/* * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ // no precompiled headers #include "classfile/classLoader.hpp" #include "classfile/systemDictionary.hpp" #include "classfile/vmSymbols.hpp" #include "code/icBuffer.hpp" #include "code/vtableStubs.hpp" #include "compiler/compileBroker.hpp" #include "compiler/disassembler.hpp" #include "interpreter/interpreter.hpp" #include "jvm_solaris.h" #include "memory/allocation.inline.hpp" #include "memory/filemap.hpp" #include "mutex_solaris.inline.hpp" #include "oops/oop.inline.hpp" #include "os_share_solaris.hpp" #include "prims/jniFastGetField.hpp" #include "prims/jvm.h" #include "prims/jvm_misc.hpp" #include "runtime/arguments.hpp" #include "runtime/extendedPC.hpp" #include "runtime/globals.hpp" #include "runtime/interfaceSupport.hpp" #include "runtime/java.hpp" #include "runtime/javaCalls.hpp" #include "runtime/mutexLocker.hpp" #include "runtime/objectMonitor.hpp" #include "runtime/orderAccess.inline.hpp" #include "runtime/osThread.hpp" #include "runtime/perfMemory.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/statSampler.hpp" #include "runtime/stubRoutines.hpp" #include "runtime/thread.inline.hpp" #include "runtime/threadCritical.hpp" #include "runtime/timer.hpp" #include "services/attachListener.hpp" #include "services/memTracker.hpp" #include "services/runtimeService.hpp" #include "utilities/decoder.hpp" #include "utilities/defaultStream.hpp" #include "utilities/events.hpp" #include "utilities/growableArray.hpp" #include "utilities/vmError.hpp" // put OS-includes here # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include // for elf Sym structure used by dladdr1 # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # define _STRUCTURED_PROC 1 // this gets us the new structured proc interfaces of 5.6 & later # include // see comment in #define MAX_PATH (2 * K) // for timer info max values which include all bits #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF) // Here are some liblgrp types from sys/lgrp_user.h to be able to // compile on older systems without this header file. #ifndef MADV_ACCESS_LWP # define MADV_ACCESS_LWP 7 /* next LWP to access heavily */ #endif #ifndef MADV_ACCESS_MANY # define MADV_ACCESS_MANY 8 /* many processes to access heavily */ #endif #ifndef LGRP_RSRC_CPU # define LGRP_RSRC_CPU 0 /* CPU resources */ #endif #ifndef LGRP_RSRC_MEM # define LGRP_RSRC_MEM 1 /* memory resources */ #endif // see thr_setprio(3T) for the basis of these numbers #define MinimumPriority 0 #define NormalPriority 64 #define MaximumPriority 127 // Values for ThreadPriorityPolicy == 1 int prio_policy1[CriticalPriority+1] = { -99999, 0, 16, 32, 48, 64, 80, 96, 112, 124, 127, 127 }; // System parameters used internally static clock_t clock_tics_per_sec = 100; // Track if we have called enable_extended_FILE_stdio (on Solaris 10u4+) static bool enabled_extended_FILE_stdio = false; // For diagnostics to print a message once. see run_periodic_checks static bool check_addr0_done = false; static sigset_t check_signal_done; static bool check_signals = true; address os::Solaris::handler_start; // start pc of thr_sighndlrinfo address os::Solaris::handler_end; // end pc of thr_sighndlrinfo address os::Solaris::_main_stack_base = NULL; // 4352906 workaround // "default" initializers for missing libc APIs extern "C" { static int lwp_mutex_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; } static int lwp_mutex_destroy(mutex_t *mx) { return 0; } static int lwp_cond_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; } static int lwp_cond_destroy(cond_t *cv) { return 0; } } // "default" initializers for pthread-based synchronization extern "C" { static int pthread_mutex_default_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; } static int pthread_cond_default_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; } } static void unpackTime(timespec* absTime, bool isAbsolute, jlong time); static inline size_t adjust_stack_size(address base, size_t size) { if ((ssize_t)size < 0) { // 4759953: Compensate for ridiculous stack size. size = max_intx; } if (size > (size_t)base) { // 4812466: Make sure size doesn't allow the stack to wrap the address space. size = (size_t)base; } return size; } static inline stack_t get_stack_info() { stack_t st; int retval = thr_stksegment(&st); st.ss_size = adjust_stack_size((address)st.ss_sp, st.ss_size); assert(retval == 0, "incorrect return value from thr_stksegment"); assert((address)&st < (address)st.ss_sp, "Invalid stack base returned"); assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned"); return st; } address os::current_stack_base() { int r = thr_main() ; guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ; bool is_primordial_thread = r; // Workaround 4352906, avoid calls to thr_stksegment by // thr_main after the first one (it looks like we trash // some data, causing the value for ss_sp to be incorrect). if (!is_primordial_thread || os::Solaris::_main_stack_base == NULL) { stack_t st = get_stack_info(); if (is_primordial_thread) { // cache initial value of stack base os::Solaris::_main_stack_base = (address)st.ss_sp; } return (address)st.ss_sp; } else { guarantee(os::Solaris::_main_stack_base != NULL, "Attempt to use null cached stack base"); return os::Solaris::_main_stack_base; } } size_t os::current_stack_size() { size_t size; int r = thr_main() ; guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ; if(!r) { size = get_stack_info().ss_size; } else { struct rlimit limits; getrlimit(RLIMIT_STACK, &limits); size = adjust_stack_size(os::Solaris::_main_stack_base, (size_t)limits.rlim_cur); } // base may not be page aligned address base = current_stack_base(); address bottom = (address)align_size_up((intptr_t)(base - size), os::vm_page_size());; return (size_t)(base - bottom); } struct tm* os::localtime_pd(const time_t* clock, struct tm* res) { return localtime_r(clock, res); } // interruptible infrastructure // setup_interruptible saves the thread state before going into an // interruptible system call. // The saved state is used to restore the thread to // its former state whether or not an interrupt is received. // Used by classloader os::read // os::restartable_read calls skip this layer and stay in _thread_in_native void os::Solaris::setup_interruptible(JavaThread* thread) { JavaThreadState thread_state = thread->thread_state(); assert(thread_state != _thread_blocked, "Coming from the wrong thread"); assert(thread_state != _thread_in_native, "Native threads skip setup_interruptible"); OSThread* osthread = thread->osthread(); osthread->set_saved_interrupt_thread_state(thread_state); thread->frame_anchor()->make_walkable(thread); ThreadStateTransition::transition(thread, thread_state, _thread_blocked); } // Version of setup_interruptible() for threads that are already in // _thread_blocked. Used by os_sleep(). void os::Solaris::setup_interruptible_already_blocked(JavaThread* thread) { thread->frame_anchor()->make_walkable(thread); } JavaThread* os::Solaris::setup_interruptible() { JavaThread* thread = (JavaThread*)ThreadLocalStorage::thread(); setup_interruptible(thread); return thread; } void os::Solaris::try_enable_extended_io() { typedef int (*enable_extended_FILE_stdio_t)(int, int); if (!UseExtendedFileIO) { return; } enable_extended_FILE_stdio_t enabler = (enable_extended_FILE_stdio_t) dlsym(RTLD_DEFAULT, "enable_extended_FILE_stdio"); if (enabler) { enabler(-1, -1); } } #ifdef ASSERT JavaThread* os::Solaris::setup_interruptible_native() { JavaThread* thread = (JavaThread*)ThreadLocalStorage::thread(); JavaThreadState thread_state = thread->thread_state(); assert(thread_state == _thread_in_native, "Assumed thread_in_native"); return thread; } void os::Solaris::cleanup_interruptible_native(JavaThread* thread) { JavaThreadState thread_state = thread->thread_state(); assert(thread_state == _thread_in_native, "Assumed thread_in_native"); } #endif // cleanup_interruptible reverses the effects of setup_interruptible // setup_interruptible_already_blocked() does not need any cleanup. void os::Solaris::cleanup_interruptible(JavaThread* thread) { OSThread* osthread = thread->osthread(); ThreadStateTransition::transition(thread, _thread_blocked, osthread->saved_interrupt_thread_state()); } // I/O interruption related counters called in _INTERRUPTIBLE void os::Solaris::bump_interrupted_before_count() { RuntimeService::record_interrupted_before_count(); } void os::Solaris::bump_interrupted_during_count() { RuntimeService::record_interrupted_during_count(); } static int _processors_online = 0; jint os::Solaris::_os_thread_limit = 0; volatile jint os::Solaris::_os_thread_count = 0; julong os::available_memory() { return Solaris::available_memory(); } julong os::Solaris::available_memory() { return (julong)sysconf(_SC_AVPHYS_PAGES) * os::vm_page_size(); } julong os::Solaris::_physical_memory = 0; julong os::physical_memory() { return Solaris::physical_memory(); } static hrtime_t first_hrtime = 0; static const hrtime_t hrtime_hz = 1000*1000*1000; static volatile hrtime_t max_hrtime = 0; void os::Solaris::initialize_system_info() { set_processor_count(sysconf(_SC_NPROCESSORS_CONF)); _processors_online = sysconf (_SC_NPROCESSORS_ONLN); _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE); } int os::active_processor_count() { int online_cpus = sysconf(_SC_NPROCESSORS_ONLN); pid_t pid = getpid(); psetid_t pset = PS_NONE; // Are we running in a processor set or is there any processor set around? if (pset_bind(PS_QUERY, P_PID, pid, &pset) == 0) { uint_t pset_cpus; // Query the number of cpus available to us. if (pset_info(pset, NULL, &pset_cpus, NULL) == 0) { assert(pset_cpus > 0 && pset_cpus <= online_cpus, "sanity check"); _processors_online = pset_cpus; return pset_cpus; } } // Otherwise return number of online cpus return online_cpus; } static bool find_processors_in_pset(psetid_t pset, processorid_t** id_array, uint_t* id_length) { bool result = false; // Find the number of processors in the processor set. if (pset_info(pset, NULL, id_length, NULL) == 0) { // Make up an array to hold their ids. *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal); // Fill in the array with their processor ids. if (pset_info(pset, NULL, id_length, *id_array) == 0) { result = true; } } return result; } // Callers of find_processors_online() must tolerate imprecise results -- // the system configuration can change asynchronously because of DR // or explicit psradm operations. // // We also need to take care that the loop (below) terminates as the // number of processors online can change between the _SC_NPROCESSORS_ONLN // request and the loop that builds the list of processor ids. Unfortunately // there's no reliable way to determine the maximum valid processor id, // so we use a manifest constant, MAX_PROCESSOR_ID, instead. See p_online // man pages, which claim the processor id set is "sparse, but // not too sparse". MAX_PROCESSOR_ID is used to ensure that we eventually // exit the loop. // // In the future we'll be able to use sysconf(_SC_CPUID_MAX), but that's // not available on S8.0. static bool find_processors_online(processorid_t** id_array, uint* id_length) { const processorid_t MAX_PROCESSOR_ID = 100000 ; // Find the number of processors online. *id_length = sysconf(_SC_NPROCESSORS_ONLN); // Make up an array to hold their ids. *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal); // Processors need not be numbered consecutively. long found = 0; processorid_t next = 0; while (found < *id_length && next < MAX_PROCESSOR_ID) { processor_info_t info; if (processor_info(next, &info) == 0) { // NB, PI_NOINTR processors are effectively online ... if (info.pi_state == P_ONLINE || info.pi_state == P_NOINTR) { (*id_array)[found] = next; found += 1; } } next += 1; } if (found < *id_length) { // The loop above didn't identify the expected number of processors. // We could always retry the operation, calling sysconf(_SC_NPROCESSORS_ONLN) // and re-running the loop, above, but there's no guarantee of progress // if the system configuration is in flux. Instead, we just return what // we've got. Note that in the worst case find_processors_online() could // return an empty set. (As a fall-back in the case of the empty set we // could just return the ID of the current processor). *id_length = found ; } return true; } static bool assign_distribution(processorid_t* id_array, uint id_length, uint* distribution, uint distribution_length) { // We assume we can assign processorid_t's to uint's. assert(sizeof(processorid_t) == sizeof(uint), "can't convert processorid_t to uint"); // Quick check to see if we won't succeed. if (id_length < distribution_length) { return false; } // Assign processor ids to the distribution. // Try to shuffle processors to distribute work across boards, // assuming 4 processors per board. const uint processors_per_board = ProcessDistributionStride; // Find the maximum processor id. processorid_t max_id = 0; for (uint m = 0; m < id_length; m += 1) { max_id = MAX2(max_id, id_array[m]); } // The next id, to limit loops. const processorid_t limit_id = max_id + 1; // Make up markers for available processors. bool* available_id = NEW_C_HEAP_ARRAY(bool, limit_id, mtInternal); for (uint c = 0; c < limit_id; c += 1) { available_id[c] = false; } for (uint a = 0; a < id_length; a += 1) { available_id[id_array[a]] = true; } // Step by "boards", then by "slot", copying to "assigned". // NEEDS_CLEANUP: The assignment of processors should be stateful, // remembering which processors have been assigned by // previous calls, etc., so as to distribute several // independent calls of this method. What we'd like is // It would be nice to have an API that let us ask // how many processes are bound to a processor, // but we don't have that, either. // In the short term, "board" is static so that // subsequent distributions don't all start at board 0. static uint board = 0; uint assigned = 0; // Until we've found enough processors .... while (assigned < distribution_length) { // ... find the next available processor in the board. for (uint slot = 0; slot < processors_per_board; slot += 1) { uint try_id = board * processors_per_board + slot; if ((try_id < limit_id) && (available_id[try_id] == true)) { distribution[assigned] = try_id; available_id[try_id] = false; assigned += 1; break; } } board += 1; if (board * processors_per_board + 0 >= limit_id) { board = 0; } } if (available_id != NULL) { FREE_C_HEAP_ARRAY(bool, available_id, mtInternal); } return true; } void os::set_native_thread_name(const char *name) { // Not yet implemented. return; } bool os::distribute_processes(uint length, uint* distribution) { bool result = false; // Find the processor id's of all the available CPUs. processorid_t* id_array = NULL; uint id_length = 0; // There are some races between querying information and using it, // since processor sets can change dynamically. psetid_t pset = PS_NONE; // Are we running in a processor set? if ((pset_bind(PS_QUERY, P_PID, P_MYID, &pset) == 0) && pset != PS_NONE) { result = find_processors_in_pset(pset, &id_array, &id_length); } else { result = find_processors_online(&id_array, &id_length); } if (result == true) { if (id_length >= length) { result = assign_distribution(id_array, id_length, distribution, length); } else { result = false; } } if (id_array != NULL) { FREE_C_HEAP_ARRAY(processorid_t, id_array, mtInternal); } return result; } bool os::bind_to_processor(uint processor_id) { // We assume that a processorid_t can be stored in a uint. assert(sizeof(uint) == sizeof(processorid_t), "can't convert uint to processorid_t"); int bind_result = processor_bind(P_LWPID, // bind LWP. P_MYID, // bind current LWP. (processorid_t) processor_id, // id. NULL); // don't return old binding. return (bind_result == 0); } bool os::getenv(const char* name, char* buffer, int len) { char* val = ::getenv( name ); if ( val == NULL || strlen(val) + 1 > len ) { if (len > 0) buffer[0] = 0; // return a null string return false; } strcpy( buffer, val ); return true; } // Return true if user is running as root. bool os::have_special_privileges() { static bool init = false; static bool privileges = false; if (!init) { privileges = (getuid() != geteuid()) || (getgid() != getegid()); init = true; } return privileges; } void os::init_system_properties_values() { // The next steps are taken in the product version: // // Obtain the JAVA_HOME value from the location of libjvm.so. // This library should be located at: // /jre/lib//{client|server}/libjvm.so. // // If "/jre/lib/" appears at the right place in the path, then we // assume libjvm.so is installed in a JDK and we use this path. // // Otherwise exit with message: "Could not create the Java virtual machine." // // The following extra steps are taken in the debugging version: // // If "/jre/lib/" does NOT appear at the right place in the path // instead of exit check for $JAVA_HOME environment variable. // // If it is defined and we are able to locate $JAVA_HOME/jre/lib/, // then we append a fake suffix "hotspot/libjvm.so" to this path so // it looks like libjvm.so is installed there // /jre/lib//hotspot/libjvm.so. // // Otherwise exit. // // Important note: if the location of libjvm.so changes this // code needs to be changed accordingly. // Base path of extensions installed on the system. #define SYS_EXT_DIR "/usr/jdk/packages" #define EXTENSIONS_DIR "/lib/ext" #define ENDORSED_DIR "/lib/endorsed" char cpu_arch[12]; // Buffer that fits several sprintfs. // Note that the space for the colon and the trailing null are provided // by the nulls included by the sizeof operator. const size_t bufsize = MAX4((size_t)MAXPATHLEN, // For dll_dir & friends. sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch), // invariant ld_library_path (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal); // sysclasspath, java_home, dll_dir { char *pslash; os::jvm_path(buf, bufsize); // Found the full path to libjvm.so. // Now cut the path to /jre if we can. *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so. pslash = strrchr(buf, '/'); if (pslash != NULL) { *pslash = '\0'; // Get rid of /{client|server|hotspot}. } Arguments::set_dll_dir(buf); if (pslash != NULL) { pslash = strrchr(buf, '/'); if (pslash != NULL) { *pslash = '\0'; // Get rid of /. pslash = strrchr(buf, '/'); if (pslash != NULL) { *pslash = '\0'; // Get rid of /lib. } } } Arguments::set_java_home(buf); set_boot_path('/', ':'); } // Where to look for native libraries. { // Use dlinfo() to determine the correct java.library.path. // // If we're launched by the Java launcher, and the user // does not set java.library.path explicitly on the commandline, // the Java launcher sets LD_LIBRARY_PATH for us and unsets // LD_LIBRARY_PATH_32 and LD_LIBRARY_PATH_64. In this case // dlinfo returns LD_LIBRARY_PATH + crle settings (including // /usr/lib), which is exactly what we want. // // If the user does set java.library.path, it completely // overwrites this setting, and always has. // // If we're not launched by the Java launcher, we may // get here with any/all of the LD_LIBRARY_PATH[_32|64] // settings. Again, dlinfo does exactly what we want. Dl_serinfo info_sz, *info = &info_sz; Dl_serpath *path; char *library_path; char *common_path = buf; // Determine search path count and required buffer size. if (dlinfo(RTLD_SELF, RTLD_DI_SERINFOSIZE, (void *)info) == -1) { FREE_C_HEAP_ARRAY(char, buf, mtInternal); vm_exit_during_initialization("dlinfo SERINFOSIZE request", dlerror()); } // Allocate new buffer and initialize. info = (Dl_serinfo*)NEW_C_HEAP_ARRAY(char, info_sz.dls_size, mtInternal); info->dls_size = info_sz.dls_size; info->dls_cnt = info_sz.dls_cnt; // Obtain search path information. if (dlinfo(RTLD_SELF, RTLD_DI_SERINFO, (void *)info) == -1) { FREE_C_HEAP_ARRAY(char, buf, mtInternal); FREE_C_HEAP_ARRAY(char, info, mtInternal); vm_exit_during_initialization("dlinfo SERINFO request", dlerror()); } path = &info->dls_serpath[0]; // Note: Due to a legacy implementation, most of the library path // is set in the launcher. This was to accomodate linking restrictions // on legacy Solaris implementations (which are no longer supported). // Eventually, all the library path setting will be done here. // // However, to prevent the proliferation of improperly built native // libraries, the new path component /usr/jdk/packages is added here. // Determine the actual CPU architecture. sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch)); #ifdef _LP64 // If we are a 64-bit vm, perform the following translations: // sparc -> sparcv9 // i386 -> amd64 if (strcmp(cpu_arch, "sparc") == 0) { strcat(cpu_arch, "v9"); } else if (strcmp(cpu_arch, "i386") == 0) { strcpy(cpu_arch, "amd64"); } #endif // Construct the invariant part of