/* * Copyright 2003-2008 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * */ #include "incls/_precompiled.incl" #include "incls/_interp_masm_x86_64.cpp.incl" // Implementation of InterpreterMacroAssembler void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, int number_of_arguments) { // interpreter specific // // Note: No need to save/restore bcp & locals (r13 & r14) pointer // since these are callee saved registers and no blocking/ // GC can happen in leaf calls. #ifdef ASSERT save_bcp(); { Label L; cmpq(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int)NULL_WORD); jcc(Assembler::equal, L); stop("InterpreterMacroAssembler::call_VM_leaf_base:" " last_sp != NULL"); bind(L); } #endif // super call MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); // interpreter specific #ifdef ASSERT { Label L; cmpq(r13, Address(rbp, frame::interpreter_frame_bcx_offset * wordSize)); jcc(Assembler::equal, L); stop("InterpreterMacroAssembler::call_VM_leaf_base:" " r13 not callee saved?"); bind(L); } { Label L; cmpq(r14, Address(rbp, frame::interpreter_frame_locals_offset * wordSize)); jcc(Assembler::equal, L); stop("InterpreterMacroAssembler::call_VM_leaf_base:" " r14 not callee saved?"); bind(L); } #endif } void InterpreterMacroAssembler::call_VM_base(Register oop_result, Register java_thread, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) { // interpreter specific // // Note: Could avoid restoring locals ptr (callee saved) - however doesn't // really make a difference for these runtime calls, since they are // slow anyway. Btw., bcp must be saved/restored since it may change // due to GC. // assert(java_thread == noreg , "not expecting a precomputed java thread"); save_bcp(); #ifdef ASSERT { Label L; cmpq(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int)NULL_WORD); jcc(Assembler::equal, L); stop("InterpreterMacroAssembler::call_VM_leaf_base:" " last_sp != NULL"); bind(L); } #endif /* ASSERT */ // super call MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions); // interpreter specific restore_bcp(); restore_locals(); } void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) { if (JvmtiExport::can_pop_frame()) { Label L; // Initiate popframe handling only if it is not already being // processed. If the flag has the popframe_processing bit set, it // means that this code is called *during* popframe handling - we // don't want to reenter. // This method is only called just after the call into the vm in // call_VM_base, so the arg registers are available. movl(c_rarg0, Address(r15_thread, JavaThread::popframe_condition_offset())); testl(c_rarg0, JavaThread::popframe_pending_bit); jcc(Assembler::zero, L); testl(c_rarg0, JavaThread::popframe_processing_bit); jcc(Assembler::notZero, L); // Call Interpreter::remove_activation_preserving_args_entry() to get the // address of the same-named entrypoint in the generated interpreter code. call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); jmp(rax); bind(L); } } void InterpreterMacroAssembler::load_earlyret_value(TosState state) { movq(rcx, Address(r15_thread, JavaThread::jvmti_thread_state_offset())); const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset()); const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset()); const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset()); switch (state) { case atos: movq(rax, oop_addr); movptr(oop_addr, NULL_WORD); verify_oop(rax, state); break; case ltos: movq(rax, val_addr); break; case btos: // fall through case ctos: // fall through case stos: // fall through case itos: movl(rax, val_addr); break; case ftos: movflt(xmm0, val_addr); break; case dtos: movdbl(xmm0, val_addr); break; case vtos: /* nothing to do */ break; default : ShouldNotReachHere(); } // Clean up tos value in the thread object movl(tos_addr, (int) ilgl); movl(val_addr, (int) NULL_WORD); } void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) { if (JvmtiExport::can_force_early_return()) { Label L; movq(c_rarg0, Address(r15_thread, JavaThread::jvmti_thread_state_offset())); testq(c_rarg0, c_rarg0); jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit; // Initiate earlyret handling only if it is not already being processed. // If the flag has the earlyret_processing bit set, it means that this code // is called *during* earlyret handling - we don't want to reenter. movl(c_rarg0, Address(c_rarg0, JvmtiThreadState::earlyret_state_offset())); cmpl(c_rarg0, JvmtiThreadState::earlyret_pending); jcc(Assembler::notEqual, L); // Call Interpreter::remove_activation_early_entry() to get the address of the // same-named entrypoint in the generated interpreter code. movq(c_rarg0, Address(r15_thread, JavaThread::jvmti_thread_state_offset())); movl(c_rarg0, Address(c_rarg0, JvmtiThreadState::earlyret_tos_offset())); call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), c_rarg0); jmp(rax); bind(L); } } void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp( Register reg, int bcp_offset) { assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); movl(reg, Address(r13, bcp_offset)); bswapl(reg); shrl(reg, 16); } void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register index, int bcp_offset) { assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); assert(cache != index, "must use different registers"); load_unsigned_word(index, Address(r13, bcp_offset)); movq(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below"); // convert from field index to ConstantPoolCacheEntry index shll(index, 2); } void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp, int bcp_offset) { assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); assert(cache != tmp, "must use different register"); load_unsigned_word(tmp, Address(r13, bcp_offset)); assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below"); // convert from field index to ConstantPoolCacheEntry index // and from word offset to byte offset shll(tmp, 2 + LogBytesPerWord); movq(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); // skip past the header addq(cache, in_bytes(constantPoolCacheOopDesc::base_offset())); addq(cache, tmp); // construct pointer to cache entry } // Generate a subtype check: branch to ok_is_subtype if sub_klass is a // subtype of super_klass. // // Args: // rax: superklass // Rsub_klass: subklass // // Kills: // rcx, rdi void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, Label& ok_is_subtype) { assert(Rsub_klass != rax, "rax holds superklass"); assert(Rsub_klass != r14, "r14 holds locals"); assert(Rsub_klass != r13, "r13 holds bcp"); assert(Rsub_klass != rcx, "rcx holds 2ndary super array length"); assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr"); Label not_subtype, not_subtype_pop, loop; // Profile the not-null value's klass. profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, rdi // Load the super-klass's check offset into rcx movl(rcx, Address(rax, sizeof(oopDesc) + Klass::super_check_offset_offset_in_bytes())); // Load from the sub-klass's super-class display list, or a 1-word // cache of the secondary superclass list, or a failing value with a // sentinel offset if the super-klass is an interface or // exceptionally deep in the Java hierarchy and we have to scan the // secondary superclass list the hard way. See if we get an // immediate positive hit cmpq(rax, Address(Rsub_klass, rcx, Address::times_1)); jcc(Assembler::equal,ok_is_subtype); // Check for immediate negative hit cmpl(rcx, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes()); jcc( Assembler::notEqual, not_subtype ); // Check for self cmpq(Rsub_klass, rax); jcc(Assembler::equal, ok_is_subtype); // Now do a linear scan of the secondary super-klass chain. movq(rdi, Address(Rsub_klass, sizeof(oopDesc) + Klass::secondary_supers_offset_in_bytes())); // rdi holds the objArrayOop of secondary supers. // Load the array length movl(rcx, Address(rdi, arrayOopDesc::length_offset_in_bytes())); // Skip to start of data; also clear Z flag incase rcx is zero addq(rdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT)); // Scan rcx words at [rdi] for occurance of rax // Set NZ/Z based on last compare // this part is kind tricky, as values in supers array could be 32 or 64 bit wide // and we store values in objArrays always encoded, thus we need to encode value // before repne if (UseCompressedOops) { pushq(rax); encode_heap_oop(rax); repne_scanl(); // Not equal? jcc(Assembler::notEqual, not_subtype_pop); // restore heap oop here for movq popq(rax); } else { repne_scanq(); jcc(Assembler::notEqual, not_subtype); } // Must be equal but missed in cache. Update cache. movq(Address(Rsub_klass, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes()), rax); jmp(ok_is_subtype); bind(not_subtype_pop); // restore heap oop here for miss if (UseCompressedOops) popq(rax); bind(not_subtype); profile_typecheck_failed(rcx); // blows rcx } // Java Expression Stack #ifdef ASSERT // Verifies that the stack tag matches. Must be called before the stack // value is popped off the stack. void InterpreterMacroAssembler::verify_stack_tag(frame::Tag t) { if (TaggedStackInterpreter) { frame::Tag tag = t; if (t == frame::TagCategory2) { tag = frame::TagValue; Label hokay; cmpq(Address(rsp, 3*wordSize), (int)tag); jcc(Assembler::equal, hokay); stop("Java Expression stack tag high value is bad"); bind(hokay); } Label okay; cmpq(Address(rsp, wordSize), (int)tag); jcc(Assembler::equal, okay); // Also compare if the stack value is zero, then the tag might // not have been set coming from deopt. cmpq(Address(rsp, 0), 0); jcc(Assembler::equal, okay); stop("Java Expression stack tag value is bad"); bind(okay); } } #endif // ASSERT void InterpreterMacroAssembler::pop_ptr(Register r) { debug_only(verify_stack_tag(frame::TagReference)); popq(r); if (TaggedStackInterpreter) addq(rsp, 1 * wordSize); } void InterpreterMacroAssembler::pop_ptr(Register r, Register tag) { popq(r); if (TaggedStackInterpreter) popq(tag); } void InterpreterMacroAssembler::pop_i(Register r) { // XXX can't use popq currently, upper half non clean debug_only(verify_stack_tag(frame::TagValue)); movl(r, Address(rsp, 0)); addq(rsp, wordSize); if (TaggedStackInterpreter) addq(rsp, 1 * wordSize); } void InterpreterMacroAssembler::pop_l(Register r) { debug_only(verify_stack_tag(frame::TagCategory2)); movq(r, Address(rsp, 0)); addq(rsp, 2 * Interpreter::stackElementSize()); } void InterpreterMacroAssembler::pop_f(XMMRegister r) { debug_only(verify_stack_tag(frame::TagValue)); movflt(r, Address(rsp, 0)); addq(rsp, wordSize); if (TaggedStackInterpreter) addq(rsp, 1 * wordSize); } void InterpreterMacroAssembler::pop_d(XMMRegister r) { debug_only(verify_stack_tag(frame::TagCategory2)); movdbl(r, Address(rsp, 0)); addq(rsp, 2 * Interpreter::stackElementSize()); } void InterpreterMacroAssembler::push_ptr(Register r) { if (TaggedStackInterpreter) pushq(frame::TagReference); pushq(r); } void InterpreterMacroAssembler::push_ptr(Register r, Register tag) { if (TaggedStackInterpreter) pushq(tag); pushq(r); } void InterpreterMacroAssembler::push_i(Register r) { if (TaggedStackInterpreter) pushq(frame::TagValue); pushq(r); } void InterpreterMacroAssembler::push_l(Register r) { if (TaggedStackInterpreter) { pushq(frame::TagValue); subq(rsp, 1 * wordSize); pushq(frame::TagValue); subq(rsp, 1 * wordSize); } else { subq(rsp, 2 * wordSize); } movq(Address(rsp, 0), r); } void InterpreterMacroAssembler::push_f(XMMRegister r) { if (TaggedStackInterpreter) pushq(frame::TagValue); subq(rsp, wordSize); movflt(Address(rsp, 0), r); } void InterpreterMacroAssembler::push_d(XMMRegister r) { if (TaggedStackInterpreter) { pushq(frame::TagValue); subq(rsp, 1 * wordSize); pushq(frame::TagValue); subq(rsp, 1 * wordSize); } else { subq(rsp, 2 * wordSize); } movdbl(Address(rsp, 0), r); } void InterpreterMacroAssembler::pop(TosState state) { switch (state) { case atos: pop_ptr(); break; case btos: case ctos: case stos: case itos: pop_i(); break; case ltos: pop_l(); break; case ftos: pop_f(); break; case dtos: pop_d(); break; case vtos: /* nothing to do */ break; default: ShouldNotReachHere(); } verify_oop(rax, state); } void InterpreterMacroAssembler::push(TosState state) { verify_oop(rax, state); switch (state) { case atos: push_ptr(); break; case btos: case ctos: case stos: case itos: push_i(); break; case ltos: push_l(); break; case ftos: push_f(); break; case dtos: push_d(); break; case vtos: /* nothing to do */ break; default : ShouldNotReachHere(); } } // Tagged stack helpers for swap and dup void InterpreterMacroAssembler::load_ptr_and_tag(int n, Register val, Register tag) { movq(val, Address(rsp, Interpreter::expr_offset_in_bytes(n))); if (TaggedStackInterpreter) { movq(tag, Address(rsp, Interpreter::expr_tag_offset_in_bytes(n))); } } void InterpreterMacroAssembler::store_ptr_and_tag(int n, Register val, Register tag) { movq(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val); if (TaggedStackInterpreter) { movq(Address(rsp, Interpreter::expr_tag_offset_in_bytes(n)), tag); } } // Tagged local support void InterpreterMacroAssembler::tag_local(frame::Tag tag, int n) { if (TaggedStackInterpreter) { if (tag == frame::TagCategory2) { mov64(Address(r14, Interpreter::local_tag_offset_in_bytes(n+1)), (intptr_t)frame::TagValue); mov64(Address(r14, Interpreter::local_tag_offset_in_bytes(n)), (intptr_t)frame::TagValue); } else { mov64(Address(r14, Interpreter::local_tag_offset_in_bytes(n)), (intptr_t)tag); } } } void InterpreterMacroAssembler::tag_local(frame::Tag tag, Register idx) { if (TaggedStackInterpreter) { if (tag == frame::TagCategory2) { mov64(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(1)), (intptr_t)frame::TagValue); mov64(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(0)), (intptr_t)frame::TagValue); } else { mov64(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(0)), (intptr_t)tag); } } } void InterpreterMacroAssembler::tag_local(Register tag, Register idx) { if (TaggedStackInterpreter) { // can only be TagValue or TagReference movq(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(0)), tag); } } void InterpreterMacroAssembler::tag_local(Register tag, int n) { if (TaggedStackInterpreter) { // can only be TagValue or TagReference movq(Address(r14, Interpreter::local_tag_offset_in_bytes(n)), tag); } } #ifdef ASSERT void InterpreterMacroAssembler::verify_local_tag(frame::Tag tag, int n) { if (TaggedStackInterpreter) { frame::Tag t = tag; if (tag == frame::TagCategory2) { Label nbl; t = frame::TagValue; // change to what is stored in locals cmpq(Address(r14, Interpreter::local_tag_offset_in_bytes(n+1)), (int)t); jcc(Assembler::equal, nbl); stop("Local tag is bad for long/double"); bind(nbl); } Label notBad; cmpq(Address(r14, Interpreter::local_tag_offset_in_bytes(n)), (int)t); jcc(Assembler::equal, notBad); // Also compare if the local value is zero, then the tag might // not have been set coming from deopt. cmpq(Address(r14, Interpreter::local_offset_in_bytes(n)), 0); jcc(Assembler::equal, notBad); stop("Local tag is bad"); bind(notBad); } } void InterpreterMacroAssembler::verify_local_tag(frame::Tag tag, Register idx) { if (TaggedStackInterpreter) { frame::Tag t = tag; if (tag == frame::TagCategory2) { Label nbl; t = frame::TagValue; // change to what is stored in locals cmpq(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(1)), (int)t); jcc(Assembler::equal, nbl); stop("Local tag is bad for long/double"); bind(nbl); } Label notBad; cmpq(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(0)), (int)t); jcc(Assembler::equal, notBad); // Also compare if the local value is zero, then the tag might // not have been set coming from deopt. cmpq(Address(r14, idx, Address::times_8, Interpreter::local_offset_in_bytes(0)), 0); jcc(Assembler::equal, notBad); stop("Local tag is bad"); bind(notBad); } } #endif // ASSERT void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point) { MacroAssembler::call_VM_leaf_base(entry_point, 0); } void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point, Register arg_1) { if (c_rarg0 != arg_1) { movq(c_rarg0, arg_1); } MacroAssembler::call_VM_leaf_base(entry_point, 1); } void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2) { assert(c_rarg0 != arg_2, "smashed argument"); assert(c_rarg1 != arg_1, "smashed argument"); if (c_rarg0 != arg_1) { movq(c_rarg0, arg_1); } if (c_rarg1 != arg_2) { movq(c_rarg1, arg_2); } MacroAssembler::call_VM_leaf_base(entry_point, 2); } void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3) { assert(c_rarg0 != arg_2, "smashed argument"); assert(c_rarg0 != arg_3, "smashed argument"); assert(c_rarg1 != arg_1, "smashed argument"); assert(c_rarg1 != arg_3, "smashed argument"); assert(c_rarg2 != arg_1, "smashed argument"); assert(c_rarg2 != arg_2, "smashed argument"); if (c_rarg0 != arg_1) { movq(c_rarg0, arg_1); } if (c_rarg1 != arg_2) { movq(c_rarg1, arg_2); } if (c_rarg2 != arg_3) { movq(c_rarg2, arg_3); } MacroAssembler::call_VM_leaf_base(entry_point, 3); } // Jump to from_interpreted entry of a