/* * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef CPU_SPARC_VM_MACROASSEMBLER_SPARC_INLINE_HPP #define CPU_SPARC_VM_MACROASSEMBLER_SPARC_INLINE_HPP #include "asm/assembler.inline.hpp" #include "asm/macroAssembler.hpp" #include "asm/codeBuffer.hpp" #include "code/codeCache.hpp" inline bool Address::is_simm13(int offset) { return Assembler::is_simm13(disp() + offset); } inline int AddressLiteral::low10() const { return Assembler::low10(value()); } inline void MacroAssembler::pd_patch_instruction(address branch, address target) { jint& stub_inst = *(jint*) branch; stub_inst = patched_branch(target - branch, stub_inst, 0); } // Use the right loads/stores for the platform inline void MacroAssembler::ld_ptr( Register s1, Register s2, Register d ) { #ifdef _LP64 Assembler::ldx(s1, s2, d); #else ld( s1, s2, d); #endif } inline void MacroAssembler::ld_ptr( Register s1, int simm13a, Register d ) { #ifdef _LP64 Assembler::ldx(s1, simm13a, d); #else ld( s1, simm13a, d); #endif } #ifdef ASSERT // ByteSize is only a class when ASSERT is defined, otherwise it's an int. inline void MacroAssembler::ld_ptr( Register s1, ByteSize simm13a, Register d ) { ld_ptr(s1, in_bytes(simm13a), d); } #endif inline void MacroAssembler::ld_ptr( Register s1, RegisterOrConstant s2, Register d ) { #ifdef _LP64 ldx(s1, s2, d); #else ld( s1, s2, d); #endif } inline void MacroAssembler::ld_ptr(const Address& a, Register d, int offset) { #ifdef _LP64 ldx(a, d, offset); #else ld( a, d, offset); #endif } inline void MacroAssembler::st_ptr( Register d, Register s1, Register s2 ) { #ifdef _LP64 Assembler::stx(d, s1, s2); #else st( d, s1, s2); #endif } inline void MacroAssembler::st_ptr( Register d, Register s1, int simm13a ) { #ifdef _LP64 Assembler::stx(d, s1, simm13a); #else st( d, s1, simm13a); #endif } #ifdef ASSERT // ByteSize is only a class when ASSERT is defined, otherwise it's an int. inline void MacroAssembler::st_ptr( Register d, Register s1, ByteSize simm13a ) { st_ptr(d, s1, in_bytes(simm13a)); } #endif inline void MacroAssembler::st_ptr( Register d, Register s1, RegisterOrConstant s2 ) { #ifdef _LP64 stx(d, s1, s2); #else st( d, s1, s2); #endif } inline void MacroAssembler::st_ptr(Register d, const Address& a, int offset) { #ifdef _LP64 stx(d, a, offset); #else st( d, a, offset); #endif } // Use the right loads/stores for the platform inline void MacroAssembler::ld_long( Register s1, Register s2, Register d ) { #ifdef _LP64 Assembler::ldx(s1, s2, d); #else Assembler::ldd(s1, s2, d); #endif } inline void MacroAssembler::ld_long( Register s1, int simm13a, Register d ) { #ifdef _LP64 Assembler::ldx(s1, simm13a, d); #else Assembler::ldd(s1, simm13a, d); #endif } inline void MacroAssembler::ld_long( Register s1, RegisterOrConstant s2, Register d ) { #ifdef _LP64 ldx(s1, s2, d); #else ldd(s1, s2, d); #endif } inline void MacroAssembler::ld_long(const Address& a, Register d, int offset) { #ifdef _LP64 ldx(a, d, offset); #else ldd(a, d, offset); #endif } inline void MacroAssembler::st_long( Register d, Register s1, Register s2 ) { #ifdef _LP64 Assembler::stx(d, s1, s2); #else Assembler::std(d, s1, s2); #endif } inline void MacroAssembler::st_long( Register d, Register s1, int simm13a ) { #ifdef _LP64 Assembler::stx(d, s1, simm13a); #else Assembler::std(d, s1, simm13a); #endif } inline void MacroAssembler::st_long( Register d, Register s1, RegisterOrConstant s2 ) { #ifdef _LP64 stx(d, s1, s2); #else std(d, s1, s2); #endif } inline void MacroAssembler::st_long( Register d, const Address& a, int offset ) { #ifdef _LP64 stx(d, a, offset); #else std(d, a, offset); #endif } // Functions for isolating 64 bit shifts for LP64 inline void MacroAssembler::sll_ptr( Register s1, Register s2, Register d ) { #ifdef _LP64 Assembler::sllx(s1, s2, d); #else