/* * Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "c1/c1_Compilation.hpp" #include "c1/c1_LIRAssembler.hpp" #include "c1/c1_MacroAssembler.hpp" #include "c1/c1_Runtime1.hpp" #include "c1/c1_ValueStack.hpp" #include "ci/ciArrayKlass.hpp" #include "ci/ciInstance.hpp" #include "gc_interface/collectedHeap.hpp" #include "memory/barrierSet.hpp" #include "memory/cardTableModRefBS.hpp" #include "nativeInst_sparc.hpp" #include "oops/objArrayKlass.hpp" #include "runtime/sharedRuntime.hpp" #define __ _masm-> //------------------------------------------------------------ bool LIR_Assembler::is_small_constant(LIR_Opr opr) { if (opr->is_constant()) { LIR_Const* constant = opr->as_constant_ptr(); switch (constant->type()) { case T_INT: { jint value = constant->as_jint(); return Assembler::is_simm13(value); } default: return false; } } return false; } bool LIR_Assembler::is_single_instruction(LIR_Op* op) { switch (op->code()) { case lir_null_check: return true; case lir_add: case lir_ushr: case lir_shr: case lir_shl: // integer shifts and adds are always one instruction return op->result_opr()->is_single_cpu(); case lir_move: { LIR_Op1* op1 = op->as_Op1(); LIR_Opr src = op1->in_opr(); LIR_Opr dst = op1->result_opr(); if (src == dst) { NEEDS_CLEANUP; // this works around a problem where moves with the same src and dst // end up in the delay slot and then the assembler swallows the mov // since it has no effect and then it complains because the delay slot // is empty. returning false stops the optimizer from putting this in // the delay slot return false; } // don't put moves involving oops into the delay slot since the VerifyOops code // will make it much larger than a single instruction. if (VerifyOops) { return false; } if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none || ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) { return false; } if (UseCompressedOops) { if (dst->is_address() && !dst->is_stack() && (dst->type() == T_OBJECT || dst->type() == T_ARRAY)) return false; if (src->is_address() && !src->is_stack() && (src->type() == T_OBJECT || src->type() == T_ARRAY)) return false; } if (dst->is_register()) { if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) { return !PatchALot; } else if (src->is_single_stack()) { return true; } } if (src->is_register()) { if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) { return !PatchALot; } else if (dst->is_single_stack()) { return true; } } if (dst->is_register() && ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) || (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) { return true; } return false; } default: return false; } ShouldNotReachHere(); } LIR_Opr LIR_Assembler::receiverOpr() { return FrameMap::O0_oop_opr; } LIR_Opr LIR_Assembler::incomingReceiverOpr() { return FrameMap::I0_oop_opr; } LIR_Opr LIR_Assembler::osrBufferPointer() { return FrameMap::I0_opr; } int LIR_Assembler::initial_frame_size_in_bytes() { return in_bytes(frame_map()->framesize_in_bytes()); } // inline cache check: the inline cached class is in G5_inline_cache_reg(G5); // we fetch the class of the receiver (O0) and compare it with the cached class. // If they do not match we jump to slow case. int LIR_Assembler::check_icache() { int offset = __ offset(); __ inline_cache_check(O0, G5_inline_cache_reg); return offset; } void LIR_Assembler::osr_entry() { // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp): // // 1. Create a new compiled activation. // 2. Initialize local variables in the compiled activation. The expression stack must be empty // at the osr_bci; it is not initialized. // 3. Jump to the continuation address in compiled code to resume execution. // OSR entry point offsets()->set_value(CodeOffsets::OSR_Entry, code_offset()); BlockBegin* osr_entry = compilation()->hir()->osr_entry(); ValueStack* entry_state = osr_entry->end()->state(); int number_of_locks = entry_state->locks_size(); // Create a frame for the compiled activation. __ build_frame(initial_frame_size_in_bytes()); // OSR buffer is // // locals[nlocals-1..0] // monitors[number_of_locks-1..0] // // locals is a direct copy of the interpreter frame so in the osr buffer // so first slot in the local array is the last local from the interpreter // and last slot is local[0] (receiver) from the interpreter // // Similarly with locks. The first lock slot in the osr buffer is the nth lock // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock // in the interpreter frame (the method lock if a sync method) // Initialize monitors in the compiled activation. // I0: pointer to osr buffer // // All other registers are dead at this point and the locals will be // copied into place by code emitted in the IR. Register OSR_buf = osrBufferPointer()->as_register(); { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below"); int monitor_offset = BytesPerWord * method()->max_locals() + (2 * BytesPerWord) * (number_of_locks - 1); // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in // the OSR buffer using 2 word entries: first the lock and then // the oop. for (int i = 0; i < number_of_locks; i++) { int slot_offset = monitor_offset - ((i * 2) * BytesPerWord); #ifdef ASSERT // verify the interpreter's monitor has a non-null object { Label L; __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7); __ cmp(G0, O7); __ br(Assembler::notEqual, false, Assembler::pt, L); __ delayed()->nop(); __ stop("locked object is NULL"); __ bind(L); } #endif // ASSERT // Copy the lock field into the compiled activation. __ ld_ptr(OSR_buf, slot_offset + 0, O7); __ st_ptr(O7, frame_map()->address_for_monitor_lock(i)); __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7); __ st_ptr(O7, frame_map()->address_for_monitor_object(i)); } } } // Optimized Library calls // This is the fast version of java.lang.String.compare; it has not // OSR-entry and therefore, we generate a slow version for OSR's void LIR_Assembler::emit_string_compare(LIR_Opr left, LIR_Opr right, LIR_Opr dst, CodeEmitInfo* info) { Register str0 = left->as_register(); Register str1 = right->as_register(); Label Ldone; Register result = dst->as_register(); { // Get a pointer to the first character of string0 in tmp0 and get string0.count in str0 // Get a pointer to the first character of string1 in tmp1 and get string1.count in str1 // Also, get string0.count-string1.count in o7 and get the condition code set // Note: some instructions have been hoisted for better instruction scheduling Register tmp0 = L0; Register tmp1 = L1; Register tmp2 = L2; int value_offset = java_lang_String:: value_offset_in_bytes(); // char array int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position int count_offset = java_lang_String:: count_offset_in_bytes(); __ load_heap_oop(str0, value_offset, tmp0); __ ld(str0, offset_offset, tmp2); __ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0); __ ld(str0, count_offset, str0); __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2); // str1 may be null add_debug_info_for_null_check_here(info); __ load_heap_oop(str1, value_offset, tmp1); __ add(tmp0, tmp2, tmp0); __ ld(str1, offset_offset, tmp2); __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1); __ ld(str1, count_offset, str1); __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2); __ subcc(str0, str1, O7); __ add(tmp1, tmp2, tmp1); } { // Compute the minimum of the string lengths, scale it and store it in limit Register count0 = I0; Register count1 = I1; Register limit = L3; Label Lskip; __ sll(count0, exact_log2(sizeof(jchar)), limit); // string0 is shorter __ br(Assembler::greater, true, Assembler::pt, Lskip); __ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit); // string1 is shorter __ bind(Lskip); // If either string is empty (or both of them) the result is the difference in lengths __ cmp(limit, 0); __ br(Assembler::equal, true, Assembler::pn, Ldone); __ delayed()->mov(O7, result); // result is difference in lengths } { // Neither string is empty Label Lloop; Register base0 = L0; Register base1 = L1; Register chr0 = I0; Register chr1 = I1; Register limit = L3; // Shift base0 and base1 to the end of the arrays, negate limit __ add(base0, limit, base0); __ add(base1, limit, base1); __ neg(limit); // limit = -min{string0.count, strin1.count} __ lduh(base0, limit, chr0); __ bind(Lloop); __ lduh(base1, limit, chr1); __ subcc(chr0, chr1, chr0); __ br(Assembler::notZero, false, Assembler::pn, Ldone); assert(chr0 == result, "result must be pre-placed"); __ delayed()->inccc(limit, sizeof(jchar)); __ br(Assembler::notZero, true, Assembler::pt, Lloop); __ delayed()->lduh(base0, limit, chr0); } // If strings are equal up to min length, return the length difference. __ mov(O7, result); // Otherwise, return the difference between the first mismatched chars. __ bind(Ldone); } // -------------------------------------------------------------------------------------------- void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) { if (!GenerateSynchronizationCode) return; Register obj_reg = obj_opr->as_register(); Register lock_reg = lock_opr->as_register(); Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no); Register reg = mon_addr.base(); int offset = mon_addr.disp(); // compute pointer to BasicLock if (mon_addr.is_simm13()) { __ add(reg, offset, lock_reg); } else { __ set(offset, lock_reg); __ add(reg, lock_reg, lock_reg); } // unlock object MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no); // _slow_case_stubs->append(slow_case); // temporary fix: must be created after exceptionhandler, therefore as call stub _slow_case_stubs->append(slow_case); if (UseFastLocking) { // try inlined fast unlocking first, revert to slow locking if it fails // note: lock_reg points to the displaced header since the displaced header offset is 0! assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry()); } else { // always do slow unlocking // note: the slow unlocking code could be inlined here, however if we use // slow unlocking, speed doesn't matter anyway and this solution is // simpler and requires less duplicated code - additionally, the // slow unlocking code is the same in either case which simplifies // debugging __ br(Assembler::always, false, Assembler::pt, *slow_case->entry()); __ delayed()->nop(); } // done __ bind(*slow_case->continuation()); } int LIR_Assembler::emit_exception_handler() { // if the last instruction is a call (typically to do a throw which // is coming at the end after block reordering) the return address // must still point into the code area in order to avoid assertion // failures when searching for the corresponding bci => add a nop // (was bug 5/14/1999 - gri) __ nop(); // generate code for exception handler ciMethod* method = compilation()->method(); address handler_base = __ start_a_stub(exception_handler_size); if (handler_base == NULL) { // not enough space left for the handler bailout("exception handler overflow"); return -1; } int offset = code_offset(); __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type); __ delayed()->nop(); debug_only(__ stop("should have gone to the caller");) assert(code_offset() - offset <= exception_handler_size, "overflow"); __ end_a_stub(); return offset; } // Emit the code to remove the frame from the stack in the exception // unwind path. int LIR_Assembler::emit_unwind_handler() { #ifndef PRODUCT if (CommentedAssembly) { _masm->block_comment("Unwind handler"); } #endif int offset = code_offset(); // Fetch the exception from TLS and clear out exception related thread state __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), O0); __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset())); __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset())); __ bind(_unwind_handler_entry); __ verify_not_null_oop(O0); if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { __ mov(O0, I0); // Preserve the exception } // Preform needed unlocking MonitorExitStub* stub = NULL; if (method()->is_synchronized()) { monitor_address(0, FrameMap::I1_opr); stub = new MonitorExitStub(FrameMap::I1_opr, true, 0); __ unlock_object(I3, I2, I1, *stub->entry()); __ bind(*stub->continuation()); } if (compilation()->env()->dtrace_method_probes()) { __ mov(G2_thread, O0); jobject2reg(method()->constant_encoding(), O1); __ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), relocInfo::runtime_call_type); __ delayed()->nop(); } if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { __ mov(I0, O0); // Restore the exception } // dispatch to the unwind logic __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type); __ delayed()->nop(); // Emit the slow path assembly if (stub != NULL) { stub->emit_code(this); } return offset; } int LIR_Assembler::emit_deopt_handler() { // if the last instruction is a call (typically to do a throw which // is coming at the end after block reordering) the return address // must still point into the code area in order to avoid assertion // failures when searching for the corresponding bci => add a nop // (was bug 5/14/1999 - gri) __ nop(); // generate code for deopt handler ciMethod* method = compilation()->method(); address handler_base = __ start_a_stub(deopt_handler_size); if (handler_base == NULL) { // not enough space left for the handler bailout("deopt handler overflow"); return -1; } int offset = code_offset(); AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack()); __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp __ delayed()->nop(); assert(code_offset() - offset <= deopt_handler_size, "overflow"); debug_only(__ stop("should have gone to the caller");) __ end_a_stub(); return offset; } void LIR_Assembler::jobject2reg(jobject o, Register reg) { if (o == NULL) { __ set(NULL_WORD, reg); } else { int oop_index = __ oop_recorder()->find_index(o); RelocationHolder rspec = oop_Relocation::spec(oop_index); __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created } } void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) { // Allocate a new index in oop table to hold the oop once it's been patched int oop_index = __ oop_recorder()->allocate_index((jobject)NULL); PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, oop_index); AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index)); assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc"); // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the // NULL will be dynamically patched later and the patched value may be large. We must // therefore generate the sethi/add as a placeholders __ patchable_set(addrlit, reg); patching_epilog(patch, lir_patch_normal, reg, info); } void LIR_Assembler::emit_op3(LIR_Op3* op) { Register Rdividend = op->in_opr1()->as_register(); Register Rdivisor = noreg; Register Rscratch = op->in_opr3()->as_register(); Register Rresult = op->result_opr()->as_register(); int divisor = -1; if (op->in_opr2()->is_register()) { Rdivisor = op->in_opr2()->as_register(); } else { divisor = op->in_opr2()->as_constant_ptr()->as_jint(); assert(Assembler::is_simm13(divisor), "can only handle simm13"); } assert(Rdividend != Rscratch, ""); assert(Rdivisor != Rscratch, ""); assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv"); if (Rdivisor == noreg && is_power_of_2(divisor)) { // convert division by a power of two into some shifts and logical operations if (op->code() == lir_idiv) { if (divisor == 2) { __ srl(Rdividend, 31, Rscratch); } else { __ sra(Rdividend, 31, Rscratch); __ and3(Rscratch, divisor - 1, Rscratch); } __ add(Rdividend, Rscratch, Rscratch); __ sra(Rscratch, log2_intptr(divisor), Rresult); return; } else { if (divisor == 2) { __ srl(Rdividend, 31, Rscratch); } else { __ sra(Rdividend, 31, Rscratch); __ and3(Rscratch, divisor - 1,Rscratch); } __ add(Rdividend, Rscratch, Rscratch); __ andn(Rscratch, divisor - 1,Rscratch); __ sub(Rdividend, Rscratch, Rresult); return; } } __ sra(Rdividend, 31, Rscratch); __ wry(Rscratch); if (!VM_Version::v9_instructions_work()) { // v9 doesn't require these nops __ nop(); __ nop(); __ nop(); __ nop(); } add_debug_info_for_div0_here(op->info()); if (Rdivisor != noreg) { __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch)); } else { assert(Assembler::is_simm13(divisor), "can only handle simm13"); __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch)); } Label skip; __ br(Assembler::overflowSet, true, Assembler::pn, skip); __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch)); __ bind(skip); if (op->code() == lir_irem) { if (Rdivisor != noreg) { __ smul(Rscratch, Rdivisor, Rscratch); } else { __ smul(Rscratch, divisor, Rscratch); } __ sub(Rdividend, Rscratch, Rresult); } } void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) { #ifdef ASSERT assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label"); if (op->block() != NULL) _branch_target_blocks.append(op->block()); if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock()); #endif assert(op->info() == NULL, "shouldn't have CodeEmitInfo"); if (op->cond() == lir_cond_always) { __ br(Assembler::always, false, Assembler::pt, *(op->label())); } else if (op->code() == lir_cond_float_branch) { assert(op->ublock() != NULL, "must have unordered successor"); bool is_unordered = (op->ublock() == op->block()); Assembler::Condition acond; switch (op->cond()) { case lir_cond_equal: acond = Assembler::f_equal; break; case lir_cond_notEqual: acond = Assembler::f_notEqual; break; case lir_cond_less: acond = (is_unordered ? Assembler::f_unorderedOrLess : Assembler::f_less); break; case lir_cond_greater: acond = (is_unordered ? Assembler::f_unorderedOrGreater : Assembler::f_greater); break; case lir_cond_lessEqual: acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual : Assembler::f_lessOrEqual); break; case lir_cond_greaterEqual: acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break; default : ShouldNotReachHere(); }; if (!VM_Version::v9_instructions_work()) { __ nop(); } __ fb( acond, false, Assembler::pn, *(op->label())); } else { assert (op->code() == lir_branch, "just checking"); Assembler::Condition acond; switch (op->cond()) { case lir_cond_equal: acond = Assembler::equal; break; case lir_cond_notEqual: acond = Assembler::notEqual; break; case lir_cond_less: acond = Assembler::less; break; case lir_cond_lessEqual: acond = Assembler::lessEqual; break; case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break; case lir_cond_greater: acond = Assembler::greater; break; case lir_cond_aboveEqual: acond = Assembler::greaterEqualUnsigned; break; case lir_cond_belowEqual: acond = Assembler::lessEqualUnsigned; break; default: ShouldNotReachHere(); }; // sparc has different condition codes for testing 32-bit // vs. 64-bit values. We could always test xcc is we could // guarantee that 32-bit loads always sign extended but that isn't // true and since sign extension isn't free, it would impose a // slight cost. #ifdef _LP64 if (op->type() == T_INT) { __ br(acond, false, Assembler::pn, *(op->label())); } else #endif __ brx(acond, false, Assembler::pn, *(op->label())); } // The peephole pass fills the delay slot } void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) { Bytecodes::Code code = op->bytecode(); LIR_Opr dst = op->result_opr(); switch(code) { case Bytecodes::_i2l: { Register rlo = dst->as_register_lo(); Register rhi = dst->as_register_hi(); Register rval = op->in_opr()->as_register(); #ifdef _LP64 __ sra(rval, 0, rlo); #else __ mov(rval, rlo); __ sra(rval, BitsPerInt-1, rhi); #endif break; } case Bytecodes::_i2d: case Bytecodes::_i2f: { bool is_double = (code == Bytecodes::_i2d); FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg(); FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S; FloatRegister rsrc = op->in_opr()->as_float_reg(); if (rsrc != rdst) { __ fmov(FloatRegisterImpl::S, rsrc, rdst); } __ fitof(w, rdst, rdst); break; } case Bytecodes::_f2i:{ FloatRegister rsrc = op->in_opr()->as_float_reg(); Address addr = frame_map()->address_for_slot(dst->single_stack_ix()); Label L; // result must be 0 if value is NaN; test by comparing value to itself __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc); if (!VM_Version::v9_instructions_work()) { __ nop(); } __ fb(Assembler::f_unordered, true, Assembler::pn, L); __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN __ ftoi(FloatRegisterImpl::S, rsrc, rsrc); // move integer result from float register to int register __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp()); __ bind (L); break; } case Bytecodes::_l2i: { Register rlo = op->in_opr()->as_register_lo(); Register rhi = op->in_opr()->as_register_hi(); Register rdst = dst->as_register(); #ifdef _LP64 __ sra(rlo, 0, rdst); #else __ mov(rlo, rdst); #endif break; } case Bytecodes::_d2f: case Bytecodes::_f2d: { bool is_double = (code == Bytecodes::_f2d); assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check"); LIR_Opr val = op->in_opr(); FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg(); FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg(); FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D; FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S; __ ftof(vw, dw, rval, rdst); break; } case Bytecodes::_i2s: case Bytecodes::_i2b: { Register rval = op->in_opr()->as_register(); Register rdst = dst->as_register(); int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort); __ sll (rval, shift, rdst); __ sra (rdst, shift, rdst); break; } case Bytecodes::_i2c: { Register rval = op->in_opr()->as_register(); Register rdst = dst->as_register(); int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte; __ sll (rval, shift, rdst); __ srl (rdst, shift, rdst); break; } default: ShouldNotReachHere(); } } void LIR_Assembler::align_call(LIR_Code) { // do nothing since all instructions are word aligned on sparc } void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) { __ call(op->addr(), rtype); // The peephole pass fills the delay slot, add_call_info is done in // LIR_Assembler::emit_delay. } void LIR_Assembler::ic_call(LIR_OpJavaCall* op) { RelocationHolder rspec = virtual_call_Relocation::spec(pc()); __ set_oop((jobject)Universe::non_oop_word(), G5_inline_cache_reg); __ relocate(rspec); __ call(op->addr(), relocInfo::none); // The peephole pass fills the delay slot, add_call_info is done in // LIR_Assembler::emit_delay. } void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) { add_debug_info_for_null_check_here(op->info()); __ load_klass(O0, G3_scratch); if (__ is_simm13(op->vtable_offset())) { __ ld_ptr(G3_scratch, op->vtable_offset(), G5_method); } else { // This will generate 2 instructions __ set(op->vtable_offset(), G5_method); // ld_ptr, set_hi, set __ ld_ptr(G3_scratch, G5_method, G5_method); } __ ld_ptr(G5_method, methodOopDesc::from_compiled_offset(), G3_scratch); __ callr(G3_scratch, G0); // the peephole pass fills the delay slot } int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool wide, bool unaligned) { int store_offset; if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) { assert(!unaligned, "can't handle this"); // for offsets larger than a simm13 we setup the offset in O7 __ set(offset, O7); store_offset = store(from_reg, base, O7, type, wide); } else { if (type == T_ARRAY || type == T_OBJECT) { __ verify_oop(from_reg->as_register()); } store_offset = code_offset(); switch (type) { case T_BOOLEAN: // fall through case T_BYTE : __ stb(from_reg->as_register(), base, offset); break; case T_CHAR : __ sth(from_reg->as_register(), base, offset); break; case T_SHORT : __ sth(from_reg->as_register(), base, offset); break; case