ld_library_path. sprintf(common_path, SYS_EXT_DIR "/lib/%s", cpu_arch); // Struct size is more than sufficient for the path components obtained // through the dlinfo() call, so only add additional space for the path // components explicitly added here. size_t library_path_size = info->dls_size + strlen(common_path); library_path = (char *)NEW_C_HEAP_ARRAY(char, library_path_size, mtInternal); library_path[0] = '\0'; // Construct the desired Java library path from the linker's library // search path. // // For compatibility, it is optimal that we insert the additional path // components specific to the Java VM after those components specified // in LD_LIBRARY_PATH (if any) but before those added by the ld.so // infrastructure. if (info->dls_cnt == 0) { // Not sure this can happen, but allow for it. strcpy(library_path, common_path); } else { int inserted = 0; int i; for (i = 0; i < info->dls_cnt; i++, path++) { uint_t flags = path->dls_flags & LA_SER_MASK; if (((flags & LA_SER_LIBPATH) == 0) && !inserted) { strcat(library_path, common_path); strcat(library_path, os::path_separator()); inserted = 1; } strcat(library_path, path->dls_name); strcat(library_path, os::path_separator()); } // Eliminate trailing path separator. library_path[strlen(library_path)-1] = '\0'; } // happens before argument parsing - can't use a trace flag // tty->print_raw("init_system_properties_values: native lib path: "); // tty->print_raw_cr(library_path); // Callee copies into its own buffer. Arguments::set_library_path(library_path); FREE_C_HEAP_ARRAY(char, library_path, mtInternal); FREE_C_HEAP_ARRAY(char, info, mtInternal); } // Extensions directories. sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home()); Arguments::set_ext_dirs(buf); // Endorsed standards default directory. sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home()); Arguments::set_endorsed_dirs(buf); FREE_C_HEAP_ARRAY(char, buf, mtInternal); #undef SYS_EXT_DIR #undef EXTENSIONS_DIR #undef ENDORSED_DIR } void os::breakpoint() { BREAKPOINT; } bool os::obsolete_option(const JavaVMOption *option) { if (!strncmp(option->optionString, "-Xt", 3)) { return true; } else if (!strncmp(option->optionString, "-Xtm", 4)) { return true; } else if (!strncmp(option->optionString, "-Xverifyheap", 12)) { return true; } else if (!strncmp(option->optionString, "-Xmaxjitcodesize", 16)) { return true; } return false; } bool os::Solaris::valid_stack_address(Thread* thread, address sp) { address stackStart = (address)thread->stack_base(); address stackEnd = (address)(stackStart - (address)thread->stack_size()); if (sp < stackStart && sp >= stackEnd ) return true; return false; } extern "C" void breakpoint() { // use debugger to set breakpoint here } static thread_t main_thread; // Thread start routine for all new Java threads extern "C" void* java_start(void* thread_addr) { // Try to randomize the cache line index of hot stack frames. // This helps when threads of the same stack traces evict each other's // cache lines. The threads can be either from the same JVM instance, or // from different JVM instances. The benefit is especially true for // processors with hyperthreading technology. static int counter = 0; int pid = os::current_process_id(); alloca(((pid ^ counter++) & 7) * 128); int prio; Thread* thread = (Thread*)thread_addr; OSThread* osthr = thread->osthread(); osthr->set_lwp_id( _lwp_self() ); // Store lwp in case we are bound thread->_schedctl = (void *) schedctl_init () ; if (UseNUMA) { int lgrp_id = os::numa_get_group_id(); if (lgrp_id != -1) { thread->set_lgrp_id(lgrp_id); } } // If the creator called set priority before we started, // we need to call set_native_priority now that we have an lwp. // We used to get the priority from thr_getprio (we called // thr_setprio way back in create_thread) and pass it to // set_native_priority, but Solaris scales the priority // in java_to_os_priority, so when we read it back here, // we pass trash to set_native_priority instead of what's // in java_to_os_priority. So we save the native priority // in the osThread and recall it here. if ( osthr->thread_id() != -1 ) { if ( UseThreadPriorities ) { int prio = osthr->native_priority(); if (ThreadPriorityVerbose) { tty->print_cr("Starting Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT ", setting priority: %d\n", osthr->thread_id(), osthr->lwp_id(), prio); } os::set_native_priority(thread, prio); } } else if (ThreadPriorityVerbose) { warning("Can't set priority in _start routine, thread id hasn't been set\n"); } assert(osthr->get_state() == RUNNABLE, "invalid os thread state"); // initialize signal mask for this thread os::Solaris::hotspot_sigmask(thread); thread->run(); // One less thread is executing // When the VMThread gets here, the main thread may have already exited // which frees the CodeHeap containing the Atomic::dec code if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) { Atomic::dec(&os::Solaris::_os_thread_count); } if (UseDetachedThreads) { thr_exit(NULL); ShouldNotReachHere(); } return NULL; } static OSThread* create_os_thread(Thread* thread, thread_t thread_id) { // Allocate the OSThread object OSThread* osthread = new OSThread(NULL, NULL); if (osthread == NULL) return NULL; // Store info on the Solaris thread into the OSThread osthread->set_thread_id(thread_id); osthread->set_lwp_id(_lwp_self()); thread->_schedctl = (void *) schedctl_init () ; if (UseNUMA) { int lgrp_id = os::numa_get_group_id(); if (lgrp_id != -1) { thread->set_lgrp_id(lgrp_id); } } if ( ThreadPriorityVerbose ) { tty->print_cr("In create_os_thread, Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT "\n", osthread->thread_id(), osthread->lwp_id() ); } // Initial thread state is INITIALIZED, not SUSPENDED osthread->set_state(INITIALIZED); return osthread; } void os::Solaris::hotspot_sigmask(Thread* thread) { //Save caller's signal mask sigset_t sigmask; thr_sigsetmask(SIG_SETMASK, NULL, &sigmask); OSThread *osthread = thread->osthread(); osthread->set_caller_sigmask(sigmask); thr_sigsetmask(SIG_UNBLOCK, os::Solaris::unblocked_signals(), NULL); if (!ReduceSignalUsage) { if (thread->is_VM_thread()) { // Only the VM thread handles BREAK_SIGNAL ... thr_sigsetmask(SIG_UNBLOCK, vm_signals(), NULL); } else { // ... all other threads block BREAK_SIGNAL assert(!sigismember(vm_signals(), SIGINT), "SIGINT should not be blocked"); thr_sigsetmask(SIG_BLOCK, vm_signals(), NULL); } } } bool os::create_attached_thread(JavaThread* thread) { #ifdef ASSERT thread->verify_not_published(); #endif OSThread* osthread = create_os_thread(thread, thr_self()); if (osthread == NULL) { return false; } // Initial thread state is RUNNABLE osthread->set_state(RUNNABLE); thread->set_osthread(osthread); // initialize signal mask for this thread // and save the caller's signal mask os::Solaris::hotspot_sigmask(thread); return true; } bool os::create_main_thread(JavaThread* thread) { #ifdef ASSERT thread->verify_not_published(); #endif if (_starting_thread == NULL) { _starting_thread = create_os_thread(thread, main_thread); if (_starting_thread == NULL) { return false; } } // The primodial thread is runnable from the start _starting_thread->set_state(RUNNABLE); thread->set_osthread(_starting_thread); // initialize signal mask for this thread // and save the caller's signal mask os::Solaris::hotspot_sigmask(thread); return true; } // _T2_libthread is true if we believe we are running with the newer // SunSoft lwp/libthread.so (2.8 patch, 2.9 default) bool os::Solaris::_T2_libthread = false; bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) { // Allocate the OSThread object OSThread* osthread = new OSThread(NULL, NULL); if (osthread == NULL) { return false; } if ( ThreadPriorityVerbose ) { char *thrtyp; switch ( thr_type ) { case vm_thread: thrtyp = (char *)"vm"; break; case cgc_thread: thrtyp = (char *)"cgc"; break; case pgc_thread: thrtyp = (char *)"pgc"; break; case java_thread: thrtyp = (char *)"java"; break; case compiler_thread: thrtyp = (char *)"compiler"; break; case watcher_thread: thrtyp = (char *)"watcher"; break; default: thrtyp = (char *)"unknown"; break; } tty->print_cr("In create_thread, creating a %s thread\n", thrtyp); } // Calculate stack size if it's not specified by caller. if (stack_size == 0) { // The default stack size 1M (2M for LP64). stack_size = (BytesPerWord >> 2) * K * K; switch (thr_type) { case os::java_thread: // Java threads use ThreadStackSize which default value can be changed with the flag -Xss if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create(); break; case os::compiler_thread: if (CompilerThreadStackSize > 0) { stack_size = (size_t)(CompilerThreadStackSize * K); break; } // else fall through: // use VMThreadStackSize if CompilerThreadStackSize is not defined case os::vm_thread: case os::pgc_thread: case os::cgc_thread: case os::watcher_thread: if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K); break; } } stack_size = MAX2(stack_size, os::Solaris::min_stack_allowed); // Initial state is ALLOCATED but not INITIALIZED osthread->set_state(ALLOCATED); if (os::Solaris::_os_thread_count > os::Solaris::_os_thread_limit) { // We got lots of threads. Check if we still have some address space left. // Need to be at least 5Mb of unreserved address space. We do check by // trying to reserve some. const size_t VirtualMemoryBangSize = 20*K*K; char* mem = os::reserve_memory(VirtualMemoryBangSize); if (mem == NULL) { delete osthread; return false; } else { // Release the memory again os::release_memory(mem, VirtualMemoryBangSize); } } // Setup osthread because the child thread may need it. thread->set_osthread(osthread); // Create the Solaris thread // explicit THR_BOUND for T2_libthread case in case // that assumption is not accurate, but our alternate signal stack // handling is based on it which must have bound threads thread_t tid = 0; long flags = (UseDetachedThreads ? THR_DETACHED : 0) | THR_SUSPENDED | ((UseBoundThreads || os::Solaris::T2_libthread() || (thr_type == vm_thread) || (thr_type == cgc_thread) || (thr_type == pgc_thread) || (thr_type == compiler_thread && BackgroundCompilation)) ? THR_BOUND : 0); int status; // 4376845 -- libthread/kernel don't provide enough LWPs to utilize all CPUs. // // On multiprocessors systems, libthread sometimes under-provisions our // process with LWPs. On a 30-way systems, for instance, we could have // 50 user-level threads in ready state and only 2 or 3 LWPs assigned // to our process. This can result in under utilization of PEs. // I suspect the problem is related to libthread's LWP // pool management and to the kernel's SIGBLOCKING "last LWP parked" // upcall policy. // // The following code is palliative -- it attempts to ensure that our // process has sufficient LWPs to take advantage of multiple PEs. // Proper long-term cures include using user-level threads bound to LWPs // (THR_BOUND) or using LWP-based synchronization. Note that there is a // slight timing window with respect to sampling _os_thread_count, but // the race is benign. Also, we should periodically recompute // _processors_online as the min of SC_NPROCESSORS_ONLN and the // the number of PEs in our partition. You might be tempted to use // THR_NEW_LWP here, but I'd recommend against it as that could // result in undesirable growth of the libthread's LWP pool. // The fix below isn't sufficient; for instance, it doesn't take into count // LWPs parked on IO. It does, however, help certain CPU-bound benchmarks. // // Some pathologies this scheme doesn't handle: // * Threads can block, releasing the LWPs. The LWPs can age out. // When a large number of threads become ready again there aren't // enough LWPs available to service them. This can occur when the // number of ready threads oscillates. // * LWPs/Threads park on IO, thus taking the LWP out of circulation. // // Finally, we should call thr_setconcurrency() periodically to refresh // the LWP pool and thwart the LWP age-out mechanism. // The "+3" term provides a little slop -- we want to slightly overprovision. if (AdjustConcurrency && os::Solaris::_os_thread_count < (_processors_online+3)) { if (!(flags & THR_BOUND)) { thr_setconcurrency (os::Solaris::_os_thread_count); // avoid starvation } } // Although this doesn't hurt, we should warn of undefined behavior // when using unbound T1 threads with schedctl(). This should never // happen, as the compiler and VM threads are always created bound DEBUG_ONLY( if ((VMThreadHintNoPreempt || CompilerThreadHintNoPreempt) && (!os::Solaris::T2_libthread() && (!(flags & THR_BOUND))) && ((thr_type == vm_thread) || (thr_type == cgc_thread) || (thr_type == pgc_thread) || (thr_type == compiler_thread && BackgroundCompilation))) { warning("schedctl behavior undefined when Compiler/VM/GC Threads are Unbound"); } ); // Mark that we don't have an lwp or thread id yet. // In case we attempt to set the priority before the thread starts. osthread->set_lwp_id(-1); osthread->set_thread_id(-1); status = thr_create(NULL, stack_size, java_start, thread, flags, &tid); if (status != 0) { if (PrintMiscellaneous && (Verbose || WizardMode)) { perror("os::create_thread"); } thread->set_osthread(NULL); // Need to clean up stuff we've allocated so far delete osthread; return false; } Atomic::inc(&os::Solaris::_os_thread_count); // Store info on the Solaris thread into the OSThread osthread->set_thread_id(tid); // Remember that we created this thread so we can set priority on it osthread->set_vm_created(); // Set the default thread priority. If using bound threads, setting // lwp priority will be delayed until thread start. set_native_priority(thread, DefaultThreadPriority == -1 ? java_to_os_priority[NormPriority] : DefaultThreadPriority); // Initial thread state is INITIALIZED, not SUSPENDED osthread->set_state(INITIALIZED); // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain return true; } /* defined for >= Solaris 10. This allows builds on earlier versions * of Solaris to take advantage of the newly reserved Solaris JVM signals * With SIGJVM1, SIGJVM2, INTERRUPT_SIGNAL is SIGJVM1, ASYNC_SIGNAL is SIGJVM2 * and -XX:+UseAltSigs does nothing since these should have no conflict */ #if !defined(SIGJVM1) #define SIGJVM1 39 #define SIGJVM2 40 #endif debug_only(static bool signal_sets_initialized = false); static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs; int os::Solaris::_SIGinterrupt = INTERRUPT_SIGNAL; int os::Solaris::_SIGasync = ASYNC_SIGNAL; bool os::Solaris::is_sig_ignored(int sig) { struct sigaction oact; sigaction(sig, (struct sigaction*)NULL, &oact); void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*, oact.sa_sigaction) : CAST_FROM_FN_PTR(void*, oact.sa_handler); if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) return true; else return false; } // Note: SIGRTMIN is a macro that calls sysconf() so it will // dynamically detect SIGRTMIN value for the system at runtime, not buildtime static bool isJVM1available() { return SIGJVM1 < SIGRTMIN; } void os::Solaris::signal_sets_init() { // Should also have an assertion stating we are still single-threaded. assert(!signal_sets_initialized, "Already initialized"); // Fill in signals that are necessarily unblocked for all threads in // the VM. Currently, we unblock the following signals: // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden // by -Xrs (=ReduceSignalUsage)); // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all // other threads. The "ReduceSignalUsage" boolean tells us not to alter // the dispositions or masks wrt these signals. // Programs embedding the VM that want to use the above signals for their // own purposes must, at this time, use the "-Xrs" option to prevent // interference with shutdown hooks and BREAK_SIGNAL thread dumping. // (See bug 4345157, and other related bugs). // In reality, though, unblocking these signals is really a nop, since // these signals are not blocked by default. sigemptyset(&unblocked_sigs); sigemptyset(&allowdebug_blocked_sigs); sigaddset(&unblocked_sigs, SIGILL); sigaddset(&unblocked_sigs, SIGSEGV); sigaddset(&unblocked_sigs, SIGBUS); sigaddset(&unblocked_sigs, SIGFPE); if (isJVM1available) { os::Solaris::set_SIGinterrupt(SIGJVM1); os::Solaris::set_SIGasync(SIGJVM2); } else if (UseAltSigs) { os::Solaris::set_SIGinterrupt(ALT_INTERRUPT_SIGNAL); os::Solaris::set_SIGasync(ALT_ASYNC_SIGNAL); } else { os::Solaris::set_SIGinterrupt(INTERRUPT_SIGNAL); os::Solaris::set_SIGasync(ASYNC_SIGNAL); } sigaddset(&unblocked_sigs, os::Solaris::SIGinterrupt()); sigaddset(&unblocked_sigs, os::Solaris::SIGasync()); if (!ReduceSignalUsage) { if (!os::Solaris::is_sig_ignored(SHUTDOWN1_SIGNAL)) { sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL); sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL); } if (!os::Solaris::is_sig_ignored(SHUTDOWN2_SIGNAL)) { sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL); sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL); } if (!os::Solaris::is_sig_ignored(SHUTDOWN3_SIGNAL)) { sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL); sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL); } } // Fill in signals that are blocked by all but the VM thread. sigemptyset(&vm_sigs); if (!ReduceSignalUsage) sigaddset(&vm_sigs, BREAK_SIGNAL); debug_only(signal_sets_initialized = true); // For diagnostics only used in run_periodic_checks sigemptyset(&check_signal_done); } // These are signals that are unblocked while a thread is running Java. // (For some reason, they get blocked by default.) sigset_t* os::Solaris::unblocked_signals() { assert(signal_sets_initialized, "Not initialized"); return &unblocked_sigs; } // These are the signals that are blocked while a (non-VM) thread is // running Java. Only the VM thread handles these signals. sigset_t* os::Solaris::vm_signals() { assert(signal_sets_initialized, "Not initialized"); return &vm_sigs; } // These are signals that are blocked during cond_wait to allow debugger in sigset_t* os::Solaris::allowdebug_blocked_signals() { assert(signal_sets_initialized, "Not initialized"); return &allowdebug_blocked_sigs; } void _handle_uncaught_cxx_exception() { VMError err("An uncaught C++ exception"); err.report_and_die(); } // First crack at OS-specific initialization, from inside the new thread. void os::initialize_thread(Thread* thr) { int r = thr_main() ; guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ; if (r) { JavaThread* jt = (JavaThread *)thr; assert(jt != NULL,"Sanity check"); size_t stack_size; address base = jt->stack_base(); if (Arguments::created_by_java_launcher()) { // Use 2MB to allow for Solaris 7 64 bit mode. stack_size = JavaThread::stack_size_at_create() == 0 ? 2048*K : JavaThread::stack_size_at_create(); // There are rare cases when we may have already used more than // the basic stack size allotment before this method is invoked. // Attempt to allow for a normally sized java_stack. size_t current_stack_offset = (size_t)(base - (address)&stack_size); stack_size += ReservedSpace::page_align_size_down(current_stack_offset); } else { // 6269555: If we were not created by a Java launcher, i.e. if we are // running embedded in a native application, treat the primordial thread // as much like a native attached thread as possible. This means using // the current stack size from thr_stksegment(), unless it is too large // to reliably setup guard pages. A reasonable max size is 8MB. size_t current_size = current_stack_size(); // This should never happen, but just in case.... if (current_size == 0) current_size = 2 * K * K; stack_size = current_size > (8 * K * K) ? (8 * K * K) : current_size; } address bottom = (address)align_size_up((intptr_t)(base - stack_size), os::vm_page_size());; stack_size = (size_t)(base - bottom); assert(stack_size > 0, "Stack size calculation problem"); if (stack_size > jt->stack_size()) { NOT_PRODUCT( struct rlimit limits; getrlimit(RLIMIT_STACK, &limits); size_t size = adjust_stack_size(base, (size_t)limits.rlim_cur); assert(size >= jt->stack_size(), "Stack size problem in main thread"); ) tty->print_cr( "Stack size of %d Kb exceeds current limit of %d Kb.\n" "(Stack sizes are rounded up to a multiple of the system page size.)