/* * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_OOPS_CONSTANTPOOLOOP_HPP #define SHARE_VM_OOPS_CONSTANTPOOLOOP_HPP #include "oops/arrayOop.hpp" #include "oops/cpCacheOop.hpp" #include "oops/symbol.hpp" #include "oops/typeArrayOop.hpp" #include "utilities/constantTag.hpp" #ifdef TARGET_ARCH_x86 # include "bytes_x86.hpp" #endif #ifdef TARGET_ARCH_sparc # include "bytes_sparc.hpp" #endif #ifdef TARGET_ARCH_zero # include "bytes_zero.hpp" #endif #ifdef TARGET_ARCH_arm # include "bytes_arm.hpp" #endif #ifdef TARGET_ARCH_ppc # include "bytes_ppc.hpp" #endif // A constantPool is an array containing class constants as described in the // class file. // // Most of the constant pool entries are written during class parsing, which // is safe. For klass and string types, the constant pool entry is // modified when the entry is resolved. If a klass or string constant pool // entry is read without a lock, only the resolved state guarantees that // the entry in the constant pool is a klass or String object and // not a Symbol*. class SymbolHashMap; class CPSlot VALUE_OBJ_CLASS_SPEC { intptr_t _ptr; public: CPSlot(intptr_t ptr): _ptr(ptr) {} CPSlot(void* ptr): _ptr((intptr_t)ptr) {} CPSlot(oop ptr): _ptr((intptr_t)ptr) {} CPSlot(Symbol* ptr): _ptr((intptr_t)ptr | 1) {} intptr_t value() { return _ptr; } bool is_oop() { return (_ptr & 1) == 0; } bool is_metadata() { return (_ptr & 1) == 1; } oop get_oop() { assert(is_oop(), "bad call"); return oop(_ptr); } Symbol* get_symbol() { assert(is_metadata(), "bad call"); return (Symbol*)(_ptr & ~1); } }; class constantPoolOopDesc : public oopDesc { friend class VMStructs; friend class BytecodeInterpreter; // Directly extracts an oop in the pool for fast instanceof/checkcast private: typeArrayOop _tags; // the tag array describing the constant pool's contents constantPoolCacheOop _cache; // the cache holding interpreter runtime information klassOop _pool_holder; // the corresponding class typeArrayOop _operands; // for variable-sized (InvokeDynamic) nodes, usually empty int _flags; // a few header bits to describe contents for GC int _length; // number of elements in the array volatile bool _is_conc_safe; // if true, safe for concurrent // GC processing // only set to non-zero if constant pool is merged by RedefineClasses int _orig_length; void set_tags(typeArrayOop tags) { oop_store_without_check((oop*)&_tags, tags); } void tag_at_put(int which, jbyte t) { tags()->byte_at_put(which, t); } void release_tag_at_put(int which, jbyte t) { tags()->release_byte_at_put(which, t); } void set_operands(typeArrayOop operands) { oop_store_without_check((oop*)&_operands, operands); } enum FlagBit { FB_has_invokedynamic = 1, FB_has_pseudo_string = 2 }; int flags() const { return _flags; } void set_flags(int f) { _flags = f; } bool flag_at(FlagBit fb) const { return (_flags & (1 << (int)fb)) != 0; } void set_flag_at(FlagBit fb); // no clear_flag_at function; they only increase private: intptr_t* base() const { return (intptr_t*) (((char*) this) + sizeof(constantPoolOopDesc)); } oop* tags_addr() { return (oop*)&_tags; } oop* cache_addr() { return (oop*)&_cache; } oop* operands_addr() { return (oop*)&_operands; } CPSlot slot_at(int which) { assert(is_within_bounds(which), "index out of bounds"); // There's a transitional value of zero when converting from // Symbol->0->Klass for G1 when resolving classes and strings. // wait for the value to be non-zero (this is temporary) volatile intptr_t adr = (intptr_t)OrderAccess::load_ptr_acquire(obj_at_addr_raw(which)); if (adr == 0 && which != 0) { constantTag t = tag_at(which); if (t.is_unresolved_klass() || t.is_klass() || t.is_unresolved_string() || t.is_string()) { while ((adr = (intptr_t)OrderAccess::load_ptr_acquire(obj_at_addr_raw(which))) == 0); } } return CPSlot(adr); } void slot_at_put(int which, CPSlot s) const { assert(is_within_bounds(which), "index out of bounds"); *(intptr_t*)&base()[which] = s.value(); } oop* obj_at_addr_raw(int which) const { assert(is_within_bounds(which), "index out of bounds"); return (oop*) &base()[which]; } void obj_at_put_without_check(int which, oop o) { assert(is_within_bounds(which), "index out of bounds"); oop_store_without_check((volatile oop *)obj_at_addr_raw(which), o); } void obj_at_put(int which, oop o) const { assert(is_within_bounds(which), "index out of bounds"); oop_store((volatile oop*)obj_at_addr_raw(which), o); } jint* int_at_addr(int which) const { assert(is_within_bounds(which), "index out of bounds"); return (jint*) &base()[which]; } jlong* long_at_addr(int which) const { assert(is_within_bounds(which), "index out of bounds"); return (jlong*) &base()[which]; } jfloat* float_at_addr(int which) const { assert(is_within_bounds(which), "index out of bounds"); return (jfloat*) &base()[which]; } jdouble* double_at_addr(int which) const { assert(is_within_bounds(which), "index out of bounds"); return (jdouble*) &base()[which]; } public: typeArrayOop tags() const { return _tags; } typeArrayOop operands() const { return _operands; } bool has_pseudo_string() const { return flag_at(FB_has_pseudo_string); } bool has_invokedynamic() const { return flag_at(FB_has_invokedynamic); } void set_pseudo_string() { set_flag_at(FB_has_pseudo_string); } void set_invokedynamic() { set_flag_at(FB_has_invokedynamic); } // Klass holding pool klassOop pool_holder() const { return _pool_holder; } void set_pool_holder(klassOop k) { oop_store_without_check((oop*)&_pool_holder, (oop) k); } oop* pool_holder_addr() { return (oop*)&_pool_holder; } // Interpreter runtime support constantPoolCacheOop cache() const { return _cache; } void set_cache(constantPoolCacheOop cache){ oop_store((oop*)&_cache, cache); } // Assembly code support static int tags_offset_in_bytes() { return offset_of(constantPoolOopDesc, _tags); } static int cache_offset_in_bytes() { return offset_of(constantPoolOopDesc, _cache); } static int operands_offset_in_bytes() { return offset_of(constantPoolOopDesc, _operands); } static int pool_holder_offset_in_bytes() { return offset_of(constantPoolOopDesc, _pool_holder); } // Storing constants void klass_at_put(int which, klassOop k) { // Overwrite the old index with a GC friendly value so // that if G1 looks during the transition during oop_store it won't // assert the symbol is not an oop. *obj_at_addr_raw(which) = NULL; assert(k != NULL, "resolved class shouldn't be null"); obj_at_put_without_check(which, k); // The interpreter assumes when the tag is stored, the klass is resolved // and the klassOop is a klass rather than a Symbol*, so we need // hardware store ordering here. release_tag_at_put(which, JVM_CONSTANT_Class); if (UseConcMarkSweepGC) { // In case the earlier card-mark was consumed by a concurrent // marking thread before the tag was updated, redirty the card. obj_at_put_without_check(which, k); } } // For temporary use while constructing constant pool void klass_index_at_put(int which, int name_index) { tag_at_put(which, JVM_CONSTANT_ClassIndex); *int_at_addr(which) = name_index; } // Temporary until actual use void unresolved_klass_at_put(int which, Symbol* s) { release_tag_at_put(which, JVM_CONSTANT_UnresolvedClass); slot_at_put(which, s); } void method_handle_index_at_put(int which, int ref_kind, int ref_index) { tag_at_put(which, JVM_CONSTANT_MethodHandle); *int_at_addr(which) = ((jint) ref_index<<16) | ref_kind; } void method_type_index_at_put(int which, int