/* * Copyright 2001-2008 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * */ # include "incls/_precompiled.incl" # include "incls/_ptrQueue.cpp.incl" PtrQueue::PtrQueue(PtrQueueSet* qset_, bool perm) : _qset(qset_), _buf(NULL), _index(0), _active(false), _perm(perm), _lock(NULL) {} void PtrQueue::flush() { if (!_perm && _buf != NULL) { if (_index == _sz) { // No work to do. qset()->deallocate_buffer(_buf); } else { // We must NULL out the unused entries, then enqueue. for (size_t i = 0; i < _index; i += oopSize) { _buf[byte_index_to_index((int)i)] = NULL; } qset()->enqueue_complete_buffer(_buf); } _buf = NULL; _index = 0; } } static int byte_index_to_index(int ind) { assert((ind % oopSize) == 0, "Invariant."); return ind / oopSize; } static int index_to_byte_index(int byte_ind) { return byte_ind * oopSize; } void PtrQueue::enqueue_known_active(void* ptr) { assert(0 <= _index && _index <= _sz, "Invariant."); assert(_index == 0 || _buf != NULL, "invariant"); while (_index == 0) { handle_zero_index(); } assert(_index > 0, "postcondition"); _index -= oopSize; _buf[byte_index_to_index((int)_index)] = ptr; assert(0 <= _index && _index <= _sz, "Invariant."); } void PtrQueue::locking_enqueue_completed_buffer(void** buf) { assert(_lock->owned_by_self(), "Required."); _lock->unlock(); qset()->enqueue_complete_buffer(buf); // We must relock only because the caller will unlock, for the normal // case. _lock->lock_without_safepoint_check(); } PtrQueueSet::PtrQueueSet(bool notify_when_complete) : _max_completed_queue(0), _cbl_mon(NULL), _fl_lock(NULL), _notify_when_complete(notify_when_complete), _sz(0), _completed_buffers_head(NULL), _completed_buffers_tail(NULL), _n_completed_buffers(0), _process_completed_threshold(0), _process_completed(false), _buf_free_list(NULL), _buf_free_list_sz(0) { _fl_owner = this; } void** PtrQueueSet::allocate_buffer() { assert(_sz > 0, "Didn't set a buffer size."); MutexLockerEx x(_fl_owner->_fl_lock, Mutex::_no_safepoint_check_flag); if (_fl_owner->_buf_free_list != NULL) { void** res = _fl_owner->_buf_free_list; _fl_owner->_buf_free_list = (void**)_fl_owner->_buf_free_list[0]; _fl_owner->_buf_free_list_sz--; // Just override the next pointer with NULL, just in case we scan this part // of the buffer. res[0] = NULL; return res; } else { return NEW_C_HEAP_ARRAY(void*, _sz); } } void PtrQueueSet::deallocate_buffer(void** buf) { assert(_sz > 0, "Didn't set a buffer size."); MutexLockerEx x(_fl_owner->_fl_lock, Mutex::_no_safepoint_check_flag); buf[0] = (void*)_fl_owner->_buf_free_list; _fl_owner->_buf_free_list = buf; _fl_owner->_buf_free_list_sz++; } void PtrQueueSet::reduce_free_list() { // For now we'll adopt the strategy of deleting half. MutexLockerEx x(_fl_lock, Mutex::_no_safepoint_check_flag); size_t n = _buf_free_list_sz / 2; while (n > 0) { assert(_buf_free_list != NULL, "_buf_free_list_sz must be wrong."); void** head = _buf_free_list; _buf_free_list = (void**)_buf_free_list[0]; FREE_C_HEAP_ARRAY(void*,head); n--; } } void PtrQueueSet::enqueue_complete_buffer(void** buf, size_t index, bool ignore_max_completed) { // I use explicit locking here because there's a bailout in the middle. _cbl_mon->lock_without_safepoint_check(); Thread* thread = Thread::current(); assert( ignore_max_completed || thread->is_Java_thread() || SafepointSynchronize::is_at_safepoint(), "invariant" ); ignore_max_completed = ignore_max_completed || !thread->is_Java_thread(); if (!ignore_max_completed && _max_completed_queue > 0 && _n_completed_buffers >= (size_t) _max_completed_queue) { _cbl_mon->unlock(); bool b = mut_process_buffer(buf); if (b) { deallocate_buffer(buf); return; } // Otherwise, go ahead and enqueue the buffer. Must reaquire the lock. _cbl_mon->lock_without_safepoint_check(); } // Here we still hold the _cbl_mon. CompletedBufferNode* cbn = new CompletedBufferNode; cbn->buf = buf; cbn->next = NULL; cbn->index = index; if (_completed_buffers_tail == NULL) { assert(_completed_buffers_head == NULL, "Well-formedness"); _completed_buffers_head = cbn; _completed_buffers_tail = cbn; } else { _completed_buffers_tail->next = cbn; _completed_buffers_tail = cbn; } _n_completed_buffers++; if (!_process_completed && _n_completed_buffers == _process_completed_threshold) { _process_completed = true; if (_notify_when_complete) _cbl_mon->notify_all(); } debug_only(assert_completed_buffer_list_len_correct_locked()); _cbl_mon->unlock(); } int PtrQueueSet::completed_buffers_list_length() { int n = 0; CompletedBufferNode* cbn = _completed_buffers_head; while (cbn != NULL) { n++; cbn = cbn->next; } return n; } void PtrQueueSet::assert_completed_buffer_list_len_correct() { MutexLockerEx x(_cbl_mon, Mutex::_no_safepoint_check_flag); assert_completed_buffer_list_len_correct_locked(); } void PtrQueueSet::assert_completed_buffer_list_len_correct_locked() { guarantee((size_t)completed_buffers_list_length() == _n_completed_buffers, "Completed buffer length is wrong."); } void PtrQueueSet::set_buffer_size(size_t sz) { assert(_sz == 0 && sz > 0, "Should be called only once."); _sz = sz * oopSize; } void PtrQueueSet::set_process_completed_threshold(size_t sz) { _process_completed_threshold = sz; } // Merge lists of buffers. Notify waiting threads if the length of the list // exceeds threshold. The source queue is emptied as a result. The queues // must share the monitor. void PtrQueueSet::merge_bufferlists(PtrQueueSet *src) { assert(_cbl_mon == src->_cbl_mon, "Should share the same lock"); MutexLockerEx x(_cbl_mon, Mutex::_no_safepoint_check_flag); if (_completed_buffers_tail == NULL) { assert(_completed_buffers_head == NULL, "Well-formedness"); _completed_buffers_head = src->_completed_buffers_head; _completed_buffers_tail = src->_completed_buffers_tail; } else { assert(_completed_buffers_head != NULL, "Well formedness"); if (src->_completed_buffers_head != NULL) { _completed_buffers_tail->next = src->_completed_buffers_head; _completed_buffers_tail = src->_completed_buffers_tail; } } _n_completed_buffers += src->_n_completed_buffers; src->_n_completed_buffers = 0; src->_completed_buffers_head = NULL; src->_completed_buffers_tail = NULL; assert(_completed_buffers_head == NULL && _completed_buffers_tail == NULL || _completed_buffers_head != NULL && _completed_buffers_tail != NULL, "Sanity"); if (!_process_completed && _n_completed_buffers >= _process_completed_threshold) { _process_completed = true; if (_notify_when_complete) _cbl_mon->notify_all(); } } // Merge free lists of the two queues. The free list of the source // queue is emptied as a result. The queues must share the same // mutex that guards free lists. void PtrQueueSet::merge_freelists(PtrQueueSet* src) { assert(_fl_lock == src->_fl_lock, "Should share the same lock"); MutexLockerEx x(_fl_lock, Mutex::_no_safepoint_check_flag); if (_buf_free_list != NULL) { void **p = _buf_free_list; while (*p != NULL) { p = (void**)*p; } *p = src->_buf_free_list; } else { _buf_free_list = src->_buf_free_list; } _buf_free_list_sz += src->_buf_free_list_sz; src->_buf_free_list = NULL; src->_buf_free_list_sz = 0; }