call unless single stepping is possible // in this thread in which case we must call the i2i entry void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) { // set sender sp leaq(r13, Address(rsp, wordSize)); // record last_sp movq(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), r13); if (JvmtiExport::can_post_interpreter_events()) { Label run_compiled_code; // JVMTI events, such as single-stepping, are implemented partly by avoiding running // compiled code in threads for which the event is enabled. Check here for // interp_only_mode if these events CAN be enabled. get_thread(temp); // interp_only is an int, on little endian it is sufficient to test the byte only // Is a cmpl faster (ce cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0); jcc(Assembler::zero, run_compiled_code); jmp(Address(method, methodOopDesc::interpreter_entry_offset())); bind(run_compiled_code); } jmp(Address(method, methodOopDesc::from_interpreted_offset())); } // The following two routines provide a hook so that an implementation // can schedule the dispatch in two parts. amd64 does not do this. void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { // Nothing amd64 specific to be done here } void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { dispatch_next(state, step); } void InterpreterMacroAssembler::dispatch_base(TosState state, address* table, bool verifyoop) { verify_FPU(1, state); if (VerifyActivationFrameSize) { Label L; movq(rcx, rbp); subq(rcx, rsp); int min_frame_size = (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * wordSize; cmpq(rcx, min_frame_size); jcc(Assembler::greaterEqual, L); stop("broken stack frame"); bind(L); } if (verifyoop) { verify_oop(rax, state); } lea(rscratch1, ExternalAddress((address)table)); jmp(Address(rscratch1, rbx, Address::times_8)); } void InterpreterMacroAssembler::dispatch_only(TosState state) { dispatch_base(state, Interpreter::dispatch_table(state)); } void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { dispatch_base(state, Interpreter::normal_table(state)); } void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) { dispatch_base(state, Interpreter::normal_table(state), false); } void InterpreterMacroAssembler::dispatch_next(TosState state, int step) { // load next bytecode (load before advancing r13 to prevent AGI) load_unsigned_byte(rbx, Address(r13, step)); // advance r13 incrementq(r13, step); dispatch_base(state, Interpreter::dispatch_table(state)); } void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { // load current bytecode load_unsigned_byte(rbx, Address(r13, 0)); dispatch_base(state, table); } // remove activation // // Unlock the receiver if this is a synchronized method. // Unlock any Java monitors from syncronized blocks. // Remove the activation from the stack. // // If there are locked Java monitors // If throw_monitor_exception // throws IllegalMonitorStateException // Else if install_monitor_exception // installs IllegalMonitorStateException // Else // no error processing void InterpreterMacroAssembler::remove_activation( TosState state, Register ret_addr, bool throw_monitor_exception, bool install_monitor_exception, bool notify_jvmdi) { // Note: Registers rdx xmm0 may be in use for the // result check if synchronized method Label unlocked, unlock, no_unlock; // get the value of _do_not_unlock_if_synchronized into rdx const Address do_not_unlock_if_synchronized(r15_thread, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); movbool(rdx, do_not_unlock_if_synchronized); movbool(do_not_unlock_if_synchronized, false); // reset the flag // get method access flags movq(rbx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); movl(rcx, Address(rbx, methodOopDesc::access_flags_offset())); testl(rcx, JVM_ACC_SYNCHRONIZED); jcc(Assembler::zero, unlocked); // Don't unlock anything if the _do_not_unlock_if_synchronized flag // is set. testbool(rdx); jcc(Assembler::notZero, no_unlock); // unlock monitor push(state); // save result // BasicObjectLock will be first in list, since this is a // synchronized method. However, need to check that the object has // not been unlocked by an explicit monitorexit bytecode. const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int) sizeof(BasicObjectLock)); // We use c_rarg1 so that if we go slow path it will be the correct // register for unlock_object to pass to VM directly leaq(c_rarg1, monitor); // address of first monitor movq(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes())); testq(rax, rax); jcc(Assembler::notZero, unlock); pop(state); if (throw_monitor_exception) { // Entry already unlocked, need to throw exception call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception)); should_not_reach_here(); } else { // Monitor already unlocked during a stack unroll. If requested, // install an illegal_monitor_state_exception. Continue with // stack unrolling. if (install_monitor_exception) { call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception)); } jmp(unlocked); } bind(unlock); unlock_object(c_rarg1); pop(state); // Check that for block-structured locking (i.e., that all locked // objects has been unlocked) bind(unlocked); // rax: Might contain return value // Check that all monitors are unlocked { Label loop, exception, entry, restart; const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; const Address monitor_block_top( rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); const Address monitor_block_bot( rbp, frame::interpreter_frame_initial_sp_offset * wordSize); bind(restart); // We use c_rarg1 so that if we go slow path it will be the correct // register for unlock_object to pass to VM directly