/* * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "classfile/vmSymbols.hpp" #include "interpreter/bytecode.hpp" #include "interpreter/interpreter.hpp" #include "memory/allocation.inline.hpp" #include "memory/resourceArea.hpp" #include "memory/universe.inline.hpp" #include "oops/methodData.hpp" #include "oops/oop.inline.hpp" #include "prims/jvmtiThreadState.hpp" #include "runtime/handles.inline.hpp" #include "runtime/monitorChunk.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/vframe.hpp" #include "runtime/vframeArray.hpp" #include "runtime/vframe_hp.hpp" #include "utilities/events.hpp" #ifdef COMPILER2 #include "opto/runtime.hpp" #endif int vframeArrayElement:: bci(void) const { return (_bci == SynchronizationEntryBCI ? 0 : _bci); } void vframeArrayElement::free_monitors(JavaThread* jt) { if (_monitors != NULL) { MonitorChunk* chunk = _monitors; _monitors = NULL; jt->remove_monitor_chunk(chunk); delete chunk; } } void vframeArrayElement::fill_in(compiledVFrame* vf) { // Copy the information from the compiled vframe to the // interpreter frame we will be creating to replace vf _method = vf->method(); _bci = vf->raw_bci(); _reexecute = vf->should_reexecute(); int index; // Get the monitors off-stack GrowableArray* list = vf->monitors(); if (list->is_empty()) { _monitors = NULL; } else { // Allocate monitor chunk _monitors = new MonitorChunk(list->length()); vf->thread()->add_monitor_chunk(_monitors); // Migrate the BasicLocks from the stack to the monitor chunk for (index = 0; index < list->length(); index++) { MonitorInfo* monitor = list->at(index); assert(!monitor->owner_is_scalar_replaced(), "object should be reallocated already"); assert(monitor->owner() == NULL || (!monitor->owner()->is_unlocked() && !monitor->owner()->has_bias_pattern()), "object must be null or locked, and unbiased"); BasicObjectLock* dest = _monitors->at(index); dest->set_obj(monitor->owner()); monitor->lock()->move_to(monitor->owner(), dest->lock()); } } // Convert the vframe locals and expressions to off stack // values. Because we will not gc all oops can be converted to // intptr_t (i.e. a stack slot) and we are fine. This is // good since we are inside a HandleMark and the oops in our // collection would go away between packing them here and // unpacking them in unpack_on_stack. // First the locals go off-stack // FIXME this seems silly it creates a StackValueCollection // in order to get the size to then copy them and // convert the types to intptr_t size slots. Seems like it // could do it in place... Still uses less memory than the // old way though StackValueCollection *locs = vf->locals(); _locals = new StackValueCollection(locs->size()); for(index = 0; index < locs->size(); index++) { StackValue* value = locs->at(index); switch(value->type()) { case T_OBJECT: assert(!value->obj_is_scalar_replaced(), "object should be reallocated already"); // preserve object type _locals->add( new StackValue((intptr_t) (value->get_obj()()), T_OBJECT )); break; case T_CONFLICT: // A dead local. Will be initialized to null/zero. _locals->add( new StackValue()); break; case T_INT: _locals->add( new StackValue(value->get_int())); break; default: ShouldNotReachHere(); } } // Now the expressions off-stack // Same silliness as above StackValueCollection *exprs = vf->expressions(); _expressions = new StackValueCollection(exprs->size()); for(index = 0; index < exprs->size(); index++) { StackValue* value = exprs->at(index); switch(value->type()) { case T_OBJECT: assert(!value->obj_is_scalar_replaced(), "object should be reallocated already"); // preserve object type _expressions->add( new StackValue((intptr_t) (value->get_obj()()), T_OBJECT )); break; case T_CONFLICT: // A dead stack element. Will be initialized to null/zero. // This can occur when the compiler emits a state in which stack // elements are known to be dead (because