/* * Copyright (c) 2008, 2011, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "classfile/symbolTable.hpp" #include "interpreter/interpreter.hpp" #include "memory/allocation.inline.hpp" #include "memory/oopFactory.hpp" #include "prims/methodHandles.hpp" #include "runtime/javaCalls.hpp" #include "runtime/reflection.hpp" #include "runtime/signature.hpp" #include "runtime/stubRoutines.hpp" /* * JSR 292 reference implementation: method handles */ bool MethodHandles::_enabled = false; // set true after successful native linkage MethodHandleEntry* MethodHandles::_entries[MethodHandles::_EK_LIMIT] = {NULL}; const char* MethodHandles::_entry_names[_EK_LIMIT+1] = { "raise_exception", "invokestatic", // how a MH emulates invokestatic "invokespecial", // ditto for the other invokes... "invokevirtual", "invokeinterface", "bound_ref", // these are for BMH... "bound_int", "bound_long", "bound_ref_direct", // (direct versions have a direct methodOop) "bound_int_direct", "bound_long_direct", // starting at _adapter_mh_first: "adapter_retype_only", // these are for AMH... "adapter_retype_raw", "adapter_check_cast", "adapter_prim_to_prim", "adapter_ref_to_prim", "adapter_prim_to_ref", "adapter_swap_args", "adapter_rot_args", "adapter_dup_args", "adapter_drop_args", "adapter_collect_args", "adapter_spread_args", "adapter_flyby", "adapter_ricochet", // optimized adapter types: "adapter_swap_args/1", "adapter_swap_args/2", "adapter_rot_args/1,up", "adapter_rot_args/1,down", "adapter_rot_args/2,up", "adapter_rot_args/2,down", "adapter_prim_to_prim/i2i", "adapter_prim_to_prim/l2i", "adapter_prim_to_prim/d2f", "adapter_prim_to_prim/i2l", "adapter_prim_to_prim/f2d", "adapter_ref_to_prim/unboxi", "adapter_ref_to_prim/unboxl", "adapter_spread_args/0", "adapter_spread_args/1", "adapter_spread_args/more", NULL }; // Adapters. MethodHandlesAdapterBlob* MethodHandles::_adapter_code = NULL; int MethodHandles::_adapter_code_size = StubRoutines::method_handles_adapters_code_size; jobject MethodHandles::_raise_exception_method; #ifdef ASSERT bool MethodHandles::spot_check_entry_names() { assert(!strcmp(entry_name(_invokestatic_mh), "invokestatic"), ""); assert(!strcmp(entry_name(_bound_ref_mh), "bound_ref"), ""); assert(!strcmp(entry_name(_adapter_retype_only), "adapter_retype_only"), ""); assert(!strcmp(entry_name(_adapter_ricochet), "adapter_ricochet"), ""); assert(!strcmp(entry_name(_adapter_opt_unboxi), "adapter_ref_to_prim/unboxi"), ""); return true; } #endif //------------------------------------------------------------------------------ // MethodHandles::generate_adapters // void MethodHandles::generate_adapters() { if (!EnableInvokeDynamic || SystemDictionary::MethodHandle_klass() == NULL) return; assert(_adapter_code == NULL, "generate only once"); ResourceMark rm; TraceTime timer("MethodHandles adapters generation", TraceStartupTime); _adapter_code = MethodHandlesAdapterBlob::create(_adapter_code_size); if (_adapter_code == NULL) vm_exit_out_of_memory(_adapter_code_size, "CodeCache: no room for MethodHandles adapters"); CodeBuffer code(_adapter_code); MethodHandlesAdapterGenerator g(&code); g.generate(); } //------------------------------------------------------------------------------ // MethodHandlesAdapterGenerator::generate // void MethodHandlesAdapterGenerator::generate() { // Generate generic method handle adapters. for (MethodHandles::EntryKind ek = MethodHandles::_EK_FIRST; ek < MethodHandles::_EK_LIMIT; ek = MethodHandles::EntryKind(1 + (int)ek)) { StubCodeMark mark(this, "MethodHandle", MethodHandles::entry_name(ek)); MethodHandles::generate_method_handle_stub(_masm, ek); } } void MethodHandles::set_enabled(bool z) { if (_enabled != z) { guarantee(z && EnableInvokeDynamic, "can only enable once, and only if -XX:+EnableInvokeDynamic"); _enabled = z; } } // Note: A method which does not have a TRAPS argument cannot block in the GC // or throw exceptions. Such methods are used in this file to do something quick // and local, like parse a data structure. For speed, such methods work on plain // oops, not handles. Trapping methods uniformly operate on handles. methodOop MethodHandles::decode_vmtarget(oop vmtarget, int vmindex, oop mtype, klassOop& receiver_limit_result, int& decode_flags_result) { if (vmtarget == NULL) return NULL; assert(methodOopDesc::nonvirtual_vtable_index < 0, "encoding"); if (vmindex < 0) { // this DMH performs no dispatch; it is directly bound to a methodOop // A MemberName may either be directly bound to a methodOop, // or it may use the klass/index form; both forms mean the same thing. methodOop m = decode_methodOop(methodOop(vmtarget), decode_flags_result); if ((decode_flags_result & _dmf_has_receiver) != 0 && java_lang_invoke_MethodType::is_instance(mtype)) { // Extract receiver type restriction from mtype.ptypes[0]. objArrayOop ptypes = java_lang_invoke_MethodType::ptypes(mtype); oop ptype0 = (ptypes == NULL || ptypes->length() < 1) ? oop(NULL) : ptypes->obj_at(0); if (java_lang_Class::is_instance(ptype0)) receiver_limit_result = java_lang_Class::as_klassOop(ptype0); } if (vmindex == methodOopDesc::nonvirtual_vtable_index) { // this DMH can be an "invokespecial" version decode_flags_result &= ~_dmf_does_dispatch; } else { assert(vmindex == methodOopDesc::invalid_vtable_index, "random vmindex?"); } return m; } else { assert(vmtarget->is_klass(), "must be class or interface"); decode_flags_result |= MethodHandles::_dmf_does_dispatch; decode_flags_result |= MethodHandles::_dmf_has_receiver; receiver_limit_result = (klassOop)vmtarget; Klass* tk = Klass::cast((klassOop)vmtarget); if (tk->is_interface()) { // an itable linkage is decode_flags_result |= MethodHandles::_dmf_from_interface; return klassItable::method_for_itable_index((klassOop)vmtarget, vmindex); } else { if (!tk->oop_is_instance()) tk = instanceKlass::cast(SystemDictionary::Object_klass()); return ((instanceKlass*)tk)->method_at_vtable(vmindex); } } } // MemberName and DirectMethodHandle have the same linkage to the JVM internals. // (MemberName is the non-operational name used for queries and setup.) methodOop MethodHandles::decode_DirectMethodHandle(oop mh, klassOop& receiver_limit_result, int& decode_flags_result) { oop vmtarget = java_lang_invoke_DirectMethodHandle::vmtarget(mh); int vmindex = java_lang_invoke_DirectMethodHandle::vmindex(mh); oop mtype = java_lang_invoke_DirectMethodHandle::type(mh); return decode_vmtarget(vmtarget, vmindex, mtype, receiver_limit_result, decode_flags_result); } methodOop MethodHandles::decode_BoundMethodHandle(oop mh, klassOop& receiver_limit_result, int& decode_flags_result) { assert(java_lang_invoke_BoundMethodHandle::is_instance(mh), ""); assert(mh->klass() != SystemDictionary::AdapterMethodHandle_klass(), ""); for (oop bmh = mh;;) { // Bound MHs can be stacked to bind several arguments. oop target = java_lang_invoke_MethodHandle::vmtarget(bmh); if (target == NULL) return NULL; decode_flags_result |= MethodHandles::_dmf_binds_argument; klassOop tk = target->klass(); if (tk == SystemDictionary::BoundMethodHandle_klass()) { bmh = target; continue; } else { if (java_lang_invoke_MethodHandle::is_subclass(tk)) { //assert(tk == SystemDictionary::DirectMethodHandle_klass(), "end of BMH chain must be DMH"); return decode_MethodHandle(target, receiver_limit_result, decode_flags_result); } else { // Optimized case: binding a receiver to a non-dispatched DMH // short-circuits directly to the methodOop. // (It might be another argument besides a receiver also.) assert(target->is_method(), "must be a simple method"); decode_flags_result |= MethodHandles::_dmf_binds_method; methodOop m = (methodOop) target; if (!m->is_static()) decode_flags_result |= MethodHandles::_dmf_has_receiver; return m; } } } } methodOop MethodHandles::decode_AdapterMethodHandle(oop mh, klassOop& receiver_limit_result, int& decode_flags_result) { assert(mh->klass() == SystemDictionary::AdapterMethodHandle_klass(), ""); for (oop amh = mh;;) { // Adapter MHs can be stacked to convert several arguments. int conv_op = adapter_conversion_op(java_lang_invoke_AdapterMethodHandle::conversion(amh)); decode_flags_result |= (_dmf_adapter_lsb << conv_op) & _DMF_ADAPTER_MASK; oop target = java_lang_invoke_MethodHandle::vmtarget(amh); if (target == NULL) return NULL; klassOop tk = target->klass(); if (tk == SystemDictionary::AdapterMethodHandle_klass()) { amh = target; continue; } else { // must be a BMH (which will bind some more arguments) or a DMH (for the final call) return MethodHandles::decode_MethodHandle(target, receiver_limit_result, decode_flags_result); } } } methodOop MethodHandles::decode_MethodHandle(oop mh, klassOop& receiver_limit_result, int& decode_flags_result) { if (mh == NULL) return NULL; klassOop mhk = mh->klass(); assert(java_lang_invoke_MethodHandle::is_subclass(mhk), "must be a MethodHandle"); if (mhk == SystemDictionary::DirectMethodHandle_klass()) { return decode_DirectMethodHandle(mh, receiver_limit_result, decode_flags_result); } else if (mhk == SystemDictionary::BoundMethodHandle_klass()) { return decode_BoundMethodHandle(mh, receiver_limit_result, decode_flags_result); } else if (mhk == SystemDictionary::AdapterMethodHandle_klass()) { return decode_AdapterMethodHandle(mh, receiver_limit_result, decode_flags_result); } else if (java_lang_invoke_BoundMethodHandle::is_subclass(mhk)) { // could be a JavaMethodHandle (but not an adapter MH) return decode_BoundMethodHandle(mh, receiver_limit_result, decode_flags_result); } else { assert(false, "cannot parse this MH"); return NULL; // random MH? } } methodOop MethodHandles::decode_methodOop(methodOop m, int& decode_flags_result) { assert(m->is_method(), ""); if (m->is_static()) { // check that signature begins '(L' or '([' (not '(I', '()', etc.) Symbol* sig = m->signature(); BasicType recv_bt = char2type(sig->byte_at(1)); // Note: recv_bt might be T_ILLEGAL if byte_at(2) is ')' assert(sig->byte_at(0) == '(', "must be method sig"); // if (recv_bt == T_OBJECT || recv_bt == T_ARRAY) // decode_flags_result |= _dmf_has_receiver; } else { // non-static method decode_flags_result |= _dmf_has_receiver; if (!m->can_be_statically_bound() && !m->is_initializer()) { decode_flags_result |= _dmf_does_dispatch; if (Klass::cast(m->method_holder())->is_interface()) decode_flags_result |= _dmf_from_interface; } } return m; } // A trusted party is handing us a cookie to determine a method. // Let's boil it down to the method oop they really want. methodOop MethodHandles::decode_method(oop x, klassOop& receiver_limit_result, int& decode_flags_result) { decode_flags_result = 0; receiver_limit_result = NULL; klassOop xk = x->klass(); if (xk == Universe::methodKlassObj()) { return decode_methodOop((methodOop) x, decode_flags_result); } else if (xk == SystemDictionary::MemberName_klass()) { // Note: This only works if the MemberName has already been resolved. return decode_MemberName(x, receiver_limit_result, decode_flags_result); } else if (java_lang_invoke_MethodHandle::is_subclass(xk)) { return decode_MethodHandle(x, receiver_limit_result, decode_flags_result); } else if (xk == SystemDictionary::reflect_Method_klass()) { oop clazz = java_lang_reflect_Method::clazz(x); int slot = java_lang_reflect_Method::slot(x); klassOop k = java_lang_Class::as_klassOop(clazz); if (k != NULL && Klass::cast(k)->oop_is_instance()) return decode_methodOop(instanceKlass::cast(k)->method_with_idnum(slot), decode_flags_result); } else if (xk == SystemDictionary::reflect_Constructor_klass()) { oop clazz = java_lang_reflect_Constructor::clazz(x); int slot = java_lang_reflect_Constructor::slot(x); klassOop k = java_lang_Class::as_klassOop(clazz); if (k != NULL && Klass::cast(k)->oop_is_instance()) return decode_methodOop(instanceKlass::cast(k)->method_with_idnum(slot), decode_flags_result); } else { // unrecognized object assert(!x->is_method(), "already checked"); assert(!java_lang_invoke_MemberName::is_instance(x), "already checked"); } return NULL; } int MethodHandles::decode_MethodHandle_stack_pushes(oop mh) { if (mh->klass() == SystemDictionary::DirectMethodHandle_klass()) return 0; // no push/pop int this_vmslots = java_lang_invoke_MethodHandle::vmslots(mh); int last_vmslots = 0; oop last_mh = mh; for (;;) { oop target = java_lang_invoke_MethodHandle::vmtarget(last_mh); if (target->klass() == SystemDictionary::DirectMethodHandle_klass()) { last_vmslots = java_lang_invoke_MethodHandle::vmslots(target); break; } else if (!java_lang_invoke_MethodHandle::is_instance(target)) { // might be klass or method assert(target->is_method(), "must get here with a direct ref to method"); last_vmslots = methodOop(target)->size_of_parameters(); break; } last_mh = target; } // If I am called with fewer VM slots than my ultimate callee, // it must be that I push the additionally needed slots. // Likewise if am called with more VM slots, I will pop them. return (last_vmslots - this_vmslots); } // MemberName support // import java_lang_invoke_MemberName.