/* * Copyright (c) 2005, 2016, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_C1_C1_LIRGENERATOR_HPP #define SHARE_VM_C1_C1_LIRGENERATOR_HPP #include "c1/c1_Instruction.hpp" #include "c1/c1_LIR.hpp" #include "ci/ciMethodData.hpp" #include "utilities/sizes.hpp" // The classes responsible for code emission and register allocation class LIRGenerator; class LIREmitter; class Invoke; class SwitchRange; class LIRItem; define_array(LIRItemArray, LIRItem*) define_stack(LIRItemList, LIRItemArray) class SwitchRange: public CompilationResourceObj { private: int _low_key; int _high_key; BlockBegin* _sux; public: SwitchRange(int start_key, BlockBegin* sux): _low_key(start_key), _high_key(start_key), _sux(sux) {} void set_high_key(int key) { _high_key = key; } int high_key() const { return _high_key; } int low_key() const { return _low_key; } BlockBegin* sux() const { return _sux; } }; define_array(SwitchRangeArray, SwitchRange*) define_stack(SwitchRangeList, SwitchRangeArray) class ResolveNode; define_array(NodeArray, ResolveNode*); define_stack(NodeList, NodeArray); // Node objects form a directed graph of LIR_Opr // Edges between Nodes represent moves from one Node to its destinations class ResolveNode: public CompilationResourceObj { private: LIR_Opr _operand; // the source or destinaton NodeList _destinations; // for the operand bool _assigned; // Value assigned to this Node? bool _visited; // Node already visited? bool _start_node; // Start node already visited? public: ResolveNode(LIR_Opr operand) : _operand(operand) , _assigned(false) , _visited(false) , _start_node(false) {}; // accessors LIR_Opr operand() const { return _operand; } int no_of_destinations() const { return _destinations.length(); } ResolveNode* destination_at(int i) { return _destinations[i]; } bool assigned() const { return _assigned; } bool visited() const { return _visited; } bool start_node() const { return _start_node; } // modifiers void append(ResolveNode* dest) { _destinations.append(dest); } void set_assigned() { _assigned = true; } void set_visited() { _visited = true; } void set_start_node() { _start_node = true; } }; // This is shared state to be used by the PhiResolver so the operand // arrays don't have to be reallocated for reach resolution. class PhiResolverState: public CompilationResourceObj { friend class PhiResolver; private: NodeList _virtual_operands; // Nodes where the operand is a virtual register NodeList _other_operands; // Nodes where the operand is not a virtual register NodeList _vreg_table; // Mapping from virtual register to Node public: PhiResolverState() {} void reset(int max_vregs); }; // class used to move value of phi operand to phi function class PhiResolver: public CompilationResourceObj { private: LIRGenerator* _gen; PhiResolverState& _state; // temporary state cached by LIRGenerator ResolveNode* _loop; LIR_Opr _temp; // access to shared state arrays NodeList& virtual_operands() { return _state._virtual_operands; } NodeList& other_operands() { return _state._other_operands; } NodeList& vreg_table() { return _state._vreg_table; } ResolveNode* create_node(LIR_Opr opr, bool source); ResolveNode* source_node(LIR_Opr opr) { return create_node(opr, true); } ResolveNode* destination_node(LIR_Opr opr) { return create_node(opr, false); } void emit_move(LIR_Opr src, LIR_Opr dest); void move_to_temp(LIR_Opr src); void move_temp_to(LIR_Opr dest); void move(ResolveNode* src, ResolveNode* dest); LIRGenerator* gen() { return _gen; } public: PhiResolver(LIRGenerator* _lir_gen, int max_vregs); ~PhiResolver(); void move(LIR_Opr src, LIR_Opr dest); }; // only the classes below belong in the same file class LIRGenerator: public InstructionVisitor, public BlockClosure { private: Compilation* _compilation; ciMethod* _method; // method that we are compiling PhiResolverState _resolver_state; BlockBegin* _block; int _virtual_register_number; Values _instruction_for_operand; BitMap2D _vreg_flags; // flags which can be set on a per-vreg basis LIR_List* _lir; BarrierSet* _bs; LIRGenerator* gen() { return this; } void print_if_not_loaded(const