\n" "See limit(1) to increase the stack size limit.", stack_size / K, jt->stack_size() / K); vm_exit(1); } assert(jt->stack_size() >= stack_size, "Attempt to map more stack than was allocated"); jt->set_stack_size(stack_size); } // 5/22/01: Right now alternate signal stacks do not handle // throwing stack overflow exceptions, see bug 4463178 // Until a fix is found for this, T2 will NOT imply alternate signal // stacks. // If using T2 libthread threads, install an alternate signal stack. // Because alternate stacks associate with LWPs on Solaris, // see sigaltstack(2), if using UNBOUND threads, or if UseBoundThreads // we prefer to explicitly stack bang. // If not using T2 libthread, but using UseBoundThreads any threads // (primordial thread, jni_attachCurrentThread) we do not create, // probably are not bound, therefore they can not have an alternate // signal stack. Since our stack banging code is generated and // is shared across threads, all threads must be bound to allow // using alternate signal stacks. The alternative is to interpose // on _lwp_create to associate an alt sig stack with each LWP, // and this could be a problem when the JVM is embedded. // We would prefer to use alternate signal stacks with T2 // Since there is currently no accurate way to detect T2 // we do not. Assuming T2 when running T1 causes sig 11s or assertions // on installing alternate signal stacks // 05/09/03: removed alternate signal stack support for Solaris // The alternate signal stack mechanism is no longer needed to // handle stack overflow. This is now handled by allocating // guard pages (red zone) and stackbanging. // Initially the alternate signal stack mechanism was removed because // it did not work with T1 llibthread. Alternate // signal stacks MUST have all threads bound to lwps. Applications // can create their own threads and attach them without their being // bound under T1. This is frequently the case for the primordial thread. // If we were ever to reenable this mechanism we would need to // use the dynamic check for T2 libthread. os::Solaris::init_thread_fpu_state(); std::set_terminate(_handle_uncaught_cxx_exception); } // Free Solaris resources related to the OSThread void os::free_thread(OSThread* osthread) { assert(osthread != NULL, "os::free_thread but osthread not set"); // We are told to free resources of the argument thread, // but we can only really operate on the current thread. // The main thread must take the VMThread down synchronously // before the main thread exits and frees up CodeHeap guarantee((Thread::current()->osthread() == osthread || (osthread == VMThread::vm_thread()->osthread())), "os::free_thread but not current thread"); if (Thread::current()->osthread() == osthread) { // Restore caller's signal mask sigset_t sigmask = osthread->caller_sigmask(); thr_sigsetmask(SIG_SETMASK, &sigmask, NULL); } delete osthread; } void os::pd_start_thread(Thread* thread) { int status = thr_continue(thread->osthread()->thread_id()); assert_status(status == 0, status, "thr_continue failed"); } intx os::current_thread_id() { return (intx)thr_self(); } static pid_t _initial_pid = 0; int os::current_process_id() { return (int)(_initial_pid ? _initial_pid : getpid()); } // gethrtime() should be monotonic according to the documentation, // but some virtualized platforms are known to break this guarantee. // getTimeNanos() must be guaranteed not to move backwards, so we // are forced to add a check here. inline hrtime_t getTimeNanos() { const hrtime_t now = gethrtime(); const hrtime_t prev = max_hrtime; if (now <= prev) { return prev; // same or retrograde time; } const hrtime_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&max_hrtime, prev); assert(obsv >= prev, "invariant"); // Monotonicity // If the CAS succeeded then we're done and return "now". // If the CAS failed and the observed value "obsv" is >= now then // we should return "obsv". If the CAS failed and now > obsv > prv then // some other thread raced this thread and installed a new value, in which case // we could either (a) retry the entire operation, (b) retry trying to install now // or (c) just return obsv. We use (c). No loop is required although in some cases // we might discard a higher "now" value in deference to a slightly lower but freshly // installed obsv value. That's entirely benign -- it admits no new orderings compared // to (a) or (b) -- and greatly reduces coherence traffic. // We might also condition (c) on the magnitude of the delta between obsv and now. // Avoiding excessive CAS operations to hot RW locations is critical. // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate return (prev == obsv) ? now : obsv; } // Time since start-up in seconds to a fine granularity. // Used by VMSelfDestructTimer and the MemProfiler. double os::elapsedTime() { return (double)(getTimeNanos() - first_hrtime) / (double)hrtime_hz; } jlong os::elapsed_counter() { return (jlong)(getTimeNanos() - first_hrtime); } jlong os::elapsed_frequency() { return hrtime_hz; } // Return the real, user, and system times in seconds from an // arbitrary fixed point in the past. bool os::getTimesSecs(double* process_real_time, double* process_user_time, double* process_system_time) { struct tms ticks; clock_t real_ticks = times(&ticks); if (real_ticks == (clock_t) (-1)) { return false; } else { double ticks_per_second = (double) clock_tics_per_sec; *process_user_time = ((double) ticks.tms_utime) / ticks_per_second; *process_system_time = ((double) ticks.tms_stime) / ticks_per_second; // For consistency return the real time from getTimeNanos() // converted to seconds. *process_real_time = ((double) getTimeNanos()) / ((double) NANOUNITS); return true; } } bool os::supports_vtime() { return true; } bool os::enable_vtime() { int fd = ::open("/proc/self/ctl", O_WRONLY); if (fd == -1) return false; long cmd[] = { PCSET, PR_MSACCT }; int res = ::write(fd, cmd, sizeof(long) * 2); ::close(fd); if (res != sizeof(long) * 2) return false; return true; } bool os::vtime_enabled() { int fd = ::open("/proc/self/status", O_RDONLY); if (fd == -1) return false; pstatus_t status; int res = os::read(fd, (void*) &status, sizeof(pstatus_t)); ::close(fd); if (res != sizeof(pstatus_t)) return false; return status.pr_flags & PR_MSACCT; } double os::elapsedVTime() { return (double)gethrvtime() / (double)hrtime_hz; } // Used internally for comparisons only // getTimeMillis guaranteed to not move backwards on Solaris jlong getTimeMillis() { jlong nanotime = getTimeNanos(); return (jlong)(nanotime / NANOSECS_PER_MILLISEC); } // Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis jlong os::javaTimeMillis() { timeval t; if (gettimeofday( &t, NULL) == -1) fatal(err_msg("os::javaTimeMillis: gettimeofday (%s)", strerror(errno))); return jlong(t.tv_sec) * 1000 + jlong(t.tv_usec) / 1000; } jlong os::javaTimeNanos() { return (jlong)getTimeNanos(); } void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) { info_ptr->max_value = ALL_64_BITS; // gethrtime() uses all 64 bits info_ptr->may_skip_backward = false; // not subject to resetting or drifting info_ptr->may_skip_forward = false; // not subject to resetting or drifting info_ptr->kind = JVMTI_TIMER_ELAPSED; // elapsed not CPU time } char * os::local_time_string(char *buf, size_t buflen) { struct tm t; time_t long_time; time(&long_time); localtime_r(&long_time, &t); jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d", t.tm_year + 1900, t.tm_mon + 1, t.tm_mday, t.tm_hour, t.tm_min, t.tm_sec); return buf; } // Note: os::shutdown() might be called very early during initialization, or // called from signal handler. Before adding something to os::shutdown(), make // sure it is async-safe and can handle partially initialized VM. void os::shutdown() { // allow PerfMemory to attempt cleanup of any persistent resources perfMemory_exit(); // needs to remove object in file system AttachListener::abort(); // flush buffered output, finish log files ostream_abort(); // Check for abort hook abort_hook_t abort_hook = Arguments::abort_hook(); if (abort_hook != NULL) { abort_hook(); } } // Note: os::abort() might be called very early during initialization, or // called from signal handler. Before adding something to os::abort(), make // sure it is async-safe and can handle partially initialized VM. void os::abort(bool dump_core) { os::shutdown(); if (dump_core) { #ifndef PRODUCT fdStream out(defaultStream::output_fd()); out.print_raw("Current thread is "); char buf[16]; jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id()); out.print_raw_cr(buf); out.print_raw_cr("Dumping core ..."); #endif ::abort(); // dump core (for debugging) } ::exit(1); } // Die immediately, no exit hook, no abort hook, no cleanup. void os::die() { ::abort(); // dump core (for debugging) } // DLL functions const char* os::dll_file_extension() { return ".so"; } // This must be hard coded because it's the system's temporary // directory not the java application's temp directory, ala java.io.tmpdir. const char* os::get_temp_directory() { return "/tmp"; } static bool file_exists(const char* filename) { struct stat statbuf; if (filename == NULL || strlen(filename) == 0) { return false; } return os::stat(filename, &statbuf) == 0; } bool os::dll_build_name(char* buffer, size_t buflen, const char* pname, const char* fname) { bool retval = false; const size_t pnamelen = pname ? strlen(pname) : 0; // Return error on buffer overflow. if (pnamelen + strlen(fname) + 10 > (size_t) buflen) { return retval; } if (pnamelen == 0) { snprintf(buffer, buflen, "lib%s.so", fname); retval = true; } else if (strchr(pname, *os::path_separator()) != NULL) { int n; char** pelements = split_path(pname, &n); if (pelements == NULL) { return false; } for (int i = 0 ; i < n ; i++) { // really shouldn't be NULL but what the heck, check can't hurt if (pelements[i] == NULL || strlen(pelements[i]) == 0) { continue; // skip the empty path values } snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname); if (file_exists(buffer)) { retval = true; break; } } // release the storage for (int i = 0 ; i < n ; i++) { if (pelements[i] != NULL) { FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal); } } if (pelements != NULL) { FREE_C_HEAP_ARRAY(char*, pelements, mtInternal); } } else { snprintf(buffer, buflen, "%s/lib%s.so", pname, fname); retval = true; } return retval; } // check if addr is inside libjvm.so bool os::address_is_in_vm(address addr) { static address libjvm_base_addr; Dl_info dlinfo; if (libjvm_base_addr == NULL) { if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) { libjvm_base_addr = (address)dlinfo.dli_fbase; } assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm"); } if (dladdr((void *)addr, &dlinfo) != 0) { if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true; } return false; } typedef int (*dladdr1_func_type) (void *, Dl_info *, void **, int); static dladdr1_func_type dladdr1_func = NULL; bool os::dll_address_to_function_name(address addr, char *buf, int buflen, int * offset) { // buf is not optional, but offset is optional assert(buf != NULL, "sanity check"); Dl_info dlinfo; // dladdr1_func was initialized in os::init() if (dladdr1_func != NULL) { // yes, we have dladdr1 // Support for dladdr1 is checked at runtime; it may be // available even if the vm is built on a machine that does // not have dladdr1 support. Make sure there is a value for // RTLD_DL_SYMENT. #ifndef RTLD_DL_SYMENT #define RTLD_DL_SYMENT 1 #endif #ifdef _LP64 Elf64_Sym * info; #else Elf32_Sym * info; #endif if (dladdr1_func((void *)addr, &dlinfo, (void **)&info, RTLD_DL_SYMENT) != 0) { // see if we have a matching symbol that covers our address if (dlinfo.dli_saddr != NULL && (char *)dlinfo.dli_saddr + info->st_size > (char *)addr) { if (dlinfo.dli_sname != NULL) { if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) { jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname); } if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr; return true; } } // no matching symbol so try for just file info if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) { if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase), buf, buflen, offset, dlinfo.dli_fname)) { return true; } } } buf[0] = '\0'; if (offset != NULL) *offset = -1; return false; } // no, only dladdr is available if (dladdr((void *)addr, &dlinfo) != 0) { // see if we have a matching symbol if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) { if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) { jio_snprintf(buf, buflen, dlinfo.dli_sname); } if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr; return true; } // no matching symbol so try for just file info if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) { if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase), buf, buflen, offset, dlinfo.dli_fname)) { return true; } } } buf[0] = '\0'; if (offset != NULL) *offset = -1; return false; } bool os::dll_address_to_library_name(address addr, char* buf, int buflen, int* offset) { // buf is not optional, but offset is optional assert(buf != NULL, "sanity check"); Dl_info dlinfo; if (dladdr((void*)addr, &dlinfo) != 0) { if (dlinfo.dli_fname != NULL) { jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname); } if (dlinfo.dli_fbase != NULL && offset != NULL) { *offset = addr - (address)dlinfo.dli_fbase; } return true; } buf[0] = '\0'; if (offset) *offset = -1; return false; } // Prints the names and full paths of all opened dynamic libraries // for current process void os::print_dll_info(outputStream * st) { Dl_info dli; void *handle; Link_map *map; Link_map *p; st->print_cr("Dynamic libraries:"); st->flush(); if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 || dli.dli_fname == NULL) { st->print_cr("Error: Cannot print dynamic libraries."); return; } handle = dlopen(dli.dli_fname, RTLD_LAZY); if (handle == NULL) { st->print_cr("Error: Cannot print dynamic libraries."); return; } dlinfo(handle, RTLD_DI_LINKMAP, &map); if (map == NULL) { st->print_cr("Error: Cannot print dynamic libraries."); return; } while (map->l_prev != NULL) map = map->l_prev; while (map != NULL) { st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name); map = map->l_next; } dlclose(handle); } // Loads .dll/.so and // in case of error it checks if .dll/.so was built for the // same architecture as Hotspot is running on void * os::dll_load(const char *filename, char *ebuf, int ebuflen) { void * result= ::dlopen(filename, RTLD_LAZY); if (result != NULL) { // Successful loading return result; } Elf32_Ehdr elf_head; // Read system error message into ebuf // It may or may not be overwritten below ::strncpy(ebuf, ::dlerror(), ebuflen-1); ebuf[ebuflen-1]='\0'; int diag_msg_max_length=ebuflen-strlen(ebuf); char* diag_msg_buf=ebuf+strlen(ebuf); if (diag_msg_max_length==0) { // No more space in ebuf for additional diagnostics message return NULL; } int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK); if (file_descriptor < 0) { // Can't open library, report dlerror() message return NULL; } bool failed_to_read_elf_head= (sizeof(elf_head)!= (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ; ::close(file_descriptor); if (failed_to_read_elf_head) { // file i/o error - report dlerror() msg return NULL; } typedef struct { Elf32_Half code; // Actual value as defined in elf.h Elf32_Half compat_class; // Compatibility of archs at VM's sense char elf_class; // 32 or 64 bit char endianess; // MSB or LSB char* name; // String representation } arch_t; static const arch_t arch_array[]={ {EM_386, EM_386, ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"}, {EM_486, EM_386, ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"}, {EM_IA_64, EM_IA_64, ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"}, {EM_X86_64, EM_X86_64, ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"}, {EM_SPARC, EM_SPARC, ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"}, {EM_SPARC32PLUS, EM_SPARC, ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"}, {EM_SPARCV9, EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"}, {EM_PPC, EM_PPC, ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"}, {EM_PPC64, EM_PPC64, ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"}, {EM_ARM, EM_ARM, ELFCLASS32, ELFDATA2LSB, (char*)"ARM 32"} }; #if (defined IA32) static Elf32_Half running_arch_code=EM_386; #elif (defined AMD64) static Elf32_Half running_arch_code=EM_X86_64; #elif (defined IA64) static Elf32_Half running_arch_code=EM_IA_64; #elif (defined __sparc) && (defined _LP64) static Elf32_Half running_arch_code=EM_SPARCV9; #elif (defined __sparc) && (!defined _LP64) static Elf32_Half running_arch_code=EM_SPARC; #elif (defined __powerpc64__) static Elf32_Half running_arch_code=EM_PPC64; #elif (defined __powerpc__) static Elf32_Half running_arch_code=EM_PPC; #elif (defined ARM) static Elf32_Half running_arch_code=EM_ARM; #else #error Method os::dll_load requires that one of following is defined:\ IA32, AMD64, IA64, __sparc, __powerpc__, ARM, ARM #endif // Identify compatability class for VM's architecture and library's architecture // Obtain string descriptions for architectures arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL}; int running_arch_index=-1; for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) { if (running_arch_code == arch_array[i].code) { running_arch_index = i; } if (lib_arch.code == arch_array[i].code) { lib_arch.compat_class = arch_array[i].compat_class; lib_arch.name = arch_array[i].name; } } assert(running_arch_index != -1, "Didn't find running architecture code (running_arch_code) in arch_array"); if (running_arch_index == -1) { // Even though running architecture detection failed // we may still continue with reporting dlerror() message return NULL; } if (lib_arch.endianess != arch_array[running_arch_index].endianess) { ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)"); return NULL; } if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) { ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)"); return NULL; } if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) { if ( lib_arch.name!=NULL ) { ::snprintf(diag_msg_buf, diag_msg_max_length-1, " (Possible cause: can't load %s-bit .so on a %s-bit platform)", lib_arch.name, arch_array[running_arch_index].name); } else { ::snprintf(diag_msg_buf, diag_msg_max_length-1, " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)", lib_arch.code, arch_array[running_arch_index].name); } } return NULL; } void* os::dll_lookup(void* handle, const char* name) { return dlsym(handle, name); } void* os::get_default_process_handle() { return (void*)::dlopen(NULL, RTLD_LAZY); } int os::stat(const char *path, struct stat *sbuf) { char pathbuf[MAX_PATH]; if (strlen(path) > MAX_PATH - 1) { errno = ENAMETOOLONG; return -1; } os::native_path(strcpy(pathbuf, path)); return ::stat(pathbuf, sbuf); } static bool _print_ascii_file(const char* filename, outputStream* st) { int fd = ::open(filename, O_RDONLY); if (fd == -1) { return false; } char buf[32]; int bytes; while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) { st->print_raw(buf, bytes); } ::close(fd); return true; } void os::print_os_info_brief(outputStream* st) { os::Solaris::print_distro_info(st); os::Posix::print_uname_info(st); os::Solaris::print_libversion_info(st); } void os::print_os_info(outputStream* st) { st->print("OS:"); os::Solaris::print_distro_info(st); os::Posix::print_uname_info(st); os::Solaris::print_libversion_info(st); os::Posix::print_rlimit_info(st); os::Posix::print_load_average(st); } void os::Solaris::print_distro_info(outputStream* st) { if (!_print_ascii_file("/etc/release", st)) { st->print("Solaris"); } st->cr(); } void os::Solaris::print_libversion_info(outputStream* st) { if (os::Solaris::T2_libthread()) { st->print(" (T2 libthread)"); } else { st->print(" (T1 libthread)"); } st->cr(); } static bool check_addr0(outputStream* st) { jboolean status = false; int fd = ::open("/proc/self/map",O_RDONLY); if (fd >= 0) { prmap_t p; while(::read(fd, &p, sizeof(p)) > 0) { if (p.pr_vaddr == 0x0) { st->print("Warning: Address: 0x%x, Size: %dK, ",p.pr_vaddr, p.pr_size/1024, p.pr_mapname); st->print("Mapped file: %s, ", p.pr_mapname[0] == '\0' ? "None" : p.pr_mapname); st->print("Access:"); st->print("%s",(p.pr_mflags & MA_READ) ? "r" : "-"); st->print("%s",(p.pr_mflags & MA_WRITE) ? "w" : "-"); st->print("%s",(p.pr_mflags & MA_EXEC) ? "x" : "-"); st->cr(); status = true; } } ::close(fd); } return status; } void os::pd_print_cpu_info(outputStream* st) { // Nothing to do for now. } void os::print_memory_info(outputStream* st) { st->print("Memory:"); st->print(" %dk page", os::vm_page_size()>>10); st->print(", physical " UINT64_FORMAT "k", os::physical_memory()>>10); st->print("(" UINT64_FORMAT "k free)", os::available_memory() >> 10); st->cr(); if (VMError::fatal_error_in_progress()) { (void) check_addr0(st); } } void os::print_siginfo(outputStream* st, void* siginfo) { const siginfo_t* si = (const siginfo_t*)siginfo; os::Posix::print_siginfo_brief(st, si); if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) && UseSharedSpaces) { FileMapInfo* mapinfo = FileMapInfo::current_info(); if (mapinfo->is_in_shared_space(si->si_addr)) { st->print("\n\nError accessing class data sharing archive." \ " Mapped file inaccessible during execution, " \ " possible disk/network problem."); } } st->cr(); } // Moved from whole group, because we need them here for diagnostic // prints. #define OLDMAXSIGNUM 32 static int Maxsignum = 0; static int *ourSigFlags = NULL; extern "C" void sigINTRHandler(int, siginfo_t*, void*); int os::Solaris::get_our_sigflags(int sig) { assert(ourSigFlags!