* enum { IS_METHOD = java_lang_invoke_MemberName::MN_IS_METHOD, IS_CONSTRUCTOR = java_lang_invoke_MemberName::MN_IS_CONSTRUCTOR, IS_FIELD = java_lang_invoke_MemberName::MN_IS_FIELD, IS_TYPE = java_lang_invoke_MemberName::MN_IS_TYPE, SEARCH_SUPERCLASSES = java_lang_invoke_MemberName::MN_SEARCH_SUPERCLASSES, SEARCH_INTERFACES = java_lang_invoke_MemberName::MN_SEARCH_INTERFACES, ALL_KINDS = IS_METHOD | IS_CONSTRUCTOR | IS_FIELD | IS_TYPE, VM_INDEX_UNINITIALIZED = java_lang_invoke_MemberName::VM_INDEX_UNINITIALIZED }; Handle MethodHandles::new_MemberName(TRAPS) { Handle empty; instanceKlassHandle k(THREAD, SystemDictionary::MemberName_klass()); if (!k->is_initialized()) k->initialize(CHECK_(empty)); return Handle(THREAD, k->allocate_instance(THREAD)); } void MethodHandles::init_MemberName(oop mname_oop, oop target_oop) { if (target_oop->klass() == SystemDictionary::reflect_Field_klass()) { oop clazz = java_lang_reflect_Field::clazz(target_oop); // fd.field_holder() int slot = java_lang_reflect_Field::slot(target_oop); // fd.index() int mods = java_lang_reflect_Field::modifiers(target_oop); klassOop k = java_lang_Class::as_klassOop(clazz); int offset = instanceKlass::cast(k)->offset_from_fields(slot); init_MemberName(mname_oop, k, accessFlags_from(mods), offset); } else { int decode_flags = 0; klassOop receiver_limit = NULL; methodOop m = MethodHandles::decode_method(target_oop, receiver_limit, decode_flags); bool do_dispatch = ((decode_flags & MethodHandles::_dmf_does_dispatch) != 0); init_MemberName(mname_oop, m, do_dispatch); } } void MethodHandles::init_MemberName(oop mname_oop, methodOop m, bool do_dispatch) { int flags = ((m->is_initializer() ? IS_CONSTRUCTOR : IS_METHOD) | (jushort)( m->access_flags().as_short() & JVM_RECOGNIZED_METHOD_MODIFIERS )); oop vmtarget = m; int vmindex = methodOopDesc::invalid_vtable_index; // implies no info yet if (!do_dispatch || (flags & IS_CONSTRUCTOR) || m->can_be_statically_bound()) vmindex = methodOopDesc::nonvirtual_vtable_index; // implies never any dispatch assert(vmindex != VM_INDEX_UNINITIALIZED, "Java sentinel value"); java_lang_invoke_MemberName::set_vmtarget(mname_oop, vmtarget); java_lang_invoke_MemberName::set_vmindex(mname_oop, vmindex); java_lang_invoke_MemberName::set_flags(mname_oop, flags); java_lang_invoke_MemberName::set_clazz(mname_oop, Klass::cast(m->method_holder())->java_mirror()); } void MethodHandles::init_MemberName(oop mname_oop, klassOop field_holder, AccessFlags mods, int offset) { int flags = (IS_FIELD | (jushort)( mods.as_short() & JVM_RECOGNIZED_FIELD_MODIFIERS )); oop vmtarget = field_holder; int vmindex = offset; // determines the field uniquely when combined with static bit assert(vmindex != VM_INDEX_UNINITIALIZED, "bad alias on vmindex"); java_lang_invoke_MemberName::set_vmtarget(mname_oop, vmtarget); java_lang_invoke_MemberName::set_vmindex(mname_oop, vmindex); java_lang_invoke_MemberName::set_flags(mname_oop, flags); java_lang_invoke_MemberName::set_clazz(mname_oop, Klass::cast(field_holder)->java_mirror()); } methodOop MethodHandles::decode_MemberName(oop mname, klassOop& receiver_limit_result, int& decode_flags_result) { int flags = java_lang_invoke_MemberName::flags(mname); if ((flags & (IS_METHOD | IS_CONSTRUCTOR)) == 0) return NULL; // not invocable oop vmtarget = java_lang_invoke_MemberName::vmtarget(mname); int vmindex = java_lang_invoke_MemberName::vmindex(mname); if (vmindex == VM_INDEX_UNINITIALIZED) return NULL; // not resolved methodOop m = decode_vmtarget(vmtarget, vmindex, NULL, receiver_limit_result, decode_flags_result); oop clazz = java_lang_invoke_MemberName::clazz(mname); if (clazz != NULL && java_lang_Class::is_instance(clazz)) { klassOop klass = java_lang_Class::as_klassOop(clazz); if (klass != NULL) receiver_limit_result = klass; } return m; } // convert the external string or reflective type to an internal signature Symbol* MethodHandles::convert_to_signature(oop type_str, bool polymorphic, TRAPS) { if (java_lang_invoke_MethodType::is_instance(type_str)) { return java_lang_invoke_MethodType::as_signature(type_str, polymorphic, CHECK_NULL); } else if (java_lang_Class::is_instance(type_str)) { return java_lang_Class::as_signature(type_str, false, CHECK_NULL); } else if (java_lang_String::is_instance(type_str)) { if (polymorphic) { return java_lang_String::as_symbol(type_str, CHECK_NULL); } else { return java_lang_String::as_symbol_or_null(type_str); } } else { THROW_MSG_(vmSymbols::java_lang_InternalError(), "unrecognized type", NULL); } } // An unresolved member name is a mere symbolic reference. // Resolving it plants a vmtarget/vmindex in it, // which refers dirctly to JVM internals. void MethodHandles::resolve_MemberName(Handle mname, TRAPS) { assert(java_lang_invoke_MemberName::is_instance(mname()), ""); #ifdef ASSERT // If this assert throws, renegotiate the sentinel value used by the Java code, // so that it is distinct from any valid vtable index value, and any special // values defined in methodOopDesc::VtableIndexFlag. // The point of the slop is to give the Java code and the JVM some room // to independently specify sentinel values. const int sentinel_slop = 10; const int sentinel_limit = methodOopDesc::highest_unused_vtable_index_value - sentinel_slop; assert(VM_INDEX_UNINITIALIZED < sentinel_limit, "Java sentinel != JVM sentinels"); #endif if (java_lang_invoke_MemberName::vmindex(mname()) != VM_INDEX_UNINITIALIZED) return; // already resolved oop defc_oop = java_lang_invoke_MemberName::clazz(mname()); oop name_str = java_lang_invoke_MemberName::name(mname()); oop type_str = java_lang_invoke_MemberName::type(mname()); int flags = java_lang_invoke_MemberName::flags(mname()); if (defc_oop == NULL || name_str == NULL || type_str == NULL) { THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "nothing to resolve"); } klassOop defc_klassOop = java_lang_Class::as_klassOop(defc_oop); defc_oop = NULL; // safety if (defc_klassOop == NULL) return; // a primitive; no resolution possible if (!Klass::cast(defc_klassOop)->oop_is_instance()) { if (!Klass::cast(defc_klassOop)->oop_is_array()) return; defc_klassOop = SystemDictionary::Object_klass(); } instanceKlassHandle defc(THREAD, defc_klassOop); defc_klassOop = NULL; // safety if (defc.is_null()) { THROW_MSG(vmSymbols::java_lang_InternalError(), "primitive class"); } defc->link_class(CHECK); // convert the external string name to an internal symbol TempNewSymbol name = java_lang_String::as_symbol_or_null(name_str); if (name == NULL) return; // no such name name_str = NULL; // safety Handle polymorphic_method_type; bool polymorphic_signature = false; if ((flags & ALL_KINDS) == IS_METHOD && (defc() == SystemDictionary::MethodHandle_klass() && methodOopDesc::is_method_handle_invoke_name(name))) polymorphic_signature = true; // convert the external string or reflective type to an internal signature TempNewSymbol type = convert_to_signature(type_str, polymorphic_signature, CHECK); if (java_lang_invoke_MethodType::is_instance(type_str) && polymorphic_signature) { polymorphic_method_type = Handle(THREAD, type_str); //preserve exactly } if (type == NULL) return; // no such signature exists in the VM type_str = NULL; // safety // Time to do the lookup. switch (flags & ALL_KINDS) { case IS_METHOD: { CallInfo result; { EXCEPTION_MARK; if ((flags & JVM_ACC_STATIC) != 0) { LinkResolver::resolve_static_call(result, defc, name, type, KlassHandle(), false, false, THREAD); } else if (defc->is_interface()) { LinkResolver::resolve_interface_call(result, Handle(), defc, defc, name, type, KlassHandle(), false, false, THREAD); } else { LinkResolver::resolve_virtual_call(result, Handle(), defc, defc, name, type, KlassHandle(), false, false, THREAD); } if (HAS_PENDING_EXCEPTION) { CLEAR_PENDING_EXCEPTION; break; // go to second chance } } methodHandle m = result.resolved_method(); oop vmtarget = NULL; int vmindex = methodOopDesc::nonvirtual_vtable_index; if (defc->is_interface()) { vmindex = klassItable::compute_itable_index(m()); assert(vmindex >= 0, ""); } else if (result.has_vtable_index()) { vmindex = result.vtable_index(); assert(vmindex >= 0, ""); } assert(vmindex != VM_INDEX_UNINITIALIZED, ""); if (vmindex < 0) { assert(result.is_statically_bound(), ""); vmtarget = m(); } else { vmtarget = result.resolved_klass()->as_klassOop(); } int mods = (m->access_flags().as_short() & JVM_RECOGNIZED_METHOD_MODIFIERS); java_lang_invoke_MemberName::set_vmtarget(mname(), vmtarget); java_lang_invoke_MemberName::set_vmindex(mname(), vmindex); java_lang_invoke_MemberName::set_modifiers(mname(), mods); DEBUG_ONLY(int junk; klassOop junk2); assert(decode_MemberName(mname(), junk2, junk) == result.resolved_method()(), "properly stored for later decoding"); return; } case IS_CONSTRUCTOR: { CallInfo result; { EXCEPTION_MARK; if (name == vmSymbols::object_initializer_name()) { LinkResolver::resolve_special_call(result, defc, name, type, KlassHandle(), false, THREAD); } else { break; // will throw after end of switch } if (HAS_PENDING_EXCEPTION) { CLEAR_PENDING_EXCEPTION; return; } } assert(result.is_statically_bound(), ""); methodHandle m = result.resolved_method(); oop vmtarget = m(); int vmindex = methodOopDesc::nonvirtual_vtable_index; int mods = (m->access_flags().as_short() & JVM_RECOGNIZED_METHOD_MODIFIERS); java_lang_invoke_MemberName::set_vmtarget(mname(), vmtarget); java_lang_invoke_MemberName::set_vmindex(mname(), vmindex); java_lang_invoke_MemberName::set_modifiers(mname(), mods); DEBUG_ONLY(int junk; klassOop junk2); assert(decode_MemberName(mname(), junk2, junk) == result.resolved_method()(), "properly stored for later decoding"); return; } case IS_FIELD: { // This is taken from LinkResolver::resolve_field, sans access checks. fieldDescriptor fd; // find_field initializes fd if found KlassHandle sel_klass(THREAD, instanceKlass::cast(defc())->find_field(name, type, &fd)); // check if field exists; i.e., if a klass containing the field def has been selected if (sel_klass.is_null()) return; oop vmtarget = sel_klass->as_klassOop(); int vmindex = fd.offset(); int mods = (fd.access_flags().as_short() & JVM_RECOGNIZED_FIELD_MODIFIERS); if (vmindex == VM_INDEX_UNINITIALIZED) break; // should