Assembler::sll( s1, s2, d); #endif } inline void MacroAssembler::sll_ptr( Register s1, int imm6a, Register d ) { #ifdef _LP64 Assembler::sllx(s1, imm6a, d); #else Assembler::sll( s1, imm6a, d); #endif } inline void MacroAssembler::srl_ptr( Register s1, Register s2, Register d ) { #ifdef _LP64 Assembler::srlx(s1, s2, d); #else Assembler::srl( s1, s2, d); #endif } inline void MacroAssembler::srl_ptr( Register s1, int imm6a, Register d ) { #ifdef _LP64 Assembler::srlx(s1, imm6a, d); #else Assembler::srl( s1, imm6a, d); #endif } inline void MacroAssembler::sll_ptr( Register s1, RegisterOrConstant s2, Register d ) { if (s2.is_register()) sll_ptr(s1, s2.as_register(), d); else sll_ptr(s1, s2.as_constant(), d); } // Use the right branch for the platform inline void MacroAssembler::br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) { Assembler::bp(c, a, icc, p, d, rt); } inline void MacroAssembler::br( Condition c, bool a, Predict p, Label& L ) { br(c, a, p, target(L)); } // Branch that tests either xcc or icc depending on the // architecture compiled (LP64 or not) inline void MacroAssembler::brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) { #ifdef _LP64 Assembler::bp(c, a, xcc, p, d, rt); #else MacroAssembler::br(c, a, p, d, rt); #endif } inline void MacroAssembler::brx( Condition c, bool a, Predict p, Label& L ) { brx(c, a, p, target(L)); } inline void MacroAssembler::ba( Label& L ) { br(always, false, pt, L); } // Warning: V9 only functions inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) { Assembler::bp(c, a, cc, p, d, rt); } inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, Label& L ) { Assembler::bp(c, a, cc, p, L); } inline void MacroAssembler::fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) { fbp(c, a, fcc0, p, d, rt); } inline void MacroAssembler::fb( Condition c, bool a, Predict p, Label& L ) { fb(c, a, p, target(L)); } inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) { Assembler::fbp(c, a, cc, p, d, rt); } inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, Label& L ) { Assembler::fbp(c, a, cc, p, L); } inline void MacroAssembler::jmp( Register s1, Register s2 ) { jmpl( s1, s2, G0 ); } inline void MacroAssembler::jmp( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, G0, rspec); } inline bool MacroAssembler::is_far_target(address d) { if (ForceUnreachable) { // References outside the code cache should be treated as far return d < CodeCache::low_bound() || d > CodeCache::high_bound(); } return !is_in_wdisp30_range(d, CodeCache::low_bound()) || !is_in_wdisp30_range(d, CodeCache::high_bound()); } // Call with a check to see if we need to deal with the added // expense of relocation and if we overflow the displacement // of the quick call instruction. inline void MacroAssembler::call( address d, relocInfo::relocType rt ) { #ifdef _LP64 intptr_t disp; // NULL is ok because it will be relocated later. // Must change NULL to a reachable address in order to // pass asserts here and in wdisp. if ( d == NULL ) d = pc(); // Is this address within range of the call instruction? // If not, use the expensive instruction sequence if (is_far_target(d)) { relocate(rt); AddressLiteral dest(d); jumpl_to(dest, O7, O7); } else { Assembler::call(d, rt); } #else Assembler::call( d, rt ); #endif } inline void MacroAssembler::call( Label& L, relocInfo::relocType rt ) { MacroAssembler::call( target(L), rt); } inline void MacroAssembler::callr( Register s1, Register s2 ) { jmpl( s1, s2, O7 ); } inline void MacroAssembler::callr( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, O7, rspec); } // prefetch instruction inline void MacroAssembler::iprefetch( address d, relocInfo::relocType rt ) { Assembler::bp( never, true, xcc, pt, d, rt ); Assembler::bp( never, true, xcc, pt, d, rt ); } inline void MacroAssembler::iprefetch( Label& L) { iprefetch( target(L) ); } // clobbers o7 on V8!! // returns delta from gotten pc to addr after inline int MacroAssembler::get_pc( Register d ) { int x = offset(); rdpc(d); return offset() - x; } // Note: All MacroAssembler::set_foo functions are defined out-of-line. // Loads the current PC of the following instruction as an immediate value in // 2 instructions. All PCs in the CodeCache are within 2 Gig of each other. inline intptr_t MacroAssembler::load_pc_address( Register reg, int bytes_to_skip ) { intptr_t thepc = (intptr_t)pc() + 2*BytesPerInstWord + bytes_to_skip; #ifdef _LP64 Unimplemented(); #else Assembler::sethi( thepc & ~0x3ff, reg, internal_word_Relocation::spec((address)thepc)); add(reg, thepc & 0x3ff, reg, internal_word_Relocation::spec((address)thepc)); #endif return thepc; } inline void MacroAssembler::load_contents(const AddressLiteral& addrlit, Register d, int offset) { assert_not_delayed(); if (ForceUnreachable) { patchable_sethi(addrlit, d); } else { sethi(addrlit, d); } ld(d, addrlit.low10() + offset, d); } inline void MacroAssembler::load_bool_contents(const AddressLiteral& addrlit, Register d, int offset) { assert_not_delayed(); if (ForceUnreachable) { patchable_sethi(addrlit, d); } else { sethi(addrlit, d); } ldub(d, addrlit.low10() + offset, d); } inline void MacroAssembler::load_ptr_contents(const AddressLiteral& addrlit, Register d, int offset) { assert_not_delayed(); if (ForceUnreachable) { patchable_sethi(addrlit, d); } else { sethi(addrlit, d); } ld_ptr(d, addrlit.low10() + offset, d); } inline void MacroAssembler::store_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset) { assert_not_delayed(); if (ForceUnreachable) { patchable_sethi(addrlit, temp); } else { sethi(addrlit, temp); } st(s, temp, addrlit.low10() + offset); } inline void MacroAssembler::store_ptr_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset) { assert_not_delayed(); if (ForceUnreachable) { patchable_sethi(addrlit, temp); } else { sethi(addrlit, temp); } st_ptr(s, temp, addrlit.low10() + offset); } // This code sequence is relocatable to any address, even on LP64. inline void MacroAssembler::jumpl_to(const AddressLiteral& addrlit, Register temp, Register d, int offset) { assert_not_delayed(); // Force fixed length sethi because NativeJump and NativeFarCall don't handle // variable length instruction streams. patchable_sethi(addrlit, temp); jmpl(temp, addrlit.low10() + offset, d); } inline void MacroAssembler::jump_to(const AddressLiteral& addrlit, Register temp, int offset) { jumpl_to(addrlit, temp, G0, offset); } inline void MacroAssembler::jump_indirect_to(Address& a, Register temp, int ld_offset, int jmp_offset) { assert_not_delayed(); //sethi(al); // sethi is caller responsibility for this one ld_ptr(a, temp, ld_offset); jmp(temp, jmp_offset); } inline void MacroAssembler::set_metadata(Metadata* obj, Register d) { set_metadata(allocate_metadata_address(obj), d); } inline void MacroAssembler::set_metadata_constant(Metadata* obj, Register d) { set_metadata(constant_metadata_address(obj), d); } inline void MacroAssembler::set_metadata(const AddressLiteral& obj_addr, Register d) { assert(obj_addr.rspec().type() == relocInfo::metadata_type, "must be a metadata reloc"); set(obj_addr, d); } inline void MacroAssembler::set_oop(jobject obj, Register d) { set_oop(allocate_oop_address(obj), d); } inline void MacroAssembler::set_oop_constant(jobject obj, Register d) { set_oop(constant_oop_address(obj), d); } inline void MacroAssembler::set_oop(const AddressLiteral& obj_addr, Register d) { assert(obj_addr.rspec().type() == relocInfo::oop_type, "must be an oop reloc"); set(obj_addr, d); } inline void MacroAssembler::load_argument( Argument& a, Register