=NULL, "signal data structure not initialized"); assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range"); return ourSigFlags[sig]; } void os::Solaris::set_our_sigflags(int sig, int flags) { assert(ourSigFlags!=NULL, "signal data structure not initialized"); assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range"); ourSigFlags[sig] = flags; } static const char* get_signal_handler_name(address handler, char* buf, int buflen) { int offset; bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset); if (found) { // skip directory names const char *p1, *p2; p1 = buf; size_t len = strlen(os::file_separator()); while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len; jio_snprintf(buf, buflen, "%s+0x%x", p1, offset); } else { jio_snprintf(buf, buflen, PTR_FORMAT, handler); } return buf; } static void print_signal_handler(outputStream* st, int sig, char* buf, size_t buflen) { struct sigaction sa; sigaction(sig, NULL, &sa); st->print("%s: ", os::exception_name(sig, buf, buflen)); address handler = (sa.sa_flags & SA_SIGINFO) ? CAST_FROM_FN_PTR(address, sa.sa_sigaction) : CAST_FROM_FN_PTR(address, sa.sa_handler); if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) { st->print("SIG_DFL"); } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) { st->print("SIG_IGN"); } else { st->print("[%s]", get_signal_handler_name(handler, buf, buflen)); } st->print(", sa_mask[0]="); os::Posix::print_signal_set_short(st, &sa.sa_mask); address rh = VMError::get_resetted_sighandler(sig); // May be, handler was resetted by VMError? if(rh != NULL) { handler = rh; sa.sa_flags = VMError::get_resetted_sigflags(sig); } st->print(", sa_flags="); os::Posix::print_sa_flags(st, sa.sa_flags); // Check: is it our handler? if(handler == CAST_FROM_FN_PTR(address, signalHandler) || handler == CAST_FROM_FN_PTR(address, sigINTRHandler)) { // It is our signal handler // check for flags if(sa.sa_flags != os::Solaris::get_our_sigflags(sig)) { st->print( ", flags was changed from " PTR32_FORMAT ", consider using jsig library", os::Solaris::get_our_sigflags(sig)); } } st->cr(); } void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) { st->print_cr("Signal Handlers:"); print_signal_handler(st, SIGSEGV, buf, buflen); print_signal_handler(st, SIGBUS , buf, buflen); print_signal_handler(st, SIGFPE , buf, buflen); print_signal_handler(st, SIGPIPE, buf, buflen); print_signal_handler(st, SIGXFSZ, buf, buflen); print_signal_handler(st, SIGILL , buf, buflen); print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen); print_signal_handler(st, ASYNC_SIGNAL, buf, buflen); print_signal_handler(st, BREAK_SIGNAL, buf, buflen); print_signal_handler(st, SHUTDOWN1_SIGNAL , buf, buflen); print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen); print_signal_handler(st, SHUTDOWN3_SIGNAL, buf, buflen); print_signal_handler(st, os::Solaris::SIGinterrupt(), buf, buflen); print_signal_handler(st, os::Solaris::SIGasync(), buf, buflen); } static char saved_jvm_path[MAXPATHLEN] = { 0 }; // Find the full path to the current module, libjvm.so void os::jvm_path(char *buf, jint buflen) { // Error checking. if (buflen < MAXPATHLEN) { assert(false, "must use a large-enough buffer"); buf[0] = '\0'; return; } // Lazy resolve the path to current module. if (saved_jvm_path[0] != 0) { strcpy(buf, saved_jvm_path); return; } Dl_info dlinfo; int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo); assert(ret != 0, "cannot locate libjvm"); if (ret != 0 && dlinfo.dli_fname != NULL) { realpath((char *)dlinfo.dli_fname, buf); } else { buf[0] = '\0'; return; } if (Arguments::created_by_gamma_launcher()) { // Support for the gamma launcher. Typical value for buf is // "/jre/lib///libjvm.so". If "/jre/lib/" appears at // the right place in the string, then assume we are installed in a JDK and // we're done. Otherwise, check for a JAVA_HOME environment variable and fix // up the path so it looks like libjvm.so is installed there (append a // fake suffix hotspot/libjvm.so). const char *p = buf + strlen(buf) - 1; for (int count = 0; p > buf && count < 5; ++count) { for (--p; p > buf && *p != '/'; --p) /* empty */ ; } if (strncmp(p, "/jre/lib/", 9) != 0) { // Look for JAVA_HOME in the environment. char* java_home_var = ::getenv("JAVA_HOME"); if (java_home_var != NULL && java_home_var[0] != 0) { char cpu_arch[12]; char* jrelib_p; int len; sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch)); #ifdef _LP64 // If we are on sparc running a 64-bit vm, look in jre/lib/sparcv9. if (strcmp(cpu_arch, "sparc") == 0) { strcat(cpu_arch, "v9"); } else if (strcmp(cpu_arch, "i386") == 0) { strcpy(cpu_arch, "amd64"); } #endif // Check the current module name "libjvm.so". p = strrchr(buf, '/'); assert(strstr(p, "/libjvm") == p, "invalid library name"); realpath(java_home_var, buf); // determine if this is a legacy image or modules image // modules image doesn't have "jre" subdirectory len = strlen(buf); assert(len < buflen, "Ran out of buffer space"); jrelib_p = buf + len; snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch); if (0 != access(buf, F_OK)) { snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch); } if (0 == access(buf, F_OK)) { // Use current module name "libjvm.so" len = strlen(buf); snprintf(buf + len, buflen-len, "/hotspot/libjvm.so"); } else { // Go back to path of .so realpath((char *)dlinfo.dli_fname, buf); } } } } strncpy(saved_jvm_path, buf, MAXPATHLEN); } void os::print_jni_name_prefix_on(outputStream* st, int args_size) { // no prefix required, not even "_" } void os::print_jni_name_suffix_on(outputStream* st, int args_size) { // no suffix required } // This method is a copy of JDK's sysGetLastErrorString // from src/solaris/hpi/src/system_md.c size_t os::lasterror(char *buf, size_t len) { if (errno == 0) return 0; const char *s = ::strerror(errno); size_t n = ::strlen(s); if (n >= len) { n = len - 1; } ::strncpy(buf, s, n); buf[n] = '\0'; return n; } // sun.misc.Signal extern "C" { static void UserHandler(int sig, void *siginfo, void *context) { // Ctrl-C is pressed during error reporting, likely because the error // handler fails to abort. Let VM die immediately. if (sig == SIGINT && is_error_reported()) { os::die(); } os::signal_notify(sig); // We do not need to reinstate the signal handler each time... } } void* os::user_handler() { return CAST_FROM_FN_PTR(void*, UserHandler); } class Semaphore : public StackObj { public: Semaphore(); ~Semaphore(); void signal(); void wait(); bool trywait(); bool timedwait(unsigned int sec, int nsec); private: sema_t _semaphore; }; Semaphore::Semaphore() { sema_init(&_semaphore, 0, NULL, NULL); } Semaphore::~Semaphore() { sema_destroy(&_semaphore); } void Semaphore::signal() { sema_post(&_semaphore); } void Semaphore::wait() { sema_wait(&_semaphore); } bool Semaphore::trywait() { return sema_trywait(&_semaphore) == 0; } bool Semaphore::timedwait(unsigned int sec, int nsec) { struct timespec ts; unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec); while (1) { int result = sema_timedwait(&_semaphore, &ts); if (result == 0) { return true; } else if (errno == EINTR) { continue; } else if (errno == ETIME) { return false; } else { return false; } } } extern "C" { typedef void (*sa_handler_t)(int); typedef void (*sa_sigaction_t)(int, siginfo_t *, void *); } void* os::signal(int signal_number, void* handler) { struct sigaction sigAct, oldSigAct; sigfillset(&(sigAct.sa_mask)); sigAct.sa_flags = SA_RESTART & ~SA_RESETHAND; sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler); if (sigaction(signal_number, &sigAct, &oldSigAct)) // -1 means registration failed return (void *)-1; return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler); } void os::signal_raise(int signal_number) { raise(signal_number); } /* * The following code is moved from os.cpp for making this * code platform specific, which it is by its very nature. */ // a counter for each possible signal value static int Sigexit = 0; static int Maxlibjsigsigs; static jint *pending_signals = NULL; static int *preinstalled_sigs = NULL; static struct sigaction *chainedsigactions = NULL; static sema_t sig_sem; typedef int (*version_getting_t)(); version_getting_t os::Solaris::get_libjsig_version = NULL; static int libjsigversion = NULL; int os::sigexitnum_pd() { assert(Sigexit > 0, "signal memory not yet initialized"); return Sigexit; } void os::Solaris::init_signal_mem() { // Initialize signal structures Maxsignum = SIGRTMAX; Sigexit = Maxsignum+1; assert(Maxsignum >0, "Unable to obtain max signal number"); Maxlibjsigsigs = Maxsignum; // pending_signals has one int per signal // The additional signal is for SIGEXIT - exit signal to signal_thread pending_signals = (jint *)os::malloc(sizeof(jint) * (Sigexit+1), mtInternal); memset(pending_signals, 0, (sizeof(jint) * (Sigexit+1))); if (UseSignalChaining) { chainedsigactions = (struct sigaction *)malloc(sizeof(struct sigaction) * (Maxsignum + 1), mtInternal); memset(chainedsigactions, 0, (sizeof(struct sigaction) * (Maxsignum + 1))); preinstalled_sigs = (int *)os::malloc(sizeof(int) * (Maxsignum + 1), mtInternal); memset(preinstalled_sigs, 0, (sizeof(int) * (Maxsignum + 1))); } ourSigFlags = (int*)malloc(sizeof(int) * (Maxsignum + 1 ), mtInternal); memset(ourSigFlags, 0, sizeof(int) * (Maxsignum + 1)); } void os::signal_init_pd() { int ret; ret = ::sema_init(&sig_sem, 0, NULL, NULL); assert(ret == 0, "sema_init() failed"); } void os::signal_notify(int signal_number) { int ret; Atomic::inc(&pending_signals[signal_number]); ret = ::sema_post(&sig_sem); assert(ret == 0, "sema_post() failed"); } static int check_pending_signals(bool wait_for_signal) { int ret; while (true) { for (int i = 0; i < Sigexit + 1; i++) { jint n = pending_signals[i]; if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) { return i; } } if (!wait_for_signal) { return -1; } JavaThread *thread = JavaThread::current(); ThreadBlockInVM tbivm(thread); bool threadIsSuspended; do { thread->set_suspend_equivalent(); // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self() while((ret = ::sema_wait(&sig_sem)) == EINTR) ; assert(ret == 0, "sema_wait() failed"); // were we externally suspended while we were waiting? threadIsSuspended = thread->handle_special_suspend_equivalent_condition(); if (threadIsSuspended) { // // The semaphore has been incremented, but while we were waiting // another thread suspended us. We don't want to continue running // while suspended because that would surprise the thread that // suspended us. // ret = ::sema_post(&sig_sem); assert(ret == 0, "sema_post() failed"); thread->java_suspend_self(); } } while (threadIsSuspended); } } int os::signal_lookup() { return check_pending_signals(false); } int os::signal_wait() { return check_pending_signals(true); } //////////////////////////////////////////////////////////////////////////////// // Virtual Memory static int page_size = -1; // The mmap MAP_ALIGN flag is supported on Solaris 9 and later. init_2() will // clear this var if support is not available. static bool has_map_align = true; int os::vm_page_size() { assert(page_size != -1, "must call os::init"); return page_size; } // Solaris allocates memory by pages. int os::vm_allocation_granularity() { assert(page_size != -1, "must call os::init"); return page_size; } static bool recoverable_mmap_error(int err) { // See if the error is one we can let the caller handle. This // list of errno values comes from the Solaris mmap(2) man page. switch (err) { case EBADF: case EINVAL: case ENOTSUP: // let the caller deal with these errors return true; default: // Any remaining errors on this OS can cause our reserved mapping // to be lost. That can cause confusion where different data // structures think they have the same memory mapped. The worst // scenario is if both the VM and a library think they have the // same memory mapped. return false; } } static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec, int err) { warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, bytes, exec, strerror(err), err); } static void warn_fail_commit_memory(char* addr, size_t bytes, size_t alignment_hint, bool exec, int err) { warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, bytes, alignment_hint, exec, strerror(err), err); } int os::Solaris::commit_memory_impl(char* addr, size_t bytes, bool exec) { int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE; size_t size = bytes; char *res = Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED, prot); if (res != NULL) { if (UseNUMAInterleaving) { numa_make_global(addr, bytes); } return 0; } int err = errno; // save errno from mmap() call in mmap_chunk() if (!recoverable_mmap_error(err)) { warn_fail_commit_memory(addr, bytes, exec, err); vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "committing reserved memory."); } return err; } bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) { return Solaris::commit_memory_impl(addr, bytes, exec) == 0; } void os::pd_commit_memory_or_exit(char* addr, size_t bytes, bool exec, const char* mesg) { assert(mesg != NULL, "mesg must be specified"); int err = os::Solaris::commit_memory_impl(addr, bytes, exec); if (err != 0) { // the caller wants all commit errors to exit with the specified mesg: warn_fail_commit_memory(addr, bytes, exec, err); vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, mesg); } } size_t os::Solaris::page_size_for_alignment(size_t alignment) { assert(is_size_aligned(alignment, (size_t) vm_page_size()), err_msg(SIZE_FORMAT " is not aligned to " SIZE_FORMAT, alignment, (size_t) vm_page_size())); for (int i = 0; _page_sizes[i] != 0; i++) { if (is_size_aligned(alignment, _page_sizes[i])) { return _page_sizes[i]; } } return (size_t) vm_page_size(); } int os::Solaris::commit_memory_impl(char* addr, size_t bytes, size_t alignment_hint, bool exec) { int err = Solaris::commit_memory_impl(addr, bytes, exec); if (err == 0 && UseLargePages && alignment_hint > 0) { assert(is_size_aligned(bytes, alignment_hint), err_msg(SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, alignment_hint)); // The syscall memcntl requires an exact page size (see man memcntl for details). size_t page_size = page_size_for_alignment(alignment_hint); if (page_size > (size_t) vm_page_size()) { (void)Solaris::setup_large_pages(addr, bytes, page_size); } } return err; } bool os::pd_commit_memory(char* addr, size_t bytes, size_t alignment_hint, bool exec) { return Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec) == 0; } void os::pd_commit_memory_or_exit(char* addr, size_t bytes, size_t alignment_hint, bool exec, const char* mesg) { assert(mesg != NULL, "mesg must be specified"); int err = os::Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec); if (err != 0) { // the caller wants all commit errors to exit with the specified mesg: warn_fail_commit_memory(addr, bytes, alignment_hint, exec, err); vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, mesg); } } // Uncommit the pages in a specified region. void os::pd_free_memory(char* addr, size_t bytes, size_t alignment_hint) { if (madvise(addr, bytes, MADV_FREE) < 0) { debug_only(warning("MADV_FREE failed.")); return; } } bool os::pd_create_stack_guard_pages(char* addr, size_t size) { return os::commit_memory(addr, size, !ExecMem); } bool os::remove_stack_guard_pages(char* addr, size_t size) { return os::uncommit_memory(addr, size); } // Change the page size in a given range. void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { assert((intptr_t)addr % alignment_hint == 0, "Address should be aligned."); assert((intptr_t)(addr + bytes) % alignment_hint == 0, "End should be aligned."); if (UseLargePages) { Solaris::setup_large_pages(addr, bytes, alignment_hint); } } // Tell the OS to make the range local to the first-touching LWP void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) { assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned."); if (madvise(addr, bytes, MADV_ACCESS_LWP) < 0) { debug_only(warning("MADV_ACCESS_LWP failed.")); } } // Tell the OS that this range would be accessed from different LWPs. void os::numa_make_global(char *addr, size_t bytes) { assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned."); if (madvise(addr, bytes, MADV_ACCESS_MANY) < 0) { debug_only(warning("MADV_ACCESS_MANY failed.")); } } // Get the number of the locality groups. size_t os::numa_get_groups_num() { size_t n = Solaris::lgrp_nlgrps(Solaris::lgrp_cookie()); return n != -1 ? n : 1; } // Get a list of leaf locality groups. A leaf lgroup is group that // doesn't have any children. Typical leaf group is a CPU or a CPU/memory // board. An LWP is assigned to one of these groups upon creation. size_t os::numa_get_leaf_groups(int *ids, size_t size) { if ((ids[0] = Solaris::lgrp_root(Solaris::lgrp_cookie())) == -1) { ids[0] = 0; return 1; } int result_size = 0, top = 1, bottom = 0, cur = 0; for (int k = 0; k < size; k++) { int r = Solaris::lgrp_children(Solaris::lgrp_cookie(), ids[cur], (Solaris::lgrp_id_t*)&ids[top], size - top); if (r == -1) { ids[0] = 0; return 1; } if (!r) { // That's a leaf node. assert (bottom <= cur, "Sanity check"); // Check if the node has memory if (Solaris::lgrp_resources(Solaris::lgrp_cookie(), ids[cur], NULL, 0, LGRP_RSRC_MEM) > 0) { ids[bottom++] = ids[cur]; } } top += r; cur++; } if (bottom == 0) { // Handle a situation, when the OS reports no memory available. // Assume UMA architecture. ids[0] = 0; return 1; } return bottom; } // Detect the topology change. Typically happens during CPU plugging-unplugging. bool os::numa_topology_changed() { int is_stale = Solaris::lgrp_cookie_stale(Solaris::lgrp_cookie()); if (is_stale != -1 && is_stale) { Solaris::lgrp_fini(Solaris::lgrp_cookie()); Solaris::lgrp_cookie_t c = Solaris::lgrp_init(Solaris::LGRP_VIEW_CALLER); assert(c != 0, "Failure to initialize LGRP API"); Solaris::set_lgrp_cookie(c); return true; } return false; } // Get the group id of the current LWP. int os::numa_get_group_id() { int lgrp_id = Solaris::lgrp_home(P_LWPID, P_MYID); if (lgrp_id == -1) { return 0; } const int size = os::numa_get_groups_num(); int *ids = (int*)alloca(size * sizeof(int)); // Get the ids of all lgroups with memory; r is the count. int r = Solaris::lgrp_resources(Solaris::lgrp_cookie(), lgrp_id, (Solaris::lgrp_id_t*)ids, size, LGRP_RSRC_MEM); if (r <= 0) { return 0; } return ids[os::random() % r]; } // Request information about the page. bool os::get_page_info(char *start, page_info* info) { const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE }; uint64_t addr = (uintptr_t)start; uint64_t outdata[2]; uint_t validity = 0; if (os::Solaris::meminfo(&addr, 1, info_types, 2, outdata, &validity) < 0) { return false; } info->size = 0; info->lgrp_id = -1; if ((validity & 1) != 0) { if ((validity & 2) != 0) { info->lgrp_id = outdata[0]; } if ((validity & 4) != 0) { info->size = outdata[1]; } return true; } return false; } // Scan the pages from start to end until a page different than // the one described in the info parameter is encountered. char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) { const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE }; const size_t types = sizeof(info_types) / sizeof(info_types[0]); uint64_t addrs[MAX_MEMINFO_CNT], outdata[types * MAX_MEMINFO_CNT + 1]; uint_t validity[MAX_MEMINFO_CNT]; size_t page_size = MAX2((size_t)os::vm_page_size(), page_expected->size); uint64_t p = (uint64_t)start; while (p < (uint64_t)end) { addrs[0] = p; size_t addrs_count = 1; while (addrs_count < MAX_MEMINFO_CNT && addrs[addrs_count - 1] + page_size < (uint64_t)end) { addrs[addrs_count] = addrs[addrs_count - 1] + page_size; addrs_count++; } if (os::Solaris::meminfo(addrs, addrs_count, info_types, types, outdata, validity) < 0) { return NULL; } size_t i = 0; for (; i < addrs_count; i++) { if ((validity[i] & 1) != 0) { if ((validity[i] & 4) != 0) { if (outdata[types * i + 1] != page_expected->size) { break; } } else if (page_expected->size != 0) { break; } if ((validity[i] & 2) != 0 && page_expected->lgrp_id > 0) { if (outdata[types * i] != page_expected->lgrp_id) { break; } } } else { return NULL; } } if (i < addrs_count) { if ((validity[i] & 2) != 0) { page_found->lgrp_id = outdata[types * i]; } else { page_found->lgrp_id = -1; } if ((validity[i] & 4) != 0) { page_found->size = outdata[types * i + 1]; } else { page_found->size = 0; } return (char*)addrs[i]; } p = addrs[addrs_count - 1] + page_size; } return end; } bool os::pd_uncommit_memory(char* addr, size_t bytes) { size_t size = bytes; // Map uncommitted pages PROT_NONE so we fail early if we touch an // uncommitted page. Otherwise, the read/write might succeed if we // have enough swap space to back the physical page. return NULL != Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, PROT_NONE); } char* os::Solaris::mmap_chunk(char *addr, size_t size, int flags, int prot) { char *b = (char *)mmap(addr, size, prot, flags, os::Solaris::_dev_zero_fd, 0); if (b == MAP_FAILED) { return NULL; } return b; } char* os::Solaris::anon_mmap(char* requested_addr, size_t bytes, size_t alignment_hint, bool fixed) { char* addr = requested_addr; int flags = MAP_PRIVATE | MAP_NORESERVE; assert(!(fixed && (alignment_hint > 0)), "alignment hint meaningless with fixed mmap"); if (fixed) { flags |= MAP_FIXED; } else if (has_map_align && (alignment_hint > (size_t) vm_page_size())) { flags |= MAP_ALIGN; addr = (char*) alignment_hint; } // Map uncommitted pages PROT_NONE so we fail early if we touch an // uncommitted page. Otherwise, the read/write might succeed if we // have enough swap space to back the physical page. return mmap_chunk(addr, bytes, flags, PROT_NONE); } char* os::pd_reserve_memory(size_t bytes, char* requested_addr, size_t alignment_hint) { char* addr = Solaris::anon_mmap(requested_addr, bytes, alignment_hint, (requested_addr != NULL)); guarantee(requested_addr == NULL || requested_addr == addr, "OS failed to return requested mmap address."); return addr; } // Reserve memory at an arbitrary address, only if that area is // available (and not reserved for something else). char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) { const int max_tries = 10; char* base[max_tries]; size_t size[max_tries]; // Solaris adds a gap between mmap'ed regions. The size of the gap // is dependent on the requested size and the MMU. Our initial gap // value here is just a guess and will be corrected later. bool had_top_overlap = false; bool have_adjusted_gap = false; size_t gap = 0x400000; // Assert only that the size is a multiple of the page size, since // that's all that mmap requires, and since that's all we really know // about at this low abstraction level. If we need higher alignment, // we can either pass an alignment to this method or verify alignment // in one of the methods further up the call chain. See bug 5044738. assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block"); // Since snv_84, Solaris attempts to honor the address hint - see 5003415. // Give it a try, if the kernel honors the hint we can return immediately. char* addr = Solaris::anon_mmap(requested_addr, bytes, 0, false); volatile int err = errno; if (addr == requested_addr) { return addr; } else if (addr != NULL) { pd_unmap_memory(addr, bytes); } if (PrintMiscellaneous && Verbose) { char buf[256]; buf[0] = '\0'; if (addr == NULL) { jio_snprintf(buf, sizeof(buf), ": %s", strerror(err)); } warning("attempt_reserve_memory_at: couldn't reserve " SIZE_FORMAT " bytes at " PTR_FORMAT ": reserve_memory_helper returned " PTR_FORMAT "%s", bytes, requested_addr, addr, buf); } // Address hint method didn't work. Fall back to the old method. // In theory, once SNV becomes our oldest supported platform, this // code will no longer be needed. // // Repeatedly allocate blocks until the block is allocated at the // right spot. Give up after max_tries. int i; for (i = 0; i < max_tries; ++i) { base[i] = reserve_memory(bytes); if (base[i] != NULL) { // Is this the block we wanted? if (base[i] == requested_addr) { size[i] = bytes; break; } // check that the gap value is right if (had_top_overlap && !have_adjusted_gap) { size_t actual_gap = base[i-1] - base[i] - bytes; if (gap != actual_gap) { // adjust the gap value and retry the last 2 allocations assert(i > 0, "gap adjustment code problem"); have_adjusted_gap = true; // adjust the gap only once, just in case gap = actual_gap; if (PrintMiscellaneous && Verbose) { warning("attempt_reserve_memory_at: adjusted gap to 0x%lx", gap); } unmap_memory(base[i], bytes); unmap_memory(base[i-1], size[i-1]); i-=2; continue; } } // Does this overlap the block we wanted? Give back the overlapped // parts and try again. // // There is still a bug in this code: if top_overlap == bytes, // the overlap is offset from requested region by the value of gap. // In this case giving back the overlapped part will not work, // because we'll give back the entire block at base[i] and // therefore the subsequent allocation will not generate a new gap. // This could be fixed with a new algorithm that used larger // or variable size chunks to find the requested region - // but such a change would introduce additional complications. // It's rare enough that the planets align for this bug, // so we'll just wait for a fix for 6204603/5003415 which // will provide a mmap flag to allow us to avoid this business. size_t top_overlap = requested_addr + (bytes + gap) - base[i]; if (top_overlap >= 0 && top_overlap < bytes) { had_top_overlap = true; unmap_memory(base[i], top_overlap); base[i] += top_overlap; size[i] = bytes - top_overlap; } else { size_t bottom_overlap = base[i] + bytes - requested_addr; if (bottom_overlap >= 0 && bottom_overlap < bytes) { if (PrintMiscellaneous && Verbose && bottom_overlap == 0) { warning("attempt_reserve_memory_at: possible alignment bug"); } unmap_memory(requested_addr, bottom_overlap); size[i] = bytes - bottom_overlap; } else { size[i] = bytes; } } } } // Give back the unused reserved pieces. for (int j = 0; j < i; ++j) { if (base[j] != NULL) { unmap_memory(base[j], size[j]); } } return (i < max_tries) ? requested_addr : NULL; } bool os::pd_release_memory(char* addr, size_t bytes) { size_t size = bytes; return munmap(addr, size) == 0; } static bool solaris_mprotect(char* addr, size_t bytes, int prot) { assert(addr == (char*)align_size_down((uintptr_t)addr, os::vm_page_size()), "addr must be page aligned"); int retVal = mprotect(addr, bytes, prot); return retVal == 0; } // Protect memory (Used to pass readonly pages through // JNI GetArrayElements with empty arrays.) // Also, used for serialization page and for compressed oops null pointer // checking. bool os::protect_memory(char* addr, size_t bytes, ProtType prot, bool is_committed) { unsigned int p = 0; switch (prot) { case MEM_PROT_NONE: p = PROT_NONE; break; case MEM_PROT_READ: p = PROT_READ; break; case MEM_PROT_RW: p = PROT_READ|PROT_WRITE; break; case MEM_PROT_RWX: p = PROT_READ|PROT_WRITE|PROT_EXEC; break; default: ShouldNotReachHere(); } // is_committed is unused. return solaris_mprotect(addr, bytes, p); } // guard_memory and unguard_memory only happens within stack guard pages. // Since ISM pertains only to the heap, guard and unguard memory should not /// happen with an ISM region. bool os::guard_memory(char* addr, size_t bytes) { return solaris_mprotect(addr, bytes, PROT_NONE); } bool os::unguard_memory(char* addr, size_t bytes) { return solaris_mprotect(addr, bytes, PROT_READ|PROT_WRITE); } // Large page support static size_t _large_page_size = 0; // Insertion sort for small arrays (descending order). static void insertion_sort_descending(size_t* array, int len) { for (int i = 0; i < len; i++) { size_t val = array[i]; for (size_t key = i; key > 0 && array[key - 1] < val; --key) { size_t tmp = array[key]; array[key] = array[key - 1]; array[key - 1] = tmp; } } } bool os::Solaris::mpss_sanity_check(bool warn, size_t* page_size) { const unsigned int usable_count = VM_Version::page_size_count(); if (usable_count == 1) { return false; } // Find the right getpagesizes interface. When solaris 11 is the minimum // build platform, getpagesizes() (without the '2') can be called directly. typedef int (*gps_t)(size_t[], int); gps_t gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes2")); if (gps_func == NULL) { gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes")); if (gps_func == NULL) { if (warn) { warning("MPSS is not supported by the operating system."); } return false; } } // Fill the array of page sizes. int n = (*gps_func)(_page_sizes, page_sizes_max); assert(n > 0, "Solaris bug?"); if (n == page_sizes_max) { // Add a sentinel value (necessary only if the array was completely filled // since it is static (zeroed at initialization)). _page_sizes[--n] = 0; DEBUG_ONLY(warning("increase the size of the os::_page_sizes array.");) } assert(_page_sizes[n] == 0, "missing sentinel"); trace_page_sizes("available page sizes", _page_sizes, n); if (n == 1) return false; // Only one page size available. // Skip sizes larger than 4M (or LargePageSizeInBytes if it was set) and // select up to usable_count elements. First sort the array, find the first // acceptable value, then copy the usable sizes to the top of the array and // trim the rest. Make sure to include the default page size :-). // // A better policy could get rid of the 4M limit by taking the sizes of the // important VM memory regions (java heap and possibly the code cache) into // account. insertion_sort_descending(_page_sizes, n); const size_t size_limit = FLAG_IS_DEFAULT(LargePageSizeInBytes) ? 4 * M : LargePageSizeInBytes; int beg; for (beg = 0; beg < n && _page_sizes[beg] > size_limit; ++beg) /* empty */ ; const int end = MIN2((int)usable_count, n) - 1; for (int cur = 0; cur < end; ++cur, ++beg) { _page_sizes[cur] = _page_sizes[beg]; } _page_sizes[end] = vm_page_size(); _page_sizes[end + 1] = 0; if (_page_sizes[end] > _page_sizes[end - 1]) { // Default page size is not the smallest; sort again. insertion_sort_descending(_page_sizes, end + 1); } *page_size = _page_sizes[0]; trace_page_sizes("usable page sizes", _page_sizes, end + 1); return true; } void os::large_page_init() { if (UseLargePages) { // print a warning if any large page related flag is specified on command line bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) || !FLAG_IS_DEFAULT(LargePageSizeInBytes); UseLargePages = Solaris::mpss_sanity_check(warn_on_failure, &_large_page_size); } } bool os::Solaris::is_valid_page_size(size_t bytes) { for (int i = 0; _page_sizes[i] != 0; i++) { if (_page_sizes[i] == bytes) { return true; } } return false; } bool os::Solaris::setup_large_pages(caddr_t start, size_t bytes, size_t align) { assert(is_valid_page_size(align), err_msg(SIZE_FORMAT " is not a valid page size", align)); assert(is_ptr_aligned((void*) start, align), err_msg(PTR_FORMAT " is not aligned to " SIZE_FORMAT, p2i((void*) start), align)); assert(is_size_aligned(bytes, align), err_msg(SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, align)); // Signal to OS that we want large pages for addresses // from addr, addr + bytes struct memcntl_mha mpss_struct; mpss_struct.mha_cmd = MHA_MAPSIZE_VA; mpss_struct.mha_pagesize = align; mpss_struct.mha_flags = 0; // Upon successful completion, memcntl() returns 0 if (memcntl(start, bytes, MC_HAT_ADVISE, (caddr_t) &mpss_struct, 0, 0)) { debug_only(warning("Attempt to use MPSS failed.")); return false; } return true; } char* os::reserve_memory_special(size_t size, size_t alignment, char* addr, bool exec) { fatal("os::reserve_memory_special should not be called on Solaris."); return NULL; } bool os::release_memory_special(char* base, size_t bytes) { fatal("os::release_memory_special should not be called on Solaris."); return false; } size_t os::large_page_size() { return _large_page_size; } // MPSS allows application to commit large page memory on demand; with ISM // the entire memory region must be allocated as shared memory. bool os::can_commit_large_page_memory() { return true; } bool os::can_execute_large_page_memory() { return true; } static int os_sleep(jlong millis, bool interruptible) { const jlong limit = INT_MAX; jlong prevtime; int res; while (millis > limit) { if ((res = os_sleep(limit, interruptible)) != OS_OK) return res; millis -= limit; } // Restart interrupted polls with new parameters until the proper delay // has been completed. prevtime = getTimeMillis(); while (millis > 0) { jlong newtime; if (!interruptible) { // Following assert fails for os::yield_all: // assert(!thread->is_Java_thread(), "must not be java thread"); res = poll(NULL, 0, millis); } else { JavaThread *jt = JavaThread::current(); INTERRUPTIBLE_NORESTART_VM_ALWAYS(poll(NULL, 0, millis), res, jt, os::Solaris::clear_interrupted); } // INTERRUPTIBLE_NORESTART_VM_ALWAYS returns res == OS_INTRPT for // thread.Interrupt. // See c/r 6751923. Poll can return 0 before time // has elapsed if time is set via clock_settime (as NTP does). // res == 0 if poll timed out (see man poll RETURN VALUES) // using the logic below checks that we really did // sleep at least "millis" if not we'll sleep again. if( ( res == 0 ) || ((res == OS_ERR) && (errno == EINTR))) { newtime = getTimeMillis(); assert(newtime >= prevtime, "time moving backwards"); /* Doing prevtime and newtime in microseconds doesn't help precision, and trying to round up to avoid lost milliseconds can result in a too-short delay. */ millis -= newtime - prevtime; if(millis <= 0) return OS_OK; prevtime = newtime; } else return res; } return OS_OK; } // Read calls from inside the vm need to perform state transitions size_t os::read(int fd, void *buf, unsigned int nBytes) { INTERRUPTIBLE_RETURN_INT_VM(::read(fd, buf, nBytes), os::Solaris::clear_interrupted); } size_t os::restartable_read(int fd, void *buf, unsigned int nBytes) { INTERRUPTIBLE_RETURN_INT(::read(fd, buf, nBytes), os::Solaris::clear_interrupted); } int os::sleep(Thread* thread, jlong millis, bool interruptible) { assert(thread == Thread::current(), "thread consistency check"); // TODO-FIXME: this should be removed. // On Solaris machines (especially 2.5.1) we found that sometimes the VM gets into a live lock // situation with a JavaThread being starved out of a lwp. The kernel doesn't seem to generate // a SIGWAITING signal which would enable the threads library to create a new lwp for the starving // thread. We suspect that because the Watcher thread keeps waking up at periodic intervals the kernel // is fooled into believing that the system is making progress. In the code below we block the // the watcher thread while safepoint is in progress so that it would not appear as though the // system is making progress. if (!Solaris::T2_libthread() && thread->is_Watcher_thread() && SafepointSynchronize::is_synchronizing() && !Arguments::has_profile()) { // We now try to acquire the threads lock. Since this lock is held by the VM thread during // the entire safepoint, the watcher thread will line up here during the safepoint. Threads_lock->lock_without_safepoint_check(); Threads_lock->unlock(); } if (thread->is_Java_thread()) { // This is a JavaThread so we honor the _thread_blocked protocol // even for sleeps of 0 milliseconds. This was originally done // as a workaround for bug 4338139. However, now we also do it // to honor the suspend-equivalent protocol. JavaThread *jt = (JavaThread *) thread; ThreadBlockInVM tbivm(jt); jt->set_suspend_equivalent(); // cleared by handle_special_suspend_equivalent_condition() or // java_suspend_self() via check_and_wait_while_suspended() int ret_code; if (millis <= 0) { thr_yield(); ret_code = 0; } else { // The original sleep() implementation did not create an // OSThreadWaitState helper for sleeps of 0 milliseconds. // I'm preserving that decision for now. OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */); ret_code = os_sleep(millis, interruptible); } // were we externally suspended while we were waiting? jt->check_and_wait_while_suspended(); return ret_code; } // non-JavaThread from this point on: if (millis <= 0) { thr_yield(); return 0; } OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */); return os_sleep(millis, interruptible); } void os::naked_short_sleep(jlong ms) { assert(ms < 1000, "Un-interruptable sleep, short time use only"); // usleep is deprecated and removed from POSIX, in favour of nanosleep, but // Solaris requires -lrt for this. usleep((ms * 1000)); return; } // Sleep forever; naked call to OS-specific sleep; use with CAUTION void os::infinite_sleep() { while (true) { // sleep forever ... ::sleep(100); // ... 100 seconds at a time } } // Used to convert frequent JVM_Yield() to nops bool os::dont_yield() { if (DontYieldALot) { static hrtime_t last_time = 0; hrtime_t diff = getTimeNanos() - last_time; if (diff < DontYieldALotInterval * 1000000) return true; last_time += diff; return false; } else { return false; } } // Caveat: Solaris os::yield() causes a thread-state transition whereas // the linux and win32 implementations do not. This should be checked. void os::yield() { // Yields to all threads with same or greater priority os::sleep(Thread::current(), 0, false); } // Note that yield semantics are defined by the scheduling class to which // the thread currently belongs. Typically, yield will _not yield to // other equal or higher priority threads that reside on the dispatch queues // of other CPUs. os::YieldResult os::NakedYield() { thr_yield(); return os::YIELD_UNKNOWN; } // On Solaris we found that yield_all doesn't always yield to all other threads. // There have been cases where there is a thread ready to execute but it doesn't // get an lwp as the VM thread continues to spin with sleeps of 1 millisecond. // The 1 millisecond wait doesn't seem long enough for the kernel to issue a // SIGWAITING signal which will cause a new lwp to be created. So we count the // number of times yield_all is called in the one loop and increase the sleep // time after 8 attempts. If this fails too we increase the concurrency level // so that the starving thread would get an lwp void os::yield_all(int attempts) { // Yields to all threads, including threads with lower priorities if (attempts == 0) { os::sleep(Thread::current(), 1, false); } else { int iterations = attempts % 30; if (iterations == 0 && !os::Solaris::T2_libthread()) { // thr_setconcurrency and _getconcurrency make sense only under T1. int noofLWPS = thr_getconcurrency(); if (noofLWPS < (Threads::number_of_threads() + 2)) { thr_setconcurrency(thr_getconcurrency() + 1); } } else if (iterations < 25) { os::sleep(Thread::current(), 1, false); } else { os::sleep(Thread::current(), 10, false); } } } // Called from the tight loops to possibly influence time-sharing heuristics void os::loop_breaker(int attempts) { os::yield_all(attempts); } // Interface for setting lwp priorities. If we are using T2 libthread, // which forces the use of BoundThreads or we manually set UseBoundThreads, // all of our threads will be assigned to real lwp's. Using the thr_setprio // function is meaningless in this mode so we must adjust the real lwp's priority // The routines below implement the getting and setting of lwp priorities. // // Note: There are three priority scales used on Solaris. Java priotities // which range from 1 to 10, libthread "thr_setprio" scale which range // from 0 to 127, and the current scheduling class of the process we // are running in. This is typically from -60 to +60. // The setting of the lwp priorities in done after a call to thr_setprio // so Java priorities are mapped to libthread priorities and we map from // the latter to lwp priorities. We don't keep priorities stored in // Java priorities since some of our worker threads want to set priorities // higher than all Java threads. // // For related information: // (1) man -s 2 priocntl // (2) man -s 4 priocntl // (3) man dispadmin // = librt.so // = libthread/common/rtsched.c - thrp_setlwpprio(). // = ps -cL ... to validate priority. // = sched_get_priority_min and _max // pthread_create // sched_setparam // pthread_setschedparam // // Assumptions: // + We assume that all threads in the process belong to the same // scheduling class. IE. an homogenous process. // + Must be root or in IA group to change change "interactive" attribute. // Priocntl() will fail silently. The only indication of failure is when // we read-back the value and notice that it hasn't changed. // + Interactive threads enter the runq at the head, non-interactive at the tail. // + For RT, change timeslice as well. Invariant: // constant "priority integral" // Konst == TimeSlice * (60-Priority) // Given a priority, compute appropriate timeslice. // + Higher numerical values have higher priority. // sched class attributes typedef struct { int schedPolicy; // classID int maxPrio; int minPrio; } SchedInfo; static SchedInfo tsLimits, iaLimits, rtLimits, fxLimits; #ifdef ASSERT static int ReadBackValidate = 1; #endif static int myClass = 0; static int myMin = 0; static int myMax = 0; static int myCur = 0; static bool priocntl_enable = false; static const int criticalPrio = 60; // FX/60 is critical thread class/priority on T4 static int java_MaxPriority_to_os_priority = 0; // Saved mapping // lwp_priocntl_init // // Try to determine the priority scale for our process. // // Return errno or 0 if OK. // static int lwp_priocntl_init () { int rslt; pcinfo_t ClassInfo; pcparms_t