of an imminent exception). _expressions->add( new StackValue()); break; case T_INT: _expressions->add( new StackValue(value->get_int())); break; default: ShouldNotReachHere(); } } } int unpack_counter = 0; void vframeArrayElement::unpack_on_stack(int caller_actual_parameters, int callee_parameters, int callee_locals, frame* caller, bool is_top_frame, int exec_mode) { JavaThread* thread = (JavaThread*) Thread::current(); // Look at bci and decide on bcp and continuation pc address bcp; // C++ interpreter doesn't need a pc since it will figure out what to do when it // begins execution address pc; bool use_next_mdp = false; // true if we should use the mdp associated with the next bci // rather than the one associated with bcp if (raw_bci() == SynchronizationEntryBCI) { // We are deoptimizing while hanging in prologue code for synchronized method bcp = method()->bcp_from(0); // first byte code pc = Interpreter::deopt_entry(vtos, 0); // step = 0 since we don't skip current bytecode } else if (should_reexecute()) { //reexecute this bytecode assert(is_top_frame, "reexecute allowed only for the top frame"); bcp = method()->bcp_from(bci()); pc = Interpreter::deopt_reexecute_entry(method(), bcp); } else { bcp = method()->bcp_from(bci()); pc = Interpreter::deopt_continue_after_entry(method(), bcp, callee_parameters, is_top_frame); use_next_mdp = true; } assert(Bytecodes::is_defined(*bcp), "must be a valid bytecode"); // Monitorenter and pending exceptions: // // For Compiler2, there should be no pending exception when deoptimizing at monitorenter // because there is no safepoint at the null pointer check (it is either handled explicitly // or prior to the monitorenter) and asynchronous exceptions are not made "pending" by the // runtime interface for the slow case (see JRT_ENTRY_FOR_MONITORENTER). If an asynchronous // exception was processed, the bytecode pointer would have to be extended one bytecode beyond // the monitorenter to place it in the proper exception range. // // For Compiler1, deoptimization can occur while throwing a NullPointerException at monitorenter, // in which case bcp should point to the monitorenter since it is within the exception's range. assert(*bcp != Bytecodes::_monitorenter || is_top_frame, "a _monitorenter must be a top frame"); assert(thread->deopt_nmethod() != NULL, "nmethod should be known"); guarantee(!(thread->deopt_nmethod()->is_compiled_by_c2() && *bcp == Bytecodes::_monitorenter && exec_mode == Deoptimization::Unpack_exception), "shouldn't get exception during monitorenter"); int popframe_preserved_args_size_in_bytes = 0; int popframe_preserved_args_size_in_words = 0; if (is_top_frame) { JvmtiThreadState *state = thread->jvmti_thread_state(); if (JvmtiExport::can_pop_frame() && (thread->has_pending_popframe() || thread->popframe_forcing_deopt_reexecution())) { if (thread->has_pending_popframe()) { // Pop top frame after deoptimization #ifndef CC_INTERP pc = Interpreter::remove_activation_preserving_args_entry(); #else // Do an uncommon trap type entry. c++ interpreter will know // to pop frame and preserve the args pc = Interpreter::deopt_entry(vtos, 0); use_next_mdp = false; #endif } else { // Reexecute invoke in top frame pc = Interpreter::deopt_entry(vtos, 0); use_next_mdp = false; popframe_preserved_args_size_in_bytes = in_bytes(thread->popframe_preserved_args_size()); // Note: the PopFrame-related extension of the expression stack size is done in // Deoptimization::fetch_unroll_info_helper popframe_preserved_args_size_in_words = in_words(thread->popframe_preserved_args_size_in_words()); } } else if (JvmtiExport::can_force_early_return() && state != NULL && state->is_earlyret_pending()) { // Force early return from top frame after deoptimization #ifndef CC_INTERP pc = Interpreter::remove_activation_early_entry(state->earlyret_tos()); #else // TBD: Need to