not happen java_lang_invoke_MemberName::set_vmtarget(mname(), vmtarget); java_lang_invoke_MemberName::set_vmindex(mname(), vmindex); java_lang_invoke_MemberName::set_modifiers(mname(), mods); return; } default: THROW_MSG(vmSymbols::java_lang_InternalError(), "unrecognized MemberName format"); } // Second chance. if (polymorphic_method_type.not_null()) { // Look on a non-null class loader. Handle cur_class_loader; const int nptypes = java_lang_invoke_MethodType::ptype_count(polymorphic_method_type()); for (int i = 0; i <= nptypes; i++) { oop type_mirror; if (i < nptypes) type_mirror = java_lang_invoke_MethodType::ptype(polymorphic_method_type(), i); else type_mirror = java_lang_invoke_MethodType::rtype(polymorphic_method_type()); klassOop example_type = java_lang_Class::as_klassOop(type_mirror); if (example_type == NULL) continue; oop class_loader = Klass::cast(example_type)->class_loader(); if (class_loader == NULL || class_loader == cur_class_loader()) continue; cur_class_loader = Handle(THREAD, class_loader); methodOop m = SystemDictionary::find_method_handle_invoke(name, type, KlassHandle(THREAD, example_type), THREAD); if (HAS_PENDING_EXCEPTION) { CLEAR_PENDING_EXCEPTION; m = NULL; // try again with a different class loader... } if (m != NULL) { int mods = (m->access_flags().as_short() & JVM_RECOGNIZED_METHOD_MODIFIERS); java_lang_invoke_MemberName::set_vmtarget(mname(), m); java_lang_invoke_MemberName::set_vmindex(mname(), m->vtable_index()); java_lang_invoke_MemberName::set_modifiers(mname(), mods); return; } } } } // Conversely, a member name which is only initialized from JVM internals // may have null defc, name, and type fields. // Resolving it plants a vmtarget/vmindex in it, // which refers directly to JVM internals. void MethodHandles::expand_MemberName(Handle mname, int suppress, TRAPS) { assert(java_lang_invoke_MemberName::is_instance(mname()), ""); oop vmtarget = java_lang_invoke_MemberName::vmtarget(mname()); int vmindex = java_lang_invoke_MemberName::vmindex(mname()); if (vmtarget == NULL || vmindex == VM_INDEX_UNINITIALIZED) { THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "nothing to expand"); } bool have_defc = (java_lang_invoke_MemberName::clazz(mname()) != NULL); bool have_name = (java_lang_invoke_MemberName::name(mname()) != NULL); bool have_type = (java_lang_invoke_MemberName::type(mname()) != NULL); int flags = java_lang_invoke_MemberName::flags(mname()); if (suppress != 0) { if (suppress & _suppress_defc) have_defc = true; if (suppress & _suppress_name) have_name = true; if (suppress & _suppress_type) have_type = true; } if (have_defc && have_name && have_type) return; // nothing needed switch (flags & ALL_KINDS) { case IS_METHOD: case IS_CONSTRUCTOR: { klassOop receiver_limit = NULL; int decode_flags = 0; methodHandle m(THREAD, decode_vmtarget(vmtarget, vmindex, NULL, receiver_limit, decode_flags)); if (m.is_null()) break; if (!have_defc) { klassOop defc = m->method_holder(); if (receiver_limit != NULL && receiver_limit != defc && Klass::cast(receiver_limit)->is_subtype_of(defc)) defc = receiver_limit; java_lang_invoke_MemberName::set_clazz(mname(), Klass::cast(defc)->java_mirror()); } if (!have_name) { //not java_lang_String::create_from_symbol; let's intern member names Handle name = StringTable::intern(m->name(), CHECK); java_lang_invoke_MemberName::set_name(mname(), name()); } if (!have_type) { Handle type = java_lang_String::create_from_symbol(m->signature(), CHECK); java_lang_invoke_MemberName::set_type(mname(), type()); } return; } case IS_FIELD: { // This is taken from LinkResolver::resolve_field, sans access checks. if (!vmtarget->is_klass()) break; if (!Klass::cast((klassOop) vmtarget)->oop_is_instance()) break; instanceKlassHandle defc(THREAD, (klassOop) vmtarget); bool is_static = ((flags & JVM_ACC_STATIC) != 0); fieldDescriptor fd; // find_field initializes fd if found if (!defc->find_field_from_offset(vmindex, is_static, &fd)) break; // cannot expand if (!have_defc) { java_lang_invoke_MemberName::set_clazz(mname(), defc->java_mirror()); } if (!have_name) { //not java_lang_String::create_from_symbol; let's intern member names Handle name = StringTable::intern(fd.name(), CHECK); java_lang_invoke_MemberName::set_name(mname(), name()); } if (!have_type) { Handle type = java_lang_String::create_from_symbol(fd.signature(), CHECK); java_lang_invoke_MemberName::set_type(mname(), type()); } return; } } THROW_MSG(vmSymbols::java_lang_InternalError(), "unrecognized MemberName format"); } int MethodHandles::find_MemberNames(klassOop k, Symbol* name, Symbol* sig, int mflags, klassOop caller, int skip, objArrayOop results) { DEBUG_ONLY(No_Safepoint_Verifier nsv); // this code contains no safepoints! // %%% take caller into account! if (k == NULL || !Klass::cast(k)->oop_is_instance()) return -1; int rfill = 0, rlimit = results->length(), rskip = skip; // overflow measurement: int overflow = 0, overflow_limit = MAX2(1000, rlimit); int match_flags = mflags; bool search_superc = ((match_flags & SEARCH_SUPERCLASSES) != 0); bool search_intfc = ((match_flags & SEARCH_INTERFACES) != 0); bool local_only = !(search_superc | search_intfc); bool classes_only = false; if (name != NULL) { if (name->utf8_length() == 0) return 0; // a match is not possible } if (sig != NULL) { if (sig->utf8_length() == 0) return 0; // a match is not possible if (sig->byte_at(0) == '(') match_flags &= ~(IS_FIELD | IS_TYPE); else match_flags &= ~(IS_CONSTRUCTOR | IS_METHOD); } if ((match_flags & IS_TYPE) != 0) { // NYI, and Core Reflection works quite well for this query } if ((match_flags & IS_FIELD) != 0) { for (FieldStream st(k, local_only, !search_intfc); !st.eos(); st.next()) { if (name != NULL && st.name() != name) continue; if (sig != NULL && st.signature() != sig) continue; // passed the filters if (rskip > 0) { --rskip; } else if (rfill < rlimit) { oop result = results->obj_at(rfill++); if (!java_lang_invoke_MemberName::is_instance(result)) return -99; // caller bug! MethodHandles::init_MemberName(result, st.klass()->as_klassOop(), st.access_flags(), st.offset()); } else if (++overflow >= overflow_limit) { match_flags = 0; break; // got tired of looking at overflow } } } if ((match_flags & (IS_METHOD | IS_CONSTRUCTOR)) != 0) { // watch out for these guys: Symbol* init_name = vmSymbols::object_initializer_name(); Symbol* clinit_name = vmSymbols::class_initializer_name(); if (name == clinit_name) clinit_name = NULL; // hack for exposing bool negate_name_test = false; // fix name so that it captures the intention of IS_CONSTRUCTOR if (!(match_flags & IS_METHOD)) { // constructors only if (name == NULL) { name = init_name; } else if (name != init_name) { return 0; // no constructors of this method name } } else if (!(match_flags & IS_CONSTRUCTOR)) { // methods only if (name == NULL) { name = init_name; negate_name_test = true; // if we see the name, we *omit* the entry } else if (name == init_name) { return 0; // no methods of this constructor name } } else { // caller will accept either sort; no need to adjust name } for (MethodStream st(k, local_only, !search_intfc); !st.eos(); st.next()) { methodOop m = st.method(); Symbol* m_name = m->name(); if (m_name == clinit_name) continue; if (name != NULL && ((m_name != name) ^ negate_name_test)) continue; if (sig != NULL && m->signature() != sig) continue; // passed the filters if (rskip > 0) { --rskip; } else if (rfill < rlimit) { oop result = results->obj_at(rfill++); if (!java_lang_invoke_MemberName::is_instance(result)) return -99; // caller bug! MethodHandles::init_MemberName(result, m, true); } else if (++overflow >= overflow_limit) { match_flags = 0; break; // got tired of looking at overflow } } } // return number of elements we at leasted wanted to initialize return rfill + overflow; } // Decode this java.lang.Class object into an instanceKlass, if possible. // Throw IAE if not instanceKlassHandle MethodHandles::resolve_instance_klass(oop java_mirror_oop, TRAPS) { instanceKlassHandle empty; klassOop caller = NULL; if (java_lang_Class::is_instance(java_mirror_oop)) { caller = java_lang_Class::as_klassOop(java_mirror_oop); } if (caller == NULL || !Klass::cast(caller)->oop_is_instance()) { THROW_MSG_(vmSymbols::java_lang_IllegalArgumentException(), "not a class", empty); } return instanceKlassHandle(THREAD, caller); } // Decode the vmtarget field of a method handle. // Sanitize out methodOops, klassOops, and any other non-Java data. // This is for debugging and reflection. oop MethodHandles::encode_target(Handle mh, int format, TRAPS) { assert(java_lang_invoke_MethodHandle::is_instance(mh()), "must be a MH"); if (format == ETF_HANDLE_OR_METHOD_NAME) { oop target = java_lang_invoke_MethodHandle::vmtarget(mh()); if (target == NULL) { return NULL; // unformed MH } klassOop tklass = target->klass(); if (Klass::cast(tklass)->is_subclass_of(SystemDictionary::Object_klass())) { return target; // target is another MH (or something else?) } } if (format == ETF_DIRECT_HANDLE) { oop target = mh(); for (;;) { if (target->klass() == SystemDictionary::DirectMethodHandle_klass()) { return target; } if (!java_lang_invoke_MethodHandle::is_instance(target)){ return NULL; // unformed MH } target = java_lang_invoke_MethodHandle::vmtarget(target); } } // cases of metadata in MH.vmtarget: // - AMH can have methodOop for static invoke with bound receiver // - DMH can have methodOop for static invoke (on variable receiver) // - DMH can have klassOop for dispatched (non-static) invoke klassOop receiver_limit = NULL; int decode_flags = 0; methodOop m = decode_MethodHandle(mh(), receiver_limit, decode_flags); if (m == NULL) return NULL; switch (format) { case ETF_REFLECT_METHOD: // same as jni_ToReflectedMethod: if (m->is_initializer()) { return Reflection::new_constructor(m, THREAD); } else { return Reflection::new_method(m, UseNewReflection, false, THREAD); } case ETF_HANDLE_OR_METHOD_NAME: // method, not handle case ETF_METHOD_NAME: { if (SystemDictionary::MemberName_klass() == NULL) break; instanceKlassHandle mname_klass(THREAD, SystemDictionary::MemberName_klass()); mname_klass->initialize(CHECK_NULL); Handle mname = mname_klass->allocate_instance_handle(CHECK_NULL); java_lang_invoke_MemberName::set_vmindex(mname(), VM_INDEX_UNINITIALIZED); bool do_dispatch = ((decode_flags & MethodHandles::_dmf_does_dispatch) != 0); init_MemberName(mname(), m, do_dispatch); expand_MemberName(mname, 0, CHECK_NULL); return mname(); } } // Unknown format code. char msg[50]; jio_snprintf(msg, sizeof(msg), "unknown getTarget format=%d", format); THROW_MSG_NULL(vmSymbols::java_lang_IllegalArgumentException(), msg); } static const char* always_null_names[] = { "java/lang/Void", "java/lang/Null", //"java/lang/Nothing", "sun/dyn/empty/Empty", "sun/invoke/empty/Empty", NULL }; static bool is_always_null_type(klassOop klass) { if (!Klass::cast(klass)->oop_is_instance()) return false; instanceKlass* ik = instanceKlass::cast(klass); // Must be on the boot class path: if (ik->class_loader() != NULL) return false; // Check the name. Symbol* name = ik->name(); for (int i = 0; ; i++) { const char* test_name = always_null_names[i]; if (test_name == NULL) break; if (name->equals(test_name)) return true; } return false; } bool MethodHandles::class_cast_needed(klassOop src, klassOop dst) { if (src == dst || dst == SystemDictionary::Object_klass()) return false; // quickest checks Klass* srck = Klass::cast(src); Klass* dstk = Klass::cast(dst); if (dstk->is_interface()) { // interface receivers can safely be viewed as untyped, // because interface calls