T_INT : __ stw(from_reg->as_register(), base, offset); break; case T_LONG : #ifdef _LP64 if (unaligned || PatchALot) { __ srax(from_reg->as_register_lo(), 32, O7); __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes); __ stw(O7, base, offset + hi_word_offset_in_bytes); } else { __ stx(from_reg->as_register_lo(), base, offset); } #else assert(Assembler::is_simm13(offset + 4), "must be"); __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes); __ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes); #endif break; case T_ADDRESS: __ st_ptr(from_reg->as_register(), base, offset); break; case T_ARRAY : // fall through case T_OBJECT: { if (UseCompressedOops && !wide) { __ encode_heap_oop(from_reg->as_register(), G3_scratch); store_offset = code_offset(); __ stw(G3_scratch, base, offset); } else { __ st_ptr(from_reg->as_register(), base, offset); } break; } case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break; case T_DOUBLE: { FloatRegister reg = from_reg->as_double_reg(); // split unaligned stores if (unaligned || PatchALot) { assert(Assembler::is_simm13(offset + 4), "must be"); __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4); __ stf(FloatRegisterImpl::S, reg, base, offset); } else { __ stf(FloatRegisterImpl::D, reg, base, offset); } break; } default : ShouldNotReachHere(); } } return store_offset; } int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type, bool wide) { if (type == T_ARRAY || type == T_OBJECT) { __ verify_oop(from_reg->as_register()); } int store_offset = code_offset(); switch (type) { case T_BOOLEAN: // fall through case T_BYTE : __ stb(from_reg->as_register(), base, disp); break; case T_CHAR : __ sth(from_reg->as_register(), base, disp); break; case T_SHORT : __ sth(from_reg->as_register(), base, disp); break; case T_INT : __ stw(from_reg->as_register(), base, disp); break; case T_LONG : #ifdef _LP64 __ stx(from_reg->as_register_lo(), base, disp); #else assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match"); __ std(from_reg->as_register_hi(), base, disp); #endif break; case T_ADDRESS: __ st_ptr(from_reg->as_register(), base, disp); break; case T_ARRAY : // fall through case T_OBJECT: { if (UseCompressedOops && !wide) { __ encode_heap_oop(from_reg->as_register(), G3_scratch); store_offset = code_offset(); __ stw(G3_scratch, base, disp); } else { __ st_ptr(from_reg->as_register(), base, disp); } break; } case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break; case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break; default : ShouldNotReachHere(); } return store_offset; } int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool wide, bool unaligned) { int load_offset; if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) { assert(base != O7, "destroying register"); assert(!unaligned, "can't handle this"); // for offsets larger than a simm13 we setup the offset in O7 __ set(offset, O7); load_offset = load(base, O7, to_reg, type, wide); } else { load_offset = code_offset(); switch(type) { case T_BOOLEAN: // fall through case T_BYTE : __ ldsb(base, offset, to_reg->as_register()); break; case T_CHAR : __ lduh(base, offset, to_reg->as_register()); break; case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break; case T_INT : __ ld(base, offset, to_reg->as_register()); break; case T_LONG : if (!unaligned) { #ifdef _LP64 __ ldx(base, offset, to_reg->as_register_lo()); #else assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(), "must be sequential"); __ ldd(base, offset, to_reg->as_register_hi()); #endif } else { #ifdef _LP64 assert(base != to_reg->as_register_lo(), "can't handle this"); assert(O7 != to_reg->as_register_lo(), "can't handle this"); __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo()); __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo()); __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo()); #else if (base == to_reg->as_register_lo()) { __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi()); __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo()); } else { __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo()); __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi()); } #endif } break; case T_ADDRESS: __ ld_ptr(base, offset, to_reg->as_register()); break; case T_ARRAY : // fall through case T_OBJECT: { if (UseCompressedOops && !wide) { __ lduw(base, offset, to_reg->as_register()); __ decode_heap_oop(to_reg->as_register()); } else { __ ld_ptr(base, offset, to_reg->as_register()); } break; } case T_FLOAT: __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break; case T_DOUBLE: { FloatRegister reg = to_reg->as_double_reg(); // split unaligned loads if (unaligned || PatchALot) { __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor()); __ ldf(FloatRegisterImpl::S, base, offset, reg); } else { __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg()); } break; } default : ShouldNotReachHere(); } if (type == T_ARRAY || type == T_OBJECT) { __ verify_oop(to_reg->as_register()); } } return load_offset; } int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type, bool wide) { int load_offset = code_offset(); switch(type) { case T_BOOLEAN: // fall through case T_BYTE : __ ldsb(base, disp, to_reg->as_register()); break; case T_CHAR : __ lduh(base, disp, to_reg->as_register()); break; case T_SHORT : __ ldsh(base, disp, to_reg->as_register()); break; case T_INT : __ ld(base, disp, to_reg->as_register()); break; case T_ADDRESS: __ ld_ptr(base, disp, to_reg->as_register()); break; case T_ARRAY : // fall through case T_OBJECT: { if (UseCompressedOops && !wide) { __ lduw(base, disp, to_reg->as_register()); __ decode_heap_oop(to_reg->as_register()); } else { __ ld_ptr(base, disp, to_reg->as_register()); } break; } case T_FLOAT: __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break; case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break; case T_LONG : #ifdef _LP64 __ ldx(base, disp, to_reg->as_register_lo()); #else assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(), "must be sequential"); __ ldd(base, disp, to_reg->as_register_hi()); #endif break; default : ShouldNotReachHere(); } if (type == T_ARRAY || type == T_OBJECT) { __ verify_oop(to_reg->as_register()); } return load_offset; } void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) { LIR_Const* c = src->as_constant_ptr(); switch (c->type()) { case T_INT: case T_FLOAT: { Register src_reg = O7; int value = c->as_jint_bits(); if (value == 0) { src_reg = G0; } else { __ set(value, O7); } Address addr = frame_map()->address_for_slot(dest->single_stack_ix()); __ stw(src_reg, addr.base(), addr.disp()); break; } case T_ADDRESS: { Register src_reg = O7; int value = c->as_jint_bits(); if (value == 0) { src_reg = G0; } else { __ set(value, O7); } Address addr = frame_map()->address_for_slot(dest->single_stack_ix()); __ st_ptr(src_reg, addr.base(), addr.disp()); break; } case T_OBJECT: { Register src_reg = O7; jobject2reg(c->as_jobject(), src_reg); Address addr = frame_map()->address_for_slot(dest->single_stack_ix()); __ st_ptr(src_reg, addr.base(), addr.disp()); break; } case T_LONG: case T_DOUBLE: { Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix()); Register tmp = O7; int value_lo = c->as_jint_lo_bits(); if (value_lo == 0) { tmp = G0; } else { __ set(value_lo, O7); } __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes); int value_hi = c->as_jint_hi_bits(); if (value_hi == 0) { tmp = G0; } else { __ set(value_hi, O7); } __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes); break; } default: Unimplemented(); } } void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) { LIR_Const* c = src->as_constant_ptr(); LIR_Address* addr = dest->as_address_ptr(); Register base = addr->base()->as_pointer_register(); int offset = -1; switch (c->type()) { case T_INT: case T_FLOAT: case T_ADDRESS: { LIR_Opr tmp = FrameMap::O7_opr; int value = c->as_jint_bits(); if (value == 0) { tmp = FrameMap::G0_opr; } else if (Assembler::is_simm13(value)) { __ set(value, O7); } if (addr->index()->is_valid()) { assert(addr->disp() == 0, "must be zero"); offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide); } else { assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses"); offset = store(tmp, base, addr->disp(), type, wide, false); } break; } case T_LONG: case T_DOUBLE: { assert(!addr->index()->is_valid(), "can't handle reg reg address here"); assert(Assembler::is_simm13(addr->disp()) && Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses"); LIR_Opr tmp = FrameMap::O7_opr; int value_lo = c->as_jint_lo_bits(); if (value_lo == 0) { tmp = FrameMap::G0_opr; } else { __ set(value_lo, O7); } offset = store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT, wide, false); int value_hi = c->as_jint_hi_bits(); if (value_hi == 0) { tmp = FrameMap::G0_opr; } else { __ set(value_hi, O7); } offset = store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT, wide, false); break; } case T_OBJECT: { jobject obj = c->as_jobject(); LIR_Opr tmp; if (obj == NULL) { tmp = FrameMap::G0_opr; } else { tmp = FrameMap::O7_opr; jobject2reg(c->as_jobject(), O7); } // handle either reg+reg or reg+disp address if (addr->index()->is_valid()) { assert(addr->disp() == 0, "must be zero"); offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide); } else { assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses"); offset = store(tmp, base, addr->disp(), type, wide, false); } break; } default: Unimplemented(); } if (info != NULL) { assert(offset != -1, "offset should've been set"); add_debug_info_for_null_check(offset, info); } } void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { LIR_Const* c = src->as_constant_ptr(); LIR_Opr to_reg = dest; switch (c->type()) { case T_INT: case T_ADDRESS: { jint con = c->as_jint(); if (to_reg->is_single_cpu()) { assert(patch_code == lir_patch_none, "no patching handled here"); __ set(con, to_reg->as_register()); } else { ShouldNotReachHere(); assert(to_reg->is_single_fpu(), "wrong register kind"); __ set(con, O7); Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS); __ st(O7, temp_slot); __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg()); } } break; case T_LONG: { jlong con = c->as_jlong(); if (to_reg->is_double_cpu()) { #ifdef _LP64 __ set(con, to_reg->as_register_lo()); #else __ set(low(con), to_reg->as_register_lo()); __ set(high(con), to_reg->as_register_hi()); #endif #ifdef _LP64 } else if (to_reg->is_single_cpu()) { __ set(con, to_reg->as_register()); #endif } else { ShouldNotReachHere(); assert(to_reg->is_double_fpu(), "wrong register kind"); Address temp_slot_lo(SP, ((frame::register_save_words ) * wordSize) + STACK_BIAS); Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS); __ set(low(con), O7); __ st(O7, temp_slot_lo); __ set(high(con), O7); __ st(O7, temp_slot_hi); __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg()); } } break; case T_OBJECT: { if (patch_code == lir_patch_none) { jobject2reg(c->as_jobject(), to_reg->as_register()); } else { jobject2reg_with_patching(to_reg->as_register(), info); } } break; case T_FLOAT: { address const_addr = __ float_constant(c->as_jfloat()); if (const_addr == NULL) { bailout("const section overflow"); break; } RelocationHolder rspec = internal_word_Relocation::spec(const_addr); AddressLiteral const_addrlit(const_addr, rspec); if (to_reg->is_single_fpu()) { __ patchable_sethi(const_addrlit, O7); __ relocate(rspec); __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg()); } else { assert(to_reg->is_single_cpu(), "Must be a cpu register."); __ set(const_addrlit, O7); __ ld(O7, 0, to_reg->as_register()); } } break; case T_DOUBLE: { address const_addr = __ double_constant(c->as_jdouble()); if (const_addr == NULL) { bailout("const section overflow"); break; } RelocationHolder rspec = internal_word_Relocation::spec(const_addr); if (to_reg->is_double_fpu()) { AddressLiteral const_addrlit(const_addr, rspec); __ patchable_sethi(const_addrlit, O7); __ relocate(rspec); __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg()); } else { assert(to_reg->is_double_cpu(), "Must be a long register."); #ifdef _LP64 __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo()); #else __ set(low(jlong_cast(c->as_jdouble())), to_reg->as_register_lo()); __ set(high(jlong_cast(c->as_jdouble())), to_reg->as_register_hi()); #endif } } break; default: ShouldNotReachHere(); } } Address LIR_Assembler::as_Address(LIR_Address* addr) { Register reg = addr->base()->as_register(); return Address(reg, addr->disp()); } void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { switch (type) { case T_INT: case T_FLOAT: { Register tmp = O7; Address from = frame_map()->address_for_slot(src->single_stack_ix()); Address to = frame_map()->address_for_slot(dest->single_stack_ix()); __ lduw(from.base(), from.disp(), tmp); __ stw(tmp, to.base(), to.disp()); break; } case T_OBJECT: { Register tmp = O7; Address from = frame_map()->address_for_slot(src->single_stack_ix()); Address to = frame_map()->address_for_slot(dest->single_stack_ix()); __ ld_ptr(from.base(), from.disp(), tmp); __ st_ptr(tmp, to.base(), to.disp()); break; } case T_LONG: case T_DOUBLE: { Register tmp = O7; Address from = frame_map()->address_for_double_slot(src->double_stack_ix()); Address to = frame_map()->address_for_double_slot(dest->double_stack_ix()); __ lduw(from.base(), from.disp(), tmp); __ stw(tmp, to.base(), to.disp()); __ lduw(from.base(), from.disp() + 4, tmp); __ stw(tmp, to.base(), to.disp() + 4); break; } default: ShouldNotReachHere(); } } Address LIR_Assembler::as_Address_hi(LIR_Address* addr) { Address base = as_Address(addr); return Address(base.base(), base.disp() + hi_word_offset_in_bytes); } Address LIR_Assembler::as_Address_lo(LIR_Address* addr) { Address base = as_Address(addr); return Address(base.base(), base.disp() + lo_word_offset_in_bytes); } void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool unaligned) { LIR_Address* addr = src_opr->as_address_ptr(); LIR_Opr to_reg = dest; Register src = addr->base()->as_pointer_register(); Register disp_reg = noreg; int disp_value = addr->disp(); bool needs_patching = (patch_code != lir_patch_none); if (addr->base()->type() == T_OBJECT) { __ verify_oop(src); } PatchingStub* patch = NULL; if (needs_patching) { patch = new PatchingStub(_masm, PatchingStub::access_field_id); assert(!to_reg->is_double_cpu() || patch_code == lir_patch_none || patch_code == lir_patch_normal, "patching doesn't match register"); } if (addr->index()->is_illegal()) { if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) { if (needs_patching) { __ patchable_set(0, O7); } else { __ set(disp_value, O7); } disp_reg = O7; } } else if (unaligned || PatchALot) { __ add(src, addr->index()->as_register(), O7); src = O7; } else { disp_reg = addr->index()->as_pointer_register(); assert(disp_value == 0, "can't handle 3 operand addresses"); } // remember the offset of the load. The patching_epilog must be done // before the call to add_debug_info, otherwise the PcDescs don't get // entered in increasing order. int offset = code_offset(); assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up"); if (disp_reg == noreg) { offset = load(src, disp_value, to_reg, type, wide, unaligned); } else { assert(!unaligned, "can't handle this"); offset = load(src, disp_reg, to_reg, type, wide); } if (patch != NULL) { patching_epilog(patch, patch_code, src, info); } if (info != NULL) add_debug_info_for_null_check(offset, info); } void LIR_Assembler::prefetchr(LIR_Opr src) { LIR_Address* addr = src->as_address_ptr(); Address from_addr = as_Address(addr); if (VM_Version::has_v9()) { __ prefetch(from_addr, Assembler::severalReads); } } void LIR_Assembler::prefetchw(LIR_Opr src) { LIR_Address* addr = src->as_address_ptr(); Address from_addr = as_Address(addr); if (VM_Version::has_v9()) { __ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads); } } void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) { Address addr; if (src->is_single_word()) { addr = frame_map()->address_for_slot(src->single_stack_ix()); } else if (src->is_double_word()) { addr = frame_map()->address_for_double_slot(src->double_stack_ix()); } bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0; load(addr.base(), addr.disp(), dest, dest->type(), true /*wide*/, unaligned); } void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) { Address addr; if (dest->is_single_word()) { addr = frame_map()->address_for_slot(dest->single_stack_ix()); } else if (dest->is_double_word()) { addr = frame_map()->address_for_slot(dest->double_stack_ix()); } bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0; store(from_reg, addr.base(), addr.disp(), from_reg->type(), true /*wide*/, unaligned); } void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) { if (from_reg->is_float_kind() && to_reg->is_float_kind()) { if (from_reg->is_double_fpu()) { // double to double moves assert(to_reg->is_double_fpu(), "should match"); __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg()); } else { // float to float moves assert(to_reg->is_single_fpu(), "should match"); __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg()); } } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) { if (from_reg->is_double_cpu()) { #ifdef _LP64 __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register()); #else assert(to_reg->is_double_cpu() && from_reg->as_register_hi() != to_reg->as_register_lo() && from_reg->as_register_lo() != to_reg->as_register_hi(), "should both be long and not overlap"); // long to long moves __ mov(from_reg->as_register_hi(), to_reg->as_register_hi()); __ mov(from_reg->as_register_lo(), to_reg->as_register_lo()); #endif #ifdef _LP64 } else if (to_reg->is_double_cpu()) { // int to int moves __ mov(from_reg->as_register(), to_reg->as_register_lo()); #endif } else { // int to int moves __ mov(from_reg->as_register(), to_reg->as_register()); } } else { ShouldNotReachHere(); } if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) { __ verify_oop(to_reg->as_register()); } } void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool unaligned) { LIR_Address* addr = dest->as_address_ptr(); Register src = addr->base()->as_pointer_register(); Register disp_reg = noreg; int disp_value = addr->disp(); bool needs_patching = (patch_code != lir_patch_none); if (addr->base()->is_oop_register()) { __ verify_oop(src); } PatchingStub* patch = NULL; if (needs_patching) { patch = new PatchingStub(_masm, PatchingStub::access_field_id); assert(!from_reg->is_double_cpu() || patch_code == lir_patch_none || patch_code == lir_patch_normal, "patching doesn't match register"); } if (addr->index()->is_illegal()) { if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) { if (needs_patching) { __ patchable_set(0, O7); } else { __ set(disp_value, O7); } disp_reg = O7; } } else if (unaligned || PatchALot) { __ add(src, addr->index()->as_register(), O7); src = O7; } else { disp_reg = addr->index()->as_pointer_register(); assert(disp_value == 0, "can't handle 3 operand addresses"); } // remember the offset of the store. The patching_epilog must be done // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get // entered in increasing order. int offset; assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up"); if (disp_reg == noreg) { offset = store(from_reg, src, disp_value, type, wide, unaligned); } else { assert(!unaligned, "can't handle this"); offset = store(from_reg, src, disp_reg, type, wide); } if (patch != NULL) { patching_epilog(patch, patch_code, src, info); } if (info != NULL) add_debug_info_for_null_check(offset, info); } void LIR_Assembler::return_op(LIR_Opr result) { // the poll may need a register so just pick one that isn't the return register #if defined(TIERED) && !defined(_LP64) if (result->type_field() == LIR_OprDesc::long_type) { // Must move the result to G1 // Must leave proper result in O0,O1 and G1 (TIERED only) __ sllx(I0, 32, G1); // Shift bits into high G1 __ srl (I1, 0, I1); // Zero extend O1 (harmless?) __ or3 (I1, G1, G1); // OR 64 bits into G1 #ifdef ASSERT // mangle it so any problems will show up __ set(0xdeadbeef, I0); __ set(0xdeadbeef, I1); #endif } #endif // TIERED __ set((intptr_t)os::get_polling_page(), L0); __ relocate(relocInfo::poll_return_type); __ ld_ptr(L0, 0, G0); __ ret(); __ delayed()->restore(); } int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) { __ set((intptr_t)os::get_polling_page(), tmp->as_register()); if (info != NULL) { add_debug_info_for_branch(info); } else { __ relocate(relocInfo::poll_type); } int offset = __ offset(); __ ld_ptr(tmp->as_register(), 0, G0); return offset; } void LIR_Assembler::emit_static_call_stub() { address call_pc = __ pc(); address stub = __ start_a_stub(call_stub_size); if (stub == NULL) { bailout("static call stub overflow"); return; } int start = __ offset(); __ relocate(static_stub_Relocation::spec(call_pc)); __ set_oop(NULL, G5); // must be set to -1 at code generation time AddressLiteral addrlit(-1); __ jump_to(addrlit, G3); __ delayed()->nop(); assert(__ offset() - start <= call_stub_size, "stub too big"); __ end_a_stub(); } void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) { if (opr1->is_single_fpu()) { __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg()); } else if (opr1->is_double_fpu()) { __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg()); } else if (opr1->is_single_cpu()) { if (opr2->is_constant()) { switch (opr2->as_constant_ptr()->type()) { case T_INT: { jint con = opr2->as_constant_ptr()->as_jint(); if (Assembler::is_simm13(con)) { __ cmp(opr1->as_register(), con); } else { __ set(con, O7); __ cmp(opr1->as_register(), O7); } } break; case T_OBJECT: // there are only equal/notequal comparisions on objects { jobject con = opr2->as_constant_ptr()->as_jobject(); if (con == NULL) { __ cmp(opr1->as_register(), 0); } else { jobject2reg(con, O7); __ cmp(opr1->as_register(), O7); } } break; default: ShouldNotReachHere(); break; } } else { if (opr2->is_address()) { LIR_Address * addr = opr2->as_address_ptr(); BasicType type = addr->type(); if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7); else __ ld(as_Address(addr), O7); __ cmp(opr1->as_register(), O7); } else { __ cmp(opr1->as_register(), opr2->as_register()); } } } else if (opr1->is_double_cpu()) { Register xlo = opr1->as_register_lo(); Register xhi = opr1->as_register_hi(); if (opr2->is_constant() && opr2->as_jlong() == 0) { assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases"); #ifdef _LP64 __ orcc(xhi, G0, G0); #else __ orcc(xhi, xlo, G0); #endif } else if (opr2->is_register()) { Register ylo = opr2->as_register_lo(); Register yhi = opr2->as_register_hi(); #ifdef _LP64 __ cmp(xlo, ylo); #else __ subcc(xlo, ylo, xlo); __ subccc(xhi, yhi, xhi); if (condition == lir_cond_equal || condition == lir_cond_notEqual) { __ orcc(xhi, xlo, G0); } #endif } else { ShouldNotReachHere(); } } else if (opr1->is_address()) { LIR_Address * addr = opr1->as_address_ptr(); BasicType type = addr->type(); assert (opr2->is_constant(), "Checking"); if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7); else __ ld(as_Address(addr), O7); __ cmp(O7, opr2->as_constant_ptr()->as_jint()); } else { ShouldNotReachHere(); } } void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){ if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) { bool is_unordered_less = (code == lir_ucmp_fd2i); if (left->is_single_fpu()) { __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register()); } else