ref_index) { tag_at_put(which, JVM_CONSTANT_MethodType); *int_at_addr(which) = ref_index; } void invoke_dynamic_at_put(int which, int bootstrap_specifier_index, int name_and_type_index) { tag_at_put(which, JVM_CONSTANT_InvokeDynamic); *int_at_addr(which) = ((jint) name_and_type_index<<16) | bootstrap_specifier_index; } // Temporary until actual use void unresolved_string_at_put(int which, Symbol* s) { release_tag_at_put(which, JVM_CONSTANT_UnresolvedString); slot_at_put(which, s); } void int_at_put(int which, jint i) { tag_at_put(which, JVM_CONSTANT_Integer); *int_at_addr(which) = i; } void long_at_put(int which, jlong l) { tag_at_put(which, JVM_CONSTANT_Long); // *long_at_addr(which) = l; Bytes::put_native_u8((address)long_at_addr(which), *((u8*) &l)); } void float_at_put(int which, jfloat f) { tag_at_put(which, JVM_CONSTANT_Float); *float_at_addr(which) = f; } void double_at_put(int which, jdouble d) { tag_at_put(which, JVM_CONSTANT_Double); // *double_at_addr(which) = d; // u8 temp = *(u8*) &d; Bytes::put_native_u8((address) double_at_addr(which), *((u8*) &d)); } Symbol** symbol_at_addr(int which) const { assert(is_within_bounds(which), "index out of bounds"); return (Symbol**) &base()[which]; } void symbol_at_put(int which, Symbol* s) { assert(s->refcount() != 0, "should have nonzero refcount"); tag_at_put(which, JVM_CONSTANT_Utf8); slot_at_put(which, s); } void string_at_put(int which, oop str) { // Overwrite the old index with a GC friendly value so // that if G1 looks during the transition during oop_store it won't // assert the symbol is not an oop. *obj_at_addr_raw(which) = NULL; assert(str != NULL, "resolved string shouldn't be null"); obj_at_put(which, str); release_tag_at_put(which, JVM_CONSTANT_String); if (UseConcMarkSweepGC) { // In case the earlier card-mark was consumed by a concurrent // marking thread before the tag was updated, redirty the card. obj_at_put_without_check(which, str); } } void object_at_put(int which, oop str) { obj_at_put(which, str); release_tag_at_put(which, JVM_CONSTANT_Object); if (UseConcMarkSweepGC) { // In case the earlier card-mark was consumed by a concurrent // marking thread before the tag was updated, redirty the card. obj_at_put_without_check(which, str); } } // For temporary use while constructing constant pool void string_index_at_put(int which, int string_index) { tag_at_put(which, JVM_CONSTANT_StringIndex); *int_at_addr(which) = string_index; } void field_at_put(int which, int class_index, int name_and_type_index) { tag_at_put(which, JVM_CONSTANT_Fieldref); *int_at_addr(which) = ((jint) name_and_type_index<<16) | class_index; } void method_at_put(int which, int class_index, int name_and_type_index) { tag_at_put(which, JVM_CONSTANT_Methodref); *int_at_addr(which) = ((jint) name_and_type_index<<16) | class_index; } void interface_method_at_put(int which, int class_index, int name_and_type_index) { tag_at_put(which, JVM_CONSTANT_InterfaceMethodref); *int_at_addr(which) = ((jint) name_and_type_index<<16) | class_index; // Not so nice } void name_and_type_at_put(int which, int name_index, int signature_index) { tag_at_put(which, JVM_CONSTANT_NameAndType); *int_at_addr(which) = ((jint) signature_index<<16) | name_index; // Not so nice } // Tag query constantTag tag_at(int which) const { return (constantTag)tags()->byte_at_acquire(which); } // Whether the entry is a pointer that must be GC'd. bool is_pointer_entry(int which) { constantTag tag = tag_at(which); return tag.is_klass() || tag.is_string() || tag.is_object(); } // Whether the entry points to an object for ldc (resolved or not) bool is_object_entry(int which) { constantTag tag = tag_at(which); return is_pointer_entry(which) || tag.is_unresolved_klass() || tag.is_unresolved_string() || tag.is_symbol(); } // Fetching