always include a dynamic check //dstk = Klass::cast(SystemDictionary::Object_klass()); return false; } if (srck->is_interface()) { // interface arguments must be viewed as untyped //srck = Klass::cast(SystemDictionary::Object_klass()); return true; } if (is_always_null_type(src)) { // some source types are known to be never instantiated; // they represent references which are always null // such null references never fail to convert safely return false; } return !srck->is_subclass_of(dstk->as_klassOop()); } static oop object_java_mirror() { return Klass::cast(SystemDictionary::Object_klass())->java_mirror(); } bool MethodHandles::same_basic_type_for_arguments(BasicType src, BasicType dst, bool raw, bool for_return) { if (for_return) { // return values can always be forgotten: if (dst == T_VOID) return true; if (src == T_VOID) return raw && (dst == T_INT); // We allow caller to receive a garbage int, which is harmless. // This trick is pulled by trusted code (see VerifyType.canPassRaw). } assert(src != T_VOID && dst != T_VOID, "should not be here"); if (src == dst) return true; if (type2size[src] != type2size[dst]) return false; if (src == T_OBJECT || dst == T_OBJECT) return false; if (raw) return true; // bitwise reinterpretation; caller guarantees safety // allow reinterpretation casts for integral widening if (is_subword_type(src)) { // subwords can fit in int or other subwords if (dst == T_INT) // any subword fits in an int return true; if (src == T_BOOLEAN) // boolean fits in any subword return is_subword_type(dst); if (src == T_BYTE && dst == T_SHORT) return true; // remaining case: byte fits in short } // allow float/fixed reinterpretation casts if (src == T_FLOAT) return dst == T_INT; if (src == T_INT) return dst == T_FLOAT; if (src == T_DOUBLE) return dst == T_LONG; if (src == T_LONG) return dst == T_DOUBLE; return false; } const char* MethodHandles::check_method_receiver(methodOop m, klassOop passed_recv_type) { assert(!m->is_static(), "caller resp."); if (passed_recv_type == NULL) return "receiver type is primitive"; if (class_cast_needed(passed_recv_type, m->method_holder())) { Klass* formal = Klass::cast(m->method_holder()); return SharedRuntime::generate_class_cast_message("receiver type", formal->external_name()); } return NULL; // checks passed } // Verify that m's signature can be called type-safely by a method handle // of the given method type 'mtype'. // It takes a TRAPS argument because it must perform symbol lookups. void MethodHandles::verify_method_signature(methodHandle m, Handle mtype, int first_ptype_pos, KlassHandle insert_ptype, TRAPS) { objArrayHandle ptypes(THREAD, java_lang_invoke_MethodType::ptypes(mtype())); int pnum = first_ptype_pos; int pmax = ptypes->length(); int mnum = 0; // method argument const char* err = NULL; ResourceMark rm(THREAD); for (SignatureStream ss(m->signature()); !ss.is_done(); ss.next()) { oop ptype_oop = NULL; if (ss.at_return_type()) { if (pnum != pmax) { err = "too many arguments"; break; } ptype_oop = java_lang_invoke_MethodType::rtype(mtype()); } else { if (pnum >= pmax) { err = "not enough arguments"; break; } if (pnum >= 0) ptype_oop = ptypes->obj_at(pnum); else if (insert_ptype.is_null()) ptype_oop = NULL; else ptype_oop = insert_ptype->java_mirror(); pnum += 1; mnum += 1; } klassOop pklass = NULL; BasicType ptype = T_OBJECT; if (ptype_oop != NULL) ptype = java_lang_Class::as_BasicType(ptype_oop, &pklass); else // null does not match any non-reference; use Object to report the error pklass = SystemDictionary::Object_klass(); klassOop mklass = NULL; BasicType mtype = ss.type(); if (mtype == T_ARRAY) mtype = T_OBJECT; // fold all refs to T_OBJECT if (mtype == T_OBJECT) { if (ptype_oop == NULL) { // null matches any reference continue; } KlassHandle pklass_handle(THREAD, pklass); pklass = NULL; // If we fail to resolve types at this point, we will throw an error. Symbol* name = ss.as_symbol(CHECK); instanceKlass* mk = instanceKlass::cast(m->method_holder()); Handle loader(THREAD, mk->class_loader()); Handle domain(THREAD, mk->protection_domain()); mklass = SystemDictionary::resolve_or_null(name, loader, domain, CHECK); pklass = pklass_handle(); if (mklass == NULL && pklass != NULL && Klass::cast(pklass)->name() == name && m->is_method_handle_invoke()) { // Assume a match. We can't really decode the signature of MH.invoke*. continue; } } if (!ss.at_return_type()) { err = check_argument_type_change(ptype, pklass, mtype, mklass, mnum); } else { err = check_return_type_change(mtype, mklass, ptype, pklass); // note reversal! } if (err != NULL) break; } if (err != NULL) { THROW_MSG(vmSymbols::java_lang_InternalError(), err); } } // Main routine for verifying the MethodHandle.type of a proposed // direct or bound-direct method handle. void MethodHandles::verify_method_type(methodHandle m, Handle mtype, bool has_bound_recv, KlassHandle bound_recv_type, TRAPS) { bool m_needs_receiver = !m->is_static(); const char* err = NULL; int first_ptype_pos = m_needs_receiver ? 1 : 0; if (has_bound_recv) { first_ptype_pos -= 1; // ptypes do not include the bound argument; start earlier in them if (m_needs_receiver && bound_recv_type.is_null()) { err = "bound receiver is not an object"; goto die; } } if (m_needs_receiver && err == NULL) { objArrayOop ptypes = java_lang_invoke_MethodType::ptypes(mtype()); if (ptypes->length() < first_ptype_pos) { err = "receiver argument is missing"; goto die; } if (has_bound_recv) err = check_method_receiver(m(), bound_recv_type->as_klassOop()); else err = check_method_receiver(m(), java_lang_Class::as_klassOop(ptypes->obj_at(first_ptype_pos-1))); if (err != NULL) goto die; } // Check the other arguments for mistypes. verify_method_signature(m, mtype, first_ptype_pos, bound_recv_type, CHECK); return; die: THROW_MSG(vmSymbols::java_lang_InternalError(), err); } void MethodHandles::verify_vmslots(Handle mh, TRAPS) { // Verify vmslots. int check_slots = argument_slot_count(java_lang_invoke_MethodHandle::type(mh())); if (java_lang_invoke_MethodHandle::vmslots(mh()) != check_slots) { THROW_MSG(vmSymbols::java_lang_InternalError(), "bad vmslots in BMH"); } } void MethodHandles::verify_vmargslot(Handle mh, int argnum, int argslot, TRAPS) { // Verify that argslot points at the given argnum. int check_slot = argument_slot(java_lang_invoke_MethodHandle::type(mh()), argnum); if (argslot != check_slot || argslot < 0) { const char* fmt = "for argnum of %d, vmargslot is %d, should be %d"; size_t msglen = strlen(fmt) + 3*11 + 1; char* msg = NEW_RESOURCE_ARRAY(char, msglen); jio_snprintf(msg, msglen, fmt, argnum, argslot, check_slot); THROW_MSG(vmSymbols::java_lang_InternalError(), msg); } } // Verify the correspondence between two method types. // Apart from the advertised changes, caller method type X must // be able to invoke the callee method Y type with no violations // of type integrity. // Return NULL if all is well, else a short error message. const char* MethodHandles::check_method_type_change(oop src_mtype, int src_beg, int src_end, int insert_argnum, oop insert_type, int change_argnum, oop change_type, int delete_argnum, oop dst_mtype, int dst_beg, int dst_end, bool raw) { objArrayOop src_ptypes = java_lang_invoke_MethodType::ptypes(src_mtype); objArrayOop dst_ptypes = java_lang_invoke_MethodType::ptypes(dst_mtype); int src_max = src_ptypes->length(); int dst_max = dst_ptypes->length(); if (src_end == -1) src_end = src_max; if (dst_end == -1) dst_end = dst_max; assert(0 <= src_beg && src_beg <= src_end && src_end <= src_max, "oob"); assert(0 <= dst_beg && dst_beg <= dst_end && dst_end <= dst_max, "oob"); // pending actions; set to -1 when done: int ins_idx = insert_argnum, chg_idx = change_argnum, del_idx = delete_argnum; const char* err = NULL; // Walk along each array of parameter types, including a virtual // NULL end marker at the end of each. for (int src_idx = src_beg, dst_idx = dst_beg; (src_idx <= src_end && dst_idx <= dst_end); src_idx++, dst_idx++) { oop src_type = (src_idx == src_end) ? oop(NULL) : src_ptypes->obj_at(src_idx); oop dst_type = (dst_idx == dst_end) ? oop(NULL) : dst_ptypes->obj_at(dst_idx); bool fix_null_src_type = false; // Perform requested edits. if (ins_idx == src_idx) { // note that the inserted guy is never affected by a change or deletion ins_idx = -1; src_type = insert_type; fix_null_src_type = true; --src_idx; // back up to process src type on next loop src_idx = src_end; } else { // note that the changed guy can be immediately deleted if (chg_idx == src_idx) { chg_idx = -1; assert(src_idx < src_end, "oob"); src_type = change_type; fix_null_src_type = true; } if (del_idx == src_idx) { del_idx = -1; assert(src_idx < src_end, "oob"); --dst_idx; continue; // rerun loop after skipping this position } } if (src_type == NULL && fix_null_src_type) // explicit null in this case matches any dest reference src_type = (java_lang_Class::is_primitive(dst_type) ? object_java_mirror() : dst_type); // Compare the two argument types. if (src_type != dst_type) { if (src_type == NULL) return "not enough arguments"; if (dst_type == NULL) return "too many arguments"; err = check_argument_type_change(src_type, dst_type, dst_idx, raw); if (err != NULL) return err; } } // Now compare return types also. oop src_rtype = java_lang_invoke_MethodType::rtype(src_mtype); oop dst_rtype = java_lang_invoke_MethodType::rtype(dst_mtype); if (src_rtype != dst_rtype) { err = check_return_type_change(dst_rtype, src_rtype, raw); // note reversal! if (err != NULL) return err; } assert(err == NULL, ""); return NULL; // all is well } const char* MethodHandles::check_argument_type_change(BasicType src_type, klassOop src_klass, BasicType dst_type, klassOop dst_klass, int argnum, bool raw) { const char* err = NULL; bool for_return = (argnum < 0); // just in case: if (src_type == T_ARRAY) src_type = T_OBJECT; if (dst_type == T_ARRAY) dst_type = T_OBJECT; // Produce some nice messages if VerifyMethodHandles is turned on: if (!same_basic_type_for_arguments(src_type, dst_type, raw, for_return)) { if (src_type == T_OBJECT) { if (raw && dst_type == T_INT && is_always_null_type(src_klass)) return NULL; // OK to convert a null pointer to a garbage int err = ((argnum >= 0) ? "type mismatch: passing a %s for method argument #%d, which expects primitive %s" : "type mismatch: returning a %s, but caller expects primitive %s"); } else if (dst_type == T_OBJECT) { err = ((argnum >= 0) ? "type mismatch: passing a primitive %s for method argument #%d, which expects %s" : "type mismatch: returning a primitive %s, but caller expects %s"); } else { err = ((argnum >= 0) ? "type mismatch: passing a %s for method argument #%d, which expects %s" : "type mismatch: returning a %s, but caller expects %s"); } } else if (src_type == T_OBJECT && dst_type == T_OBJECT && class_cast_needed(src_klass, dst_klass)) { if (!class_cast_needed(dst_klass, src_klass)) { if (raw) return NULL; // reverse cast is OK; the MH target is trusted to enforce it err = ((argnum >= 0) ? "cast required: passing a %s for method argument #%d, which expects %s" : "cast required: returning a %s, but caller expects %s"); } else { err = ((argnum >= 0) ? "reference mismatch: passing a %s for method argument #%d, which expects %s" : "reference mismatch: returning a %s, but caller expects %s"); } } else { // passed the obstacle course return NULL; } // format, format, format const char* src_name = type2name(src_type); const char* dst_name = type2name(dst_type); if (src_type == T_OBJECT) src_name = Klass::cast(src_klass)->external_name(); if (dst_type == T_OBJECT) dst_name = Klass::cast(dst_klass)->external_name(); if (src_name == NULL) src_name = "unknown type"; if (dst_name == NULL) dst_name = "unknown type"; size_t msglen = strlen(err) + strlen(src_name) + strlen(dst_name) + (argnum < 10 ? 