if (left->is_double_fpu()) { __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register()); } else { ShouldNotReachHere(); } } else if (code == lir_cmp_l2i) { #ifdef _LP64 __ lcmp(left->as_register_lo(), right->as_register_lo(), dst->as_register()); #else __ lcmp(left->as_register_hi(), left->as_register_lo(), right->as_register_hi(), right->as_register_lo(), dst->as_register()); #endif } else { ShouldNotReachHere(); } } void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) { Assembler::Condition acond; switch (condition) { case lir_cond_equal: acond = Assembler::equal; break; case lir_cond_notEqual: acond = Assembler::notEqual; break; case lir_cond_less: acond = Assembler::less; break; case lir_cond_lessEqual: acond = Assembler::lessEqual; break; case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break; case lir_cond_greater: acond = Assembler::greater; break; case lir_cond_aboveEqual: acond = Assembler::greaterEqualUnsigned; break; case lir_cond_belowEqual: acond = Assembler::lessEqualUnsigned; break; default: ShouldNotReachHere(); }; if (opr1->is_constant() && opr1->type() == T_INT) { Register dest = result->as_register(); // load up first part of constant before branch // and do the rest in the delay slot. if (!Assembler::is_simm13(opr1->as_jint())) { __ sethi(opr1->as_jint(), dest); } } else if (opr1->is_constant()) { const2reg(opr1, result, lir_patch_none, NULL); } else if (opr1->is_register()) { reg2reg(opr1, result); } else if (opr1->is_stack()) { stack2reg(opr1, result, result->type()); } else { ShouldNotReachHere(); } Label skip; #ifdef _LP64 if (type == T_INT) { __ br(acond, false, Assembler::pt, skip); } else #endif __ brx(acond, false, Assembler::pt, skip); // checks icc on 32bit and xcc on 64bit if (opr1->is_constant() && opr1->type() == T_INT) { Register dest = result->as_register(); if (Assembler::is_simm13(opr1->as_jint())) { __ delayed()->or3(G0, opr1->as_jint(), dest); } else { // the sethi has been done above, so just put in the low 10 bits __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest); } } else { // can't do anything useful in the delay slot __ delayed()->nop(); } if (opr2->is_constant()) { const2reg(opr2, result, lir_patch_none, NULL); } else if (opr2->is_register()) { reg2reg(opr2, result); } else if (opr2->is_stack()) { stack2reg(opr2, result, result->type()); } else { ShouldNotReachHere(); } __ bind(skip); } void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) { assert(info == NULL, "unused on this code path"); assert(left->is_register(), "wrong items state"); assert(dest->is_register(), "wrong items state"); if (right->is_register()) { if (dest->is_float_kind()) { FloatRegister lreg, rreg, res; FloatRegisterImpl::Width w; if (right->is_single_fpu()) { w = FloatRegisterImpl::S; lreg = left->as_float_reg(); rreg = right->as_float_reg(); res = dest->as_float_reg(); } else { w = FloatRegisterImpl::D; lreg = left->as_double_reg(); rreg = right->as_double_reg(); res = dest->as_double_reg(); } switch (code) { case lir_add: __ fadd(w, lreg, rreg, res); break; case lir_sub: __ fsub(w, lreg, rreg, res); break; case lir_mul: // fall through case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break; case lir_div: // fall through case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break; default: ShouldNotReachHere(); } } else if (dest->is_double_cpu()) { #ifdef _LP64 Register dst_lo = dest->as_register_lo(); Register op1_lo = left->as_pointer_register(); Register op2_lo = right->as_pointer_register(); switch (code) { case lir_add: __ add(op1_lo, op2_lo, dst_lo); break; case lir_sub: __ sub(op1_lo, op2_lo, dst_lo); break; default: ShouldNotReachHere(); } #else Register op1_lo = left->as_register_lo(); Register op1_hi = left->as_register_hi(); Register op2_lo = right->as_register_lo(); Register op2_hi = right->as_register_hi(); Register dst_lo = dest->as_register_lo(); Register dst_hi = dest->as_register_hi(); switch (code) { case lir_add: __ addcc(op1_lo, op2_lo, dst_lo); __ addc (op1_hi, op2_hi, dst_hi); break; case lir_sub: __ subcc(op1_lo, op2_lo, dst_lo); __ subc (op1_hi, op2_hi, dst_hi); break; default: ShouldNotReachHere(); } #endif } else { assert (right->is_single_cpu(), "Just Checking"); Register lreg = left->as_register(); Register res = dest->as_register(); Register rreg = right->as_register(); switch (code) { case lir_add: __ add (lreg, rreg, res); break; case lir_sub: __ sub (lreg, rreg, res); break; case lir_mul: __ mult (lreg, rreg, res); break; default: ShouldNotReachHere(); } } } else { assert (right->is_constant(), "must be constant"); if (dest->is_single_cpu()) { Register lreg = left->as_register(); Register res = dest->as_register(); int simm13 = right->as_constant_ptr()->as_jint(); switch (code) { case lir_add: __ add (lreg, simm13, res); break; case lir_sub: __ sub (lreg, simm13, res); break; case lir_mul: __ mult (lreg, simm13, res); break; default: ShouldNotReachHere(); } } else { Register lreg = left->as_pointer_register(); Register res = dest->as_register_lo(); long con = right->as_constant_ptr()->as_jlong(); assert(Assembler::is_simm13(con), "must be simm13"); switch (code) { case lir_add: __ add (lreg, (int)con, res); break; case lir_sub: __ sub (lreg, (int)con, res); break; case lir_mul: __ mult (lreg, (int)con, res); break; default: ShouldNotReachHere(); } } } } void LIR_Assembler::fpop() { // do nothing } void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) { switch (code) { case lir_sin: case lir_tan: case lir_cos: { assert(thread->is_valid(), "preserve the thread object for performance reasons"); assert(dest->as_double_reg() == F0, "the result will be in f0/f1"); break; } case lir_sqrt: { assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt"); FloatRegister src_reg = value->as_double_reg(); FloatRegister dst_reg = dest->as_double_reg(); __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg); break; } case lir_abs: { assert(!thread->is_valid(), "there is no need for a thread_reg for fabs"); FloatRegister src_reg = value->as_double_reg(); FloatRegister dst_reg = dest->as_double_reg(); __ fabs(FloatRegisterImpl::D, src_reg, dst_reg); break; } default: { ShouldNotReachHere(); break; } } } void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) { if (right->is_constant()) { if (dest->is_single_cpu()) { int simm13 = right->as_constant_ptr()->as_jint(); switch (code) { case lir_logic_and: __ and3 (left->as_register(), simm13, dest->as_register()); break; case lir_logic_or: __ or3 (left->as_register(), simm13, dest->as_register()); break; case lir_logic_xor: __ xor3 (left->as_register(), simm13, dest->as_register()); break; default: ShouldNotReachHere(); } } else { long c = right->as_constant_ptr()->as_jlong(); assert(c == (int)c && Assembler::is_simm13(c), "out of range"); int simm13 = (int)c; switch (code) { case lir_logic_and: #ifndef _LP64 __ and3 (left->as_register_hi(), 0, dest->as_register_hi()); #endif __ and3 (left->as_register_lo(), simm13, dest->as_register_lo()); break; case lir_logic_or: #ifndef _LP64 __ or3 (left->as_register_hi(), 0, dest->as_register_hi()); #endif __ or3 (left->as_register_lo(), simm13, dest->as_register_lo()); break; case lir_logic_xor: #ifndef _LP64 __ xor3 (left->as_register_hi(), 0, dest->as_register_hi()); #endif __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo()); break; default: ShouldNotReachHere(); } } } else { assert(right->is_register(), "right should be in register"); if (dest->is_single_cpu()) { switch (code) { case lir_logic_and: __ and3 (left->as_register(), right->as_register(), dest->as_register()); break; case lir_logic_or: __ or3 (left->as_register(), right->as_register(), dest->as_register()); break; case lir_logic_xor: __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break; default: ShouldNotReachHere(); } } else { #ifdef _LP64 Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() : left->as_register_lo(); Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() : right->as_register_lo(); switch (code) { case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break; case lir_logic_or: __ or3 (l, r, dest->as_register_lo()); break; case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break; default: ShouldNotReachHere(); } #else switch (code) { case lir_logic_and: __ and3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi()); __ and3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo()); break; case lir_logic_or: __ or3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi()); __ or3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo()); break; case lir_logic_xor: __ xor3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi()); __ xor3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo()); break; default: ShouldNotReachHere(); } #endif } } } int LIR_Assembler::shift_amount(BasicType t) { int elem_size = type2aelembytes(t); switch (elem_size) { case 1 : return 0; case 2 : return 1; case 4 : return 2; case 8 : return 3; } ShouldNotReachHere(); return -1; } void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { assert(exceptionOop->as_register() == Oexception, "should match"); assert(exceptionPC->as_register() == Oissuing_pc, "should match"); info->add_register_oop(exceptionOop); // reuse the debug info from the safepoint poll for the throw op itself address pc_for_athrow = __ pc(); int pc_for_athrow_offset = __ offset(); RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow); __ set(pc_for_athrow, Oissuing_pc, rspec); add_call_info(pc_for_athrow_offset, info); // for exception handler __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type); __ delayed()->nop(); } void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) { assert(exceptionOop->as_register() == Oexception, "should match"); __ br(Assembler::always, false, Assembler::pt, _unwind_handler_entry); __ delayed()->nop(); } void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) { Register src = op->src()->as_register(); Register dst = op->dst()->as_register(); Register src_pos = op->src_pos()->as_register(); Register dst_pos = op->dst_pos()->as_register(); Register length = op->length()->as_register(); Register tmp = op->tmp()->as_register(); Register tmp2 = O7; int flags = op->flags(); ciArrayKlass* default_type = op->expected_type(); BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL; if (basic_type == T_ARRAY) basic_type = T_OBJECT; // set up the arraycopy stub information ArrayCopyStub* stub = op->stub(); // always do stub if no type information is available. it's ok if // the known type isn't loaded since the code sanity checks // in debug mode and the type isn't required when we know the exact type // also check that the type is an array type. // We also, for now, always call the stub if the barrier set requires a // write_ref_pre barrier (which the stub does, but none of the optimized // cases currently does). if (op->expected_type() == NULL || Universe::heap()->barrier_set()->has_write_ref_pre_barrier()) { __ mov(src, O0); __ mov(src_pos, O1); __ mov(dst, O2); __ mov(dst_pos, O3); __ mov(length, O4); __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy)); __ br_zero(Assembler::less, false, Assembler::pn, O0, *stub->entry()); __ delayed()->nop(); __ bind(*stub->continuation()); return; } assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point"); // make sure src and dst are non-null and load array length if (flags & LIR_OpArrayCopy::src_null_check) { __ tst(src); __ brx(Assembler::equal, false, Assembler::pn, *stub->entry()); __ delayed()->nop(); } if (flags & LIR_OpArrayCopy::dst_null_check) { __ tst(dst); __ brx(Assembler::equal, false, Assembler::pn, *stub->entry()); __ delayed()->nop(); } if (flags & LIR_OpArrayCopy::src_pos_positive_check) { // test src_pos register __ tst(src_pos); __ br(Assembler::less, false, Assembler::pn, *stub->entry()); __ delayed()->nop(); } if (flags & LIR_OpArrayCopy::dst_pos_positive_check) { // test dst_pos register __ tst(dst_pos); __ br(Assembler::less, false, Assembler::pn, *stub->entry()); __ delayed()->nop(); } if (flags & LIR_OpArrayCopy::length_positive_check) { // make sure length isn't negative __ tst(length); __ br(Assembler::less, false, Assembler::pn, *stub->entry()); __ delayed()->nop(); } if (flags & LIR_OpArrayCopy::src_range_check) { __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2); __ add(length, src_pos, tmp); __ cmp(tmp2, tmp); __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry()); __ delayed()->nop(); } if (flags & LIR_OpArrayCopy::dst_range_check) { __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2); __ add(length, dst_pos, tmp); __ cmp(tmp2, tmp); __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry()); __ delayed()->nop(); } if (flags & LIR_OpArrayCopy::type_check) { if (UseCompressedOops) { // We don't need decode because we just need to compare __ lduw(src, oopDesc::klass_offset_in_bytes(), tmp); __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2); __ cmp(tmp, tmp2); __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry()); } else { __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp); __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2); __ cmp(tmp, tmp2); __ brx(Assembler::notEqual, false, Assembler::pt, *stub->entry()); } __ delayed()->nop(); } #ifdef ASSERT if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) { // Sanity check the known type with the incoming class. For the // primitive case the types must match exactly with src.klass and // dst.klass each exactly matching the default type. For the // object array case, if no type check is needed then either the // dst type is exactly the expected type and the src type is a // subtype which we can't check or src is the same array as dst // but not necessarily exactly of type default_type. Label known_ok, halt; jobject2reg(op->expected_type()->constant_encoding(), tmp); if (UseCompressedOops) { // tmp holds the default type. It currently comes uncompressed after the // load of a constant, so encode it. __ encode_heap_oop(tmp); // load the raw value of the dst klass, since we will be comparing // uncompressed values directly. __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2); if (basic_type != T_OBJECT) { __ cmp(tmp, tmp2); __ br(Assembler::notEqual, false, Assembler::pn, halt); // load the raw value of the src klass. __ delayed()->lduw(src, oopDesc::klass_offset_in_bytes(), tmp2); __ cmp(tmp, tmp2); __ br(Assembler::equal, false, Assembler::pn, known_ok); __ delayed()->nop(); } else { __ cmp(tmp, tmp2); __ br(Assembler::equal, false, Assembler::pn, known_ok); __ delayed()->cmp(src, dst); __ brx(Assembler::equal, false, Assembler::pn, known_ok); __ delayed()->nop(); } } else { __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2); if (basic_type != T_OBJECT) { __ cmp(tmp, tmp2); __ brx(Assembler::notEqual, false, Assembler::pn, halt); __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2); __ cmp(tmp, tmp2); __ brx(Assembler::equal, false, Assembler::pn, known_ok); __ delayed()->nop(); } else { __ cmp(tmp, tmp2); __ brx(Assembler::equal, false, Assembler::pn, known_ok); __ delayed()->cmp(src, dst); __ brx(Assembler::equal, false, Assembler::pn, known_ok); __ delayed()->nop(); } } __ bind(halt); __ stop("incorrect type information in arraycopy"); __ bind(known_ok); } #endif int shift = shift_amount(basic_type); Register src_ptr = O0; Register dst_ptr = O1; Register len = O2; __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr); LP64_ONLY(__ sra(src_pos, 0, src_pos);) //higher 32bits must be null if (shift == 0) { __ add(src_ptr, src_pos, src_ptr); } else { __ sll(src_pos, shift, tmp); __ add(src_ptr, tmp, src_ptr); } __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr); LP64_ONLY(__ sra(dst_pos, 0, dst_pos);) //higher 32bits must be null if (shift == 0) { __ add(dst_ptr, dst_pos, dst_ptr); } else { __ sll(dst_pos, shift, tmp); __ add(dst_ptr, tmp, dst_ptr); } if (basic_type != T_OBJECT) { if (shift == 0) { __ mov(length, len); } else { __ sll(length, shift, len); } __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy)); } else { // oop_arraycopy takes a length in number of elements, so don't scale it. __ mov(length, len); __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy)); } __ bind(*stub->continuation()); } void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) { if (dest->is_single_cpu()) { #ifdef _LP64 if (left->type() == T_OBJECT) { switch (code) { case lir_shl: __ sllx (left->as_register(), count->as_register(), dest->as_register()); break; case lir_shr: __ srax (left->as_register(), count->as_register(), dest->as_register()); break; case lir_ushr: __ srl (left->as_register(), count->as_register(), dest->as_register()); break; default: ShouldNotReachHere(); } } else #endif switch (code) { case lir_shl: __ sll (left->as_register(), count->as_register(), dest->as_register()); break; case lir_shr: __ sra (left->as_register(), count->as_register(), dest->as_register()); break; case lir_ushr: __ srl (left->as_register(), count->as_register(), dest->as_register()); break; default: ShouldNotReachHere(); } } else { #ifdef _LP64 switch (code) { case lir_shl: __ sllx (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break; case lir_shr: __ srax (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break; case lir_ushr: __ srlx (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break; default: ShouldNotReachHere(); } #else switch (code) { case lir_shl: __ lshl (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break; case lir_shr: __ lshr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break; case lir_ushr: __ lushr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break; default: ShouldNotReachHere(); } #endif } } void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) { #ifdef _LP64 if (left->type() == T_OBJECT) { count = count & 63; // shouldn't shift by more than sizeof(intptr_t) Register l = left->as_register(); Register d = dest->as_register_lo(); switch (code) { case lir_shl: __ sllx (l, count, d); break; case lir_shr: __ srax (l, count, d); break; case lir_ushr: __ srlx (l, count, d); break; default: ShouldNotReachHere(); } return; } #endif if (dest->is_single_cpu()) { count = count & 0x1F; // Java spec switch (code) { case lir_shl: __ sll (left->as_register(), count, dest->as_register()); break; case lir_shr: __ sra (left->as_register(), count, dest->as_register()); break; case lir_ushr: __ srl (left->as_register(), count, dest->as_register()); break; default: ShouldNotReachHere(); } } else if (dest->is_double_cpu()) { count = count & 63; // Java spec switch (code) { case lir_shl: __ sllx (left->as_pointer_register(), count, dest->as_pointer_register()); break; case lir_shr: __ srax (left->as_pointer_register(), count, dest->as_pointer_register()); break; case lir_ushr: __ srlx (left->as_pointer_register(), count, dest->as_pointer_register()); break; default: ShouldNotReachHere(); } } else { ShouldNotReachHere(); } } void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) { assert(op->tmp1()->as_register() == G1 && op->tmp2()->as_register() == G3 && op->tmp3()->as_register() == G4 && op->obj()->as_register() == O0 && op->klass()->as_register() == G5, "must be"); if (op->init_check()) { __ ld(op->klass()->as_register(), instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc), op->tmp1()->as_register()); add_debug_info_for_null_check_here(op->stub()->info()); __ cmp(op->tmp1()->as_register(), instanceKlass::fully_initialized); __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry()); __ delayed()->nop(); } __ allocate_object(op->obj()->as_register(), op->tmp1()->as_register(), op->tmp2()->as_register(), op->tmp3()->as_register(), op->header_size(), op->object_size(), op->klass()->as_register(), *op->stub()->entry()); __ bind(*op->stub()->continuation()); __ verify_oop(op->obj()->as_register()); } void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) { assert(op->tmp1()->as_register() == G1 && op->tmp2()->as_register() == G3 && op->tmp3()->as_register() == G4 && op->tmp4()->as_register() == O1 && op->klass()->as_register() == G5, "must be"); LP64_ONLY( __ signx(op->len()->as_register()); ) if (UseSlowPath || (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) || (!UseFastNewTypeArray && (op->type() != T_OBJECT && op->type() != T_ARRAY))) { __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry()); __ delayed()->nop(); } else { __ allocate_array(op->obj()->as_register(), op->len()->as_register(), op->tmp1()->as_register(), op->tmp2()->as_register(), op->tmp3()->as_register(), arrayOopDesc::header_size(op->type()), type2aelembytes(op->type()), op->klass()->as_register(), *op->stub()->entry()); } __ bind(*op->stub()->continuation()); } void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias, ciMethodData *md, ciProfileData *data, Register recv, Register tmp1, Label* update_done) { uint i; for (i = 0; i < VirtualCallData::row_limit(); i++) { Label next_test; // See if the receiver is receiver[n]. Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) - mdo_offset_bias); __ ld_ptr(receiver_addr, tmp1); __ verify_oop(tmp1); __ cmp(recv, tmp1); __ brx(Assembler::notEqual, false, Assembler::pt, next_test); __ delayed()->nop(); Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) - mdo_offset_bias); __ ld_ptr(data_addr, tmp1); __ add(tmp1, DataLayout::counter_increment, tmp1); __ st_ptr(tmp1, data_addr); __ ba(false, *update_done); __ delayed()->nop(); __ bind(next_test); } // Didn't find receiver; find next empty slot and fill it in for (i = 0; i < VirtualCallData::row_limit(); i++) { Label next_test; Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) - mdo_offset_bias); __ ld_ptr(recv_addr, tmp1); __ br_notnull(tmp1, false, Assembler::pt, next_test); __ delayed()->nop(); __ st_ptr(recv, recv_addr); __ set(DataLayout::counter_increment, tmp1); __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) - mdo_offset_bias); __ ba(false, *update_done); __ delayed()->nop(); __ bind(next_test); } } void LIR_Assembler::setup_md_access(ciMethod* method, int bci, ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) { md = method->method_data_or_null(); assert(md != NULL, "Sanity"); data = md->bci_to_data(bci); assert(data != NULL, "need data for checkcast"); assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) { // The offset is large so bias the mdo by the base of the slot so // that the ld can use simm13s to reference the slots of the data mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset()); } } void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) { // we always need a stub for the failure case. CodeStub* stub = op->stub(); Register obj = op->object()->as_register(); Register k_RInfo = op->tmp1()->as_register(); Register klass_RInfo = op->tmp2()->as_register(); Register dst = op->result_opr()->as_register(); Register Rtmp1 = op->tmp3()->as_register(); ciKlass* k = op->klass(); if (obj == k_RInfo) { k_RInfo = klass_RInfo; klass_RInfo = obj; } ciMethodData* md; ciProfileData* data; int mdo_offset_bias = 0; if (op->should_profile()) { ciMethod* method = op->profiled_method(); assert(method != NULL, "Should have method"); setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias); Label not_null; __ br_notnull(obj, false, Assembler::pn, not_null); __ delayed()->nop(); Register mdo = k_RInfo; Register data_val = Rtmp1; jobject2reg(md->constant_encoding(), mdo); if (mdo_offset_bias > 0) { __ set(mdo_offset_bias, data_val); __ add(mdo, data_val, mdo); } Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias); __ ldub(flags_addr, data_val); __ or3(data_val, BitData::null_seen_byte_constant(), data_val); __ stb(data_val, flags_addr); __ ba(false, *obj_is_null); __ delayed()->nop(); __ bind(not_null); } else { __ br_null(obj, false, Assembler::pn, *obj_is_null); __ delayed()->nop(); } Label profile_cast_failure, profile_cast_success; Label *failure_target = op->should_profile() ? &profile_cast_failure : failure; Label *success_target = op->should_profile() ? &profile_cast_success : success; // patching may screw with our temporaries on sparc, // so let's do it before loading the class if (k->is_loaded()) { jobject2reg(k->constant_encoding(), k_RInfo); } else { jobject2reg_with_patching(k_RInfo, op->info_for_patch()); } assert(obj != k_RInfo, "must be different"); // get object class // not a safepoint as obj null check happens earlier __ load_klass(obj, klass_RInfo); if (op->fast_check()) { assert_different_registers(klass_RInfo, k_RInfo); __ cmp(k_RInfo, klass_RInfo); __ brx(Assembler::notEqual, false, Assembler::pt, *failure_target); __ delayed()->nop(); } else { bool need_slow_path = true; if (k->is_loaded()) { if (k->super_check_offset() != sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes()) need_slow_path = false; // perform the fast part of the checking logic __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg, (need_slow_path ? success_target : NULL), failure_target, NULL, RegisterOrConstant(k->super_check_offset())); } else { // perform the fast part of the checking logic __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target, failure_target, NULL); } if (need_slow_path) { // call out-of-line instance of __ check_klass_subtype_slow_path(...): assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup"); __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type); __ delayed()->nop(); __ cmp(G3, 0); __ br(Assembler::equal, false, Assembler::pn, *failure_target); __ delayed()->nop(); // Fall through to success case } } if (op->should_profile()) { Register mdo = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1; assert_different_registers(obj, mdo, recv, tmp1); __ bind(profile_cast_success); jobject2reg(md->constant_encoding(), mdo); if (mdo_offset_bias > 0) { __ set(mdo_offset_bias, tmp1); __ add(mdo, tmp1, mdo); } __ load_klass(obj, recv); type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, success); // Jump over the failure case __ ba(false, *success); __ delayed()->nop(); // Cast failure case __ bind(profile_cast_failure); jobject2reg(md->constant_encoding(), mdo); if (mdo_offset_bias > 0) { __ set(mdo_offset_bias, tmp1); __ add(mdo, tmp1, mdo); } Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias); __ ld_ptr(data_addr, tmp1); __ sub(tmp1, DataLayout::counter_increment, tmp1); __ st_ptr(tmp1, data_addr); __ ba(false, *failure); __ delayed()->nop(); } __ ba(false, *success); __ delayed()->nop(); } void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) { LIR_Code code = op->code(); if (code == lir_store_check) { Register value = op->object()->as_register(); Register array = op->array()->as_register(); Register k_RInfo = op->tmp1()->as_register(); Register klass_RInfo = op->tmp2()->as_register(); Register Rtmp1 = op->tmp3()->as_register(); __ verify_oop(value); CodeStub* stub = op->stub(); // check if it needs to be profiled ciMethodData* md; ciProfileData* data; int mdo_offset_bias = 0; if (op->should_profile()) { ciMethod* method = op->profiled_method(); assert(method != NULL, "Should have method"); setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias); } Label profile_cast_success, profile_cast_failure, done; Label *success_target = op->should_profile() ? &profile_cast_success : &done; Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry(); if (op->should_profile()) { Label not_null; __ br_notnull(value, false, Assembler::pn, not_null); __ delayed()->nop(); Register mdo = k_RInfo; Register data_val = Rtmp1; jobject2reg(md->constant_encoding(), mdo); if (mdo_offset_bias > 0) { __ set(mdo_offset_bias, data_val); __ add(mdo, data_val, mdo); } Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias); __ ldub(flags_addr, data_val); __ or3(data_val, BitData::null_seen_byte_constant(), data_val); __ stb(data_val, flags_addr); __ ba(false, done); __ delayed()->nop(); __ bind(not_null); } else { __ br_null(value, false, Assembler::pn, done); __ delayed()->nop(); } add_debug_info_for_null_check_here(op->info_for_exception()); __ load_klass(array, k_RInfo); __ load_klass(value, klass_RInfo); // get instance klass __ ld_ptr(Address(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)), k_RInfo); // perform the fast part of the checking logic __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target, failure_target, NULL); // call out-of-line instance of __ check_klass_subtype_slow_path(...): assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup"); __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type); __ delayed()->nop(); __ cmp(G3, 0); __ br(Assembler::equal, false, Assembler::pn, *failure_target); __ delayed()->nop(); // fall through to the success case if (op->should_profile()) { Register mdo = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1; assert_different_registers(value, mdo, recv, tmp1); __ bind(profile_cast_success); jobject2reg(md->constant_encoding(), mdo); if (mdo_offset_bias > 0) { __ set(mdo_offset_bias, tmp1); __ add(mdo, tmp1, mdo); } __ load_klass(value, recv); type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done); __ ba(false, done); __ delayed()->nop(); // Cast failure case __ bind(profile_cast_failure); jobject2reg(md->constant_encoding(), mdo); if (mdo_offset_bias > 0) { __ set(mdo_offset_bias, tmp1); __ add(mdo, tmp1, mdo); } Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias); __ ld_ptr(data_addr, tmp1); __ sub(tmp1, DataLayout::counter_increment, tmp1); __ st_ptr(tmp1, data_addr); __ ba(false, *stub->entry()); __ delayed()->nop(); } __ bind(done); } else if (code == lir_checkcast) { Register obj = op->object()->as_register(); Register dst = op->result_opr()->as_register(); Label success; emit_typecheck_helper(op, &success, op->stub()->entry(), &success); __ bind(success); __ mov(obj, dst); } else if (code == lir_instanceof) { Register obj = op->object()->as_register(); Register dst = op->result_opr()->as_register(); Label success, failure, done; emit_typecheck_helper(op, &success, &failure, &failure); __ bind(failure); __ set(0, dst); __ ba(false, done); __ delayed()->nop(); __ bind(success); __ set(1, dst); __ bind(done); } else { ShouldNotReachHere(); } } void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) { if (op->code() == lir_cas_long) { assert(VM_Version::supports_cx8(), "wrong machine"); Register addr = op->addr()->as_pointer_register(); Register cmp_value_lo = op->cmp_value()->as_register_lo(); Register cmp_value_hi = op->cmp_value()->as_register_hi(); Register new_value_lo = op->new_value()->as_register_lo(); Register new_value_hi = op->new_value()->as_register_hi(); Register t1 = op->tmp1()->as_register(); Register t2 = op->tmp2()->as_register(); #ifdef _LP64 __ mov(cmp_value_lo, t1); __ mov(new_value_lo, t2); // perform the compare and swap operation __ casx(addr, t1, t2); // generate condition code - if the swap succeeded, t2 ("new value" reg) was // overwritten with the original value in "addr" and will be equal to t1. __ cmp(t1, t2); #else // move high and low halves of long values into single registers __ sllx(cmp_value_hi, 32, t1); // shift high half into temp reg __ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half __ or3(t1, cmp_value_lo, t1); // t1 holds 64-bit compare value __ sllx(new_value_hi, 32, t2); __ srl(new_value_lo, 0, new_value_lo); __ or3(t2, new_value_lo, t2); // t2 holds 64-bit value to swap // perform the compare and swap operation __ casx(addr, t1, t2); // generate condition code - if the swap succeeded, t2 ("new value" reg) was // overwritten with the original value in "addr" and will be equal to t1. // Produce icc flag for 32bit. __ sub(t1, t2, t2); __ srlx(t2, 32, t1); __ orcc(t2, t1, G0); #endif } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) { Register addr = op->addr()->as_pointer_register(); Register cmp_value = op->cmp_value()->as_register(); Register new_value = op->new_value()->as_register(); Register t1 = op->tmp1()->as_register(); Register t2 = op->tmp2()->as_register(); __ mov(cmp_value, t1); __ mov(new_value, t2); if (op->code() == lir_cas_obj) { if (UseCompressedOops) { __ encode_heap_oop(t1); __ encode_heap_oop(t2); __ cas(addr, t1, t2); } else { __ cas_ptr(addr, t1, t2); } } else { __ cas(addr, t1, t2); } __ cmp(t1, t2); } else { Unimplemented(); } } void LIR_Assembler::set_24bit_FPU() { Unimplemented(); } void LIR_Assembler::reset_FPU() { Unimplemented(); } void LIR_Assembler::breakpoint() { __ breakpoint_trap(); } void LIR_Assembler::push(LIR_Opr opr) { Unimplemented(); } void LIR_Assembler::pop(LIR_Opr opr) { Unimplemented(); } void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) { Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no); Register dst = dst_opr->as_register(); Register reg = mon_addr.base(); int offset = mon_addr.disp(); // compute pointer to BasicLock if (mon_addr.is_simm13()) { __ add(reg, offset, dst); } else { __ set(offset, dst); __ add(dst, reg, dst); } } void LIR_Assembler::emit_lock(LIR_OpLock* op) { Register obj = op->obj_opr()->as_register(); Register hdr = op->hdr_opr()->as_register(); Register lock = op->lock_opr()->as_register(); // obj may not be an oop if (op->code() == lir_lock) { MonitorEnterStub* stub = (MonitorEnterStub*)op->stub(); if (UseFastLocking) { assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); // add debug info for NullPointerException only if one is possible if (op->info() != NULL) { add_debug_info_for_null_check_here(op->info()); } __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry()); } else { // always do slow locking // note: the slow locking code could be inlined here, however if we use // slow locking, speed doesn't matter anyway and this solution is // simpler and requires less duplicated code - additionally, the // slow locking code is the same in either case which simplifies // debugging __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry()); __ delayed()->nop(); } } else { assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock"); if (UseFastLocking) { assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); __ unlock_object(hdr, obj, lock, *op->stub()->entry()); } else { // always do slow unlocking // note: the slow unlocking code could be inlined here, however if we use // slow unlocking, speed doesn't matter anyway and this solution is // simpler and requires less duplicated code - additionally, the // slow unlocking code is the same in either case which simplifies // debugging __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry()); __ delayed()->nop(); } } __ bind(*op->stub()->continuation()); } void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) { ciMethod* method = op->profiled_method(); int bci = op->profiled_bci(); // Update counter for all call types ciMethodData* md = method->method_data_or_null(); assert(md != NULL, "Sanity"); ciProfileData* data = md->bci_to_data(bci); assert(data->is_CounterData(), "need CounterData for calls"); assert(op->mdo()->is_single_cpu(), "mdo must be allocated"); Register mdo = op->mdo()->as_register(); #ifdef _LP64 assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated"); Register tmp1 = op->tmp1()->as_register_lo(); #else assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated"); Register