constants klassOop klass_at(int which, TRAPS) { constantPoolHandle h_this(THREAD, this); return klass_at_impl(h_this, which, CHECK_NULL); } Symbol* klass_name_at(int which); // Returns the name, w/o resolving. klassOop resolved_klass_at(int which) { // Used by Compiler guarantee(tag_at(which).is_klass(), "Corrupted constant pool"); // Must do an acquire here in case another thread resolved the klass // behind our back, lest we later load stale values thru the oop. return klassOop(CPSlot(OrderAccess::load_ptr_acquire(obj_at_addr_raw(which))).get_oop()); } // This method should only be used with a cpool lock or during parsing or gc Symbol* unresolved_klass_at(int which) { // Temporary until actual use Symbol* s = CPSlot(OrderAccess::load_ptr_acquire(obj_at_addr_raw(which))).get_symbol(); // check that the klass is still unresolved. assert(tag_at(which).is_unresolved_klass(), "Corrupted constant pool"); return s; } // RedefineClasses() API support: Symbol* klass_at_noresolve(int which) { return klass_name_at(which); } jint int_at(int which) { assert(tag_at(which).is_int(), "Corrupted constant pool"); return *int_at_addr(which); } jlong long_at(int which) { assert(tag_at(which).is_long(), "Corrupted constant pool"); // return *long_at_addr(which); u8 tmp = Bytes::get_native_u8((address)&base()[which]); return *((jlong*)&tmp); } jfloat float_at(int which) { assert(tag_at(which).is_float(), "Corrupted constant pool"); return *float_at_addr(which); } jdouble double_at(int which) { assert(tag_at(which).is_double(), "Corrupted constant pool"); u8 tmp = Bytes::get_native_u8((address)&base()[which]); return *((jdouble*)&tmp); } Symbol* symbol_at(int which) { assert(tag_at(which).is_utf8(), "Corrupted constant pool"); return slot_at(which).get_symbol(); } oop string_at(int which, TRAPS) { constantPoolHandle h_this(THREAD, this); return string_at_impl(h_this, which, CHECK_NULL); } oop object_at(int which) { assert(tag_at(which).is_object(), "Corrupted constant pool"); return slot_at(which).get_oop(); } // A "pseudo-string" is an non-string oop that has found is way into // a String entry. // Under EnableInvokeDynamic this can happen if the user patches a live // object into a CONSTANT_String entry of an anonymous class. // Method oops internally created for method handles may also // use pseudo-strings to link themselves to related metaobjects. bool is_pseudo_string_at(int which); oop pseudo_string_at(int which) { assert(tag_at(which).is_string(), "Corrupted constant pool"); return slot_at(which).get_oop(); } void pseudo_string_at_put(int which, oop x) { assert(EnableInvokeDynamic, ""); set_pseudo_string(); // mark header assert(tag_at(which).is_string() || tag_at(which).is_unresolved_string(), "Corrupted constant pool"); string_at_put(which, x); // this works just fine } // only called when we are sure a string entry is already resolved (via an // earlier string_at call. oop resolved_string_at(int which) { assert(tag_at(which).is_string(), "Corrupted constant pool"); // Must do an acquire here in case another thread resolved the klass // behind our back, lest we later load stale values thru the oop. return CPSlot(OrderAccess::load_ptr_acquire(obj_at_addr_raw(which))).get_oop(); } // This method should only be used with a cpool lock or during parsing or gc Symbol* unresolved_string_at(int which) { // Temporary until actual use Symbol* s = CPSlot(OrderAccess::load_ptr_acquire(obj_at_addr_raw(which))).get_symbol(); // check that the string is still unresolved. assert(tag_at(which).is_unresolved_string(), "Corrupted constant pool"); return s; } // Returns an UTF8 for a CONSTANT_String entry at a given index. // UTF8 char* representation was chosen to