ParmInfo; int i; if (!UseThreadPriorities) return 0; // We are using Bound threads, we need to determine our priority ranges if (os::Solaris::T2_libthread() || UseBoundThreads) { // If ThreadPriorityPolicy is 1, switch tables if (ThreadPriorityPolicy == 1) { for (i = 0 ; i < CriticalPriority+1; i++) os::java_to_os_priority[i] = prio_policy1[i]; } if (UseCriticalJavaThreadPriority) { // MaxPriority always maps to the FX scheduling class and criticalPrio. // See set_native_priority() and set_lwp_class_and_priority(). // Save original MaxPriority mapping in case attempt to // use critical priority fails. java_MaxPriority_to_os_priority = os::java_to_os_priority[MaxPriority]; // Set negative to distinguish from other priorities os::java_to_os_priority[MaxPriority] = -criticalPrio; } } // Not using Bound Threads, set to ThreadPolicy 1 else { for ( i = 0 ; i < CriticalPriority+1; i++ ) { os::java_to_os_priority[i] = prio_policy1[i]; } return 0; } // Get IDs for a set of well-known scheduling classes. // TODO-FIXME: GETCLINFO returns the current # of classes in the // the system. We should have a loop that iterates over the // classID values, which are known to be "small" integers. strcpy(ClassInfo.pc_clname, "TS"); ClassInfo.pc_cid = -1; rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo); if (rslt < 0) return errno; assert(ClassInfo.pc_cid != -1, "cid for TS class is -1"); tsLimits.schedPolicy = ClassInfo.pc_cid; tsLimits.maxPrio = ((tsinfo_t*)ClassInfo.pc_clinfo)->ts_maxupri; tsLimits.minPrio = -tsLimits.maxPrio; strcpy(ClassInfo.pc_clname, "IA"); ClassInfo.pc_cid = -1; rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo); if (rslt < 0) return errno; assert(ClassInfo.pc_cid != -1, "cid for IA class is -1"); iaLimits.schedPolicy = ClassInfo.pc_cid; iaLimits.maxPrio = ((iainfo_t*)ClassInfo.pc_clinfo)->ia_maxupri; iaLimits.minPrio = -iaLimits.maxPrio; strcpy(ClassInfo.pc_clname, "RT"); ClassInfo.pc_cid = -1; rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo); if (rslt < 0) return errno; assert(ClassInfo.pc_cid != -1, "cid for RT class is -1"); rtLimits.schedPolicy = ClassInfo.pc_cid; rtLimits.maxPrio = ((rtinfo_t*)ClassInfo.pc_clinfo)->rt_maxpri; rtLimits.minPrio = 0; strcpy(ClassInfo.pc_clname, "FX"); ClassInfo.pc_cid = -1; rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo); if (rslt < 0) return errno; assert(ClassInfo.pc_cid != -1, "cid for FX class is -1"); fxLimits.schedPolicy = ClassInfo.pc_cid; fxLimits.maxPrio = ((fxinfo_t*)ClassInfo.pc_clinfo)->fx_maxupri; fxLimits.minPrio = 0; // Query our "current" scheduling class. // This will normally be IA, TS or, rarely, FX or RT. memset(&ParmInfo, 0, sizeof(ParmInfo)); ParmInfo.pc_cid = PC_CLNULL; rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo); if (rslt < 0) return errno; myClass = ParmInfo.pc_cid; // We now know our scheduling classId, get specific information // about the class. ClassInfo.pc_cid = myClass; ClassInfo.pc_clname[0] = 0; rslt = priocntl((idtype)0, 0, PC_GETCLINFO, (caddr_t)&ClassInfo); if (rslt < 0) return errno; if (ThreadPriorityVerbose) { tty->print_cr("lwp_priocntl_init: Class=%d(%s)...", myClass, ClassInfo.pc_clname); } memset(&ParmInfo, 0, sizeof(pcparms_t)); ParmInfo.pc_cid = PC_CLNULL; rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo); if (rslt < 0) return errno; if (ParmInfo.pc_cid == rtLimits.schedPolicy) { myMin = rtLimits.minPrio; myMax = rtLimits.maxPrio; } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) { iaparms_t *iaInfo = (iaparms_t*)ParmInfo.pc_clparms; myMin = iaLimits.minPrio; myMax = iaLimits.maxPrio; myMax = MIN2(myMax, (int)iaInfo->ia_uprilim); // clamp - restrict } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) { tsparms_t *tsInfo = (tsparms_t*)ParmInfo.pc_clparms; myMin = tsLimits.minPrio; myMax = tsLimits.maxPrio; myMax = MIN2(myMax, (int)tsInfo->ts_uprilim); // clamp - restrict } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) { fxparms_t *fxInfo = (fxparms_t*)ParmInfo.pc_clparms; myMin = fxLimits.minPrio; myMax = fxLimits.maxPrio; myMax = MIN2(myMax, (int)fxInfo->fx_uprilim); // clamp - restrict } else { // No clue - punt if (ThreadPriorityVerbose) tty->print_cr ("Unknown scheduling class: %s ... \n", ClassInfo.pc_clname); return EINVAL; // no clue, punt } if (ThreadPriorityVerbose) { tty->print_cr ("Thread priority Range: [%d..%d]\n", myMin, myMax); } priocntl_enable = true; // Enable changing priorities return 0; } #define IAPRI(x) ((iaparms_t *)((x).pc_clparms)) #define RTPRI(x) ((rtparms_t *)((x).pc_clparms)) #define TSPRI(x) ((tsparms_t *)((x).pc_clparms)) #define FXPRI(x) ((fxparms_t *)((x).pc_clparms)) // scale_to_lwp_priority // // Convert from the libthread "thr_setprio" scale to our current // lwp scheduling class scale. // static int scale_to_lwp_priority (int rMin, int rMax, int x) { int v; if (x == 127) return rMax; // avoid round-down v = (((x*(rMax-rMin)))/128)+rMin; return v; } // set_lwp_class_and_priority // // Set the class and priority of the lwp. This call should only // be made when using bound threads (T2 threads are bound by default). // int set_lwp_class_and_priority(int ThreadID, int lwpid, int newPrio, int new_class, bool scale) { int rslt; int Actual, Expected, prv; pcparms_t ParmInfo; // for GET-SET #ifdef ASSERT pcparms_t ReadBack; // for readback #endif // Set priority via PC_GETPARMS, update, PC_SETPARMS // Query current values. // TODO: accelerate this by eliminating the PC_GETPARMS call. // Cache "pcparms_t" in global ParmCache. // TODO: elide set-to-same-value // If something went wrong on init, don't change priorities. if ( !priocntl_enable ) { if (ThreadPriorityVerbose) tty->print_cr("Trying to set priority but init failed, ignoring"); return EINVAL; } // If lwp hasn't started yet, just return // the _start routine will call us again. if ( lwpid <= 0 ) { if (ThreadPriorityVerbose) { tty->print_cr ("deferring the set_lwp_class_and_priority of thread " INTPTR_FORMAT " to %d, lwpid not set", ThreadID, newPrio); } return 0; } if (ThreadPriorityVerbose) { tty->print_cr ("set_lwp_class_and_priority(" INTPTR_FORMAT "@" INTPTR_FORMAT " %d) ", ThreadID, lwpid, newPrio); } memset(&ParmInfo, 0, sizeof(pcparms_t)); ParmInfo.pc_cid = PC_CLNULL; rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ParmInfo); if (rslt < 0) return errno; int cur_class = ParmInfo.pc_cid; ParmInfo.pc_cid = (id_t)new_class; if (new_class == rtLimits.schedPolicy) { rtparms_t *rtInfo = (rtparms_t*)ParmInfo.pc_clparms; rtInfo->rt_pri = scale ? scale_to_lwp_priority(rtLimits.minPrio, rtLimits.maxPrio, newPrio) : newPrio; rtInfo->rt_tqsecs = RT_NOCHANGE; rtInfo->rt_tqnsecs = RT_NOCHANGE; if (ThreadPriorityVerbose) { tty->print_cr("RT: %d->%d\n", newPrio, rtInfo->rt_pri); } } else if (new_class == iaLimits.schedPolicy) { iaparms_t* iaInfo = (iaparms_t*)ParmInfo.pc_clparms; int maxClamped = MIN2(iaLimits.maxPrio, cur_class == new_class ? (int)iaInfo->ia_uprilim : iaLimits.maxPrio); iaInfo->ia_upri = scale ? scale_to_lwp_priority(iaLimits.minPrio, maxClamped, newPrio) : newPrio; iaInfo->ia_uprilim = cur_class == new_class ? IA_NOCHANGE : (pri_t)iaLimits.maxPrio; iaInfo->ia_mode = IA_NOCHANGE; if (ThreadPriorityVerbose) { tty->print_cr("IA: [%d...%d] %d->%d\n", iaLimits.minPrio, maxClamped, newPrio, iaInfo->ia_upri); } } else if (new_class == tsLimits.schedPolicy) { tsparms_t* tsInfo = (tsparms_t*)ParmInfo.pc_clparms; int maxClamped = MIN2(tsLimits.maxPrio, cur_class == new_class ? (int)tsInfo->ts_uprilim : tsLimits.maxPrio); tsInfo->ts_upri = scale ? scale_to_lwp_priority(tsLimits.minPrio, maxClamped, newPrio) : newPrio; tsInfo->ts_uprilim = cur_class == new_class ? TS_NOCHANGE : (pri_t)tsLimits.maxPrio; if (ThreadPriorityVerbose) { tty->print_cr("TS: [%d...%d] %d->%d\n", tsLimits.minPrio, maxClamped, newPrio, tsInfo->ts_upri); } } else if (new_class == fxLimits.schedPolicy) { fxparms_t* fxInfo = (fxparms_t*)ParmInfo.pc_clparms; int maxClamped = MIN2(fxLimits.maxPrio, cur_class == new_class ? (int)fxInfo->fx_uprilim : fxLimits.maxPrio); fxInfo->fx_upri = scale ? scale_to_lwp_priority(fxLimits.minPrio, maxClamped, newPrio) : newPrio; fxInfo->fx_uprilim = cur_class == new_class ? FX_NOCHANGE : (pri_t)fxLimits.maxPrio; fxInfo->fx_tqsecs = FX_NOCHANGE; fxInfo->fx_tqnsecs = FX_NOCHANGE; if (ThreadPriorityVerbose) { tty->print_cr("FX: [%d...%d] %d->%d\n", fxLimits.minPrio, maxClamped, newPrio, fxInfo->fx_upri); } } else { if (ThreadPriorityVerbose) { tty->print_cr("Unknown new scheduling class %d\n", new_class); } return EINVAL; // no clue, punt } rslt = priocntl(P_LWPID, lwpid, PC_SETPARMS, (caddr_t)&ParmInfo); if (ThreadPriorityVerbose && rslt) { tty->print_cr ("PC_SETPARMS ->%d %d\n", rslt, errno); } if (rslt < 0) return errno; #ifdef ASSERT // Sanity check: read back what we just attempted to set. // In theory it could have changed in the interim ... // // The priocntl system call is tricky. // Sometimes it'll validate the priority value argument and // return EINVAL if unhappy. At other times it fails silently. // Readbacks are prudent. if (!ReadBackValidate) return 0; memset(&ReadBack, 0, sizeof(pcparms_t)); ReadBack.pc_cid = PC_CLNULL; rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ReadBack); assert(rslt >= 0, "priocntl failed"); Actual = Expected = 0xBAD; assert(ParmInfo.pc_cid == ReadBack.pc_cid, "cid's don't match"); if (ParmInfo.pc_cid == rtLimits.schedPolicy) { Actual = RTPRI(ReadBack)->rt_pri; Expected = RTPRI(ParmInfo)->rt_pri; } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) { Actual = IAPRI(ReadBack)->ia_upri; Expected = IAPRI(ParmInfo)->ia_upri; } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) { Actual = TSPRI(ReadBack)->ts_upri; Expected = TSPRI(ParmInfo)->ts_upri; } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) { Actual = FXPRI(ReadBack)->fx_upri; Expected = FXPRI(ParmInfo)->fx_upri; } else { if (ThreadPriorityVerbose) { tty->print_cr("set_lwp_class_and_priority: unexpected class in readback: %d\n", ParmInfo.pc_cid); } } if (Actual != Expected) { if (ThreadPriorityVerbose) { tty->print_cr ("set_lwp_class_and_priority(%d %d) Class=%d: actual=%d vs expected=%d\n", lwpid, newPrio, ReadBack.pc_cid, Actual, Expected); } } #endif return 0; } // Solaris only gives access to 128 real priorities at a time, // so we expand Java's ten to fill this range. This would be better // if we dynamically adjusted relative priorities. // // The ThreadPriorityPolicy option allows us to select 2 different // priority scales. // // ThreadPriorityPolicy=0 // Since the Solaris' default priority is MaximumPriority, we do not // set a priority lower than Max unless a priority lower than // NormPriority is requested. // // ThreadPriorityPolicy=1 // This mode causes the priority table to get filled with // linear values. NormPriority get's mapped to 50% of the // Maximum priority an so on. This will cause VM threads // to get unfair treatment against other Solaris processes // which do not explicitly alter their thread priorities. // int os::java_to_os_priority[CriticalPriority + 1] = { -99999, // 0 Entry should never be used 0, // 1 MinPriority 32, // 2 64, // 3 96, // 4 127, // 5 NormPriority 127, // 6 127, // 7 127, // 8 127, // 9 NearMaxPriority 127, // 10 MaxPriority -criticalPrio // 11 CriticalPriority }; OSReturn os::set_native_priority(Thread* thread, int newpri) { OSThread* osthread = thread->osthread(); // Save requested priority in case the thread hasn't been started osthread->set_native_priority(newpri); // Check for critical priority request bool fxcritical = false; if (newpri == -criticalPrio) { fxcritical = true; newpri = criticalPrio; } assert(newpri >= MinimumPriority && newpri <= MaximumPriority, "bad priority mapping"); if (!UseThreadPriorities) return OS_OK; int status = 0; if (!fxcritical) { // Use thr_setprio only if we have a priority that thr_setprio understands status = thr_setprio(thread->osthread()->thread_id(), newpri); } if (os::Solaris::T2_libthread() || (UseBoundThreads && osthread->is_vm_created())) { int lwp_status = set_lwp_class_and_priority(osthread->thread_id(), osthread->lwp_id(), newpri, fxcritical ? fxLimits.schedPolicy : myClass, !fxcritical); if (lwp_status != 0 && fxcritical) { // Try again, this time without changing the scheduling class newpri = java_MaxPriority_to_os_priority; lwp_status = set_lwp_class_and_priority(osthread->thread_id(), osthread->lwp_id(), newpri, myClass, false); } status |= lwp_status; } return (status == 0) ? OS_OK : OS_ERR; } OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) { int p; if ( !UseThreadPriorities ) { *priority_ptr = NormalPriority; return OS_OK; } int status = thr_getprio(thread->osthread()->thread_id(), &p); if (status != 0) { return OS_ERR; } *priority_ptr = p; return OS_OK; } // Hint to the underlying OS that a task switch would not be good. // Void return because it's a hint and can fail. void os::hint_no_preempt() { schedctl_start(schedctl_init()); } static void resume_clear_context(OSThread *osthread) { osthread->set_ucontext(NULL); } static void suspend_save_context(OSThread *osthread, ucontext_t* context) { osthread->set_ucontext(context); } static Semaphore sr_semaphore; void os::Solaris::SR_handler(Thread* thread, ucontext_t* uc) { // Save and restore errno to avoid confusing native code with EINTR // after sigsuspend. int old_errno = errno; OSThread* osthread = thread->osthread(); assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread"); os::SuspendResume::State current = osthread->sr.state(); if (current == os::SuspendResume::SR_SUSPEND_REQUEST) { suspend_save_context(osthread, uc); // attempt to switch the state, we assume we had a SUSPEND_REQUEST os::SuspendResume::State state = osthread->sr.suspended(); if (state == os::SuspendResume::SR_SUSPENDED) { sigset_t suspend_set; // signals for sigsuspend() // get current set of blocked signals and unblock resume signal thr_sigsetmask(SIG_BLOCK, NULL, &suspend_set); sigdelset(&suspend_set, os::Solaris::SIGasync()); sr_semaphore.signal(); // wait here until we are resumed while (1) { sigsuspend(&suspend_set); os::SuspendResume::State result = osthread->sr.running(); if (result == os::SuspendResume::SR_RUNNING) { sr_semaphore.signal(); break; } } } else if (state == os::SuspendResume::SR_RUNNING) { // request was cancelled, continue } else { ShouldNotReachHere(); } resume_clear_context(osthread); } else if (current == os::SuspendResume::SR_RUNNING) { // request was cancelled, continue } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) { // ignore } else { // ignore } errno = old_errno; } void os::interrupt(Thread* thread) { assert(Thread::current() == thread || Threads_lock->owned_by_self(), "possibility of dangling Thread pointer"); OSThread* osthread = thread->osthread(); int isInterrupted = osthread->interrupted(); if (!isInterrupted) { osthread->set_interrupted(true); OrderAccess::fence(); // os::sleep() is implemented with either poll (NULL,0,timeout) or // by parking on _SleepEvent. If the former, thr_kill will unwedge // the sleeper by SIGINTR, otherwise the unpark() will wake the sleeper. ParkEvent * const slp = thread->_SleepEvent ; if (slp != NULL) slp->unpark() ; } // For JSR166: unpark after setting status but before thr_kill -dl if (thread->is_Java_thread()) { ((JavaThread*)thread)->parker()->unpark(); } // Handle interruptible wait() ... ParkEvent * const ev = thread->_ParkEvent ; if (ev != NULL) ev->unpark() ; // When events are used everywhere for os::sleep, then this thr_kill // will only be needed if UseVMInterruptibleIO is true. if (!isInterrupted) { int status = thr_kill(osthread->thread_id(), os::Solaris::SIGinterrupt()); assert_status(status == 0, status, "thr_kill"); // Bump thread interruption counter RuntimeService::record_thread_interrupt_signaled_count(); } } bool os::is_interrupted(Thread* thread, bool clear_interrupted) { assert(Thread::current() == thread || Threads_lock->owned_by_self(), "possibility of dangling Thread pointer"); OSThread* osthread = thread->osthread(); bool res = osthread->interrupted(); // NOTE that since there is no "lock" around these two operations, // there is the possibility that the interrupted flag will be // "false" but that the interrupt event will be set. This is // intentional. The effect of this is that Object.wait() will appear // to have a spurious wakeup, which is not harmful, and the // possibility is so rare that it is not worth the added complexity // to add yet another lock. It has also been recommended not to put // the interrupted flag into the os::Solaris::Event structure, // because it hides the issue. if (res && clear_interrupted) { osthread->set_interrupted(false); } return res; } void os::print_statistics() { } int os::message_box(const char* title, const char* message) { int i; fdStream err(defaultStream::error_fd()); for (i = 0; i < 78; i++) err.print_raw("="); err.cr(); err.print_raw_cr(title); for (i = 0; i < 78; i++) err.print_raw("-"); err.cr(); err.print_raw_cr(message); for (i = 0; i < 78; i++) err.print_raw("="); err.cr(); char buf[16]; // Prevent process from exiting upon "read error" without consuming all CPU while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); } return buf[0] == 'y' || buf[0] == 'Y'; } static int sr_notify(OSThread* osthread) { int status = thr_kill(osthread->thread_id(), os::Solaris::SIGasync()); assert_status(status == 0, status, "thr_kill"); return status; } // "Randomly" selected value for how long we want to spin // before bailing out on suspending a thread, also how often // we send a signal to a thread we want to resume static const int RANDOMLY_LARGE_INTEGER = 1000000; static const int RANDOMLY_LARGE_INTEGER2 = 100; static bool do_suspend(OSThread* osthread) { assert(osthread->sr.is_running(), "thread should be running"); assert(!sr_semaphore.trywait(), "semaphore has invalid state"); // mark as suspended and send signal if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) { // failed to switch, state wasn't running? ShouldNotReachHere(); return false; } if (sr_notify(osthread) != 0) { ShouldNotReachHere(); } // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED while (true) { if (sr_semaphore.timedwait(0, 2000 * NANOSECS_PER_MILLISEC)) { break; } else { // timeout os::SuspendResume::State cancelled = osthread->sr.cancel_suspend(); if (cancelled == os::SuspendResume::SR_RUNNING) { return false; } else if (cancelled == os::SuspendResume::SR_SUSPENDED) { // make sure that we consume the signal on the semaphore as well sr_semaphore.wait(); break; } else { ShouldNotReachHere(); return false; } } } guarantee(osthread->sr.is_suspended(), "Must be suspended"); return true; } static void do_resume(OSThread* osthread) { assert(osthread->sr.is_suspended(), "thread should be suspended"); assert(!sr_semaphore.trywait(), "invalid semaphore state"); if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) { // failed to switch to WAKEUP_REQUEST ShouldNotReachHere(); return; } while (true) { if (sr_notify(osthread) == 0) { if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) { if (osthread->sr.is_running()) { return; } } } else { ShouldNotReachHere(); } } guarantee(osthread->sr.is_running(), "Must be running!"); } void os::SuspendedThreadTask::internal_do_task() { if (do_suspend(_thread->osthread())) { SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext()); do_task(context); do_resume(_thread->osthread()); } } class PcFetcher : public os::SuspendedThreadTask { public: PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {} ExtendedPC result(); protected: void do_task(const os::SuspendedThreadTaskContext& context); private: ExtendedPC _epc; }; ExtendedPC PcFetcher::result() { guarantee(is_done(), "task is not done yet."); return _epc; } void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) { Thread* thread = context.thread(); OSThread* osthread = thread->osthread(); if (osthread->ucontext() != NULL) { _epc = os::Solaris::ucontext_get_pc((ucontext_t *) context.ucontext()); } else { // NULL context is unexpected, double-check this is the VMThread guarantee(thread->is_VM_thread(), "can only be called for VMThread"); } } // A lightweight implementation that does not suspend the target thread and // thus returns only a hint. Used for profiling only! ExtendedPC os::get_thread_pc(Thread* thread) { // Make sure that it is called by the watcher and the Threads lock is owned. assert(Thread::current()->is_Watcher_thread(), "Must be watcher and own Threads_lock"); // For now, is only used to profile the VM Thread assert(thread->is_VM_thread(), "Can only be called for VMThread"); PcFetcher fetcher(thread); fetcher.run(); return fetcher.result(); } // This does not do anything on Solaris. This is basically a hook for being // able to use structured exception handling (thread-local exception