movq(c_rarg1, monitor_block_top); // points to current entry, starting // with top-most entry leaq(rbx, monitor_block_bot); // points to word before bottom of // monitor block jmp(entry); // Entry already locked, need to throw exception bind(exception); if (throw_monitor_exception) { // Throw exception MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime:: throw_illegal_monitor_state_exception)); should_not_reach_here(); } else { // Stack unrolling. Unlock object and install illegal_monitor_exception. // Unlock does not block, so don't have to worry about the frame. // We don't have to preserve c_rarg1 since we are going to throw an exception. push(state); unlock_object(c_rarg1); pop(state); if (install_monitor_exception) { call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime:: new_illegal_monitor_state_exception)); } jmp(restart); } bind(loop); // check if current entry is used cmpq(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), (int) NULL); jcc(Assembler::notEqual, exception); addq(c_rarg1, entry_size); // otherwise advance to next entry bind(entry); cmpq(c_rarg1, rbx); // check if bottom reached jcc(Assembler::notEqual, loop); // if not at bottom then check this entry } bind(no_unlock); // jvmti support if (notify_jvmdi) { notify_method_exit(state, NotifyJVMTI); // preserve TOSCA } else { notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA } // remove activation // get sender sp movq(rbx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); leave(); // remove frame anchor popq(ret_addr); // get return address movq(rsp, rbx); // set sp to sender sp } // Lock object // // Args: // c_rarg1: BasicObjectLock to be used for locking // // Kills: // rax // c_rarg0, c_rarg1, c_rarg2, c_rarg3, .. (param regs) // rscratch1, rscratch2 (scratch regs) void InterpreterMacroAssembler::lock_object(Register lock_reg) { assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1"); if (UseHeavyMonitors) { call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg); } else { Label done; const Register swap_reg = rax; // Must use rax for cmpxchg instruction const Register obj_reg = c_rarg3; // Will contain the oop const int obj_offset = BasicObjectLock::obj_offset_in_bytes(); const int lock_offset = BasicObjectLock::lock_offset_in_bytes (); const int mark_offset = lock_offset + BasicLock::displaced_header_offset_in_bytes(); Label slow_case; // Load object pointer into obj_reg %c_rarg3 movq(obj_reg, Address(lock_reg, obj_offset)); if (UseBiasedLocking) { biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, done, &slow_case); } // Load immediate 1 into swap_reg %rax movl(swap_reg, 1); // Load (object->mark() | 1) into swap_reg %rax orq(swap_reg, Address(obj_reg, 0)); // Save (object->mark() | 1) into BasicLock's displaced header movq(Address(lock_reg, mark_offset), swap_reg); assert(lock_offset == 0, "displached header must be first word in BasicObjectLock"); if (os::is_MP()) lock(); cmpxchgq(lock_reg, Address(obj_reg, 0)); if (PrintBiasedLockingStatistics) { cond_inc32(Assembler::zero, ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr())); } jcc(Assembler::zero, done); // Test if the oopMark is an obvious stack pointer, i.e., // 1) (mark & 7) == 0, and // 2) rsp <= mark < mark + os::pagesize() // // These 3 tests can be done by evaluating the following // expression: ((mark - rsp) & (7 - os::vm_page_size())), // assuming both stack pointer and pagesize have their // least significant 3 bits clear. // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg subq(swap_reg, rsp); andq(swap_reg, 7 - os::vm_page_size()); // Save the test result, for recursive case, the result is zero movq(Address(lock_reg, mark_offset), swap_reg); if (PrintBiasedLockingStatistics) { cond_inc32(Assembler::zero, ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr())); } jcc(Assembler::zero, done); bind(slow_case); // Call the runtime routine for slow case call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg); bind(done); } } // Unlocks an object. Used in monitorexit bytecode and // remove_activation. Throws an IllegalMonitorException if object is // not locked by current thread. // // Args: // c_rarg1: BasicObjectLock for lock // // Kills: // rax // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs) // rscratch1, rscratch2 (scratch regs) void InterpreterMacroAssembler::unlock_object(Register lock_reg) { assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1"); if (UseHeavyMonitors) { call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); } else { Label done; const Register swap_reg = rax; // Must use rax for cmpxchg instruction const Register header_reg = c_rarg2; // Will contain the old oopMark const Register obj_reg = c_rarg3; // Will contain the oop save_bcp(); // Save in case of exception // Convert from BasicObjectLock structure to object and BasicLock // structure Store the BasicLock address into %rax leaq(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes())); // Load oop into obj_reg(%c_rarg3) movq(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); // Free entry movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), NULL_WORD); if (UseBiasedLocking) { biased_locking_exit(obj_reg, header_reg, done); } // Load the old header from BasicLock structure movq(header_reg, Address(swap_reg, BasicLock::displaced_header_offset_in_bytes())); // Test for recursion testq(header_reg, header_reg); // zero for recursive case jcc(Assembler::zero, done); // Atomic swap back the old header if (os::is_MP()) lock(); cmpxchgq(header_reg, Address(obj_reg, 0)); // zero for recursive case jcc(Assembler::zero, done); // Call the runtime routine for slow