1 : 11); char* msg = NEW_RESOURCE_ARRAY(char, msglen + 1); if (argnum >= 0) { assert(strstr(err, "%d") != NULL, ""); jio_snprintf(msg, msglen, err, src_name, argnum, dst_name); } else { assert(strstr(err, "%d") == NULL, ""); jio_snprintf(msg, msglen, err, src_name, dst_name); } return msg; } // Compute the depth within the stack of the given argument, i.e., // the combined size of arguments to the right of the given argument. // For the last argument (ptypes.length-1) this will be zero. // For the first argument (0) this will be the size of all // arguments but that one. For the special number -1, this // will be the size of all arguments, including the first. // If the argument is neither -1 nor a valid argument index, // then return a negative number. Otherwise, the result // is in the range [0..vmslots] inclusive. int MethodHandles::argument_slot(oop method_type, int arg) { objArrayOop ptypes = java_lang_invoke_MethodType::ptypes(method_type); int argslot = 0; int len = ptypes->length(); if (arg < -1 || arg >= len) return -99; for (int i = len-1; i > arg; i--) { BasicType bt = java_lang_Class::as_BasicType(ptypes->obj_at(i)); argslot += type2size[bt]; } assert(argument_slot_to_argnum(method_type, argslot) == arg, "inverse works"); return argslot; } // Given a slot number, return the argument number. int MethodHandles::argument_slot_to_argnum(oop method_type, int query_argslot) { objArrayOop ptypes = java_lang_invoke_MethodType::ptypes(method_type); int argslot = 0; int len = ptypes->length(); for (int i = len-1; i >= 0; i--) { if (query_argslot == argslot) return i; BasicType bt = java_lang_Class::as_BasicType(ptypes->obj_at(i)); argslot += type2size[bt]; } // return pseudo-arg deepest in stack: if (query_argslot == argslot) return -1; return -99; // oob slot, or splitting a double-slot arg } methodHandle MethodHandles::dispatch_decoded_method(methodHandle m, KlassHandle receiver_limit, int decode_flags, KlassHandle receiver_klass, TRAPS) { assert((decode_flags & ~_DMF_DIRECT_MASK) == 0, "must be direct method reference"); assert((decode_flags & _dmf_has_receiver) != 0, "must have a receiver or first reference argument"); if (!m->is_static() && (receiver_klass.is_null() || !receiver_klass->is_subtype_of(m->method_holder()))) // given type does not match class of method, or receiver is null! // caller should have checked this, but let's be extra careful... return methodHandle(); if (receiver_limit.not_null() && (receiver_klass.not_null() && !receiver_klass->is_subtype_of(receiver_limit()))) // given type is not limited to the receiver type // note that a null receiver can match any reference value, for a static method return methodHandle(); if (!(decode_flags & MethodHandles::_dmf_does_dispatch)) { // pre-dispatched or static method (null receiver is OK for static) return m; } else if (receiver_klass.is_null()) { // null receiver value; cannot dispatch return methodHandle(); } else if (!(decode_flags & MethodHandles::_dmf_from_interface)) { // perform virtual dispatch int vtable_index = m->vtable_index(); guarantee(vtable_index >= 0, "valid vtable index"); // receiver_klass might be an arrayKlassOop but all vtables start at // the same place. The cast is to avoid virtual call and assertion. // See also LinkResolver::runtime_resolve_virtual_method. instanceKlass* inst = (instanceKlass*)Klass::cast(receiver_klass()); DEBUG_ONLY(inst->verify_vtable_index(vtable_index)); methodOop m_oop = inst->method_at_vtable(vtable_index); return methodHandle(THREAD, m_oop); } else { // perform interface dispatch int itable_index = klassItable::compute_itable_index(m()); guarantee(itable_index >= 0, "valid itable index"); instanceKlass* inst = instanceKlass::cast(receiver_klass()); methodOop m_oop = inst->method_at_itable(m->method_holder(), itable_index, THREAD); return methodHandle(THREAD, m_oop); } } void MethodHandles::verify_DirectMethodHandle(Handle mh, methodHandle m, TRAPS) { // Verify type. Handle mtype(THREAD, java_lang_invoke_MethodHandle::type(mh())); verify_method_type(m, mtype, false, KlassHandle(), CHECK); // Verify vmslots. if (java_lang_invoke_MethodHandle::vmslots(mh()) != m->size_of_parameters()) { THROW_MSG(vmSymbols::java_lang_InternalError(), "bad vmslots in DMH"); } } void MethodHandles::init_DirectMethodHandle(Handle mh, methodHandle m, bool do_dispatch, TRAPS) { // Check arguments. if (mh.is_null() || m.is_null() || (!do_dispatch && m->is_abstract())) { THROW(vmSymbols::java_lang_InternalError()); } java_lang_invoke_MethodHandle::init_vmslots(mh()); if (VerifyMethodHandles) { // The privileged code which invokes this routine should not make // a mistake about types, but it's better to verify. verify_DirectMethodHandle(mh, m, CHECK); } // Finally, after safety checks are done, link to the target method. // We will follow the same path as the latter part of // InterpreterRuntime::resolve_invoke(), which first finds the method // and then decides how to populate the constant pool cache entry // that links the interpreter calls to the method. We need the same // bits, and will use the same calling sequence code. int vmindex = methodOopDesc::garbage_vtable_index; oop vmtarget = NULL; instanceKlass::cast(m->method_holder())->link_class(CHECK); MethodHandleEntry* me = NULL; if (do_dispatch && Klass::cast(m->method_holder())->is_interface()) { // We are simulating an invokeinterface instruction. // (We might also be simulating an invokevirtual on a miranda method, // but it is safe to treat it as an invokeinterface.) assert(!m->can_be_statically_bound(), "no final methods on interfaces"); vmindex = klassItable::compute_itable_index(m()); assert(vmindex >= 0, "(>=0) == do_dispatch"); // Set up same bits as ConstantPoolCacheEntry::set_interface_call(). vmtarget = m->method_holder(); // the interface me = MethodHandles::entry(MethodHandles::_invokeinterface_mh); } else if (!do_dispatch || m->can_be_statically_bound()) { // We are simulating an invokestatic or invokespecial instruction. // Set up the method pointer, just like ConstantPoolCacheEntry::set_method(). vmtarget = m(); // this does not help dispatch, but it will make it possible to parse this MH: vmindex = methodOopDesc::nonvirtual_vtable_index; assert(vmindex < 0, "(>=0) == do_dispatch"); if (!m->is_static()) { me = MethodHandles::entry(MethodHandles::_invokespecial_mh); } else { me = MethodHandles::entry(MethodHandles::_invokestatic_mh); // Part of the semantics of a static call is an initialization barrier. // For a DMH, it is done now, when the handle is created. Klass* k = Klass::cast(m->method_holder()); if (k->should_be_initialized()) { k->initialize(CHECK); } } } else { // We are simulating an invokevirtual instruction. // Set up the vtable index, just like ConstantPoolCacheEntry::set_method(). // The key logic is LinkResolver::runtime_resolve_virtual_method. vmindex = m->vtable_index(); vmtarget = m->method_holder(); me = MethodHandles::entry(MethodHandles::_invokevirtual_mh); } if (me == NULL) { THROW(vmSymbols::java_lang_InternalError()); } java_lang_invoke_DirectMethodHandle::set_vmtarget(mh(), vmtarget); java_lang_invoke_DirectMethodHandle::set_vmindex(mh(), vmindex); DEBUG_ONLY(int flags; klassOop rlimit); assert(MethodHandles::decode_method(mh(), rlimit, flags) == m(), "properly stored for later decoding"); DEBUG_ONLY(bool actual_do_dispatch = ((flags & _dmf_does_dispatch) != 0)); assert(!(actual_do_dispatch && !do_dispatch), "do not perform dispatch if !do_dispatch specified"); assert(actual_do_dispatch == (vmindex >= 0), "proper later decoding of do_dispatch"); assert(decode_MethodHandle_stack_pushes(mh()) == 0, "DMH does not move stack"); // Done! java_lang_invoke_MethodHandle::set_vmentry(mh(), me); } void MethodHandles::verify_BoundMethodHandle_with_receiver(Handle mh, methodHandle m, TRAPS) { // Verify type. oop receiver = java_lang_invoke_BoundMethodHandle::argument(mh()); Handle mtype(THREAD, java_lang_invoke_MethodHandle::type(mh())); KlassHandle bound_recv_type; if (receiver != NULL) bound_recv_type = KlassHandle(THREAD, receiver->klass()); verify_method_type(m, mtype, true, bound_recv_type, CHECK); int receiver_pos = m->size_of_parameters() - 1; // Verify MH.vmargslot, which should point at the bound receiver. verify_vmargslot(mh, -1, java_lang_invoke_BoundMethodHandle::vmargslot(mh()), CHECK); //verify_vmslots(mh, CHECK); // Verify vmslots. if (java_lang_invoke_MethodHandle::vmslots(mh()) != receiver_pos) { THROW_MSG(vmSymbols::java_lang_InternalError(), "bad vmslots in BMH (receiver)"); } } // Initialize a BMH with a receiver bound directly to a methodOop. void MethodHandles::init_BoundMethodHandle_with_receiver(Handle mh, methodHandle original_m, KlassHandle receiver_limit, int decode_flags, TRAPS) { // Check arguments. if (mh.is_null() || original_m.is_null()) { THROW(vmSymbols::java_lang_InternalError()); } KlassHandle receiver_klass; { oop receiver_oop = java_lang_invoke_BoundMethodHandle::argument(mh()); if (receiver_oop != NULL) receiver_klass = KlassHandle(THREAD, receiver_oop->klass()); } methodHandle m = dispatch_decoded_method(original_m, receiver_limit, decode_flags, receiver_klass, CHECK); if (m.is_null()) { THROW(vmSymbols::java_lang_InternalError()); } if (m->is_abstract()) { THROW(vmSymbols::java_lang_AbstractMethodError()); } java_lang_invoke_MethodHandle::init_vmslots(mh()); if (VerifyMethodHandles) { verify_BoundMethodHandle_with_receiver(mh, m, CHECK); } java_lang_invoke_BoundMethodHandle::set_vmtarget(mh(), m()); DEBUG_ONLY(int junk; klassOop junk2); assert(MethodHandles::decode_method(mh(), junk2, junk) == m(), "properly stored for later decoding"); assert(decode_MethodHandle_stack_pushes(mh()) == 1, "BMH pushes one stack slot"); // Done! java_lang_invoke_MethodHandle::set_vmentry(mh(), MethodHandles::entry(MethodHandles::_bound_ref_direct_mh)); } void MethodHandles::verify_BoundMethodHandle(Handle mh, Handle target, int argnum, bool direct_to_method, TRAPS) { Handle ptype_handle(THREAD, java_lang_invoke_MethodType::ptype(java_lang_invoke_MethodHandle::type(target()), argnum)); KlassHandle ptype_klass; BasicType ptype = java_lang_Class::as_BasicType(ptype_handle(), &ptype_klass); int slots_pushed = type2size[ptype]; oop argument = java_lang_invoke_BoundMethodHandle::argument(mh()); const char* err = NULL; switch (ptype) { case T_OBJECT: if (argument != NULL) // we must implicitly convert from the arg type to the outgoing ptype err = check_argument_type_change(T_OBJECT, argument->klass(), ptype, ptype_klass(), argnum); break; case T_ARRAY: case T_VOID: assert(false, "array, void do not appear here"); default: if (ptype != T_INT && !is_subword_type(ptype)) { err = "unexpected parameter type"; break; } // check subrange of Integer.value, if necessary if (argument == NULL || argument->klass() != SystemDictionary::Integer_klass()) { err = "bound integer argument must be of type java.lang.Integer"; break; } if (ptype != T_INT) { int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_INT); jint value = argument->int_field(value_offset); int vminfo = adapter_unbox_subword_vminfo(ptype); jint subword = truncate_subword_from_vminfo(value, vminfo); if (value != subword) { err = "bound subword value does not fit into the subword type"; break; } } break; case T_FLOAT: case T_DOUBLE: case T_LONG: { // we must implicitly convert from the unboxed