NewInstance* new_instance) PRODUCT_RETURN; #ifdef ASSERT LIR_List* lir(const char * file, int line) const { _lir->set_file_and_line(file, line); return _lir; } #endif LIR_List* lir() const { return _lir; } // a simple cache of constants used within a block GrowableArray _constants; LIR_OprList _reg_for_constants; Values _unpinned_constants; friend class PhiResolver; // unified bailout support void bailout(const char* msg) const { compilation()->bailout(msg); } bool bailed_out() const { return compilation()->bailed_out(); } void block_do_prolog(BlockBegin* block); void block_do_epilog(BlockBegin* block); // register allocation LIR_Opr rlock(Value instr); // lock a free register LIR_Opr rlock_result(Value instr); LIR_Opr rlock_result(Value instr, BasicType type); LIR_Opr rlock_byte(BasicType type); LIR_Opr rlock_callee_saved(BasicType type); // get a constant into a register and get track of what register was used LIR_Opr load_constant(Constant* x); LIR_Opr load_constant(LIR_Const* constant); // Given an immediate value, return an operand usable in logical ops. LIR_Opr load_immediate(int x, BasicType type); void set_result(Value x, LIR_Opr opr) { assert(opr->is_valid(), "must set to valid value"); assert(x->operand()->is_illegal(), "operand should never change"); assert(!opr->is_register() || opr->is_virtual(), "should never set result to a physical register"); x->set_operand(opr); assert(opr == x->operand(), "must be"); if (opr->is_virtual()) { _instruction_for_operand.at_put_grow(opr->vreg_number(), x, NULL); } } void set_no_result(Value x) { assert(!x->has_uses(), "can't have use"); x->clear_operand(); } friend class LIRItem; LIR_Opr round_item(LIR_Opr opr); LIR_Opr force_to_spill(LIR_Opr value, BasicType t); PhiResolverState& resolver_state() { return _resolver_state; } void move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val); void move_to_phi(ValueStack* cur_state); // code emission void do_ArithmeticOp_Long (ArithmeticOp* x); void do_ArithmeticOp_Int (ArithmeticOp* x); void do_ArithmeticOp_FPU (ArithmeticOp* x); // platform dependent LIR_Opr getThreadPointer(); void do_RegisterFinalizer(Intrinsic* x); void do_isInstance(Intrinsic* x); void do_getClass(Intrinsic* x); void do_currentThread(Intrinsic* x); void do_MathIntrinsic(Intrinsic* x); void do_ArrayCopy(Intrinsic* x); void do_CompareAndSwap(Intrinsic* x, ValueType* type); void do_NIOCheckIndex(Intrinsic* x); void do_FPIntrinsics(Intrinsic* x); void do_Reference_get(Intrinsic* x); void do_update_CRC32(Intrinsic* x); void do_UnsafePrefetch(UnsafePrefetch* x, bool is_store); LIR_Opr call_runtime(BasicTypeArray* signature, LIRItemList* args, address entry, ValueType* result_type, CodeEmitInfo* info); LIR_Opr call_runtime(BasicTypeArray* signature, LIR_OprList* args, address entry, ValueType* result_type, CodeEmitInfo* info); // convenience functions LIR_Opr call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info); LIR_Opr call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info); // GC Barriers // generic interface void pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val, bool do_load, bool patch, CodeEmitInfo* info); void post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val); // specific implementations // pre barriers void G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val, bool do_load, bool patch, CodeEmitInfo* info); // post barriers void G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val); void CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val); #ifdef CARDTABLEMODREF_POST_BARRIER_HELPER void CardTableModRef_post_barrier_helper(LIR_OprDesc* addr, LIR_Const* card_table_base); #endif static LIR_Opr result_register_for(ValueType* type, bool callee = false); ciObject* get_jobject_constant(Value value); LIRItemList* invoke_visit_arguments(Invoke* x); void invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list); void trace_block_entry(BlockBegin* block); // volatile field operations are never patchable because a klass // must be loaded to know it's volatile which means that the offset // it always known as