case. movq(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), obj_reg); // restore obj call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); bind(done); restore_bcp(); } } void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, Label& zero_continue) { assert(ProfileInterpreter, "must be profiling interpreter"); movq(mdp, Address(rbp, frame::interpreter_frame_mdx_offset * wordSize)); testq(mdp, mdp); jcc(Assembler::zero, zero_continue); } // Set the method data pointer for the current bcp. void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { assert(ProfileInterpreter, "must be profiling interpreter"); Label zero_continue; pushq(rax); pushq(rbx); get_method(rbx); // Test MDO to avoid the call if it is NULL. movq(rax, Address(rbx, in_bytes(methodOopDesc::method_data_offset()))); testq(rax, rax); jcc(Assembler::zero, zero_continue); // rbx: method // r13: bcp call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, r13); // rax: mdi movq(rbx, Address(rbx, in_bytes(methodOopDesc::method_data_offset()))); testq(rbx, rbx); jcc(Assembler::zero, zero_continue); addq(rbx, in_bytes(methodDataOopDesc::data_offset())); addq(rbx, rax); movq(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rbx); bind(zero_continue); popq(rbx); popq(rax); } void InterpreterMacroAssembler::verify_method_data_pointer() { assert(ProfileInterpreter, "must be profiling interpreter"); #ifdef ASSERT Label verify_continue; pushq(rax); pushq(rbx); pushq(c_rarg3); pushq(c_rarg2); test_method_data_pointer(c_rarg3, verify_continue); // If mdp is zero, continue get_method(rbx); // If the mdp is valid, it will point to a DataLayout header which is // consistent with the bcp. The converse is highly probable also. load_unsigned_word(c_rarg2, Address(c_rarg3, in_bytes(DataLayout::bci_offset()))); addq(c_rarg2, Address(rbx, methodOopDesc::const_offset())); leaq(c_rarg2, Address(c_rarg2, constMethodOopDesc::codes_offset())); cmpq(c_rarg2, r13); jcc(Assembler::equal, verify_continue); // rbx: method // r13: bcp // c_rarg3: mdp call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), rbx, r13, c_rarg3); bind(verify_continue); popq(c_rarg2); popq(c_rarg3); popq(rbx); popq(rax); #endif // ASSERT } void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, int constant, Register value) { assert(ProfileInterpreter, "must be profiling interpreter"); Address data(mdp_in, constant); movq(data, value); } void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, int constant, bool decrement) { // Counter address Address data(mdp_in, constant); increment_mdp_data_at(data, decrement); } void InterpreterMacroAssembler::increment_mdp_data_at(Address data, bool decrement) { assert(ProfileInterpreter, "must be profiling interpreter"); if (decrement) { // Decrement the register. Set condition codes. addq(data, -DataLayout::counter_increment); // If the decrement causes the counter to overflow, stay negative Label L; jcc(Assembler::negative, L); addq(data, DataLayout::counter_increment); bind(L); } else { assert(DataLayout::counter_increment == 1, "flow-free idiom only works with 1"); // Increment the register. Set carry flag. addq(data, DataLayout::counter_increment); // If the increment causes the counter to overflow, pull back by 1. sbbq(data, 0); } } void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, Register reg, int constant, bool decrement) { Address data(mdp_in, reg, Address::times_1, constant); increment_mdp_data_at(data, decrement); } void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, int flag_byte_constant) { assert(ProfileInterpreter, "must be profiling interpreter"); int header_offset = in_bytes(DataLayout::header_offset()); int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant); // Set the flag orl(Address(mdp_in, header_offset), header_bits); } void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, int offset, Register value, Register test_value_out, Label& not_equal_continue) { assert(ProfileInterpreter, "must be profiling interpreter"); if (test_value_out == noreg) { cmpq(value, Address(mdp_in, offset)); } else { // Put the test value into a register, so caller can use it: movq(test_value_out, Address(mdp_in, offset)); cmpq(test_value_out, value); } jcc(Assembler::notEqual, not_equal_continue); } void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, int offset_of_disp) { assert(ProfileInterpreter, "must be profiling interpreter"); Address disp_address(mdp_in, offset_of_disp); addq(mdp_in, disp_address); movq(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in); } void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, Register reg, int offset_of_disp) { assert(ProfileInterpreter, "must be profiling interpreter"); Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp); addq(mdp_in, disp_address); movq(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in); } void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, int constant) { assert(ProfileInterpreter, "must be profiling interpreter"); addq(mdp_in, constant); movq(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in); } void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { assert(ProfileInterpreter, "must be profiling interpreter"); pushq(return_bci); // save/restore across call_VM call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci); popq(return_bci); } void InterpreterMacroAssembler::profile_taken_branch(Register mdp, Register bumped_count) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. // Otherwise, assign to mdp test_method_data_pointer(mdp, profile_continue); // We are taking a branch. Increment the taken count. // We inline increment_mdp_data_at to return bumped_count in a