arg type to the outgoing ptype BasicType argbox = java_lang_boxing_object::basic_type(argument); if (argbox != ptype) { err = check_argument_type_change(T_OBJECT, (argument == NULL ? SystemDictionary::Object_klass() : argument->klass()), ptype, ptype_klass(), argnum); assert(err != NULL, "this must be an error"); } break; } } if (err == NULL) { DEBUG_ONLY(int this_pushes = decode_MethodHandle_stack_pushes(mh())); if (direct_to_method) { assert(this_pushes == slots_pushed, "BMH pushes one or two stack slots"); assert(slots_pushed <= MethodHandlePushLimit, ""); } else { int target_pushes = decode_MethodHandle_stack_pushes(target()); assert(this_pushes == slots_pushed + target_pushes, "BMH stack motion must be correct"); // do not blow the stack; use a Java-based adapter if this limit is exceeded // FIXME // if (slots_pushed + target_pushes > MethodHandlePushLimit) // err = "too many bound parameters"; } } if (err == NULL) { // Verify the rest of the method type. err = check_method_type_insertion(java_lang_invoke_MethodHandle::type(mh()), argnum, ptype_handle(), java_lang_invoke_MethodHandle::type(target())); } if (err != NULL) { THROW_MSG(vmSymbols::java_lang_InternalError(), err); } } void MethodHandles::init_BoundMethodHandle(Handle mh, Handle target, int argnum, TRAPS) { // Check arguments. if (mh.is_null() || target.is_null() || !java_lang_invoke_MethodHandle::is_instance(target())) { THROW(vmSymbols::java_lang_InternalError()); } java_lang_invoke_MethodHandle::init_vmslots(mh()); if (VerifyMethodHandles) { int insert_after = argnum - 1; verify_vmargslot(mh, insert_after, java_lang_invoke_BoundMethodHandle::vmargslot(mh()), CHECK); verify_vmslots(mh, CHECK); } // Get bound type and required slots. oop ptype_oop = java_lang_invoke_MethodType::ptype(java_lang_invoke_MethodHandle::type(target()), argnum); BasicType ptype = java_lang_Class::as_BasicType(ptype_oop); int slots_pushed = type2size[ptype]; // If (a) the target is a direct non-dispatched method handle, // or (b) the target is a dispatched direct method handle and we // are binding the receiver, cut out the middle-man. // Do this by decoding the DMH and using its methodOop directly as vmtarget. bool direct_to_method = false; if (OptimizeMethodHandles && target->klass() == SystemDictionary::DirectMethodHandle_klass() && (argnum == 0 || java_lang_invoke_DirectMethodHandle::vmindex(target()) < 0)) { int decode_flags = 0; klassOop receiver_limit_oop = NULL; methodHandle m(THREAD, decode_method(target(), receiver_limit_oop, decode_flags)); if (m.is_null()) { THROW_MSG(vmSymbols::java_lang_InternalError(), "DMH failed to decode"); } DEBUG_ONLY(int m_vmslots = m->size_of_parameters() - slots_pushed); // pos. of 1st arg. assert(java_lang_invoke_BoundMethodHandle::vmslots(mh()) == m_vmslots, "type w/ m sig"); if (argnum == 0 && (decode_flags & _dmf_has_receiver) != 0) { KlassHandle receiver_limit(THREAD, receiver_limit_oop); init_BoundMethodHandle_with_receiver(mh, m, receiver_limit, decode_flags, CHECK); return; } // Even if it is not a bound receiver, we still might be able // to bind another argument and still invoke the methodOop directly. if (!(decode_flags & _dmf_does_dispatch)) { direct_to_method = true; java_lang_invoke_BoundMethodHandle::set_vmtarget(mh(), m()); } } if (!direct_to_method) java_lang_invoke_BoundMethodHandle::set_vmtarget(mh(), target()); if (VerifyMethodHandles) { verify_BoundMethodHandle(mh, target, argnum, direct_to_method, CHECK); } // Next question: Is this a ref, int, or long bound value? MethodHandleEntry* me = NULL; if (ptype == T_OBJECT) { if (direct_to_method) me = MethodHandles::entry(_bound_ref_direct_mh); else me = MethodHandles::entry(_bound_ref_mh); } else if (slots_pushed == 2) { if (direct_to_method) me = MethodHandles::entry(_bound_long_direct_mh); else me = MethodHandles::entry(_bound_long_mh); } else if (slots_pushed == 1) { if (direct_to_method) me = MethodHandles::entry(_bound_int_direct_mh); else me = MethodHandles::entry(_bound_int_mh); } else { assert(false, ""); } // Done! java_lang_invoke_MethodHandle::set_vmentry(mh(), me); } static void throw_InternalError_for_bad_conversion(int conversion, const char* err, TRAPS) { char msg[200]; jio_snprintf(msg, sizeof(msg), "bad adapter (conversion=0x%08x): %s", conversion, err); THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), msg); } void MethodHandles::verify_AdapterMethodHandle(Handle mh, int argnum, TRAPS) { jint conversion = java_lang_invoke_AdapterMethodHandle::conversion(mh()); int argslot = java_lang_invoke_AdapterMethodHandle::vmargslot(mh()); verify_vmargslot(mh, argnum, argslot, CHECK); verify_vmslots(mh, CHECK); jint conv_op = adapter_conversion_op(conversion); if (!conv_op_valid(conv_op)) { throw_InternalError_for_bad_conversion(conversion, "unknown conversion op", THREAD); return; } EntryKind ek = adapter_entry_kind(conv_op); int stack_move = adapter_conversion_stack_move(conversion); BasicType src = adapter_conversion_src_type(conversion); BasicType dest = adapter_conversion_dest_type(conversion); int vminfo = adapter_conversion_vminfo(conversion); // should be zero Handle argument(THREAD, java_lang_invoke_AdapterMethodHandle::argument(mh())); Handle target(THREAD, java_lang_invoke_AdapterMethodHandle::vmtarget(mh())); Handle src_mtype(THREAD, java_lang_invoke_MethodHandle::type(mh())); Handle dst_mtype(THREAD, java_lang_invoke_MethodHandle::type(target())); const char* err = NULL; if (err == NULL) { // Check that the correct argument is supplied, but only if it is required. switch (ek) { case _adapter_check_cast: // target type of cast case _adapter_ref_to_prim: // wrapper type from which to unbox case _adapter_prim_to_ref: // wrapper type to box into case _adapter_collect_args: // array type to collect into case _adapter_spread_args: // array type to spread from if (!java_lang_Class::is_instance(argument()) || java_lang_Class::is_primitive(argument())) { err = "adapter requires argument of type java.lang.Class"; break; } if (ek == _adapter_collect_args || ek == _adapter_spread_args) { // Make sure it is a suitable collection type. (Array, for now.) Klass* ak = Klass::cast(java_lang_Class::as_klassOop(argument())); if (!ak->oop_is_objArray()) { { err = "adapter requires argument of type java.lang.Class"; break; } } } break; case _adapter_flyby: case _adapter_ricochet: if (!java_lang_invoke_MethodHandle::is_instance(argument())) { err = "MethodHandle adapter argument required"; break; } break; default: if (argument.not_null()) { err = "adapter has spurious argument"; break; } break; } } if (err == NULL) { // Check that the src/dest types are supplied if needed. switch (ek) { case _adapter_check_cast: if (src != T_OBJECT || dest != T_OBJECT) { err = "adapter requires object src/dest conversion subfields"; } break; case _adapter_prim_to_prim: if (!is_java_primitive(src) || !is_java_primitive(dest) || src == dest) { err = "adapter requires primitive src/dest conversion subfields"; break; } if ( (src == T_FLOAT || src == T_DOUBLE) && !(dest == T_FLOAT || dest == T_DOUBLE) || !(src == T_FLOAT || src == T_DOUBLE) && (dest == T_FLOAT || dest == T_DOUBLE)) { err = "adapter cannot convert beween floating and fixed-point"; break; } break; case _adapter_ref_to_prim: if (src != T_OBJECT || !is_java_primitive(dest) || argument() != Klass::cast(SystemDictionary::box_klass(dest))->java_mirror()) { err = "adapter requires primitive dest conversion subfield"; break; } break; case _adapter_prim_to_ref: if (!is_java_primitive(src) || dest != T_OBJECT || argument() != Klass::cast(SystemDictionary::box_klass(src))->java_mirror()) { err = "adapter requires primitive src conversion subfield"; break; } break; case _adapter_swap_args: case _adapter_rot_args: { if (!src || src != dest) { err = "adapter requires src/dest conversion subfields for swap"; break; } int swap_size = type2size[src]; oop src_mtype = java_lang_invoke_AdapterMethodHandle::type(mh()); oop dest_mtype = java_lang_invoke_AdapterMethodHandle::type(target()); int slot_limit = java_lang_invoke_AdapterMethodHandle::vmslots(target()); int src_slot = argslot; int dest_slot = vminfo; bool rotate_up = (src_slot > dest_slot); // upward rotation int src_arg = argnum; int dest_arg = argument_slot_to_argnum(dest_mtype, dest_slot); verify_vmargslot(mh, dest_arg, dest_slot, CHECK); if (!(dest_slot >= src_slot + swap_size) && !(src_slot >= dest_slot + swap_size)) { err = "source, destination slots must be distinct"; } else if (ek == _adapter_swap_args && !(src_slot > dest_slot)) { err = "source of swap must be deeper in stack"; } else if (ek == _adapter_swap_args) { err = check_argument_type_change(java_lang_invoke_MethodType::ptype(src_mtype, dest_arg), java_lang_invoke_MethodType::ptype(dest_mtype, src_arg), dest_arg); } else if (ek == _adapter_rot_args) { if (rotate_up) { assert((src_slot > dest_slot) && (src_arg < dest_arg), ""); // rotate up: [dest_slot..src_slot-ss] --> [dest_slot+ss..src_slot] // that is: [src_arg+1..dest_arg] --> [src_arg..dest_arg-1] for (int i = src_arg+1; i <= dest_arg && err == NULL; i++) { err = check_argument_type_change(java_lang_invoke_MethodType::ptype(src_mtype, i), java_lang_invoke_MethodType::ptype(dest_mtype, i-1), i); } } else { // rotate down assert((src_slot < dest_slot) && (src_arg > dest_arg), ""); // rotate down: [src_slot+ss..dest_slot] --> [src_slot..dest_slot-ss] // that is: [dest_arg..src_arg-1] --> [dst_arg+1..src_arg] for (int i = dest_arg; i <= src_arg-1 && err == NULL; i++) { err = check_argument_type_change(java_lang_invoke_MethodType::ptype(src_mtype, i), java_lang_invoke_MethodType::ptype(dest_mtype, i+1), i); } } } if (err == NULL) err = check_argument_type_change(java_lang_invoke_MethodType::ptype(src_mtype, src_arg), java_lang_invoke_MethodType::ptype(dest_mtype, dest_arg), src_arg); } break; case _adapter_collect_args: case _adapter_spread_args: { BasicType coll_type = (ek == _adapter_collect_args) ? dest : src; BasicType elem_type = (ek == _adapter_collect_args) ? src : dest; if (coll_type != T_OBJECT || elem_type != T_OBJECT) { err = "adapter requires src/dest subfields"; break; // later: // - consider making coll be a primitive array // - consider making coll be a heterogeneous collection } } break; default: if (src != 0 || dest != 0) { err = "adapter has spurious src/dest conversion subfields"; break; } break; } } if (err == NULL) { // Check the stack_move subfield. // It must always report the net change in stack size, positive or negative. int slots_pushed = stack_move / stack_move_unit(); switch (ek) { case _adapter_prim_to_prim: case _adapter_ref_to_prim: case _adapter_prim_to_ref: if (slots_pushed != type2size[dest] - type2size[src]) { err = "wrong stack motion for primitive conversion"; } break; case _adapter_dup_args: if (slots_pushed <= 0) { err = "adapter requires conversion subfield slots_pushed > 0"; } break; case _adapter_drop_args: if (slots_pushed >= 0) { err = "adapter requires conversion subfield slots_pushed < 0"; } break; case _adapter_collect_args: if (slots_pushed > 1) { err = "adapter requires conversion subfield slots_pushed <= 1"; } break; case _adapter_spread_args: if (slots_pushed < -1) { err = "adapter requires conversion subfield slots_pushed >= -1"; } break; default: if (stack_move != 0) { err = "adapter has spurious stack_move conversion subfield"; } break; } if (err == NULL && stack_move != slots_pushed * stack_move_unit()) { err = "stack_move conversion subfield must be multiple of stack_move_unit"; } } if (err == NULL) { // Make sure this adapter does not push too deeply. int