tmp1 = op->tmp1()->as_register(); #endif jobject2reg(md->constant_encoding(), mdo); int mdo_offset_bias = 0; if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) + data->size_in_bytes())) { // The offset is large so bias the mdo by the base of the slot so // that the ld can use simm13s to reference the slots of the data mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset()); __ set(mdo_offset_bias, O7); __ add(mdo, O7, mdo); } Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias); Bytecodes::Code bc = method->java_code_at_bci(bci); // Perform additional virtual call profiling for invokevirtual and // invokeinterface bytecodes if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) && C1ProfileVirtualCalls) { assert(op->recv()->is_single_cpu(), "recv must be allocated"); Register recv = op->recv()->as_register(); assert_different_registers(mdo, tmp1, recv); assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls"); ciKlass* known_klass = op->known_holder(); if (C1OptimizeVirtualCallProfiling && known_klass != NULL) { // We know the type that will be seen at this call site; we can // statically update the methodDataOop rather than needing to do // dynamic tests on the receiver type // NOTE: we should probably put a lock around this search to // avoid collisions by concurrent compilations ciVirtualCallData* vc_data = (ciVirtualCallData*) data; uint i; for (i = 0; i < VirtualCallData::row_limit(); i++) { ciKlass* receiver = vc_data->receiver(i); if (known_klass->equals(receiver)) { Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias); __ ld_ptr(data_addr, tmp1); __ add(tmp1, DataLayout::counter_increment, tmp1); __ st_ptr(tmp1, data_addr); return; } } // Receiver type not found in profile data; select an empty slot // Note that this is less efficient than it should be because it // always does a write to the receiver part of the // VirtualCallData rather than just the first time for (i = 0; i < VirtualCallData::row_limit(); i++) { ciKlass* receiver = vc_data->receiver(i); if (receiver == NULL) { Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) - mdo_offset_bias); jobject2reg(known_klass->constant_encoding(), tmp1); __ st_ptr(tmp1, recv_addr); Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias); __ ld_ptr(data_addr, tmp1); __ add(tmp1, DataLayout::counter_increment, tmp1); __ st_ptr(tmp1, data_addr); return; } } } else { __ load_klass(recv, recv); Label update_done; type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done); // Receiver did not match any saved receiver and there is no empty row for it. // Increment total counter to indicate polymorphic case. __ ld_ptr(counter_addr, tmp1); __ add(tmp1, DataLayout::counter_increment, tmp1); __ st_ptr(tmp1, counter_addr); __ bind(update_done); } } else { // Static call __ ld_ptr(counter_addr, tmp1); __ add(tmp1, DataLayout::counter_increment, tmp1); __ st_ptr(tmp1, counter_addr); } } void LIR_Assembler::align_backward_branch_target() { __ align(OptoLoopAlignment); } void LIR_Assembler::emit_delay(LIR_OpDelay* op) { // make sure we are expecting a delay // this has the side effect of clearing the delay state // so we can use _masm instead of _masm->delayed() to do the // code generation. __ delayed(); // make sure we only emit one instruction int offset = code_offset(); op->delay_op()->emit_code(this); #ifdef ASSERT if (code_offset() - offset != NativeInstruction::nop_instruction_size) { op->delay_op()->print(); } assert(code_offset() - offset == NativeInstruction::nop_instruction_size, "only one instruction can go in a delay slot"); #endif // we may also be emitting the call info for the instruction // which we are the delay slot of. CodeEmitInfo* call_info = op->call_info(); if (call_info) { add_call_info(code_offset(), call_info); } if (VerifyStackAtCalls) { _masm->sub(FP, SP, O7); _masm->cmp(O7, initial_frame_size_in_bytes()); _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 ); } } void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) { assert(left->is_register(), "can only handle registers"); if (left->is_single_cpu()) { __ neg(left->as_register(), dest->as_register()); } else if (left->is_single_fpu()) { __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg()); } else if (left->is_double_fpu()) { __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg()); } else { assert (left->is_double_cpu(), "Must be a long"); Register Rlow = left->as_register_lo(); Register Rhi = left->as_register_hi(); #ifdef _LP64 __ sub(G0, Rlow, dest->as_register_lo()); #else __ subcc(G0, Rlow, dest->as_register_lo()); __ subc (G0, Rhi, dest->as_register_hi()); #endif } } void LIR_Assembler::fxch(int i) { Unimplemented(); } void LIR_Assembler::fld(int i) { Unimplemented(); } void LIR_Assembler::ffree(int i) { Unimplemented(); } void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) { // if tmp is invalid, then the function being called doesn't destroy the thread if (tmp->is_valid()) { __ save_thread(tmp->as_register()); } __ call(dest, relocInfo::runtime_call_type); __ delayed()->nop(); if (info != NULL) { add_call_info_here(info); } if (tmp->is_valid()) { __ restore_thread(tmp->as_register()); } #ifdef ASSERT __ verify_thread(); #endif // ASSERT } void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) { #ifdef _LP64 ShouldNotReachHere(); #endif NEEDS_CLEANUP; if (type == T_LONG) { LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr(); // (extended to allow indexed as well as constant displaced for JSR-166) Register idx = noreg; // contains either constant offset or index int disp = mem_addr->disp(); if (mem_addr->index() == LIR_OprFact::illegalOpr) { if (!Assembler::is_simm13(disp)) { idx = O7; __ set(disp, idx); } } else { assert(disp == 0, "not both indexed and disp"); idx = mem_addr->index()->as_register(); } int null_check_offset = -1; Register base = mem_addr->base()->as_register(); if (src->is_register() && dest->is_address()) { // G4 is high half, G5 is low half if (VM_Version::v9_instructions_work()) { // clear the top bits of G5, and scale up G4 __ srl (src->as_register_lo(), 0, G5); __ sllx(src->as_register_hi(), 32, G4); // combine the two halves into the 64 bits of G4 __ or3(G4, G5, G4); null_check_offset = __ offset(); if (idx == noreg) { __ stx(G4, base, disp); } else { __ stx(G4, base, idx); } } else { __ mov (src->as_register_hi(), G4); __ mov (src->as_register_lo(), G5); null_check_offset = __ offset(); if (idx == noreg) { __ std(G4, base, disp); } else { __ std(G4, base, idx); } } } else if (src->is_address() && dest->is_register()) { null_check_offset = __ offset(); if (VM_Version::v9_instructions_work()) { if (idx == noreg) { __ ldx(base, disp, G5); } else { __ ldx(base, idx, G5); } __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi __ mov (G5, dest->as_register_lo()); // copy low half into lo } else { if (idx == noreg) { __ ldd(base, disp, G4); } else { __ ldd(base, idx, G4); } // G4 is high half, G5 is low half __ mov (G4, dest->as_register_hi()); __ mov (G5, dest->as_register_lo()); } } else { Unimplemented(); } if (info != NULL) { add_debug_info_for_null_check(null_check_offset, info); } } else { // use normal move for all other volatiles since they don't need // special handling to remain atomic. move_op(src, dest, type, lir_patch_none, info, false, false, false); } } void LIR_Assembler::membar() { // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) ); } void LIR_Assembler::membar_acquire() { // no-op on TSO } void LIR_Assembler::membar_release() { // no-op on TSO } // Pack two sequential registers containing 32 bit values // into a single 64 bit register. // src and src->successor() are packed into dst // src and dst may be the same register. // Note: src is destroyed void LIR_Assembler::pack64(LIR_Opr src, LIR_Opr dst) { Register rs = src->as_register(); Register rd = dst->as_register_lo(); __ sllx(rs, 32, rs); __ srl(rs->successor(), 0, rs->successor()); __ or3(rs, rs->successor(), rd); } // Unpack a 64 bit value in a register into // two sequential registers. // src is unpacked into dst and dst->successor() void LIR_Assembler::unpack64(LIR_Opr src, LIR_Opr dst) { Register rs = src->as_register_lo(); Register rd = dst->as_register_hi(); assert_different_registers(rs, rd, rd->successor()); __ srlx(rs, 32, rd); __ srl (rs, 0, rd->successor()); } void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) { LIR_Address* addr = addr_opr->as_address_ptr(); assert(addr->index()->is_illegal() && addr->scale() == LIR_Address::times_1 && Assembler::is_simm13(addr->disp()), "can't handle complex addresses yet"); __ add(addr->base()->as_pointer_register(), addr->disp(), dest->as_pointer_register()); } void LIR_Assembler::get_thread(LIR_Opr result_reg) { assert(result_reg->is_register(), "check"); __ mov(G2_thread, result_reg->as_register()); } void LIR_Assembler::peephole(LIR_List* lir) { LIR_OpList* inst = lir->instructions_list(); for (int i = 0; i < inst->length(); i++) { LIR_Op* op = inst->at(i); switch (op->code()) { case lir_cond_float_branch: case lir_branch: { LIR_OpBranch* branch = op->as_OpBranch(); assert(branch->info() == NULL, "shouldn't be state on branches anymore"); LIR_Op* delay_op = NULL; // we'd like to be able to pull following instructions into // this slot but we don't know enough to do it safely yet so // only optimize block to block control flow. if (LIRFillDelaySlots && branch->block()) { LIR_Op* prev = inst->at(i - 1); if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) { // swap previous instruction into delay slot inst->at_put(i - 1, op); inst->at_put(i, new LIR_OpDelay(prev, op->info())); #ifndef PRODUCT if (LIRTracePeephole) { tty->print_cr("delayed"); inst->at(i - 1)->print(); inst->at(i)->print(); tty->cr(); } #endif continue; } } if (!delay_op) { delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL); } inst->insert_before(i + 1, delay_op); break; } case lir_static_call: case lir_virtual_call: case lir_icvirtual_call: case lir_optvirtual_call: case lir_dynamic_call: { LIR_Op* prev = inst->at(i - 1); if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL && (op->code() != lir_virtual_call || !prev->result_opr()->is_single_cpu() || prev->result_opr()->as_register() != O0) && LIR_Assembler::is_single_instruction(prev)) { // Only moves without info can be put into the delay slot. // Also don't allow the setup of the receiver in the delay // slot for vtable calls. inst->at_put(i - 1, op); inst->at_put(i, new LIR_OpDelay(prev, op->info())); #ifndef PRODUCT if (LIRTracePeephole) { tty->print_cr("delayed"); inst->at(i - 1)->print(); inst->at(i)->print(); tty->cr(); } #endif } else { LIR_Op* delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info()); inst->insert_before(i + 1, delay_op); i++; } #if defined(TIERED) && !defined(_LP64) // fixup the return value from G1 to O0/O1 for long returns. // It's done here instead of in LIRGenerator because there's // such a mismatch between the single reg and double reg // calling convention. LIR_OpJavaCall* callop = op->as_OpJavaCall(); if (callop->result_opr() == FrameMap::out_long_opr) { LIR_OpJavaCall* call; LIR_OprList* arguments = new LIR_OprList(callop->arguments()->length()); for (int a = 0; a < arguments->length(); a++) { arguments[a] = callop->arguments()[a]; } if (op->code() == lir_virtual_call) { call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr, callop->vtable_offset(), arguments, callop->info()); } else { call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr, callop->addr(), arguments, callop->info()); } inst->at_put(i - 1, call); inst->insert_before(i + 1, new LIR_Op1(lir_unpack64, FrameMap::g1_long_single_opr, callop->result_opr(), T_LONG, lir_patch_none, NULL)); } #endif break; } } } } #undef __