register //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); Address data(mdp, in_bytes(JumpData::taken_offset())); movq(bumped_count, data); assert(DataLayout::counter_increment == 1, "flow-free idiom only works with 1"); addq(bumped_count, DataLayout::counter_increment); sbbq(bumped_count, 0); movq(data, bumped_count); // Store back out // The method data pointer needs to be updated to reflect the new target. update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); bind(profile_continue); } } void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(mdp, profile_continue); // We are taking a branch. Increment the not taken count. increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); // The method data pointer needs to be updated to correspond to // the next bytecode update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size())); bind(profile_continue); } } void InterpreterMacroAssembler::profile_call(Register mdp) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(mdp, profile_continue); // We are making a call. Increment the count. increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); // The method data pointer needs to be updated to reflect the new target. update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); bind(profile_continue); } } void InterpreterMacroAssembler::profile_final_call(Register mdp) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(mdp, profile_continue); // We are making a call. Increment the count. increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); // The method data pointer needs to be updated to reflect the new target. update_mdp_by_constant(mdp, in_bytes(VirtualCallData:: virtual_call_data_size())); bind(profile_continue); } } void InterpreterMacroAssembler::profile_virtual_call(Register receiver, Register mdp, Register reg2) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(mdp, profile_continue); // We are making a call. Increment the count. increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); // Record the receiver type. record_klass_in_profile(receiver, mdp, reg2); // The method data pointer needs to be updated to reflect the new target. update_mdp_by_constant(mdp, in_bytes(VirtualCallData:: virtual_call_data_size())); bind(profile_continue); } } // This routine creates a state machine for updating the multi-row // type profile at a virtual call site (or other type-sensitive bytecode). // The machine visits each row (of receiver/count) until the receiver type // is found, or until it runs out of rows. At the same time, it remembers // the location of the first empty row. (An empty row records null for its // receiver, and can be allocated for a newly-observed receiver type.) // Because there are two degrees of freedom in the state, a simple linear // search will not work; it must be a decision tree. Hence this helper // function is recursive, to generate the required tree structured code. // It's the interpreter, so we are trading off code space for speed. // See below for example code. void InterpreterMacroAssembler::record_klass_in_profile_helper( Register receiver, Register mdp, Register reg2, int start_row, Label& done) { int last_row = VirtualCallData::row_limit() - 1; assert(start_row <= last_row, "must be work left to do"); // Test this row for both the receiver and for null. // Take any of three different outcomes: // 1. found receiver => increment count and goto done // 2. found null => keep looking for case 1, maybe allocate this cell // 3. found something else => keep looking for cases 1 and 2 // Case 3 is handled by a recursive call. for (int row = start_row; row <= last_row; row++) { Label next_test; bool test_for_null_also = (row == start_row); // See if the receiver is receiver[n]. int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row)); test_mdp_data_at(mdp, recvr_offset, receiver, (test_for_null_also ? reg2 : noreg), next_test); // (Reg2 now contains the receiver from the CallData.) // The receiver is receiver[n]. Increment count[n]. int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row)); increment_mdp_data_at(mdp, count_offset); jmp(done); bind(next_test); if (test_for_null_also) { // Failed the equality check on receiver[n]... Test for null. testq(reg2, reg2); if (start_row == last_row) { // The only thing left to do is handle the null case. jcc(Assembler::notZero, done); break; } // Since null is rare, make it be the branch-taken case. Label found_null; jcc(Assembler::zero, found_null); // Put all the "Case 3" tests here. record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done); // Found a null. Keep searching for a matching receiver, // but remember that this is an empty (unused) slot. bind(found_null); } } // In the fall-through case, we found no matching receiver, but we // observed the receiver[start_row] is NULL. // Fill in the receiver field and increment the count. int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row)); set_mdp_data_at(mdp, recvr_offset, receiver); int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row)); movl(reg2, DataLayout::counter_increment); set_mdp_data_at(mdp, count_offset, reg2); jmp(done); } // Example state machine code for three profile rows: // // main copy of decision tree, rooted at row[1] // if (row[0].rec == rec) { row[0].incr(); goto done; } // if (row[0].rec != NULL) { // // inner copy of decision tree, rooted at row[1] // if (row[1].rec == rec) { row[1].incr(); goto done; } // if (row[1].rec != NULL) { // // degenerate decision tree, rooted at row[2] // if (row[2].rec == rec) { row[2].incr(); goto done; } // if (row[2].rec != NULL) { goto done; } // overflow // row[2].init(rec); goto