BlockBegin* setup_start_block(int osr_bci, BlockBegin* std_entry, BlockBegin* osr_entry, ValueStack* init_state); void setup_osr_entry_block(); void clear_inline_bailout(); ValueStack* state_at_entry(); void push_root_scope(IRScope* scope, BlockList* bci2block, BlockBegin* start); void push_scope(ciMethod* callee, BlockBegin* continuation); void push_scope_for_jsr(BlockBegin* jsr_continuation, int jsr_dest_bci); void pop_scope(); void pop_scope_for_jsr(); bool append_unsafe_get_obj(ciMethod* callee, BasicType t, bool is_volatile); bool append_unsafe_put_obj(ciMethod* callee, BasicType t, bool is_volatile); bool append_unsafe_get_raw(ciMethod* callee, BasicType t); bool append_unsafe_put_raw(ciMethod* callee, BasicType t); bool append_unsafe_prefetch(ciMethod* callee, bool is_store, bool is_static); void append_unsafe_CAS(ciMethod* callee); NOT_PRODUCT(void print_inline_result(ciMethod* callee, bool res);) void profile_call(Value recv, ciKlass* predicted_holder); void profile_invocation(ciMethod* inlinee, ValueStack* state); // Shortcuts to profiling control. bool is_profiling() { return _compilation->is_profiling(); } bool count_invocations() { return _compilation->count_invocations(); } bool count_backedges() { return _compilation->count_backedges(); } bool profile_branches() { return _compilation->profile_branches(); } bool profile_calls() { return _compilation->profile_calls(); } bool profile_inlined_calls() { return _compilation->profile_inlined_calls(); } bool profile_checkcasts() { return _compilation->profile_checkcasts(); } public: NOT_PRODUCT(void print_stats();) // initialization static void initialize(); // public static bool can_trap(ciMethod* method, Bytecodes::Code code) { assert(0 <= code && code < Bytecodes::number_of_java_codes, "illegal bytecode"); if (_can_trap[code]) return true; // special handling for finalizer registration return code == Bytecodes::_return && method->intrinsic_id() == vmIntrinsics::_Object_init; } // creation GraphBuilder(Compilation* compilation, IRScope* scope); static void sort_top_into_worklist(BlockList* worklist, BlockBegin* top); BlockBegin* start() const { return _start; } }; #endif // SHARE_VM_C1_C1_GRAPHBUILDER_HPP