d ) { if (a.is_register()) mov(a.as_register(), d); else ld (a.as_address(), d); } inline void MacroAssembler::store_argument( Register s, Argument& a ) { if (a.is_register()) mov(s, a.as_register()); else st_ptr (s, a.as_address()); // ABI says everything is right justified. } inline void MacroAssembler::store_ptr_argument( Register s, Argument& a ) { if (a.is_register()) mov(s, a.as_register()); else st_ptr (s, a.as_address()); } #ifdef _LP64 inline void MacroAssembler::store_float_argument( FloatRegister s, Argument& a ) { if (a.is_float_register()) // V9 ABI has F1, F3, F5 are used to pass instead of O0, O1, O2 fmov(FloatRegisterImpl::S, s, a.as_float_register() ); else // Floats are stored in the high half of the stack entry // The low half is undefined per the ABI. stf(FloatRegisterImpl::S, s, a.as_address(), sizeof(jfloat)); } inline void MacroAssembler::store_double_argument( FloatRegister s, Argument& a ) { if (a.is_float_register()) // V9 ABI has D0, D2, D4 are used to pass instead of O0, O1, O2 fmov(FloatRegisterImpl::D, s, a.as_double_register() ); else stf(FloatRegisterImpl::D, s, a.as_address()); } inline void MacroAssembler::store_long_argument( Register s, Argument& a ) { if (a.is_register()) mov(s, a.as_register()); else stx(s, a.as_address()); } #endif inline void MacroAssembler::add(Register s1, int simm13a, Register d, relocInfo::relocType rtype) { relocate(rtype); add(s1, simm13a, d); } inline void MacroAssembler::add(Register s1, int simm13a, Register d, RelocationHolder const& rspec) { relocate(rspec); add(s1, simm13a, d); } // form effective addresses this way: inline void MacroAssembler::add(const Address& a, Register d, int offset) { if (a.has_index()) add(a.base(), a.index(), d); else { add(a.base(), a.disp() + offset, d, a.rspec(offset)); offset = 0; } if (offset != 0) add(d, offset, d); } inline void MacroAssembler::add(Register s1, RegisterOrConstant s2, Register d, int offset) { if (s2.is_register()) add(s1, s2.as_register(), d); else { add(s1, s2.as_constant() + offset, d); offset = 0; } if (offset != 0) add(d, offset, d); } inline void MacroAssembler::andn(Register s1, RegisterOrConstant s2, Register d) { if (s2.is_register()) andn(s1, s2.as_register(), d); else andn(s1, s2.as_constant(), d); } inline void MacroAssembler::clrb( Register s1, Register s2) { stb( G0, s1, s2 ); } inline void MacroAssembler::clrh( Register s1, Register s2) { sth( G0, s1, s2 ); } inline void MacroAssembler::clr( Register s1, Register s2) { stw( G0, s1, s2 ); } inline void MacroAssembler::clrx( Register s1, Register s2) { stx( G0, s1, s2 ); } inline void MacroAssembler::clrb( Register s1, int simm13a) { stb( G0, s1, simm13a); } inline void MacroAssembler::clrh( Register s1, int simm13a) { sth( G0, s1, simm13a); } inline void MacroAssembler::clr( Register s1, int simm13a) { stw( G0, s1, simm13a); } inline void MacroAssembler::clrx( Register s1, int simm13a) { stx( G0, s1, simm13a); } #ifdef _LP64 // Make all 32 bit loads signed so 64 bit registers maintain proper sign inline void MacroAssembler::ld( Register s1, Register s2, Register d) { ldsw( s1, s2, d); } inline void MacroAssembler::ld( Register s1, int simm13a, Register d) { ldsw( s1, simm13a, d); } #else inline void MacroAssembler::ld( Register s1, Register s2, Register d) { lduw( s1, s2, d); } inline void MacroAssembler::ld( Register s1, int simm13a, Register d) { lduw( s1, simm13a, d); } #endif #ifdef ASSERT // ByteSize is only a class when ASSERT is defined, otherwise it's an int. # ifdef _LP64 inline void MacroAssembler::ld(Register s1, ByteSize simm13a, Register d) { ldsw( s1, in_bytes(simm13a), d); } # else inline void MacroAssembler::ld(Register s1, ByteSize simm13a, Register d) { lduw( s1, in_bytes(simm13a), d); } # endif #endif inline