done; // } else { // // remember row[1] is empty // if (row[2].rec == rec) { row[2].incr(); goto done; } // row[1].init(rec); goto done; // } // } else { // // remember row[0] is empty // if (row[1].rec == rec) { row[1].incr(); goto done; } // if (row[2].rec == rec) { row[2].incr(); goto done; } // row[0].init(rec); goto done; // } void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, Register mdp, Register reg2) { assert(ProfileInterpreter, "must be profiling"); Label done; record_klass_in_profile_helper(receiver, mdp, reg2, 0, done); bind (done); } void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) { if (ProfileInterpreter) { Label profile_continue; uint row; // If no method data exists, go to profile_continue. test_method_data_pointer(mdp, profile_continue); // Update the total ret count. increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); for (row = 0; row < RetData::row_limit(); row++) { Label next_test; // See if return_bci is equal to bci[n]: test_mdp_data_at(mdp, in_bytes(RetData::bci_offset(row)), return_bci, noreg, next_test); // return_bci is equal to bci[n]. Increment the count. increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); // The method data pointer needs to be updated to reflect the new target. update_mdp_by_offset(mdp, in_bytes(RetData::bci_displacement_offset(row))); jmp(profile_continue); bind(next_test); } update_mdp_for_ret(return_bci); bind(profile_continue); } } void InterpreterMacroAssembler::profile_null_seen(Register mdp) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(mdp, profile_continue); // The method data pointer needs to be updated. int mdp_delta = in_bytes(BitData::bit_data_size()); if (TypeProfileCasts) { mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); } update_mdp_by_constant(mdp, mdp_delta); bind(profile_continue); } } void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) { if (ProfileInterpreter && TypeProfileCasts) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(mdp, profile_continue); int count_offset = in_bytes(CounterData::count_offset()); // Back up the address, since we have already bumped the mdp. count_offset -= in_bytes(VirtualCallData::virtual_call_data_size()); // *Decrement* the counter. We expect to see zero or small negatives. increment_mdp_data_at(mdp, count_offset, true); bind (profile_continue); } } void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(mdp, profile_continue); // The method data pointer needs to be updated. int mdp_delta = in_bytes(BitData::bit_data_size()); if (TypeProfileCasts) { mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); // Record the object type. record_klass_in_profile(klass, mdp, reg2); } update_mdp_by_constant(mdp, mdp_delta); bind(profile_continue); } } void InterpreterMacroAssembler::profile_switch_default(Register mdp) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(mdp, profile_continue); // Update the default case count increment_mdp_data_at(mdp, in_bytes(MultiBranchData::default_count_offset())); // The method data pointer needs to be updated. update_mdp_by_offset(mdp, in_bytes(MultiBranchData:: default_displacement_offset())); bind(profile_continue); } } void InterpreterMacroAssembler::profile_switch_case(Register index, Register mdp, Register reg2) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(mdp, profile_continue); // Build the base (index * per_case_size_in_bytes()) + // case_array_offset_in_bytes() movl(reg2, in_bytes(MultiBranchData::per_case_size())); imulq(index, reg2); // XXX l ? addq(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ? // Update the case count increment_mdp_data_at(mdp, index, in_bytes(MultiBranchData::relative_count_offset())); // The method data pointer needs to be updated. update_mdp_by_offset(mdp, index, in_bytes(MultiBranchData:: relative_displacement_offset())); bind(profile_continue); } } void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) { if (state == atos) { MacroAssembler::verify_oop(reg); } } void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { } void InterpreterMacroAssembler::notify_method_entry() { // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to // track stack depth. If it is possible to enter interp_only_mode we add // the code to check if the event should be sent. if (JvmtiExport::can_post_interpreter_events()) { Label L; movl(rdx, Address(r15_thread, JavaThread::interp_only_mode_offset())); testl(rdx, rdx); jcc(Assembler::zero, L); call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry)); bind(L); } { SkipIfEqual skip(this, &DTraceMethodProbes, false); get_method(c_rarg1); call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), r15_thread, c_rarg1); } } void InterpreterMacroAssembler::notify_method_exit( TosState state, NotifyMethodExitMode mode) { // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to // track stack depth. If it is possible to enter interp_only_mode we add // the code to check if the event should be sent. if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { Label L; // Note: frame::interpreter_frame_result has a dependency on how the // method result is saved across the call to post_method_exit. If this // is changed then the interpreter_frame_result implementation will // need to be updated too. push(state); movl(rdx, Address(r15_thread, JavaThread::interp_only_mode_offset())); testl(rdx, rdx); jcc(Assembler::zero, L); call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); bind(L); pop(state); } { SkipIfEqual skip(this, &DTraceMethodProbes, false); push(state); get_method(c_rarg1); call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), r15_thread, c_rarg1); pop(state); } }