slots_pushed = stack_move / stack_move_unit(); int this_vmslots = java_lang_invoke_MethodHandle::vmslots(mh()); int target_vmslots = java_lang_invoke_MethodHandle::vmslots(target()); if (slots_pushed != (target_vmslots - this_vmslots)) { err = "stack_move inconsistent with previous and current MethodType vmslots"; } else if (slots_pushed > 0) { // verify stack_move against MethodHandlePushLimit int target_pushes = decode_MethodHandle_stack_pushes(target()); // do not blow the stack; use a Java-based adapter if this limit is exceeded if (slots_pushed + target_pushes > MethodHandlePushLimit) { err = "adapter pushes too many parameters"; } } // While we're at it, check that the stack motion decoder works: DEBUG_ONLY(int target_pushes = decode_MethodHandle_stack_pushes(target())); DEBUG_ONLY(int this_pushes = decode_MethodHandle_stack_pushes(mh())); assert(this_pushes == slots_pushed + target_pushes, "AMH stack motion must be correct"); } if (err == NULL && vminfo != 0) { switch (ek) { case _adapter_swap_args: case _adapter_rot_args: break; // OK default: err = "vminfo subfield is reserved to the JVM"; } } // Do additional ad hoc checks. if (err == NULL) { switch (ek) { case _adapter_retype_only: err = check_method_type_passthrough(src_mtype(), dst_mtype(), false); break; case _adapter_retype_raw: err = check_method_type_passthrough(src_mtype(), dst_mtype(), true); break; case _adapter_check_cast: { // The actual value being checked must be a reference: err = check_argument_type_change(java_lang_invoke_MethodType::ptype(src_mtype(), argnum), object_java_mirror(), argnum); if (err != NULL) break; // The output of the cast must fit with the destination argument: Handle cast_class = argument; err = check_method_type_conversion(src_mtype(), argnum, cast_class(), dst_mtype()); } break; // %%% TO DO: continue in remaining cases to verify src/dst_mtype if VerifyMethodHandles } } if (err != NULL) { throw_InternalError_for_bad_conversion(conversion, err, THREAD); return; } } void MethodHandles::init_AdapterMethodHandle(Handle mh, Handle target, int argnum, TRAPS) { oop argument = java_lang_invoke_AdapterMethodHandle::argument(mh()); int argslot = java_lang_invoke_AdapterMethodHandle::vmargslot(mh()); jint conversion = java_lang_invoke_AdapterMethodHandle::conversion(mh()); jint conv_op = adapter_conversion_op(conversion); // adjust the adapter code to the internal EntryKind enumeration: EntryKind ek_orig = adapter_entry_kind(conv_op); EntryKind ek_opt = ek_orig; // may be optimized // Finalize the vmtarget field (Java initialized it to null). if (!java_lang_invoke_MethodHandle::is_instance(target())) { throw_InternalError_for_bad_conversion(conversion, "bad target", THREAD); return; } java_lang_invoke_AdapterMethodHandle::set_vmtarget(mh(), target()); if (VerifyMethodHandles) { verify_AdapterMethodHandle(mh, argnum, CHECK); } int stack_move = adapter_conversion_stack_move(conversion); BasicType src = adapter_conversion_src_type(conversion); BasicType dest = adapter_conversion_dest_type(conversion); int vminfo = adapter_conversion_vminfo(conversion); // should be zero const char* err = NULL; // Now it's time to finish the case analysis and pick a MethodHandleEntry. switch (ek_orig) { case _adapter_retype_only: case _adapter_retype_raw: case _adapter_check_cast: case _adapter_dup_args: case _adapter_drop_args: // these work fine via general case code break; case _adapter_prim_to_prim: { // Non-subword cases are {int,float,long,double} -> {int,float,long,double}. // And, the {float,double} -> {int,long} cases must be handled by Java. switch (type2size[src] *4+ type2size[dest]) { case 1 *4+ 1: assert(src == T_INT || is_subword_type(src), "source is not float"); // Subword-related cases are int -> {boolean,byte,char,short}. ek_opt = _adapter_opt_i2i; vminfo = adapter_prim_to_prim_subword_vminfo(dest); break; case 2 *4+ 1: if (src == T_LONG && (dest == T_INT || is_subword_type(dest))) { ek_opt = _adapter_opt_l2i; vminfo = adapter_prim_to_prim_subword_vminfo(dest); } else if (src == T_DOUBLE && dest == T_FLOAT) { ek_opt = _adapter_opt_d2f; } else { assert(false, ""); } break; case 1 *4+ 2: if (src == T_INT && dest == T_LONG) { ek_opt = _adapter_opt_i2l; } else if (src == T_FLOAT && dest == T_DOUBLE) { ek_opt = _adapter_opt_f2d; } else { assert(false, ""); } break; default: assert(false, ""); break; } } break; case _adapter_ref_to_prim: { switch (type2size[dest]) { case 1: ek_opt = _adapter_opt_unboxi; vminfo = adapter_unbox_subword_vminfo(dest); break; case 2: ek_opt = _adapter_opt_unboxl; break; default: assert(false, ""); break; } } break; case _adapter_prim_to_ref: goto throw_not_impl; // allocates, hence could block case _adapter_swap_args: case _adapter_rot_args: { int swap_slots = type2size[src]; int slot_limit = java_lang_invoke_AdapterMethodHandle::vmslots(mh()); int src_slot = argslot; int dest_slot = vminfo; int rotate = (ek_orig == _adapter_swap_args) ? 0 : (src_slot > dest_slot) ? 1 : -1; switch (swap_slots) { case 1: ek_opt = (!rotate ? _adapter_opt_swap_1 : rotate > 0 ? _adapter_opt_rot_1_up : _adapter_opt_rot_1_down); break; case 2: ek_opt = (!rotate ? _adapter_opt_swap_2 : rotate > 0 ? _adapter_opt_rot_2_up : _adapter_opt_rot_2_down); break; default: assert(false, ""); break; } } break; case _adapter_collect_args: goto throw_not_impl; // allocates, hence could block case _adapter_spread_args: { // vminfo will be the required length of the array int slots_pushed = stack_move / stack_move_unit(); int array_size = slots_pushed + 1; assert(array_size >= 0, ""); vminfo = array_size; switch (array_size) { case 0: ek_opt = _adapter_opt_spread_0; break; case 1: ek_opt = _adapter_opt_spread_1; break; default: ek_opt = _adapter_opt_spread_more; break; } if ((vminfo & CONV_VMINFO_MASK) != vminfo) goto throw_not_impl; // overflow } break; case _adapter_flyby: case _adapter_ricochet: goto throw_not_impl; // runs Java code, hence could block default: // should have failed much earlier; must be a missing case here assert(false, "incomplete switch"); // and fall through: throw_not_impl: // FIXME: these adapters are NYI err = "adapter not yet implemented in the JVM"; break; } if (err != NULL) { throw_InternalError_for_bad_conversion(conversion, err, THREAD); return; } // Rebuild the conversion value; maybe parts of it were changed. jint new_conversion = adapter_conversion(conv_op, src, dest, stack_move, vminfo); // Finalize the conversion field. (Note that it is final to Java code.) java_lang_invoke_AdapterMethodHandle::set_conversion(mh(), new_conversion); // Done! java_lang_invoke_MethodHandle::set_vmentry(mh(), entry(ek_opt)); // There should be enough memory barriers on exit from native methods // to ensure that the MH is fully initialized to all threads before // Java code can publish it in global data structures. } // // Here are the native methods on sun.invoke.MethodHandleImpl. // They are the private interface between this JVM and the HotSpot-specific // Java code that implements JSR 292 method handles. // // Note: We use a JVM_ENTRY macro to define each of these, for this is the way // that intrinsic (non-JNI) native methods are defined in HotSpot. // // direct method handles for invokestatic or invokespecial // void init(DirectMethodHandle self, MemberName ref, boolean doDispatch, Class caller); JVM_ENTRY(void, MHN_init_DMH(JNIEnv *env, jobject igcls, jobject mh_jh, jobject target_jh, jboolean do_dispatch, jobject caller_jh)) { ResourceMark rm; // for error messages // This is the guy we are initializing: if (mh_jh == NULL) { THROW(vmSymbols::java_lang_InternalError()); } Handle mh(THREAD, JNIHandles::resolve_non_null(mh_jh)); // Early returns out of this method leave the DMH in an unfinished state. assert(java_lang_invoke_MethodHandle::vmentry(mh()) == NULL, "must be safely null"); // which method are we really talking about? if (target_jh == NULL) { THROW(vmSymbols::java_lang_InternalError()); } oop target_oop = JNIHandles::resolve_non_null(target_jh); if (java_lang_invoke_MemberName::is_instance(target_oop) && java_lang_invoke_MemberName::vmindex(target_oop) == VM_INDEX_UNINITIALIZED) { Handle mname(THREAD, target_oop); MethodHandles::resolve_MemberName(mname, CHECK); target_oop = mname(); // in case of GC } int decode_flags = 0; klassOop receiver_limit = NULL; methodHandle m(THREAD, MethodHandles::decode_method(target_oop, receiver_limit, decode_flags)); if (m.is_null()) { THROW_MSG(vmSymbols::java_lang_InternalError(), "no such method"); } // The trusted Java code that calls this method should already have performed // access checks on behalf of the given caller. But, we can verify this. if (VerifyMethodHandles && caller_jh != NULL) { KlassHandle caller(THREAD, java_lang_Class::as_klassOop(JNIHandles::resolve_non_null(caller_jh))); // If this were a bytecode, the first access check would be against // the "reference class" mentioned in the CONSTANT_Methodref. // We don't know at this point which class that was, and if we // check against m.method_holder we might get the wrong answer. // So we just make sure to handle this check when the resolution // happens, when we call resolve_MemberName. // // (A public class can inherit public members from private supers, // and it would be wrong to check access against the private super // if the original symbolic reference was against the public class.) // // If there were a bytecode, the next step would be to lookup the method // in the reference class, then then check the method's access bits. // Emulate LinkResolver::check_method_accessability. klassOop resolved_klass = m->method_holder(); if (!Reflection::verify_field_access(caller->as_klassOop(), resolved_klass, resolved_klass, m->access_flags(), true)) { // %%% following cutout belongs in Reflection::verify_field_access? bool same_pm = Reflection::is_same_package_member(caller->as_klassOop(), resolved_klass, THREAD); if (!same_pm) { THROW_MSG(vmSymbols::java_lang_InternalError(), m->name_and_sig_as_C_string()); } } } MethodHandles::init_DirectMethodHandle(mh, m, (do_dispatch != JNI_FALSE), CHECK); } JVM_END // bound method handles JVM_ENTRY(void, MHN_init_BMH(JNIEnv *env, jobject igcls, jobject mh_jh, jobject target_jh, int argnum)) { ResourceMark rm; // for error messages // This is the guy we are initializing: if (mh_jh == NULL) { THROW(vmSymbols::java_lang_InternalError()); } Handle mh(THREAD, JNIHandles::resolve_non_null(mh_jh)); // Early returns out of this method leave the BMH in an unfinished state. assert(java_lang_invoke_MethodHandle::vmentry(mh()) == NULL, "must be safely null"); if (target_jh == NULL) { THROW(vmSymbols::java_lang_InternalError()); } Handle target(THREAD, JNIHandles::resolve_non_null(target_jh)); if (!java_lang_invoke_MethodHandle::is_instance(target())) { // Target object is a reflective method. (%%% Do we need this alternate path?) Untested("init_BMH of non-MH"); if (argnum != 0) { THROW(vmSymbols::java_lang_InternalError()); } int decode_flags = 0; klassOop receiver_limit_oop = NULL; methodHandle m(THREAD, MethodHandles::decode_method(target(), receiver_limit_oop, decode_flags)); KlassHandle receiver_limit(THREAD, receiver_limit_oop); MethodHandles::init_BoundMethodHandle_with_receiver(mh, m, receiver_limit, decode_flags, CHECK); return; } // Build a BMH on top of a DMH or another BMH: MethodHandles::init_BoundMethodHandle(mh, target, argnum, CHECK); } JVM_END // adapter method handles JVM_ENTRY(void, MHN_init_AMH(JNIEnv *env, jobject igcls, jobject mh_jh, jobject target_jh, int argnum)) { // This is the guy we are initializing: if (mh_jh == NULL || target_jh == NULL) { THROW(vmSymbols::java_lang_InternalError()); } Handle mh(THREAD, JNIHandles::resolve_non_null(mh_jh)); Handle target(THREAD, JNIHandles::resolve_non_null(target_jh)); // Early returns out of this method leave the AMH in an unfinished state. assert(java_lang_invoke_MethodHandle::vmentry(mh()) == NULL, "must be safely null"); MethodHandles::init_AdapterMethodHandle(mh, target, argnum, CHECK); } JVM_END // method type forms JVM_ENTRY(void, MHN_init_MT(JNIEnv *env, jobject igcls, jobject erased_jh)) { if (erased_jh == NULL) return; if (TraceMethodHandles) { tty->print("creating MethodType form "); if (WizardMode || Verbose) { // Warning: this calls Java code on the MH! // call Object.toString() Symbol* name = vmSymbols::toString_name(); Symbol* sig = vmSymbols::void_string_signature(); JavaCallArguments args(Handle(THREAD, JNIHandles::resolve_non_null(erased_jh))); JavaValue result(T_OBJECT); JavaCalls::call_virtual(&result, SystemDictionary::Object_klass(), name, sig, &args, CHECK); Handle str(THREAD, (oop)result.get_jobject()); java_lang_String::print(str, tty); } tty->cr(); } } JVM_END // debugging and reflection JVM_ENTRY(jobject, MHN_getTarget(JNIEnv *env, jobject igcls, jobject mh_jh, jint format)) { Handle mh(THREAD, JNIHandles::resolve(mh_jh)); if (!java_lang_invoke_MethodHandle::is_instance(mh())) { THROW_NULL(vmSymbols::java_lang_IllegalArgumentException()); } oop target = MethodHandles::encode_target(mh, format, CHECK_NULL); return JNIHandles::make_local(THREAD, target); } JVM_END JVM_ENTRY(jint, MHN_getConstant(JNIEnv *env, jobject igcls, jint which)) { switch (which) { case MethodHandles::GC_JVM_PUSH_LIMIT: guarantee(MethodHandlePushLimit >= 2 && MethodHandlePushLimit <= 0xFF, "MethodHandlePushLimit parameter must be in valid range"); return MethodHandlePushLimit; case MethodHandles::GC_JVM_STACK_MOVE_UNIT: // return number of words per slot, signed according to stack direction return MethodHandles::stack_move_unit(); case MethodHandles::GC_CONV_OP_IMPLEMENTED_MASK: return MethodHandles::adapter_conversion_ops_supported_mask(); } return 0; } JVM_END #ifndef PRODUCT #define EACH_NAMED_CON(template) \ template(MethodHandles,GC_JVM_PUSH_LIMIT) \ template(MethodHandles,GC_JVM_STACK_MOVE_UNIT) \ template(MethodHandles,ETF_HANDLE_OR_METHOD_NAME) \ template(MethodHandles,ETF_DIRECT_HANDLE) \ template(MethodHandles,ETF_METHOD_NAME) \ template(MethodHandles,ETF_REFLECT_METHOD) \ template(java_lang_invoke_MemberName,MN_IS_METHOD) \ template(java_lang_invoke_MemberName,MN_IS_CONSTRUCTOR) \ template(java_lang_invoke_MemberName,MN_IS_FIELD) \ template(java_lang_invoke_MemberName,MN_IS_TYPE) \ template(java_lang_invoke_MemberName,MN_SEARCH_SUPERCLASSES) \ template(java_lang_invoke_MemberName,MN_SEARCH_INTERFACES) \ template(java_lang_invoke_MemberName,VM_INDEX_UNINITIALIZED) \ template(java_lang_invoke_AdapterMethodHandle,OP_RETYPE_ONLY) \ template(java_lang_invoke_AdapterMethodHandle,OP_RETYPE_RAW) \ template(java_lang_invoke_AdapterMethodHandle,OP_CHECK_CAST) \ template(java_lang_invoke_AdapterMethodHandle,OP_PRIM_TO_PRIM) \ template(java_lang_invoke_AdapterMethodHandle,OP_REF_TO_PRIM) \ template(java_lang_invoke_AdapterMethodHandle,OP_PRIM_TO_REF) \ template(java_lang_invoke_AdapterMethodHandle,OP_SWAP_ARGS) \ template(java_lang_invoke_AdapterMethodHandle,OP_ROT_ARGS) \ template(java_lang_invoke_AdapterMethodHandle,OP_DUP_ARGS) \ template(java_lang_invoke_AdapterMethodHandle,OP_DROP_ARGS) \ template(java_lang_invoke_AdapterMethodHandle,OP_COLLECT_ARGS) \ template(java_lang_invoke_AdapterMethodHandle,OP_SPREAD_ARGS) \ template(java_lang_invoke_AdapterMethodHandle,OP_FLYBY) \ template(java_lang_invoke_AdapterMethodHandle,OP_RICOCHET) \ template(java_lang_invoke_AdapterMethodHandle,CONV_OP_LIMIT) \ template(java_lang_invoke_AdapterMethodHandle,CONV_OP_MASK) \ template(java_lang_invoke_AdapterMethodHandle,CONV_VMINFO_MASK) \ template(java_lang_invoke_AdapterMethodHandle,CONV_VMINFO_SHIFT) \ template(java_lang_invoke_AdapterMethodHandle,CONV_OP_SHIFT) \ template(java_lang_invoke_AdapterMethodHandle,CONV_DEST_TYPE_SHIFT) \ template(java_lang_invoke_AdapterMethodHandle,CONV_SRC_TYPE_SHIFT) \ template(java_lang_invoke_AdapterMethodHandle,CONV_STACK_MOVE_SHIFT) \ template(java_lang_invoke_AdapterMethodHandle,CONV_STACK_MOVE_MASK) \ /*end*/ #define ONE_PLUS(scope,value) 1+ static const int con_value_count = EACH_NAMED_CON(ONE_PLUS) 0; #define VALUE_COMMA(scope,value) scope::value, static const int con_values[con_value_count+1] = { EACH_NAMED_CON(VALUE_COMMA) 0 }; #define STRING_NULL(scope,value) #value "\0" static const char con_names[] = { EACH_NAMED_CON(STRING_NULL) }; #undef ONE_PLUS #undef VALUE_COMMA #undef STRING_NULL #undef EACH_NAMED_CON #endif JVM_ENTRY(jint, MHN_getNamedCon(JNIEnv *env, jobject igcls, jint which, jobjectArray box_jh)) { #ifndef PRODUCT if (which >= 0 && which < con_value_count) { int con = con_values[which]; objArrayOop box = (objArrayOop) JNIHandles::resolve(box_jh); if (box != NULL && box->klass() == Universe::objectArrayKlassObj() && box->length() > 0) { const char* str = &con_names[0]; for (int i = 0; i < which; i++) str += strlen(str) + 1; // skip name and null oop name = java_lang_String::create_oop_from_str(str, CHECK_0); box->obj_at_put(0, name); } return con; } #endif return 0; } JVM_END // void init(MemberName self, AccessibleObject ref) JVM_ENTRY(void, MHN_init_Mem(JNIEnv *env, jobject igcls, jobject mname_jh, jobject target_jh)) { if (mname_jh == NULL || target_jh == NULL) { THROW(vmSymbols::java_lang_InternalError()); } Handle mname(THREAD, JNIHandles::resolve_non_null(mname_jh)); oop target_oop = JNIHandles::resolve_non_null(target_jh); MethodHandles::init_MemberName(mname(), target_oop); } JVM_END // void expand(MemberName self) JVM_ENTRY(void, MHN_expand_Mem(JNIEnv *env, jobject igcls, jobject mname_jh)) { if (mname_jh == NULL) { THROW(vmSymbols::java_lang_InternalError()); } Handle mname(THREAD, JNIHandles::resolve_non_null(mname_jh)); MethodHandles::expand_MemberName(mname, 0, CHECK); } JVM_END // void resolve(MemberName self, Class caller) JVM_ENTRY(void, MHN_resolve_Mem(JNIEnv *env, jobject igcls, jobject mname_jh, jclass caller_jh)) { if (mname_jh == NULL) { THROW(vmSymbols::java_lang_InternalError()); } Handle mname(THREAD, JNIHandles::resolve_non_null(mname_jh)); // The trusted Java code that calls this method should already have performed // access checks on behalf of the given caller. But, we can verify this. if (VerifyMethodHandles && caller_jh != NULL) { klassOop reference_klass = java_lang_Class::as_klassOop(java_lang_invoke_MemberName::clazz(mname())); if (reference_klass != NULL) { // Emulate LinkResolver::check_klass_accessability. klassOop caller = java_lang_Class::as_klassOop(JNIHandles::resolve_non_null(caller_jh)); if (!Reflection::verify_class_access(caller, reference_klass, true)) { THROW_MSG(vmSymbols::java_lang_InternalError(), Klass::cast(reference_klass)->external_name()); } } } MethodHandles::resolve_MemberName(mname, CHECK); } JVM_END // static native int getMembers(Class defc, String matchName, String matchSig, // int matchFlags, Class caller, int skip, MemberName[] results); JVM_ENTRY(jint, MHN_getMembers(JNIEnv *env, jobject igcls, jclass clazz_jh, jstring name_jh, jstring sig_jh, int mflags, jclass caller_jh, jint skip, jobjectArray results_jh)) { if (clazz_jh == NULL || results_jh == NULL) return -1; klassOop k_oop = java_lang_Class::as_klassOop(JNIHandles::resolve_non_null(clazz_jh)); objArrayOop results = (objArrayOop) JNIHandles::resolve(results_jh); if (results == NULL || !results->is_objArray()) return -1; TempNewSymbol name = NULL; TempNewSymbol sig = NULL; if (name_jh != NULL) { name = java_lang_String::as_symbol_or_null(JNIHandles::resolve_non_null(name_jh)); if (name == NULL) return 0; // a match is not possible } if (sig_jh != NULL) { sig = java_lang_String::as_symbol_or_null(JNIHandles::resolve_non_null(sig_jh)); if (sig == NULL) return 0; // a match is not possible } klassOop caller = NULL; if (caller_jh != NULL) { oop caller_oop = JNIHandles::resolve_non_null(caller_jh); if (!java_lang_Class::is_instance(caller_oop)) return -1; caller = java_lang_Class::as_klassOop(caller_oop); } if (name != NULL && sig != NULL && results != NULL) { // try a direct resolve // %%% TO DO } int res = MethodHandles::find_MemberNames(k_oop, name, sig, mflags, caller, skip, results); // TO DO: expand at least some of the MemberNames, to avoid massive callbacks return res; } JVM_END /// JVM_RegisterMethodHandleMethods #define LANG "Ljava/lang/" #define JLINV "Ljava/lang/invoke/" #define OBJ LANG"Object;" #define CLS LANG"Class;" #define STRG LANG"String;" #define MT JLINV"MethodType;" #define MH JLINV"MethodHandle;" #define MEM JLINV"MemberName;" #define AMH JLINV"AdapterMethodHandle;" #define BMH JLINV"BoundMethodHandle;" #define DMH JLINV"DirectMethodHandle;" #define CC (char*) /*cast a literal from (const char*)*/ #define FN_PTR(f) CAST_FROM_FN_PTR(void*, &f) // These are the native methods on sun.invoke.MethodHandleNatives. static JNINativeMethod methods[] = { // void init(MemberName self, AccessibleObject ref) {CC"init", CC"("AMH""MH"I)V", FN_PTR(MHN_init_AMH)}, {CC"init", CC"("BMH""OBJ"I)V", FN_PTR(MHN_init_BMH)}, {CC"init", CC"("DMH""OBJ"Z"CLS")V", FN_PTR(MHN_init_DMH)}, {CC"init", CC"("MT")V", FN_PTR(MHN_init_MT)}, {CC"init", CC"("MEM""OBJ")V", FN_PTR(MHN_init_Mem)}, {CC"expand", CC"("MEM")V", FN_PTR(MHN_expand_Mem)}, {CC"resolve", CC"("MEM""CLS")V", FN_PTR(MHN_resolve_Mem)}, {CC"getTarget", CC"("MH"I)"OBJ, FN_PTR(MHN_getTarget)}, {CC"getConstant", CC"(I)I", FN_PTR(MHN_getConstant)}, // static native int getNamedCon(int which, Object[] name) {CC"getNamedCon", CC"(I["OBJ")I", FN_PTR(MHN_getNamedCon)}, // static native int getMembers(Class defc, String matchName, String matchSig, // int matchFlags, Class caller, int skip, MemberName[] results); {CC"getMembers", CC"("CLS""STRG""STRG"I"CLS"I["MEM")I", FN_PTR(MHN_getMembers)} }; // This one function is exported, used by NativeLookup. JVM_ENTRY(void, JVM_RegisterMethodHandleMethods(JNIEnv *env, jclass MHN_class)) { assert(MethodHandles::spot_check_entry_names(), "entry enum is OK"); if (!EnableInvokeDynamic) { warning("JSR 292 is disabled in this JVM. Use -XX:+UnlockDiagnosticVMOptions -XX:+EnableInvokeDynamic to enable."); return; // bind nothing } bool enable_MH = true; { ThreadToNativeFromVM ttnfv(thread); int status = env->RegisterNatives(MHN_class, methods, sizeof(methods)/sizeof(JNINativeMethod)); if (env->ExceptionOccurred()) { MethodHandles::set_enabled(false); warning("JSR 292 method handle code is mismatched to this JVM. Disabling support."); enable_MH = false; env->ExceptionClear(); } } if (enable_MH) { KlassHandle MHN_klass = SystemDictionaryHandles::MethodHandleNatives_klass(); if (MHN_klass.not_null()) { TempNewSymbol raiseException_name = SymbolTable::new_symbol("raiseException", CHECK); TempNewSymbol raiseException_sig = SymbolTable::new_symbol("(ILjava/lang/Object;Ljava/lang/Object;)V", CHECK); methodOop raiseException_method = instanceKlass::cast(MHN_klass->as_klassOop()) ->find_method(raiseException_name, raiseException_sig); if (raiseException_method != NULL && raiseException_method->is_static()) { MethodHandles::set_raise_exception_method(raiseException_method); } else { warning("JSR 292 method handle code is mismatched to this JVM. Disabling support."); enable_MH = false; } } else { enable_MH = false; } } if (enable_MH) { MethodHandles::generate_adapters(); MethodHandles::set_enabled(true); } } JVM_END