avoid conversion of // java_lang_Strings at resolved entries into Symbol*s // or vice versa. // Caller is responsible for checking for pseudo-strings. char* string_at_noresolve(int which); jint name_and_type_at(int which) { assert(tag_at(which).is_name_and_type(), "Corrupted constant pool"); return *int_at_addr(which); } int method_handle_ref_kind_at(int which) { assert(tag_at(which).is_method_handle(), "Corrupted constant pool"); return extract_low_short_from_int(*int_at_addr(which)); // mask out unwanted ref_index bits } int method_handle_index_at(int which) { assert(tag_at(which).is_method_handle(), "Corrupted constant pool"); return extract_high_short_from_int(*int_at_addr(which)); // shift out unwanted ref_kind bits } int method_type_index_at(int which) { assert(tag_at(which).is_method_type(), "Corrupted constant pool"); return *int_at_addr(which); } // Derived queries: Symbol* method_handle_name_ref_at(int which) { int member = method_handle_index_at(which); return impl_name_ref_at(member, true); } Symbol* method_handle_signature_ref_at(int which) { int member = method_handle_index_at(which); return impl_signature_ref_at(member, true); } int method_handle_klass_index_at(int which) { int member = method_handle_index_at(which); return impl_klass_ref_index_at(member, true); } Symbol* method_type_signature_at(int which) { int sym = method_type_index_at(which); return symbol_at(sym); } int invoke_dynamic_name_and_type_ref_index_at(int which) { assert(tag_at(which).is_invoke_dynamic(), "Corrupted constant pool"); return extract_high_short_from_int(*int_at_addr(which)); } int invoke_dynamic_bootstrap_specifier_index(int which) { assert(tag_at(which).value() == JVM_CONSTANT_InvokeDynamic, "Corrupted constant pool"); return extract_low_short_from_int(*int_at_addr(which)); } int invoke_dynamic_operand_base(int which) { int bootstrap_specifier_index = invoke_dynamic_bootstrap_specifier_index(which); return operand_offset_at(operands(), bootstrap_specifier_index); } // The first part of the operands array consists of an index into the second part. // Extract a 32-bit index value from the first part. static int operand_offset_at(typeArrayOop operands, int bootstrap_specifier_index) { int n = (bootstrap_specifier_index * 2); assert(n >= 0 && n+2 <= operands->length(), "oob"); // The first 32-bit index points to the beginning of the second part // of the operands array. Make sure this index is in the first part. DEBUG_ONLY(int second_part = build_int_from_shorts(operands->short_at(0), operands->short_at(1))); assert(second_part == 0 || n+2 <= second_part, "oob (2)"); int offset = build_int_from_shorts(operands->short_at(n+0), operands->short_at(n+1)); // The offset itself must point into the second part of the array. assert(offset == 0 || offset >= second_part && offset <= operands->length(), "oob (3)"); return offset; } static void operand_offset_at_put(typeArrayOop operands, int bootstrap_specifier_index, int offset) { int n = bootstrap_specifier_index * 2; assert(n >= 0 && n+2 <= operands->length(), "oob"); operands->short_at_put(n+0, extract_low_short_from_int(offset)); operands->short_at_put(n+1, extract_high_short_from_int(offset)); } static int operand_array_length(typeArrayOop operands) { if (operands == NULL || operands->length() == 0) return 0; int second_part = operand_offset_at(operands, 0); return (second_part / 2); } #ifdef ASSERT // operand tuples fit together exactly, end to end static int operand_limit_at(typeArrayOop operands, int bootstrap_specifier_index) { int nextidx = bootstrap_specifier_index + 1; if (nextidx == operand_array_length(operands)) return operands->length(); else return operand_offset_at(operands, nextidx); } int invoke_dynamic_operand_limit(int