well. void volatile_field_store(LIR_Opr value, LIR_Address* address, CodeEmitInfo* info); void volatile_field_load(LIR_Address* address, LIR_Opr result, CodeEmitInfo* info); void put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data, BasicType type, bool is_volatile); void get_Object_unsafe(LIR_Opr dest, LIR_Opr src, LIR_Opr offset, BasicType type, bool is_volatile); void arithmetic_call_op (Bytecodes::Code code, LIR_Opr result, LIR_OprList* args); void increment_counter(address counter, BasicType type, int step = 1); void increment_counter(LIR_Address* addr, int step = 1); // is_strictfp is only needed for mul and div (and only generates different code on i486) void arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp, CodeEmitInfo* info = NULL); // machine dependent. returns true if it emitted code for the multiply bool strength_reduce_multiply(LIR_Opr left, jint constant, LIR_Opr result, LIR_Opr tmp); void store_stack_parameter (LIR_Opr opr, ByteSize offset_from_sp_in_bytes); void klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve = false); // this loads the length and compares against the index void array_range_check (LIR_Opr array, LIR_Opr index, CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info); // For java.nio.Buffer.checkIndex void nio_range_check (LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info); void arithmetic_op_int (Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp); void arithmetic_op_long (Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info = NULL); void arithmetic_op_fpu (Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp = LIR_OprFact::illegalOpr); void shift_op (Bytecodes::Code code, LIR_Opr dst_reg, LIR_Opr value, LIR_Opr count, LIR_Opr tmp); void logic_op (Bytecodes::Code code, LIR_Opr dst_reg, LIR_Opr left, LIR_Opr right); void monitor_enter (LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info); void monitor_exit (LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no); void new_instance (LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info); // machine dependent void cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info); void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info); void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, LIR_Opr disp, BasicType type, CodeEmitInfo* info); void arraycopy_helper(Intrinsic* x, int* flags, ciArrayKlass** expected_type); // returns a LIR_Address to address an array location. May also // emit some code as part of address calculation. If // needs_card_mark is true then compute the full address for use by // both the store and the card mark. LIR_Address* generate_address(LIR_Opr base, LIR_Opr index, int shift, int disp, BasicType type); LIR_Address* generate_address(LIR_Opr base, int disp, BasicType type) { return generate_address(base, LIR_OprFact::illegalOpr, 0, disp, type); } LIR_Address* emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr, BasicType type, bool needs_card_mark); // the helper for generate_address void add_large_constant(LIR_Opr src, int c, LIR_Opr dest); // machine preferences and characteristics bool can_inline_as_constant(Value i) const; bool can_inline_as_constant(LIR_Const* c) const; bool can_store_as_constant(Value i, BasicType type) const; LIR_Opr safepoint_poll_register(); void profile_branch(If* if_instr, If::Condition cond); void increment_event_counter_impl(CodeEmitInfo* info, ciMethod *method, int frequency, int bci, bool backedge, bool notify); void increment_event_counter(CodeEmitInfo* info, int bci, bool backedge); void increment_invocation_counter(CodeEmitInfo *info) { if (compilation()->count_invocations()) { increment_event_counter(info, InvocationEntryBci, false); } } void increment_backedge_counter(CodeEmitInfo* info, int bci) { if (compilation()->count_backedges()) { increment_event_counter(info, bci, true); } } CodeEmitInfo* state_for(Instruction* x, ValueStack* state, bool ignore_xhandler = false); CodeEmitInfo* state_for(Instruction* x); // allocates a virtual register for this instruction if // one isn't already allocated. Only for