implement ForceEarlyReturn for CC_INTERP (ia64) #endif } else { // Possibly override the previous pc computation of the top (youngest) frame switch (exec_mode) { case Deoptimization::Unpack_deopt: // use what we've got break; case Deoptimization::Unpack_exception: // exception is pending pc = SharedRuntime::raw_exception_handler_for_return_address(thread, pc); // [phh] We're going to end up in some handler or other, so it doesn't // matter what mdp we point to. See exception_handler_for_exception() // in interpreterRuntime.cpp. break; case Deoptimization::Unpack_uncommon_trap: case Deoptimization::Unpack_reexecute: // redo last byte code pc = Interpreter::deopt_entry(vtos, 0); use_next_mdp = false; break; default: ShouldNotReachHere(); } } } // Setup the interpreter frame assert(method() != NULL, "method must exist"); int temps = expressions()->size(); int locks = monitors() == NULL ? 0 : monitors()->number_of_monitors(); Interpreter::layout_activation(method(), temps + callee_parameters, popframe_preserved_args_size_in_words, locks, caller_actual_parameters, callee_parameters, callee_locals, caller, iframe(), is_top_frame); // Update the pc in the frame object and overwrite the temporary pc // we placed in the skeletal frame now that we finally know the // exact interpreter address we should use. _frame.patch_pc(thread, pc); assert (!method()->is_synchronized() || locks > 0, "synchronized methods must have monitors"); BasicObjectLock* top = iframe()->interpreter_frame_monitor_begin(); for (int index = 0; index < locks; index++) { top = iframe()->previous_monitor_in_interpreter_frame(top); BasicObjectLock* src = _monitors->at(index); top->set_obj(src->obj()); src->lock()->move_to(src->obj(), top->lock()); } if (ProfileInterpreter) { iframe()->interpreter_frame_set_mdx(0); // clear out the mdp. } iframe()->interpreter_frame_set_bcx((intptr_t)bcp); // cannot use bcp because frame is not initialized yet if (ProfileInterpreter) { MethodData* mdo = method()->method_data(); if (mdo != NULL) { int bci = iframe()->interpreter_frame_bci(); if (use_next_mdp) ++bci; address mdp = mdo->bci_to_dp(bci); iframe()->interpreter_frame_set_mdp(mdp); } } // Unpack expression stack // If this is an intermediate frame (i.e. not top frame) then this // only unpacks the part of the expression stack not used by callee // as parameters. The callee parameters are unpacked as part of the // callee locals. int i; for(i = 0; i < expressions()->size(); i++) { StackValue *value = expressions()->at(i); intptr_t* addr = iframe()->interpreter_frame_expression_stack_at(i); switch(value->type()) { case T_INT: *addr = value->get_int(); break; case T_OBJECT: *addr = value->get_int(T_OBJECT); break; case T_CONFLICT: // A dead stack slot. Initialize to null in case it is an oop. *addr = NULL_WORD; break; default: ShouldNotReachHere(); } } // Unpack the locals for(i = 0; i < locals()->size(); i++) { StackValue *value = locals()->at(i); intptr_t* addr = iframe()->interpreter_frame_local_at(i); switch(value->type()) { case T_INT: *addr = value->get_int(); break; case T_OBJECT: *addr = value->get_int(T_OBJECT); break; case T_CONFLICT: // A dead location. If it is an oop then we need a NULL to prevent GC from following it *addr = NULL_WORD; break; default: ShouldNotReachHere(); } } if (is_top_frame && JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) { // An interpreted frame was popped but it returns to a deoptimized // frame. The incoming arguments to the interpreted activation // were preserved in thread-local storage by the // remove_activation_preserving_args_entry in the interpreter; now // we put them back into the just-unpacked interpreter frame. // Note that this assumes that the locals arena grows toward lower // addresses. if (popframe_preserved_args_size_in_words != 0) { void* saved_args = thread->popframe_preserved_args(); assert(saved_args != NULL, "must have been saved by interpreter"); #ifdef ASSERT assert(popframe_preserved_args_size_in_words <= iframe()->interpreter_frame_expression_stack_size()*Interpreter::stackElementWords, "expression stack size should have been extended"); #endif // ASSERT int top_element = iframe()->interpreter_frame_expression_stack_size()-1; intptr_t* base; if (frame::interpreter_frame_expression_stack_direction() < 0) { base = iframe()->interpreter_frame_expression_stack_at(top_element); } else { base = iframe()->interpreter_frame_expression_stack(); } Copy::conjoint_jbytes(saved_args, base, popframe_preserved_args_size_in_bytes); thread->popframe_free_preserved_args(); } } #ifndef PRODUCT if (TraceDeoptimization && Verbose) { ttyLocker ttyl; tty->print_cr("[%d Interpreted Frame]", ++unpack_counter); iframe()->print_on(tty); RegisterMap map(thread); vframe* f = vframe::new_vframe(iframe(), &map, thread); f->print(); tty->print_cr("locals size %d", locals()->size()); tty->print_cr("expression size %d", expressions()->size()); method()->print_value(); tty->cr(); // method()->print_codes(); } else if (TraceDeoptimization) { tty->print(" "); method()->print_value(); Bytecodes::Code code = Bytecodes::java_code_at(method(), bcp); int bci = method()->bci_from(bcp); tty->print(" - %s", Bytecodes::name(code)); tty->print(" @ bci %d ", bci); tty->print_cr("sp = " PTR_FORMAT, iframe()->sp()); } #endif // PRODUCT // The expression stack and locals are in the resource area don't leave // a dangling pointer in the vframeArray we leave around for debug // purposes _locals = _expressions = NULL; } int vframeArrayElement::on_stack_size(int caller_actual_parameters, int callee_parameters, int callee_locals, bool is_top_frame, int popframe_extra_stack_expression_els) const { assert(method()->max_locals() == locals()->size(), "just checking"); int locks = monitors() == NULL ? 0 : monitors()->number_of_monitors(); int temps = expressions()->size(); return Interpreter::size_activation(method(), temps + callee_parameters, popframe_extra_stack_expression_els, locks, caller_actual_parameters, callee_parameters, callee_locals, is_top_frame); } vframeArray* vframeArray::allocate(JavaThread* thread, int frame_size, GrowableArray* chunk, RegisterMap *reg_map, frame sender, frame caller, frame self) { // Allocate the vframeArray vframeArray * result = (vframeArray*) AllocateHeap(sizeof(vframeArray) + // fixed part sizeof(vframeArrayElement) * (chunk->length() - 1), // variable part mtCompiler); result->_frames = chunk->length(); result->_owner_thread = thread; result->_sender = sender; result->_caller = caller; result->_original = self; result->set_unroll_block(NULL); // initialize it result->fill_in(thread, frame_size, chunk, reg_map); return result; } void vframeArray::fill_in(JavaThread* thread, int frame_size, GrowableArray* chunk, const RegisterMap *reg_map) { // Set owner first, it is used when adding monitor chunks _frame_size = frame_size; for(int i = 0; i < chunk->length(); i++) { element(i)->fill_in(chunk->at(i)); } // Copy registers for callee-saved registers if (reg_map != NULL) { for(int i = 0; i < RegisterMap::reg_count; i++) { #ifdef AMD64 // The register map has one entry for every int (32-bit value), so // 64-bit physical registers have two entries in the map, one for // each half. Ignore the high halves of 64-bit registers, just like // frame::oopmapreg_to_location does. // // [phh] FIXME: this is a temporary hack! This code *should* work // correctly w/o this hack, possibly by changing RegisterMap::pd_location // in frame_amd64.cpp and the values of the phantom high half registers // in amd64.ad. // if (VMReg::Name(i) < SharedInfo::stack0 && is_even(i)) { intptr_t* src = (intptr_t*) reg_map->location(VMRegImpl::as_VMReg(i)); _callee_registers[i] = src != NULL ? *src : NULL_WORD; // } else { // jint* src = (jint*) reg_map->location(VMReg::Name(i)); // _callee_registers[i] = src != NULL ? *src : NULL_WORD; // } #else jint* src = (jint*) reg_map->location(VMRegImpl::as_VMReg(i)); _callee_registers[i] = src != NULL ? *src : NULL_WORD; #endif if (src == NULL) { set_location_valid(i, false); } else { set_location_valid(i, true); jint* dst = (jint*) register_location(i); *dst = *src; } } } } void vframeArray::unpack_to_stack(frame &unpack_frame, int exec_mode, int caller_actual_parameters) { // stack picture // unpack_frame // [new interpreter frames ] (frames are skeletal but walkable) // caller_frame // // This routine fills in the missing data for the skeletal interpreter frames // in the above picture. // Find the skeletal interpreter frames to unpack into JavaThread* THREAD = JavaThread::current(); RegisterMap map(THREAD, false); // Get the youngest frame we will unpack (last to be unpacked) frame me = unpack_frame.sender(&map); int index; for (index = 0; index < frames(); index++ ) { *element(index)->iframe() = me; // Get the caller frame (possibly skeletal) me = me.sender(&map); } // Do the unpacking of interpreter frames; the frame at index 0 represents the top activation, so it has no callee // Unpack the frames from the oldest (frames() -1) to the youngest (0) frame caller_frame = me; for (index = frames() - 1; index >= 0 ; index--) { vframeArrayElement* elem = element(index); // caller int callee_parameters, callee_locals; if (index == 0) { callee_parameters = callee_locals = 0; } else { methodHandle caller = elem->method(); methodHandle callee = element(index - 1)->method(); Bytecode_invoke inv(caller, elem->bci()); // invokedynamic instructions don't have a class but obviously don't have a MemberName appendix. // NOTE: Use machinery here that avoids resolving of any kind. const bool has_member_arg = !inv.is_invokedynamic() && MethodHandles::has_member_arg(inv.klass(), inv.name()); callee_parameters = callee->size_of_parameters() + (has_member_arg ? 1 : 0); callee_locals = callee->max_locals(); } elem->unpack_on_stack(caller_actual_parameters, callee_parameters, callee_locals, &caller_frame, index == 0, exec_mode); if (index == frames() - 1) { Deoptimization::unwind_callee_save_values(elem->iframe(), this); } caller_frame = *elem->iframe(); caller_actual_parameters = callee_parameters; } deallocate_monitor_chunks(); } void vframeArray::deallocate_monitor_chunks() { JavaThread* jt = JavaThread::current(); for (int index = 0; index < frames(); index++ ) { element(index)->free_monitors(jt); } } #ifndef PRODUCT bool vframeArray::structural_compare(JavaThread* thread, GrowableArray* chunk) { if (owner_thread() != thread) return false; int index = 0; #if 0 // FIXME can't do this comparison // Compare only within vframe array. for (deoptimizedVFrame* vf = deoptimizedVFrame::cast(vframe_at(first_index())); vf; vf = vf->deoptimized_sender_or_null()) { if (index >= chunk->length() || !vf->structural_compare(chunk->at(index))) return false; index++; } if (index != chunk->length()) return false; #endif return true; } #endif address vframeArray::register_location(int i) const { assert(0 <= i && i < RegisterMap::reg_count, "index out of bounds"); return (address) & _callee_registers[i]; } #ifndef PRODUCT // Printing // Note: we cannot have print_on as const, as we allocate inside the method void vframeArray::print_on_2(outputStream* st) { st->print_cr(" - sp: " INTPTR_FORMAT, sp()); st->print(" - thread: "); Thread::current()->print(); st->print_cr(" - frame size: %d", frame_size()); for (int index = 0; index < frames() ; index++ ) { element(index)->print(st); } } void vframeArrayElement::print(outputStream* st) { st->print_cr(" - interpreter_frame -> sp: " INTPTR_FORMAT, iframe()->sp()); } void vframeArray::print_value_on(outputStream* st) const { st->print_cr("vframeArray [%d] ", frames()); } #endif