which) { int bootstrap_specifier_index = invoke_dynamic_bootstrap_specifier_index(which); return operand_limit_at(operands(), bootstrap_specifier_index); } #endif //ASSERT // layout of InvokeDynamic bootstrap method specifier (in second part of operands array): enum { _indy_bsm_offset = 0, // CONSTANT_MethodHandle bsm _indy_argc_offset = 1, // u2 argc _indy_argv_offset = 2 // u2 argv[argc] }; int invoke_dynamic_bootstrap_method_ref_index_at(int which) { assert(tag_at(which).is_invoke_dynamic(), "Corrupted constant pool"); int op_base = invoke_dynamic_operand_base(which); return operands()->short_at(op_base + _indy_bsm_offset); } int invoke_dynamic_argument_count_at(int which) { assert(tag_at(which).is_invoke_dynamic(), "Corrupted constant pool"); int op_base = invoke_dynamic_operand_base(which); int argc = operands()->short_at(op_base + _indy_argc_offset); DEBUG_ONLY(int end_offset = op_base + _indy_argv_offset + argc; int next_offset = invoke_dynamic_operand_limit(which)); assert(end_offset == next_offset, "matched ending"); return argc; } int invoke_dynamic_argument_index_at(int which, int j) { int op_base = invoke_dynamic_operand_base(which); DEBUG_ONLY(int argc = operands()->short_at(op_base + _indy_argc_offset)); assert((uint)j < (uint)argc, "oob"); return operands()->short_at(op_base + _indy_argv_offset + j); } // The following methods (name/signature/klass_ref_at, klass_ref_at_noresolve, // name_and_type_ref_index_at) all expect to be passed indices obtained // directly from the bytecode. // If the indices are meant to refer to fields or methods, they are // actually rewritten constant pool cache indices. // The routine remap_instruction_operand_from_cache manages the adjustment // of these values back to constant pool indices. // There are also "uncached" versions which do not adjust the operand index; see below. // FIXME: Consider renaming these with a prefix "cached_" to make the distinction clear. // In a few cases (the verifier) there are uses before a cpcache has been built, // which are handled by a dynamic check in remap_instruction_operand_from_cache. // FIXME: Remove the dynamic check, and adjust all callers to specify the correct mode. // Lookup for entries consisting of (klass_index, name_and_type index) klassOop klass_ref_at(int which, TRAPS); Symbol* klass_ref_at_noresolve(int which); Symbol* name_ref_at(int which) { return impl_name_ref_at(which, false); } Symbol* signature_ref_at(int which) { return impl_signature_ref_at(which, false); } int klass_ref_index_at(int which) { return impl_klass_ref_index_at(which, false); } int name_and_type_ref_index_at(int which) { return impl_name_and_type_ref_index_at(which, false); } // Lookup for entries consisting of (name_index, signature_index) int name_ref_index_at(int which_nt); // == low-order jshort of name_and_type_at(which_nt) int signature_ref_index_at(int which_nt); // == high-order jshort of name_and_type_at(which_nt) BasicType basic_type_for_signature_at(int which); // Resolve string constants (to prevent allocation during compilation) void resolve_string_constants(TRAPS) { constantPoolHandle h_this(THREAD, this); resolve_string_constants_impl(h_this, CHECK); } private: enum { _no_index_sentinel = -1, _possible_index_sentinel = -2 }; public: // Resolve late bound constants. oop resolve_constant_at(int index, TRAPS) { constantPoolHandle h_this(THREAD, this); return resolve_constant_at_impl(h_this, index, _no_index_sentinel, THREAD); } oop resolve_cached_constant_at(int cache_index, TRAPS) { constantPoolHandle h_this(THREAD, this); return resolve_constant_at_impl(h_this, _no_index_sentinel, cache_index, THREAD); } oop resolve_possibly_cached_constant_at(int