/* * Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc_implementation/g1/g1CollectedHeap.inline.hpp" #include "gc_implementation/g1/g1GCPhaseTimes.hpp" #include "gc_implementation/g1/g1Log.hpp" // Helper class for avoiding interleaved logging class LineBuffer: public StackObj { private: static const int BUFFER_LEN = 1024; static const int INDENT_CHARS = 3; char _buffer[BUFFER_LEN]; int _indent_level; int _cur; void vappend(const char* format, va_list ap) { int res = vsnprintf(&_buffer[_cur], BUFFER_LEN - _cur, format, ap); if (res != -1) { _cur += res; } else { DEBUG_ONLY(warning("buffer too small in LineBuffer");) _buffer[BUFFER_LEN -1] = 0; _cur = BUFFER_LEN; // vsnprintf above should not add to _buffer if we are called again } } public: explicit LineBuffer(int indent_level): _indent_level(indent_level), _cur(0) { for (; (_cur < BUFFER_LEN && _cur < (_indent_level * INDENT_CHARS)); _cur++) { _buffer[_cur] = ' '; } } #ifndef PRODUCT ~LineBuffer() { assert(_cur == _indent_level * INDENT_CHARS, "pending data in buffer - append_and_print_cr() not called?"); } #endif void append(const char* format, ...) { va_list ap; va_start(ap, format); vappend(format, ap); va_end(ap); } void append_and_print_cr(const char* format, ...) { va_list ap; va_start(ap, format); vappend(format, ap); va_end(ap); gclog_or_tty->print_cr("%s", _buffer); _cur = _indent_level * INDENT_CHARS; } }; G1GCPhaseTimes::G1GCPhaseTimes(uint max_gc_threads) : _max_gc_threads(max_gc_threads), _min_clear_cc_time_ms(-1.0), _max_clear_cc_time_ms(-1.0), _cur_clear_cc_time_ms(0.0), _cum_clear_cc_time_ms(0.0), _num_cc_clears(0L) { assert(max_gc_threads > 0, "Must have some GC threads"); _par_last_gc_worker_start_times_ms = new double[_max_gc_threads]; _par_last_ext_root_scan_times_ms = new double[_max_gc_threads]; _par_last_satb_filtering_times_ms = new double[_max_gc_threads]; _par_last_update_rs_times_ms = new double[_max_gc_threads]; _par_last_update_rs_processed_buffers = new double[_max_gc_threads]; _par_last_scan_rs_times_ms = new double[_max_gc_threads]; _par_last_obj_copy_times_ms = new double[_max_gc_threads]; _par_last_termination_times_ms = new double[_max_gc_threads]; _par_last_termination_attempts = new double[_max_gc_threads]; _par_last_gc_worker_end_times_ms = new double[_max_gc_threads]; _par_last_gc_worker_times_ms = new double[_max_gc_threads]; _par_last_gc_worker_other_times_ms = new double[_max_gc_threads]; } void G1GCPhaseTimes::note_gc_start(double pause_start_time_sec, uint active_gc_threads, bool is_young_gc, bool is_initial_mark_gc, GCCause::Cause gc_cause) { assert(active_gc_threads > 0, "The number of threads must be > 0"); assert(active_gc_threads <= _max_gc_threads, "The number of active threads must be <= the max nubmer of threads"); _active_gc_threads = active_gc_threads; _pause_start_time_sec = pause_start_time_sec; _is_young_gc = is_young_gc; _is_initial_mark_gc = is_initial_mark_gc; _gc_cause = gc_cause; #ifdef ASSERT // initialise the timing data to something well known so that we can spot // if something is not set properly for (uint i = 0; i < _max_gc_threads; ++i) { _par_last_gc_worker_start_times_ms[i] = -1234.0; _par_last_ext_root_scan_times_ms[i] = -1234.0; _par_last_satb_filtering_times_ms[i] = -1234.0; _par_last_update_rs_times_ms[i] = -1234.0; _par_last_update_rs_processed_buffers[i] = -1234.0; _par_last_scan_rs_times_ms[i] = -1234.0; _par_last_obj_copy_times_ms[i] = -1234.0; _par_last_termination_times_ms[i] = -1234.0; _par_last_termination_attempts[i] = -1234.0; _par_last_gc_worker_end_times_ms[i] = -1234.0; _par_last_gc_worker_times_ms[i] = -1234.0; _par_last_gc_worker_other_times_ms[i] = -1234.0; } #endif } void