Phi and Local. LIR_Opr operand_for_instruction(Instruction *x); void set_block(BlockBegin* block) { _block = block; } void block_prolog(BlockBegin* block); void block_epilog(BlockBegin* block); void do_root (Instruction* instr); void walk (Instruction* instr); void bind_block_entry(BlockBegin* block); void start_block(BlockBegin* block); LIR_Opr new_register(BasicType type); LIR_Opr new_register(Value value) { return new_register(as_BasicType(value->type())); } LIR_Opr new_register(ValueType* type) { return new_register(as_BasicType(type)); } // returns a register suitable for doing pointer math LIR_Opr new_pointer_register() { #ifdef _LP64 return new_register(T_LONG); #else return new_register(T_INT); #endif } static LIR_Condition lir_cond(If::Condition cond) { LIR_Condition l = lir_cond_unknown; switch (cond) { case If::eql: l = lir_cond_equal; break; case If::neq: l = lir_cond_notEqual; break; case If::lss: l = lir_cond_less; break; case If::leq: l = lir_cond_lessEqual; break; case If::geq: l = lir_cond_greaterEqual; break; case If::gtr: l = lir_cond_greater; break; case If::aeq: l = lir_cond_aboveEqual; break; case If::beq: l = lir_cond_belowEqual; break; default: fatal("You must pass valid If::Condition"); }; return l; } #ifdef __SOFTFP__ void do_soft_float_compare(If *x); #endif // __SOFTFP__ void init(); SwitchRangeArray* create_lookup_ranges(TableSwitch* x); SwitchRangeArray* create_lookup_ranges(LookupSwitch* x); void do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux); void do_RuntimeCall(address routine, int expected_arguments, Intrinsic* x); #ifdef TRACE_HAVE_INTRINSICS void do_ThreadIDIntrinsic(Intrinsic* x); void do_ClassIDIntrinsic(Intrinsic* x); #endif ciKlass* profile_type(ciMethodData* md, int md_first_offset, int md_offset, intptr_t profiled_k, Value arg, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k, ciKlass* callee_signature_k); void profile_arguments(ProfileCall* x); void profile_parameters(Base* x); void profile_parameters_at_call(ProfileCall* x); LIR_Opr maybe_mask_boolean(StoreIndexed* x, LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info); public: Compilation* compilation() const { return _compilation; } FrameMap* frame_map() const { return _compilation->frame_map(); } ciMethod* method() const { return _method; } BlockBegin* block() const { return _block; } IRScope* scope() const { return block()->scope(); } int max_virtual_register_number() const { return _virtual_register_number; } void block_do(BlockBegin* block); // Flags that can be set on vregs enum VregFlag { must_start_in_memory = 0 // needs to be assigned a memory location at beginning, but may then be loaded in a register , callee_saved = 1 // must be in a callee saved register , byte_reg = 2 // must be in a byte register , num_vreg_flags }; LIRGenerator(Compilation* compilation, ciMethod* method) : _compilation(compilation) , _method(method) , _virtual_register_number(LIR_OprDesc::vreg_base) , _vreg_flags(NULL, 0, num_vreg_flags) { init(); } // for virtual registers, maps them back to Phi's or Local's Instruction* instruction_for_opr(LIR_Opr opr); Instruction* instruction_for_vreg(int reg_num); void set_vreg_flag (int vreg_num, VregFlag f); bool is_vreg_flag_set(int vreg_num, VregFlag f); void set_vreg_flag (LIR_Opr opr, VregFlag f) { set_vreg_flag(opr->vreg_number(), f); } bool is_vreg_flag_set(LIR_Opr opr, VregFlag f) { return is_vreg_flag_set(opr->vreg_number(), f); } // statics static LIR_Opr exceptionOopOpr(); static LIR_Opr exceptionPcOpr(); static LIR_Opr divInOpr(); static LIR_Opr divOutOpr(); static LIR_Opr remOutOpr(); static LIR_Opr shiftCountOpr(); LIR_Opr syncTempOpr(); LIR_Opr atomicLockOpr(); // returns a register suitable for saving the thread in a // call_runtime_leaf if one is needed. LIR_Opr getThreadTemp(); // visitor functionality virtual void do_Phi (Phi* x); virtual void do_Local (Local* x); virtual void do_Constant (Constant* x); virtual void do_LoadField (LoadField* x); virtual void do_StoreField (StoreField* x); virtual void do_ArrayLength (ArrayLength* x); virtual void do_LoadIndexed (LoadIndexed* x); virtual void do_StoreIndexed (StoreIndexed* x); virtual void do_NegateOp (NegateOp* x); virtual void do_ArithmeticOp (ArithmeticOp* x); virtual void do_ShiftOp (ShiftOp* x); virtual void do_LogicOp (LogicOp* x); virtual void do_CompareOp (CompareOp* x); virtual void do_IfOp (IfOp* x); virtual void do_Convert (Convert* x); virtual void do_NullCheck (NullCheck* x); virtual void do_TypeCast (TypeCast* x); virtual void do_Invoke (Invoke* x); virtual void do_NewInstance (NewInstance* x); virtual void do_NewTypeArray (NewTypeArray* x); virtual void do_NewObjectArray (NewObjectArray* x); virtual void do_NewMultiArray (NewMultiArray* x); virtual void do_CheckCast (CheckCast* x); virtual void do_InstanceOf (InstanceOf* x); virtual void do_MonitorEnter (MonitorEnter* x); virtual void do_MonitorExit (MonitorExit* x); virtual void do_Intrinsic (Intrinsic* x); virtual void do_BlockBegin (BlockBegin* x); virtual void do_Goto (Goto* x); virtual void do_If (If* x); virtual void do_IfInstanceOf (IfInstanceOf* x); virtual void do_TableSwitch (TableSwitch* x); virtual void do_LookupSwitch (LookupSwitch* x); virtual void do_Return (Return* x); virtual void do_Throw (Throw* x); virtual void do_Base (Base* x); virtual void do_OsrEntry (OsrEntry* x); virtual void do_ExceptionObject(ExceptionObject* x); virtual void do_RoundFP (RoundFP* x); virtual void do_UnsafeGetRaw (UnsafeGetRaw* x); virtual void do_UnsafePutRaw (UnsafePutRaw* x); virtual void do_UnsafeGetObject(UnsafeGetObject* x); virtual void do_UnsafePutObject(UnsafePutObject* x); virtual void do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x); virtual void do_UnsafePrefetchRead (UnsafePrefetchRead* x); virtual void do_UnsafePrefetchWrite(UnsafePrefetchWrite* x); virtual void do_ProfileCall (ProfileCall* x); virtual void do_ProfileReturnType (ProfileReturnType* x); virtual void do_ProfileInvoke (ProfileInvoke* x); virtual void do_RuntimeCall (RuntimeCall* x); virtual void do_MemBar (MemBar* x); virtual void do_RangeCheckPredicate(RangeCheckPredicate* x); #ifdef ASSERT virtual void do_Assert (Assert* x); #endif #ifdef C1_LIRGENERATOR_MD_HPP #include C1_LIRGENERATOR_MD_HPP #endif }; class LIRItem: public CompilationResourceObj { private: Value _value; LIRGenerator* _gen; LIR_Opr _result; bool _destroys_register; LIR_Opr _new_result; LIRGenerator* gen() const { return _gen; } public: LIRItem(Value value, LIRGenerator* gen) { _destroys_register = false; _gen = gen; set_instruction(value); } LIRItem(LIRGenerator* gen) { _destroys_register = false; _gen = gen; _result = LIR_OprFact::illegalOpr; set_instruction(NULL); } void set_instruction(Value value) { _value = value; _result = LIR_OprFact::illegalOpr; if (_value != NULL) { _gen->walk(_value); _result = _value->operand(); } _new_result = LIR_OprFact::illegalOpr; } Value value() const { return _value; } ValueType* type() const { return value()->type(); } LIR_Opr result() { assert(!_destroys_register || (!_result->is_register() || _result->is_virtual()), "shouldn't use set_destroys_register with physical regsiters"); if (_destroys_register && _result->is_register()) { if (_new_result->is_illegal()) { _new_result = _gen->new_register(type()); gen()->lir()->move(_result, _new_result); } return _new_result; } else { return _result; } return _result; } void set_result(LIR_Opr opr); void load_item(); void load_byte_item(); void load_nonconstant(); // load any values which can't be expressed as part of a single store instruction void load_for_store(BasicType store_type); void load_item_force(LIR_Opr reg); void dont_load_item() { // do nothing } void set_destroys_register() { _destroys_register = true; } bool is_constant() const { return value()->as_Constant() != NULL; } bool is_stack() { return result()->is_stack(); } bool is_register() { return result()->is_register(); } ciObject* get_jobject_constant() const; jint get_jint_constant() const; jlong get_jlong_constant() const; jfloat get_jfloat_constant() const; jdouble get_jdouble_constant() const; jint get_address_constant() const; }; #endif // SHARE_VM_C1_C1_LIRGENERATOR_HPP