pool_index, TRAPS) { constantPoolHandle h_this(THREAD, this); return resolve_constant_at_impl(h_this, pool_index, _possible_index_sentinel, THREAD); } // Klass name matches name at offset bool klass_name_at_matches(instanceKlassHandle k, int which); // Sizing int length() const { return _length; } void set_length(int length) { _length = length; } // Tells whether index is within bounds. bool is_within_bounds(int index) const { return 0 <= index && index < length(); } static int header_size() { return sizeof(constantPoolOopDesc)/HeapWordSize; } static int object_size(int length) { return align_object_size(header_size() + length); } int object_size() { return object_size(length()); } bool is_conc_safe() { return _is_conc_safe; } void set_is_conc_safe(bool v) { _is_conc_safe = v; } friend class constantPoolKlass; friend class ClassFileParser; friend class SystemDictionary; // Used by compiler to prevent classloading. static klassOop klass_at_if_loaded (constantPoolHandle this_oop, int which); static klassOop klass_ref_at_if_loaded (constantPoolHandle this_oop, int which); // Same as above - but does LinkResolving. static klassOop klass_ref_at_if_loaded_check(constantPoolHandle this_oop, int which, TRAPS); // Routines currently used for annotations (only called by jvm.cpp) but which might be used in the // future by other Java code. These take constant pool indices rather than // constant pool cache indices as do the peer methods above. Symbol* uncached_klass_ref_at_noresolve(int which); Symbol* uncached_name_ref_at(int which) { return impl_name_ref_at(which, true); } Symbol* uncached_signature_ref_at(int which) { return impl_signature_ref_at(which, true); } int uncached_klass_ref_index_at(int which) { return impl_klass_ref_index_at(which, true); } int uncached_name_and_type_ref_index_at(int which) { return impl_name_and_type_ref_index_at(which, true); } // Sharing int pre_resolve_shared_klasses(TRAPS); void shared_symbols_iterate(SymbolClosure* closure0); void shared_tags_iterate(OopClosure* closure0); void shared_strings_iterate(OopClosure* closure0); // Debugging const char* printable_name_at(int which) PRODUCT_RETURN0; #ifdef ASSERT enum { CPCACHE_INDEX_TAG = 0x10000 }; // helps keep CP cache indices distinct from CP indices #else enum { CPCACHE_INDEX_TAG = 0 }; // in product mode, this zero value is a no-op #endif //ASSERT private: Symbol* impl_name_ref_at(int which, bool uncached); Symbol* impl_signature_ref_at(int which, bool uncached); int impl_klass_ref_index_at(int which, bool uncached); int impl_name_and_type_ref_index_at(int which, bool uncached); int remap_instruction_operand_from_cache(int operand); // operand must be biased by CPCACHE_INDEX_TAG // Used while constructing constant pool (only by ClassFileParser) jint klass_index_at(int which) { assert(tag_at(which).is_klass_index(), "Corrupted constant pool"); return *int_at_addr(which); } jint string_index_at(int which) { assert(tag_at(which).is_string_index(), "Corrupted constant pool"); return *int_at_addr(which); } // Performs the LinkResolver checks static void verify_constant_pool_resolve(constantPoolHandle this_oop, KlassHandle klass, TRAPS); // Implementation of methods that needs an exposed 'this' pointer, in order to // handle GC while executing the method static klassOop klass_at_impl(constantPoolHandle this_oop, int which, TRAPS); static oop string_at_impl(constantPoolHandle this_oop, int which, TRAPS); // Resolve string constants (to prevent allocation during compilation) static void resolve_string_constants_impl(constantPoolHandle this_oop, TRAPS); static oop resolve_constant_at_impl(constantPoolHandle this_oop, int index, int cache_index, TRAPS); public: // Merging constantPoolOop support: bool