G1GCPhaseTimes::note_gc_end(double pause_end_time_sec) { if (G1Log::fine()) { double pause_time_ms = (pause_end_time_sec - _pause_start_time_sec) * MILLIUNITS; for (uint i = 0; i < _active_gc_threads; i++) { _par_last_gc_worker_times_ms[i] = _par_last_gc_worker_end_times_ms[i] - _par_last_gc_worker_start_times_ms[i]; double worker_known_time = _par_last_ext_root_scan_times_ms[i] + _par_last_satb_filtering_times_ms[i] + _par_last_update_rs_times_ms[i] + _par_last_scan_rs_times_ms[i] + _par_last_obj_copy_times_ms[i] + _par_last_termination_times_ms[i]; _par_last_gc_worker_other_times_ms[i] = _par_last_gc_worker_times_ms[i] - worker_known_time; } print(pause_time_ms); } } void G1GCPhaseTimes::print_par_stats(int level, const char* str, double* data, bool showDecimals) { double min = data[0], max = data[0]; double total = 0.0; LineBuffer buf(level); buf.append("[%s (ms):", str); for (uint i = 0; i < _active_gc_threads; ++i) { double val = data[i]; if (val < min) min = val; if (val > max) max = val; total += val; if (G1Log::finest()) { if (showDecimals) { buf.append(" %.1lf", val); } else { buf.append(" %d", (int)val); } } } if (G1Log::finest()) { buf.append_and_print_cr(""); } double avg = total / (double) _active_gc_threads; if (showDecimals) { buf.append_and_print_cr(" Min: %.1lf, Avg: %.1lf, Max: %.1lf, Diff: %.1lf, Sum: %.1lf]", min, avg, max, max - min, total); } else { buf.append_and_print_cr(" Min: %d, Avg: %d, Max: %d, Diff: %d, Sum: %d]", (int)min, (int)avg, (int)max, (int)max - (int)min, (int)total); } } void G1GCPhaseTimes::print_stats(int level, const char* str, double value) { LineBuffer(level).append_and_print_cr("[%s: %.1lf ms]", str, value); } void G1GCPhaseTimes::print_stats(int level, const char* str, double value, int workers) { LineBuffer(level).append_and_print_cr("[%s: %.1lf ms, GC Workers: %d]", str, value, workers); } void G1GCPhaseTimes::print_stats(int level, const char* str, int value) { LineBuffer(level).append_and_print_cr("[%s: %d]", str, value); } double G1GCPhaseTimes::avg_value(double* data) { if (G1CollectedHeap::use_parallel_gc_threads()) { double ret = 0.0; for (uint i = 0; i < _active_gc_threads; ++i) { ret += data[i]; } return ret / (double) _active_gc_threads; } else { return data[0]; } } double G1GCPhaseTimes::max_value(double* data) { if (G1CollectedHeap::use_parallel_gc_threads()) { double ret = data[0]; for (uint i = 1; i < _active_gc_threads; ++i) { if (data[i] > ret) { ret = data[i]; } } return ret; } else { return data[0]; } } double G1GCPhaseTimes::sum_of_values(double* data) { if (G1CollectedHeap::use_parallel_gc_threads()) { double sum = 0.0; for (uint i = 0; i < _active_gc_threads; i++) { sum += data[i]; } return sum; } else { return data[0]; } } double G1GCPhaseTimes::max_sum(double* data1, double* data2) { double ret = data1[0] + data2[0]; if (G1CollectedHeap::use_parallel_gc_threads()) { for (uint i = 1; i < _active_gc_threads; ++i) { double data = data1[i] + data2[i]; if (data > ret) { ret = data; } } } return ret; } void G1GCPhaseTimes::collapse_par_times() { _ext_root_scan_time = avg_value(_par_last_ext_root_scan_times_ms); _satb_filtering_time = avg_value(_par_last_satb_filtering_times_ms); _update_rs_time = avg_value(_par_last_update_rs_times_ms); _update_rs_processed_buffers = sum_of_values(_par_last_update_rs_processed_buffers); _scan_rs_time = avg_value(_par_last_scan_rs_times_ms); _obj_copy_time = avg_value(_par_last_obj_copy_times_ms); _termination_time = avg_value(_par_last_termination_times_ms); } double G1GCPhaseTimes::accounted_time_ms() { // Subtract the root region scanning wait time. It's initialized to // zero at the start of the pause. double misc_time_ms = _root_region_scan_wait_time_ms; misc_time_ms += _cur_collection_par_time_ms; // Now subtract the time taken to fix up roots in generated code misc_time_ms += _cur_collection_code_root_fixup_time_ms; // Subtract the time taken to clean the card table from the // current value of "other time" misc_time_ms += _cur_clear_ct_time_ms; return misc_time_ms; } void G1GCPhaseTimes::print(double pause_time_ms) { if (PrintGCTimeStamps) { gclog_or_tty->stamp(); gclog_or_tty->print(": "); } GCCauseString gc_cause_str = GCCauseString("GC pause", _gc_cause) .append(_is_young_gc ? " (young)" : " (mixed)") .append(_is_initial_mark_gc ? " (initial-mark)" : ""); gclog_or_tty->print_cr("[%s, %3.7f secs]", (const char*)gc_cause_str, pause_time_ms / 1000.0); if (!G1Log::finer()) { return; } if (_root_region_scan_wait_time_ms > 0.0) { print_stats(1, "Root Region Scan Waiting", _root_region_scan_wait_time_ms); } if (G1CollectedHeap::use_parallel_gc_threads()) { print_stats(1, "Parallel Time", _cur_collection_par_time_ms, _active_gc_threads); print_par_stats(2, "GC Worker Start", _par_last_gc_worker_start_times_ms); print_par_stats(2, "Ext Root Scanning", _par_last_ext_root_scan_times_ms); if (_satb_filtering_time > 0.0) { print_par_stats(2, "SATB Filtering", _par_last_satb_filtering_times_ms); } print_par_stats(2, "Update RS", _par_last_update_rs_times_ms); if (G1Log::finest()) { print_par_stats(3, "Processed Buffers", _par_last_update_rs_processed_buffers, false /* showDecimals */); } print_par_stats(2, "Scan RS", _par_last_scan_rs_times_ms); print_par_stats(2, "Object Copy", _par_last_obj_copy_times_ms); print_par_stats(2, "Termination", _par_last_termination_times_ms); if (G1Log::finest()) { print_par_stats(3, "Termination Attempts", _par_last_termination_attempts, false /* showDecimals */); } print_par_stats(2, "GC Worker Other", _par_last_gc_worker_other_times_ms); print_par_stats(2, "GC Worker Total", _par_last_gc_worker_times_ms); print_par_stats(2, "GC Worker End", _par_last_gc_worker_end_times_ms); } else { print_stats(1, "Ext Root Scanning", _ext_root_scan_time); if (_satb_filtering_time > 0.0) { print_stats(1, "SATB Filtering", _satb_filtering_time); } print_stats(1, "Update RS", _update_rs_time); if (G1Log::finest()) { print_stats(2, "Processed Buffers", (int)_update_rs_processed_buffers); } print_stats(1, "Scan RS", _scan_rs_time); print_stats(1, "Object Copying", _obj_copy_time); } print_stats(1, "Code Root Fixup", _cur_collection_code_root_fixup_time_ms); print_stats(1, "Clear CT", _cur_clear_ct_time_ms); if (Verbose && G1Log::finest()) { print_stats(1, "Cur Clear CC", _cur_clear_cc_time_ms); print_stats(1, "Cum Clear CC", _cum_clear_cc_time_ms); print_stats(1, "Min Clear CC", _min_clear_cc_time_ms); print_stats(1, "Max Clear CC", _max_clear_cc_time_ms); if (_num_cc_clears > 0) { print_stats(1, "Avg Clear CC", _cum_clear_cc_time_ms / ((double)_num_cc_clears)); } } double misc_time_ms = pause_time_ms - accounted_time_ms(); print_stats(1, "Other", misc_time_ms); print_stats(2, "Choose CSet", (_recorded_young_cset_choice_time_ms + _recorded_non_young_cset_choice_time_ms)); print_stats(2, "Ref Proc", _cur_ref_proc_time_ms); print_stats(2, "Ref Enq", _cur_ref_enq_time_ms); print_stats(2, "Free CSet", (_recorded_young_free_cset_time_ms + _recorded_non_young_free_cset_time_ms)); } void G1GCPhaseTimes::record_cc_clear_time_ms(double ms) { if (!(Verbose && G1Log::finest())) { return; } if (_min_clear_cc_time_ms < 0.0 || ms <= _min_clear_cc_time_ms) { _min_clear_cc_time_ms = ms; } if (_max_clear_cc_time_ms < 0.0 || ms >= _max_clear_cc_time_ms) { _max_clear_cc_time_ms = ms; } _cur_clear_cc_time_ms = ms; _cum_clear_cc_time_ms += ms; _num_cc_clears++; }