void MacroAssembler::ld( const Address& a, Register d, int offset) { if (a.has_index()) { assert(offset == 0, ""); ld( a.base(), a.index(), d); } else { ld( a.base(), a.disp() + offset, d); } } inline void MacroAssembler::ldsb(const Address& a, Register d, int offset) { if (a.has_index()) { assert(offset == 0, ""); ldsb(a.base(), a.index(), d); } else { ldsb(a.base(), a.disp() + offset, d); } } inline void MacroAssembler::ldsh(const Address& a, Register d, int offset) { if (a.has_index()) { assert(offset == 0, ""); ldsh(a.base(), a.index(), d); } else { ldsh(a.base(), a.disp() + offset, d); } } inline void MacroAssembler::ldsw(const Address& a, Register d, int offset) { if (a.has_index()) { assert(offset == 0, ""); ldsw(a.base(), a.index(), d); } else { ldsw(a.base(), a.disp() + offset, d); } } inline void MacroAssembler::ldub(const Address& a, Register d, int offset) { if (a.has_index()) { assert(offset == 0, ""); ldub(a.base(), a.index(), d); } else { ldub(a.base(), a.disp() + offset, d); } } inline void MacroAssembler::lduh(const Address& a, Register d, int offset) { if (a.has_index()) { assert(offset == 0, ""); lduh(a.base(), a.index(), d); } else { lduh(a.base(), a.disp() + offset, d); } } inline void MacroAssembler::lduw(const Address& a, Register d, int offset) { if (a.has_index()) { assert(offset == 0, ""); lduw(a.base(), a.index(), d); } else { lduw(a.base(), a.disp() + offset, d); } } inline void MacroAssembler::ldd( const Address& a, Register d, int offset) { if (a.has_index()) { assert(offset == 0, ""); ldd( a.base(), a.index(), d); } else { ldd( a.base(), a.disp() + offset, d); } } inline void MacroAssembler::ldx( const Address& a, Register d, int offset) { if (a.has_index()) { assert(offset == 0, ""); ldx( a.base(), a.index(), d); } else { ldx( a.base(), a.disp() + offset, d); } } inline void MacroAssembler::ldub(Register s1, RegisterOrConstant s2, Register d) { ldub(Address(s1, s2), d); } inline void MacroAssembler::ldsb(Register s1, RegisterOrConstant s2, Register d) { ldsb(Address(s1, s2), d); } inline void MacroAssembler::lduh(Register s1, RegisterOrConstant s2, Register d) { lduh(Address(s1, s2), d); } inline void MacroAssembler::ldsh(Register s1, RegisterOrConstant s2, Register d) { ldsh(Address(s1, s2), d); } inline void MacroAssembler::lduw(Register s1, RegisterOrConstant s2, Register d) { lduw(Address(s1, s2), d); } inline void MacroAssembler::ldsw(Register s1, RegisterOrConstant s2, Register d) { ldsw(Address(s1, s2), d); } inline void MacroAssembler::ldx( Register s1, RegisterOrConstant s2, Register d) { ldx( Address(s1, s2), d); } inline void MacroAssembler::ld( Register s1, RegisterOrConstant s2, Register d) { ld( Address(s1, s2), d); } inline void MacroAssembler::ldd( Register s1, RegisterOrConstant s2, Register d) { ldd( Address(s1, s2), d); } inline void MacroAssembler::ldf(FloatRegisterImpl::Width w, Register s1, RegisterOrConstant s2, FloatRegister d) { if (s2.is_register()) ldf(w, s1, s2.as_register(), d); else ldf(w, s1, s2.as_constant(), d); } inline void MacroAssembler::ldf(FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset) { relocate(a.rspec(offset)); ldf(w, a.base(), a.disp() + offset, d); } // returns if membar generates anything, obviously this code should mirror // membar below. inline bool MacroAssembler::membar_has_effect( Membar_mask_bits const7a ) { if (!os::is_MP()) return false; // Not needed on single CPU const Membar_mask_bits effective_mask = Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore)); return (effective_mask != 0); } inline void MacroAssembler::membar( Membar_mask_bits const7a ) { // Uniprocessors do not need memory barriers if (!os::is_MP()) return; // Weakened for current Sparcs and TSO. See the v9 manual, sections 8.4.3, // 