compare_entry_to(int index1, constantPoolHandle cp2, int index2, TRAPS); void copy_cp_to(int start_i, int end_i, constantPoolHandle to_cp, int to_i, TRAPS) { constantPoolHandle h_this(THREAD, this); copy_cp_to_impl(h_this, start_i, end_i, to_cp, to_i, THREAD); } static void copy_cp_to_impl(constantPoolHandle from_cp, int start_i, int end_i, constantPoolHandle to_cp, int to_i, TRAPS); static void copy_entry_to(constantPoolHandle from_cp, int from_i, constantPoolHandle to_cp, int to_i, TRAPS); int find_matching_entry(int pattern_i, constantPoolHandle search_cp, TRAPS); int orig_length() const { return _orig_length; } void set_orig_length(int orig_length) { _orig_length = orig_length; } // Decrease ref counts of symbols that are in the constant pool // when the holder class is unloaded void unreference_symbols(); // JVMTI accesss - GetConstantPool, RetransformClasses, ... friend class JvmtiConstantPoolReconstituter; private: jint cpool_entry_size(jint idx); jint hash_entries_to(SymbolHashMap *symmap, SymbolHashMap *classmap); // Copy cpool bytes into byte array. // Returns: // int > 0, count of the raw cpool bytes that have been copied // 0, OutOfMemory error // -1, Internal error int copy_cpool_bytes(int cpool_size, SymbolHashMap* tbl, unsigned char *bytes); }; class SymbolHashMapEntry : public CHeapObj { private: unsigned int _hash; // 32-bit hash for item SymbolHashMapEntry* _next; // Next element in the linked list for this bucket Symbol* _symbol; // 1-st part of the mapping: symbol => value u2 _value; // 2-nd part of the mapping: symbol => value public: unsigned int hash() const { return _hash; } void set_hash(unsigned int hash) { _hash = hash; } SymbolHashMapEntry* next() const { return _next; } void set_next(SymbolHashMapEntry* next) { _next = next; } Symbol* symbol() const { return _symbol; } void set_symbol(Symbol* sym) { _symbol = sym; } u2 value() const { return _value; } void set_value(u2 value) { _value = value; } SymbolHashMapEntry(unsigned int hash, Symbol* symbol, u2 value) : _hash(hash), _symbol(symbol), _value(value), _next(NULL) {} }; // End SymbolHashMapEntry class class SymbolHashMapBucket : public CHeapObj { private: SymbolHashMapEntry* _entry; public: SymbolHashMapEntry* entry() const { return _entry; } void set_entry(SymbolHashMapEntry* entry) { _entry = entry; } void clear() { _entry = NULL; } }; // End SymbolHashMapBucket class class SymbolHashMap: public CHeapObj { private: // Default number of entries in the table enum SymbolHashMap_Constants { _Def_HashMap_Size = 256 }; int _table_size; SymbolHashMapBucket* _buckets; void initialize_table(int table_size) { _table_size = table_size; _buckets = NEW_C_HEAP_ARRAY(SymbolHashMapBucket, table_size); for (int index = 0; index < table_size; index++) { _buckets[index].clear(); } } public: int table_size() const { return _table_size; } SymbolHashMap() { initialize_table(_Def_HashMap_Size); } SymbolHashMap(int table_size) { initialize_table(table_size); } // hash P(31) from Kernighan & Ritchie static unsigned int compute_hash(const char* str, int len) { unsigned int hash = 0; while (len-- > 0) { hash = 31*hash + (unsigned) *str; str++; } return hash; } SymbolHashMapEntry* bucket(int i) { return _buckets[i].entry(); } void add_entry(Symbol* sym, u2 value); SymbolHashMapEntry* find_entry(Symbol* sym); u2 symbol_to_value(Symbol* sym) { SymbolHashMapEntry *entry = find_entry(sym); return (entry == NULL) ? 0 : entry->value(); } ~SymbolHashMap() { SymbolHashMapEntry* next; for (int i = 0; i < _table_size; i++) { for (SymbolHashMapEntry* cur = bucket(i); cur != NULL; cur = next) { next = cur->next(); delete(cur); } } delete _buckets; } }; // End SymbolHashMap class #endif // SHARE_VM_OOPS_CONSTANTPOOLOOP_HPP