8.4.4.3, a.31 and a.50. // Under TSO, setting bit 3, 2, or 0 is redundant, so the only value // of the mmask subfield of const7a that does anything that isn't done // implicitly is StoreLoad. const Membar_mask_bits effective_mask = Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore)); if (effective_mask != 0) { Assembler::membar(effective_mask); } } inline void MacroAssembler::prefetch(const Address& a, PrefetchFcn f, int offset) { relocate(a.rspec(offset)); assert(!a.has_index(), ""); prefetch(a.base(), a.disp() + offset, f); } inline void MacroAssembler::st(Register d, Register s1, Register s2) { stw(d, s1, s2); } inline void MacroAssembler::st(Register d, Register s1, int simm13a) { stw(d, s1, simm13a); } #ifdef ASSERT // ByteSize is only a class when ASSERT is defined, otherwise it's an int. inline void MacroAssembler::st(Register d, Register s1, ByteSize simm13a) { stw(d, s1, in_bytes(simm13a)); } #endif inline void MacroAssembler::st(Register d, const Address& a, int offset) { if (a.has_index()) { assert(offset == 0, ""); st( d, a.base(), a.index() ); } else { st( d, a.base(), a.disp() + offset); } } inline void MacroAssembler::stb(Register d, const Address& a, int offset) { if (a.has_index()) { assert(offset == 0, ""); stb(d, a.base(), a.index() ); } else { stb(d, a.base(), a.disp() + offset); } } inline void MacroAssembler::sth(Register d, const Address& a, int offset) { if (a.has_index()) { assert(offset == 0, ""); sth(d, a.base(), a.index() ); } else { sth(d, a.base(), a.disp() + offset); } } inline void MacroAssembler::stw(Register d, const Address& a, int offset) { if (a.has_index()) { assert(offset == 0, ""); stw(d, a.base(), a.index() ); } else { stw(d, a.base(), a.disp() + offset); } } inline void MacroAssembler::std(Register d, const Address& a, int offset) { if (a.has_index()) { assert(offset == 0, ""); std(d, a.base(), a.index() ); } else { std(d, a.base(), a.disp() + offset); } } inline void MacroAssembler::stx(Register d, const Address& a, int offset) { if (a.has_index()) { assert(offset == 0, ""); stx(d, a.base(), a.index() ); } else { stx(d, a.base(), a.disp() + offset); } } inline void MacroAssembler::stb(Register d, Register s1, RegisterOrConstant s2) { stb(d, Address(s1, s2)); } inline void MacroAssembler::sth(Register d, Register s1, RegisterOrConstant s2) { sth(d, Address(s1, s2)); } inline void MacroAssembler::stw(Register d, Register s1, RegisterOrConstant s2) { stw(d, Address(s1, s2)); } inline void MacroAssembler::stx(Register d, Register s1, RegisterOrConstant s2) { stx(d, Address(s1, s2)); } inline void MacroAssembler::std(Register d, Register s1, RegisterOrConstant s2) { std(d, Address(s1, s2)); } inline void MacroAssembler::st( Register d, Register s1, RegisterOrConstant s2) { st( d, Address(s1, s2)); } inline void MacroAssembler::stf(FloatRegisterImpl::Width w, FloatRegister d, Register s1, RegisterOrConstant s2) { if (s2.is_register()) stf(w, d, s1, s2.as_register()); else stf(w, d, s1, s2.as_constant()); } inline void MacroAssembler::stf(FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset) { relocate(a.rspec(offset)); if (a.has_index()) { assert(offset == 0, ""); stf(w, d, a.base(), a.index() ); } else { stf(w, d, a.base(), a.disp() + offset); } } inline void MacroAssembler::sub(Register s1, RegisterOrConstant s2, Register d, int offset) { if (s2.is_register()) sub(s1, s2.as_register(), d); else { sub(s1, s2.as_constant() + offset, d); offset = 0; } if (offset != 0) sub(d, offset, d); } inline void MacroAssembler::swap(const Address& a, Register d, int offset) { relocate(a.rspec(offset)); if (a.has_index()) { assert(offset == 0, ""); swap(a.base(), a.index(), d ); } else { swap(a.base(), a.disp() + offset, d); } } #endif // CPU_SPARC_VM_MACROASSEMBLER_SPARC_INLINE_HPP