filters) on, e.g., Win32. void os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method, JavaCallArguments* args, Thread* thread) { f(value, method, args, thread); } // This routine may be used by user applications as a "hook" to catch signals. // The user-defined signal handler must pass unrecognized signals to this // routine, and if it returns true (non-zero), then the signal handler must // return immediately. If the flag "abort_if_unrecognized" is true, then this // routine will never retun false (zero), but instead will execute a VM panic // routine kill the process. // // If this routine returns false, it is OK to call it again. This allows // the user-defined signal handler to perform checks either before or after // the VM performs its own checks. Naturally, the user code would be making // a serious error if it tried to handle an exception (such as a null check // or breakpoint) that the VM was generating for its own correct operation. // // This routine may recognize any of the following kinds of signals: // SIGBUS, SIGSEGV, SIGILL, SIGFPE, BREAK_SIGNAL, SIGPIPE, SIGXFSZ, // os::Solaris::SIGasync // It should be consulted by handlers for any of those signals. // It explicitly does not recognize os::Solaris::SIGinterrupt // // The caller of this routine must pass in the three arguments supplied // to the function referred to in the "sa_sigaction" (not the "sa_handler") // field of the structure passed to sigaction(). This routine assumes that // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART. // // Note that the VM will print warnings if it detects conflicting signal // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers". // extern "C" JNIEXPORT int JVM_handle_solaris_signal(int signo, siginfo_t* siginfo, void* ucontext, int abort_if_unrecognized); void signalHandler(int sig, siginfo_t* info, void* ucVoid) { int orig_errno = errno; // Preserve errno value over signal handler. JVM_handle_solaris_signal(sig, info, ucVoid, true); errno = orig_errno; } /* Do not delete - if guarantee is ever removed, a signal handler (even empty) is needed to provoke threads blocked on IO to return an EINTR Note: this explicitly does NOT call JVM_handle_solaris_signal and does NOT participate in signal chaining due to requirement for NOT setting SA_RESTART to make EINTR work. */ extern "C" void sigINTRHandler(int sig, siginfo_t* info, void* ucVoid) { if (UseSignalChaining) { struct sigaction *actp = os::Solaris::get_chained_signal_action(sig); if (actp && actp->sa_handler) { vm_exit_during_initialization("Signal chaining detected for VM interrupt signal, try -XX:+UseAltSigs"); } } } // This boolean allows users to forward their own non-matching signals // to JVM_handle_solaris_signal, harmlessly. bool os::Solaris::signal_handlers_are_installed = false; // For signal-chaining bool os::Solaris::libjsig_is_loaded = false; typedef struct sigaction *(*get_signal_t)(int); get_signal_t os::Solaris::get_signal_action = NULL; struct sigaction* os::Solaris::get_chained_signal_action(int sig) { struct sigaction *actp = NULL; if ((libjsig_is_loaded) && (sig <= Maxlibjsigsigs)) { // Retrieve the old signal handler from libjsig actp = (*get_signal_action)(sig); } if (actp == NULL) { // Retrieve the preinstalled signal handler from jvm actp = get_preinstalled_handler(sig); } return actp; } static bool call_chained_handler(struct sigaction *actp, int sig, siginfo_t *siginfo, void *context) { // Call the old signal handler if (actp->sa_handler == SIG_DFL) { // It's more reasonable to let jvm treat it as an unexpected exception // instead of taking the default action. return false; } else if (actp->sa_handler != SIG_IGN) { if ((actp->sa_flags & SA_NODEFER) == 0) { // automaticlly block the signal sigaddset(&(actp->sa_mask), sig); } sa_handler_t hand; sa_sigaction_t sa; bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0; // retrieve the chained handler if (siginfo_flag_set) { sa = actp->sa_sigaction; } else { hand = actp->sa_handler; } if ((actp->sa_flags & SA_RESETHAND) != 0) { actp->sa_handler = SIG_DFL; } // try to honor the signal mask sigset_t oset; thr_sigsetmask(SIG_SETMASK, &(actp->sa_mask), &oset); // call into the chained handler if (siginfo_flag_set) { (*sa)(sig, siginfo, context); } else { (*hand)(sig); } // restore the signal mask thr_sigsetmask(SIG_SETMASK, &oset, 0); } // Tell jvm's signal handler the signal is taken care of. return true; } bool os::Solaris::chained_handler(int sig, siginfo_t* siginfo, void* context) { bool chained = false; // signal-chaining if (UseSignalChaining) { struct sigaction *actp = get_chained_signal_action(sig); if (actp != NULL) { chained = call_chained_handler(actp, sig, siginfo, context); } } return chained; } struct sigaction* os::Solaris::get_preinstalled_handler(int sig) { assert((chainedsigactions != (struct sigaction *)NULL) && (preinstalled_sigs != (int *)NULL) , "signals not yet initialized"); if (preinstalled_sigs[sig] != 0) { return &chainedsigactions[sig]; } return NULL; } void os::Solaris::save_preinstalled_handler(int sig, struct sigaction& oldAct) { assert(sig > 0 && sig <= Maxsignum, "vm signal out of expected range"); assert((chainedsigactions != (struct sigaction *)NULL) && (preinstalled_sigs != (int *)NULL) , "signals not yet initialized"); chainedsigactions[sig] = oldAct; preinstalled_sigs[sig] = 1; } void os::Solaris::set_signal_handler(int sig, bool set_installed, bool oktochain) { // Check for overwrite. struct sigaction oldAct; sigaction(sig, (struct sigaction*)NULL, &oldAct); void* oldhand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction) : CAST_FROM_FN_PTR(void*, oldAct.sa_handler); if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) && oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) && oldhand != CAST_FROM_FN_PTR(void*, signalHandler)) { if (AllowUserSignalHandlers || !set_installed) { // Do not overwrite; user takes responsibility to forward to us. return; } else if (UseSignalChaining) { if (oktochain) { // save the old handler in jvm save_preinstalled_handler(sig, oldAct); } else { vm_exit_during_initialization("Signal chaining not allowed for VM interrupt signal, try -XX:+UseAltSigs."); } // libjsig also interposes the sigaction() call below and saves the // old sigaction on it own. } else { fatal(err_msg("Encountered unexpected pre-existing sigaction handler " "%#lx for signal %d.", (long)oldhand, sig)); } } struct sigaction sigAct; sigfillset(&(sigAct.sa_mask)); sigAct.sa_handler = SIG_DFL; sigAct.sa_sigaction = signalHandler; // Handle SIGSEGV on alternate signal stack if // not using stack banging if (!UseStackBanging && sig == SIGSEGV) { sigAct.sa_flags = SA_SIGINFO | SA_RESTART | SA_ONSTACK; // Interruptible i/o requires SA_RESTART cleared so EINTR // is returned instead of restarting system calls } else if (sig == os::Solaris::SIGinterrupt()) { sigemptyset(&sigAct.sa_mask); sigAct.sa_handler = NULL; sigAct.sa_flags = SA_SIGINFO; sigAct.sa_sigaction = sigINTRHandler; } else { sigAct.sa_flags = SA_SIGINFO | SA_RESTART; } os::Solaris::set_our_sigflags(sig, sigAct.sa_flags); sigaction(sig, &sigAct, &oldAct); void* oldhand2 = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction) : CAST_FROM_FN_PTR(void*, oldAct.sa_handler); assert(oldhand2 == oldhand, "no concurrent signal handler installation"); } #define DO_SIGNAL_CHECK(sig) \ if (!sigismember(&check_signal_done, sig)) \ os::Solaris::check_signal_handler(sig) // This method is a periodic task to check for misbehaving JNI applications // under CheckJNI, we can add any periodic checks here void os::run_periodic_checks() { // A big source of grief is hijacking virt. addr 0x0 on Solaris, // thereby preventing a NULL checks. if(!check_addr0_done) check_addr0_done = check_addr0(tty); if (check_signals == false) return; // SEGV and BUS if overridden could potentially prevent // generation of hs*.log in the event of a crash, debugging // such a case can be very challenging, so we absolutely // check for the following for a good measure: DO_SIGNAL_CHECK(SIGSEGV); DO_SIGNAL_CHECK(SIGILL); DO_SIGNAL_CHECK(SIGFPE); DO_SIGNAL_CHECK(SIGBUS); DO_SIGNAL_CHECK(SIGPIPE); DO_SIGNAL_CHECK(SIGXFSZ); // ReduceSignalUsage allows the user to override these handlers // see comments at the very top and jvm_solaris.h if (!ReduceSignalUsage) { DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL); DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL); DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL); DO_SIGNAL_CHECK(BREAK_SIGNAL); } // See comments above for using JVM1/JVM2 and UseAltSigs DO_SIGNAL_CHECK(os::Solaris::SIGinterrupt()); DO_SIGNAL_CHECK(os::Solaris::SIGasync()); } typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *); static os_sigaction_t os_sigaction = NULL; void os::Solaris::check_signal_handler(int sig) { char buf[O_BUFLEN]; address jvmHandler = NULL; struct sigaction act; if (os_sigaction == NULL) { // only trust the default sigaction, in case it has been interposed os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction"); if (os_sigaction == NULL) return; } os_sigaction(sig, (struct sigaction*)NULL, &act); address thisHandler = (act.sa_flags & SA_SIGINFO) ? CAST_FROM_FN_PTR(address, act.sa_sigaction) : CAST_FROM_FN_PTR(address, act.sa_handler) ; switch(sig) { case SIGSEGV: case SIGBUS: case SIGFPE: case SIGPIPE: case SIGXFSZ: case SIGILL: jvmHandler = CAST_FROM_FN_PTR(address, signalHandler); break; case SHUTDOWN1_SIGNAL: case SHUTDOWN2_SIGNAL: case SHUTDOWN3_SIGNAL: case BREAK_SIGNAL: jvmHandler = (address)user_handler(); break; default: int intrsig = os::Solaris::SIGinterrupt(); int asynsig = os::Solaris::SIGasync(); if (sig == intrsig) { jvmHandler = CAST_FROM_FN_PTR(address, sigINTRHandler); } else if (sig == asynsig) { jvmHandler = CAST_FROM_FN_PTR(address, signalHandler); } else { return; } break; } if (thisHandler != jvmHandler) { tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN)); tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN)); tty->print_cr(" found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN)); // No need to check this sig any longer sigaddset(&check_signal_done, sig); // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) { tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell", exception_name(sig, buf, O_BUFLEN)); } } else if(os::Solaris::get_our_sigflags(sig) != 0 && act.sa_flags != os::Solaris::get_our_sigflags(sig)) { tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN)); tty->print("expected:" PTR32_FORMAT, os::Solaris::get_our_sigflags(sig)); tty->print_cr(" found:" PTR32_FORMAT, act.sa_flags); // No need to check this sig any longer sigaddset(&check_signal_done, sig); } // Print all the signal handler state if (sigismember(&check_signal_done, sig)) { print_signal_handlers(tty, buf, O_BUFLEN); } } void os::Solaris::install_signal_handlers() { bool libjsigdone = false; signal_handlers_are_installed = true; // signal-chaining typedef void (*signal_setting_t)(); signal_setting_t begin_signal_setting = NULL; signal_setting_t end_signal_setting = NULL; begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t, dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting")); if (begin_signal_setting != NULL) { end_signal_setting = CAST_TO_FN_PTR(signal_setting_t, dlsym(RTLD_DEFAULT, "JVM_end_signal_setting")); get_signal_action = CAST_TO_FN_PTR(get_signal_t, dlsym(RTLD_DEFAULT, "JVM_get_signal_action")); get_libjsig_version = CAST_TO_FN_PTR(version_getting_t, dlsym(RTLD_DEFAULT, "JVM_get_libjsig_version")); libjsig_is_loaded = true; if (os::Solaris::get_libjsig_version != NULL) { libjsigversion = (*os::Solaris::get_libjsig_version)(); } assert(UseSignalChaining, "should enable signal-chaining"); } if (libjsig_is_loaded) { // Tell libjsig jvm is setting signal handlers (*begin_signal_setting)(); } set_signal_handler(SIGSEGV, true, true); set_signal_handler(SIGPIPE, true, true); set_signal_handler(SIGXFSZ, true, true); set_signal_handler(SIGBUS, true, true); set_signal_handler(SIGILL, true, true); set_signal_handler(SIGFPE, true, true); if (os::Solaris::SIGinterrupt() > OLDMAXSIGNUM || os::Solaris::SIGasync() > OLDMAXSIGNUM) { // Pre-1.4.1 Libjsig limited to signal chaining signals <= 32 so // can not register overridable signals which might be > 32 if (libjsig_is_loaded && libjsigversion <= JSIG_VERSION_1_4_1) { // Tell libjsig jvm has finished setting signal handlers (*end_signal_setting)(); libjsigdone = true; } } // Never ok to chain our SIGinterrupt set_signal_handler(os::Solaris::SIGinterrupt(), true, false); set_signal_handler(os::Solaris::SIGasync(), true, true); if (libjsig_is_loaded && !libjsigdone) { // Tell libjsig jvm finishes setting signal handlers (*end_signal_setting)(); } // We don't activate signal checker if libjsig is in place, we trust ourselves // and if UserSignalHandler is installed all bets are off. // Log that signal checking is off only if -verbose:jni is specified. if (CheckJNICalls) { if (libjsig_is_loaded) { if (PrintJNIResolving) { tty->print_cr("Info: libjsig is activated, all active signal checking is disabled"); } check_signals = false; } if (AllowUserSignalHandlers) { if (PrintJNIResolving) { tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled"); } check_signals = false; } } } void report_error(const char* file_name, int line_no, const char* title, const char* format, ...); const char * signames[] = { "SIG0", "SIGHUP", "SIGINT", "SIGQUIT", "SIGILL", "SIGTRAP", "SIGABRT", "SIGEMT", "SIGFPE", "SIGKILL", "SIGBUS", "SIGSEGV", "SIGSYS", "SIGPIPE", "SIGALRM", "SIGTERM", "SIGUSR1", "SIGUSR2", "SIGCLD", "SIGPWR", "SIGWINCH", "SIGURG", "SIGPOLL", "SIGSTOP", "SIGTSTP", "SIGCONT", "SIGTTIN", "SIGTTOU", "SIGVTALRM", "SIGPROF", "SIGXCPU", "SIGXFSZ", "SIGWAITING", "SIGLWP", "SIGFREEZE", "SIGTHAW", "SIGCANCEL", "SIGLOST" }; const char* os::exception_name(int exception_code, char* buf, size_t size) { if (0 < exception_code && exception_code <= SIGRTMAX) { // signal if (exception_code < sizeof(signames)/sizeof(const char*)) { jio_snprintf(buf, size, "%s", signames[exception_code]); } else { jio_snprintf(buf, size, "SIG%d", exception_code); } return buf; } else { return NULL; } } // (Static) wrappers for the new libthread API int_fnP_thread_t_iP_uP_stack_tP_gregset_t os::Solaris::_thr_getstate; int_fnP_thread_t_i_gregset_t os::Solaris::_thr_setstate; int_fnP_thread_t_i os::Solaris::_thr_setmutator; int_fnP_thread_t os::Solaris::_thr_suspend_mutator; int_fnP_thread_t os::Solaris::_thr_continue_mutator; // (Static) wrapper for getisax(2) call. os::Solaris::getisax_func_t os::Solaris::_getisax = 0; // (Static) wrappers for the liblgrp API os::Solaris::lgrp_home_func_t os::Solaris::_lgrp_home; os::Solaris::lgrp_init_func_t os::Solaris::_lgrp_init; os::Solaris::lgrp_fini_func_t os::Solaris::_lgrp_fini; os::Solaris::lgrp_root_func_t os::Solaris::_lgrp_root; os::Solaris::lgrp_children_func_t os::Solaris::_lgrp_children; os::Solaris::lgrp_resources_func_t os::Solaris::_lgrp_resources; os::Solaris::lgrp_nlgrps_func_t os::Solaris::_lgrp_nlgrps; os::Solaris::lgrp_cookie_stale_func_t os::Solaris::_lgrp_cookie_stale; os::Solaris::lgrp_cookie_t os::Solaris::_lgrp_cookie = 0; // (Static) wrapper for meminfo() call. os::Solaris::meminfo_func_t os::Solaris::_meminfo = 0; static address resolve_symbol_lazy(const char* name) { address addr = (address) dlsym(RTLD_DEFAULT, name); if(addr == NULL) { // RTLD_DEFAULT was not defined on some early versions of 2.5.1 addr = (address) dlsym(RTLD_NEXT, name); } return addr; } static address resolve_symbol(const char* name) { address addr = resolve_symbol_lazy(name); if(addr == NULL) { fatal(dlerror()); } return addr; } // isT2_libthread() // // Routine to determine if we are currently using the new T2 libthread. // // We determine if we are using T2 by reading /proc/self/lstatus and // looking for a thread with the ASLWP bit set. If we find this status // bit set, we must assume that we are NOT using T2. The T2 team // has approved this algorithm. // // We need to determine if we are running with the new T2 libthread // since setting native thread priorities is handled differently // when using this library. All threads created using T2 are bound // threads. Calling thr_setprio is meaningless in this case. // bool isT2_libthread() { static prheader_t * lwpArray = NULL; static int lwpSize = 0; static int lwpFile = -1; lwpstatus_t * that; char lwpName [128]; bool isT2 = false; #define ADR(x) ((uintptr_t)(x)) #define LWPINDEX(ary,ix) ((lwpstatus_t *)(((ary)->pr_entsize * (ix)) + (ADR((ary) + 1)))) lwpFile = ::open("/proc/self/lstatus", O_RDONLY, 0); if (lwpFile < 0) { if (ThreadPriorityVerbose) warning ("Couldn't open /proc/self/lstatus\n"); return false; } lwpSize = 16*1024; for (;;) { ::lseek64 (lwpFile, 0, SEEK_SET); lwpArray = (prheader_t *)NEW_C_HEAP_ARRAY(char, lwpSize, mtInternal); if (::read(lwpFile, lwpArray, lwpSize) < 0) { if (ThreadPriorityVerbose) warning("Error reading /proc/self/lstatus\n"); break; } if ((lwpArray->pr_nent * lwpArray->pr_entsize) <= lwpSize) { // We got a good snapshot - now iterate over the list. int aslwpcount = 0; for (int i = 0; i < lwpArray->pr_nent; i++ ) { that = LWPINDEX(lwpArray,i); if (that->pr_flags & PR_ASLWP) { aslwpcount++; } } if (aslwpcount == 0) isT2 = true; break; } lwpSize = lwpArray->pr_nent * lwpArray->pr_entsize; FREE_C_HEAP_ARRAY(char, lwpArray, mtInternal); // retry. } FREE_C_HEAP_ARRAY(char, lwpArray, mtInternal); ::close (lwpFile); if (ThreadPriorityVerbose) { if (isT2) tty->print_cr("We are running with a T2 libthread\n"); else tty->print_cr("We are not running with a T2 libthread\n"); } return isT2; } void os::Solaris::libthread_init() { address func = (address)dlsym(RTLD_DEFAULT, "_thr_suspend_allmutators"); // Determine if we are running with the new T2 libthread os::Solaris::set_T2_libthread(isT2_libthread()); lwp_priocntl_init(); // RTLD_DEFAULT was not defined on some early versions of 5.5.1 if(func == NULL) { func = (address) dlsym(RTLD_NEXT, "_thr_suspend_allmutators"); // Guarantee that this VM is running on an new enough OS (5.6 or // later) that it will have a new enough libthread.so. guarantee(func != NULL, "libthread.so is too old."); } // Initialize the new libthread getstate API wrappers func = resolve_symbol("thr_getstate"); os::Solaris::set_thr_getstate(CAST_TO_FN_PTR(int_fnP_thread_t_iP_uP_stack_tP_gregset_t, func)); func = resolve_symbol("thr_setstate"); os::Solaris::set_thr_setstate(CAST_TO_FN_PTR(int_fnP_thread_t_i_gregset_t, func)); func = resolve_symbol("thr_setmutator"); os::Solaris::set_thr_setmutator(CAST_TO_FN_PTR(int_fnP_thread_t_i, func)); func = resolve_symbol("thr_suspend_mutator"); os::Solaris::set_thr_suspend_mutator(CAST_TO_FN_PTR(int_fnP_thread_t, func)); func = resolve_symbol("thr_continue_mutator"); os::Solaris::set_thr_continue_mutator(CAST_TO_FN_PTR(int_fnP_thread_t, func)); int size; void (*handler_info_func)(address *, int *); handler_info_func = CAST_TO_FN_PTR(void (*)(address *, int *), resolve_symbol("thr_sighndlrinfo")); handler_info_func(&handler_start, &size); handler_end = handler_start + size; } int_fnP_mutex_tP os::Solaris::_mutex_lock; int_fnP_mutex_tP os::Solaris::_mutex_trylock; int_fnP_mutex_tP os::Solaris::_mutex_unlock; int_fnP_mutex_tP_i_vP os::Solaris::_mutex_init; int_fnP_mutex_tP os::Solaris::_mutex_destroy; int os::Solaris::_mutex_scope = USYNC_THREAD; int_fnP_cond_tP_mutex_tP_timestruc_tP os::Solaris::_cond_timedwait; int_fnP_cond_tP_mutex_tP os::Solaris::_cond_wait; int_fnP_cond_tP os::Solaris::_cond_signal; int_fnP_cond_tP os::Solaris::_cond_broadcast; int_fnP_cond_tP_i_vP os::Solaris::_cond_init; int_fnP_cond_tP os::Solaris::_cond_destroy; int os::Solaris::_cond_scope = USYNC_THREAD; void os::Solaris::synchronization_init() { if(UseLWPSynchronization) { os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_lock"))); os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_trylock"))); os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_unlock"))); os::Solaris::set_mutex_init(lwp_mutex_init); os::Solaris::set_mutex_destroy(lwp_mutex_destroy); os::Solaris::set_mutex_scope(USYNC_THREAD); os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("_lwp_cond_timedwait"))); os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("_lwp_cond_wait"))); os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_signal"))); os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_broadcast"))); os::Solaris::set_cond_init(lwp_cond_init); os::Solaris::set_cond_destroy(lwp_cond_destroy); os::Solaris::set_cond_scope(USYNC_THREAD); } else { os::Solaris::set_mutex_scope(USYNC_THREAD); os::Solaris::set_cond_scope(USYNC_THREAD); if(UsePthreads) { os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_lock"))); os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_trylock"))); os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_unlock"))); os::Solaris::set_mutex_init(pthread_mutex_default_init); os::Solaris::set_mutex_destroy(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_destroy"))); os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("pthread_cond_timedwait"))); os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("pthread_cond_wait"))); os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_signal"))); os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_broadcast"))); os::Solaris::set_cond_init(pthread_cond_default_init); os::Solaris::set_cond_destroy(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_destroy"))); } else { os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_lock"))); os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_trylock"))); os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_unlock"))); os::Solaris::set_mutex_init(::mutex_init); os::Solaris::set_mutex_destroy(::mutex_destroy); os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("cond_timedwait"))); os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("cond_wait"))); os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_signal"))); os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_broadcast"))); os::Solaris::set_cond_init(::cond_init); os::Solaris::set_cond_destroy(::cond_destroy); } } } bool os::Solaris::liblgrp_init() { void *handle = dlopen("liblgrp.so.1", RTLD_LAZY); if (handle != NULL) { os::Solaris::set_lgrp_home(CAST_TO_FN_PTR(lgrp_home_func_t, dlsym(handle, "lgrp_home"))); os::Solaris::set_lgrp_init(CAST_TO_FN_PTR(lgrp_init_func_t, dlsym(handle, "lgrp_init"))); os::Solaris::set_lgrp_fini(CAST_TO_FN_PTR(lgrp_fini_func_t, dlsym(handle, "lgrp_fini"))); os::Solaris::set_lgrp_root(CAST_TO_FN_PTR(lgrp_root_func_t, dlsym(handle, "lgrp_root"))); os::Solaris::set_lgrp_children(CAST_TO_FN_PTR(lgrp_children_func_t, dlsym(handle, "lgrp_children"))); os::Solaris::set_lgrp_resources(CAST_TO_FN_PTR(lgrp_resources_func_t, dlsym(handle, "lgrp_resources"))); os::Solaris::set_lgrp_nlgrps(CAST_TO_FN_PTR(lgrp_nlgrps_func_t, dlsym(handle, "lgrp_nlgrps"))); os::Solaris::set_lgrp_cookie_stale(CAST_TO_FN_PTR(lgrp_cookie_stale_func_t, dlsym(handle, "lgrp_cookie_stale"))); lgrp_cookie_t c = lgrp_init(LGRP_VIEW_CALLER); set_lgrp_cookie(c); return true; } return false; } void os::Solaris::misc_sym_init() { address func; // getisax func = resolve_symbol_lazy("getisax"); if (func != NULL) { os::Solaris::_getisax = CAST_TO_FN_PTR(getisax_func_t, func); } // meminfo func = resolve_symbol_lazy("meminfo"); if (func != NULL) { os::Solaris::set_meminfo(CAST_TO_FN_PTR(meminfo_func_t, func)); } } uint_t os::Solaris::getisax(uint32_t* array, uint_t n) { assert(_getisax != NULL, "_getisax not set"); return _getisax(array, n); } // int pset_getloadavg(psetid_t pset, double loadavg[], int nelem); typedef long (*pset_getloadavg_type)(psetid_t pset, double loadavg[], int nelem); static pset_getloadavg_type pset_getloadavg_ptr = NULL; void init_pset_getloadavg_ptr(void) { pset_getloadavg_ptr = (pset_getloadavg_type)dlsym(RTLD_DEFAULT, "pset_getloadavg"); if (PrintMiscellaneous && Verbose && pset_getloadavg_ptr == NULL) { warning("pset_getloadavg function not found"); } } int os::Solaris::_dev_zero_fd = -1; // this is called _before_ the global arguments have been parsed void os::init(void) { _initial_pid = getpid(); max_hrtime = first_hrtime = gethrtime(); init_random(1234567); page_size = sysconf(_SC_PAGESIZE); if (page_size == -1) fatal(err_msg("os_solaris.cpp: os::init: sysconf failed (%s)", strerror(errno))); init_page_sizes((size_t) page_size); Solaris::initialize_system_info(); // Initialize misc. symbols as soon as possible, so we can use them // if we need them. Solaris::misc_sym_init(); int fd = ::open("/dev/zero", O_RDWR); if (fd < 0) { fatal(err_msg("os::init: cannot open /dev/zero (%s)", strerror(errno))); } else { Solaris::set_dev_zero_fd(fd); // Close on exec, child won't inherit. fcntl(fd, F_SETFD, FD_CLOEXEC); } clock_tics_per_sec = CLK_TCK; // check if dladdr1() exists; dladdr1 can provide more information than // dladdr for os::dll_address_to_function_name. It comes with SunOS 5.9 // and is available on linker patches for 5.7 and 5.8. // libdl.so must have been loaded, this call is just an entry lookup void * hdl = dlopen("libdl.so", RTLD_NOW); if (hdl) dladdr1_func = CAST_TO_FN_PTR(dladdr1_func_type, dlsym(hdl, "dladdr1")); // (Solaris only) this switches to calls that actually do locking. ThreadCritical::initialize(); main_thread = thr_self(); // Constant minimum stack size allowed. It must be at least // the minimum of what the OS supports (thr_min_stack()), and // enough to allow the thread to get to user bytecode execution. Solaris::min_stack_allowed = MAX2(thr_min_stack(), Solaris::min_stack_allowed); // If the pagesize of the VM is greater than 8K determine the appropriate // number of initial guard pages. The user can change this with the // command line arguments, if needed. if (vm_page_size() > 8*K) { StackYellowPages = 1; StackRedPages = 1; StackShadowPages = round_to((StackShadowPages*8*K), vm_page_size()) / vm_page_size(); } } // To install functions for atexit system call extern "C" { static void perfMemory_exit_helper() { perfMemory_exit(); } } // this is called _after_ the global arguments have been parsed jint os::init_2(void) { // try to enable extended file IO ASAP, see 6431278 os::Solaris::try_enable_extended_io(); // Allocate a single page and mark it as readable for safepoint polling. Also // use this first mmap call to check support for MAP_ALIGN. address polling_page = (address)Solaris::mmap_chunk((char*)page_size, page_size, MAP_PRIVATE | MAP_ALIGN, PROT_READ); if (polling_page == NULL) { has_map_align = false; polling_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE, PROT_READ); } os::set_polling_page(polling_page); #ifndef PRODUCT if( Verbose && PrintMiscellaneous ) tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page); #endif if (!UseMembar) { address mem_serialize_page = (address)Solaris::mmap_chunk( NULL, page_size, MAP_PRIVATE, PROT_READ | PROT_WRITE ); guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page"); os::set_memory_serialize_page( mem_serialize_page ); #ifndef PRODUCT if(Verbose && PrintMiscellaneous) tty->print("[Memory Serialize Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page); #endif } // Check minimum allowable stack size for thread creation and to initialize // the java system classes, including StackOverflowError - depends on page // size. Add a page for compiler2 recursion in main thread. // Add in 2*BytesPerWord times page size to account for VM stack during // class initialization depending on 32 or 64 bit VM. os::Solaris::min_stack_allowed = MAX2(os::Solaris::min_stack_allowed, (size_t)(StackYellowPages+StackRedPages+StackShadowPages+ 2*BytesPerWord COMPILER2_PRESENT(+1)) * page_size); size_t threadStackSizeInBytes = ThreadStackSize * K; if (threadStackSizeInBytes != 0 && threadStackSizeInBytes < os::Solaris::min_stack_allowed) { tty->print_cr("\nThe stack size specified is too small, Specify at least %dk", os::Solaris::min_stack_allowed/K); return JNI_ERR; } // For 64kbps there will be a 64kb page size, which makes // the usable default stack size quite a bit less. Increase the // stack for 64kb (or any > than 8kb) pages, this increases // virtual memory fragmentation (since we're not creating the // stack on a power of 2 boundary. The real fix for this // should be to fix the guard page mechanism. if (vm_page_size() > 8*K) { threadStackSizeInBytes = (threadStackSizeInBytes != 0) ? threadStackSizeInBytes + ((StackYellowPages + StackRedPages) * vm_page_size()) : 0; ThreadStackSize = threadStackSizeInBytes/K; } // Make the stack size a multiple of the page size so that // the yellow/red zones can be guarded. JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes, vm_page_size())); Solaris::libthread_init(); if (UseNUMA) { if (!Solaris::liblgrp_init()) { UseNUMA = false; } else { size_t lgrp_limit = os::numa_get_groups_num(); int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit, mtInternal); size_t lgrp_num = os::numa_get_leaf_groups(lgrp_ids, lgrp_limit); FREE_C_HEAP_ARRAY(int, lgrp_ids, mtInternal); if (lgrp_num < 2) { // There's only one locality group, disable NUMA. UseNUMA = false; } } if (!UseNUMA && ForceNUMA) { UseNUMA = true; } } Solaris::signal_sets_init(); Solaris::init_signal_mem(); Solaris::install_signal_handlers(); if (libjsigversion < JSIG_VERSION_1_4_1) { Maxlibjsigsigs = OLDMAXSIGNUM; } // initialize synchronization primitives to use either thread or // lwp synchronization (controlled by UseLWPSynchronization) Solaris::synchronization_init(); if (MaxFDLimit) { // set the number of file descriptors to max. print out error // if getrlimit/setrlimit fails but continue regardless. struct rlimit nbr_files; int status = getrlimit(RLIMIT_NOFILE, &nbr_files); if (status != 0) { if (PrintMiscellaneous && (Verbose || WizardMode)) perror("os::init_2 getrlimit failed"); } else { nbr_files.rlim_cur = nbr_files.rlim_max; status = setrlimit(RLIMIT_NOFILE, &nbr_files); if (status != 0) { if (PrintMiscellaneous && (Verbose || WizardMode)) perror("os::init_2 setrlimit failed"); } } } // Calculate theoretical max. size of Threads to guard gainst // artifical out-of-memory situations, where all available address- // space has been reserved by thread stacks. Default stack size is 1Mb. size_t pre_thread_stack_size = (JavaThread::stack_size_at_create()) ? JavaThread::stack_size_at_create() : (1*K*K); assert(pre_thread_stack_size != 0, "Must have a stack"); // Solaris has a maximum of 4Gb of user programs. Calculate the thread limit when // we should start doing Virtual Memory banging. Currently when the threads will // have used all but 200Mb of space. size_t max_address_space = ((unsigned int)4 * K * K * K) - (200 * K * K); Solaris::_os_thread_limit = max_address_space / pre_thread_stack_size; // at-exit methods are called in the reverse order of their registration. // In Solaris 7 and earlier, atexit functions are called on return from // main or as a result of a call to exit(3C). There can be only 32 of // these functions registered and atexit() does not set errno. In Solaris // 8 and later, there is no limit to the number of functions registered // and atexit() sets errno. In addition, in Solaris 8 and later, atexit // functions are called upon dlclose(3DL) in addition to return from main // and exit(3C). if (PerfAllowAtExitRegistration) { // only register atexit functions if PerfAllowAtExitRegistration is set. // atexit functions can be delayed until process exit time, which // can be problematic for embedded VM situations. Embedded VMs should // call DestroyJavaVM() to assure that VM resources are released. // note: perfMemory_exit_helper atexit function may be removed in // the future if the appropriate cleanup code can be added to the // VM_Exit VMOperation's doit method. if (atexit(perfMemory_exit_helper) != 0) { warning("os::init2 atexit(perfMemory_exit_helper) failed"); } } // Init pset_loadavg function pointer init_pset_getloadavg_ptr(); return JNI_OK; } // Mark the polling page as unreadable void os::make_polling_page_unreadable(void) { if( mprotect((char *)_polling_page, page_size, PROT_NONE) != 0 ) fatal("Could not disable polling page"); }; // Mark the polling page as readable void os::make_polling_page_readable(void) { if( mprotect((char *)_polling_page, page_size, PROT_READ) != 0 ) fatal("Could not enable polling page"); }; // OS interface. bool os::check_heap(bool force) { return true; } typedef int (*vsnprintf_t)(char* buf, size_t count, const char* fmt, va_list argptr); static vsnprintf_t sol_vsnprintf = NULL; int local_vsnprintf(char* buf, size_t count, const char* fmt, va_list argptr) { if (!sol_vsnprintf) { //search for the named symbol in the objects that were loaded after libjvm void* where = RTLD_NEXT; if ((sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "__vsnprintf"))) == NULL) sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "vsnprintf")); if (!sol_vsnprintf){ //search for the named symbol in the objects that were loaded before libjvm where = RTLD_DEFAULT; if ((sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "__vsnprintf"))) == NULL) sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "vsnprintf")); assert(sol_vsnprintf != NULL, "vsnprintf not found"); } } return (*sol_vsnprintf)(buf, count, fmt, argptr); } // Is a (classpath) directory empty? bool os::dir_is_empty(const char* path) { DIR *dir = NULL; struct dirent *ptr; dir = opendir(path); if (dir == NULL) return true; /* Scan the directory */ bool result = true; char buf[sizeof(struct dirent) + MAX_PATH]; struct dirent *dbuf = (struct dirent *) buf; while (result && (ptr = readdir(dir, dbuf)) != NULL) { if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) { result = false; } } closedir(dir); return result; } // This code originates from JDK's sysOpen and open64_w // from src/solaris/hpi/src/system_md.c #ifndef O_DELETE #define O_DELETE 0x10000 #endif // Open a file. Unlink the file immediately after open returns // if the specified oflag has the O_DELETE flag set. // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c int os::open(const char *path, int oflag, int mode) { if (strlen(path) > MAX_PATH - 1) { errno = ENAMETOOLONG; return -1; } int fd; int o_delete = (oflag & O_DELETE); oflag = oflag & ~O_DELETE; fd = ::open64(path, oflag, mode); if (fd == -1) return -1; //If the open succeeded, the file might still be a directory { struct stat64 buf64; int ret = ::fstat64(fd, &buf64); int st_mode = buf64.st_mode; if (ret != -1) { if ((st_mode & S_IFMT) == S_IFDIR) { errno = EISDIR; ::close(fd); return -1; } } else { ::close(fd); return -1; } } /* * 32-bit Solaris systems suffer from: * * - an historical default soft limit of 256 per-process file * descriptors that is too low for many Java programs. * * - a design flaw where file descriptors created using stdio * fopen must be less than 256, _even_ when the first limit above * has been raised. This can cause calls to fopen (but not calls to * open, for example) to fail mysteriously, perhaps in 3rd party * native code (although the JDK itself uses fopen). One can hardly * criticize them for using this most standard of all functions. * * We attempt to make everything work anyways by: * * - raising the soft limit on per-process file descriptors beyond * 256 * * - As of Solaris 10u4, we can request that Solaris raise the 256 * stdio fopen limit by calling function enable_extended_FILE_stdio. * This is done in init_2 and recorded in enabled_extended_FILE_stdio * * - If we are stuck on an old (pre 10u4) Solaris system, we can * workaround the bug by remapping non-stdio file descriptors below * 256 to ones beyond 256, which is done below. * * See: * 1085341: 32-bit stdio routines should support file descriptors >255 * 6533291: Work around 32-bit Solaris stdio limit of 256 open files * 6431278: Netbeans crash on 32 bit Solaris: need to call * enable_extended_FILE_stdio() in VM initialisation * Giri Mandalika's blog * http://technopark02.blogspot.com/2005_05_01_archive.html */ #ifndef _LP64 if ((!enabled_extended_FILE_stdio) && fd < 256) { int newfd = ::fcntl(fd, F_DUPFD, 256); if (newfd != -1) { ::close(fd); fd = newfd; } } #endif // 32-bit Solaris /* * All file descriptors that are opened in the JVM and not * specifically destined for a subprocess should have the * close-on-exec flag set. If we don't set it, then careless 3rd * party native code might fork and exec without closing all * appropriate file descriptors (e.g. as we do in closeDescriptors in * UNIXProcess.c), and this in turn might: * * - cause end-of-file to fail to be detected on some file * descriptors, resulting in mysterious hangs, or * * - might cause an fopen in the subprocess to fail on a system * suffering from bug 1085341. * * (Yes, the default setting of the close-on-exec flag is a Unix * design flaw) * * See: * 1085341: 32-bit stdio routines should support file descriptors >255 * 4843136: (process) pipe file descriptor from Runtime.exec not being closed * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9 */ #ifdef FD_CLOEXEC { int flags = ::fcntl(fd, F_GETFD); if (flags != -1) ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC); } #endif if (o_delete != 0) { ::unlink(path); } return fd; } // create binary file, rewriting existing file if required int os::create_binary_file(const char* path, bool rewrite_existing) { int oflags = O_WRONLY | O_CREAT; if (!rewrite_existing) { oflags |= O_EXCL; } return ::open64(path, oflags, S_IREAD | S_IWRITE); } // return current position of file pointer jlong os::current_file_offset(int fd) { return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR); } // move file pointer to the specified offset jlong os::seek_to_file_offset(int fd, jlong offset) { return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET); } jlong os::lseek(int fd, jlong offset, int whence) { return (jlong) ::lseek64(fd, offset, whence); } char * os::native_path(char *path) { return path; } int os::ftruncate(int fd, jlong length) { return ::ftruncate64(fd, length); } int os::fsync(int fd) { RESTARTABLE_RETURN_INT(::fsync(fd)); } int os::available(int fd, jlong *bytes) { jlong cur, end; int mode; struct stat64 buf64; if (::fstat64(fd, &buf64) >= 0) { mode = buf64.st_mode; if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) { /* * XXX: is the following call interruptible? If so, this might * need to go through the INTERRUPT_IO() wrapper as for other * blocking, interruptible calls in this file. */ int n,ioctl_return; INTERRUPTIBLE(::ioctl(fd, FIONREAD, &n),ioctl_return,os::Solaris::clear_interrupted); if (ioctl_return>= 0) { *bytes = n; return 1; } } } if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) { return 0; } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) { return 0; } else if (::lseek64(fd, cur, SEEK_SET) == -1) { return 0; } *bytes = end - cur; return 1; } // Map a block of memory. char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset, char *addr, size_t bytes, bool read_only, bool allow_exec) { int prot; int flags; if (read_only) { prot = PROT_READ; flags = MAP_SHARED; } else { prot = PROT_READ | PROT_WRITE; flags = MAP_PRIVATE; } if (allow_exec) { prot |= PROT_EXEC; } if (addr != NULL) { flags |= MAP_FIXED; } char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags, fd, file_offset); if (mapped_address == MAP_FAILED) { return NULL; } return mapped_address; } // Remap a block of memory. char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset, char *addr, size_t bytes, bool read_only, bool allow_exec) { // same as map_memory() on this OS return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only, allow_exec); } // Unmap a block of memory. bool os::pd_unmap_memory(char* addr, size_t bytes) { return munmap(addr, bytes) == 0; } void os::pause() { char filename[MAX_PATH]; if (PauseAtStartupFile && PauseAtStartupFile[0]) { jio_snprintf(filename, MAX_PATH, PauseAtStartupFile); } else { jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id()); } int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666); if (fd != -1) { struct stat buf; ::close(fd); while (::stat(filename, &buf) == 0) { (void)::poll(NULL, 0, 100); } } else { jio_fprintf(stderr, "Could not open pause file '%s', continuing immediately.\n", filename); } } #ifndef PRODUCT #ifdef INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS // Turn this on if you need to trace synch operations. // Set RECORD_SYNCH_LIMIT to a large-enough value, // and call record_synch_enable and record_synch_disable // around the computation of interest. void record_synch(char* name, bool returning); // defined below class RecordSynch { char* _name; public: RecordSynch(char* name) :_name(name) { record_synch(_name, false); } ~RecordSynch() { record_synch(_name, true); } }; #define CHECK_SYNCH_OP(ret, name, params, args, inner) \ extern "C" ret name params { \ typedef ret name##_t params; \ static name##_t* implem = NULL; \ static int callcount = 0; \ if (implem == NULL) { \ implem = (name##_t*) dlsym(RTLD_NEXT, #name); \ if (implem == NULL) fatal(dlerror()); \ } \ ++callcount; \ RecordSynch _rs(#name); \ inner; \ return implem args; \ } // in dbx, examine callcounts this way: // for n in $(eval whereis callcount | awk '{print $2}'); do print $n; done #define CHECK_POINTER_OK(p) \ (!Universe::is_fully_initialized() || !Universe::is_reserved_heap((oop)(p))) #define CHECK_MU \ if (!CHECK_POINTER_OK(mu)) fatal("Mutex must be in C heap only."); #define CHECK_CV \ if (!CHECK_POINTER_OK(cv)) fatal("Condvar must be in C heap only."); #define CHECK_P(p) \ if (!CHECK_POINTER_OK(p)) fatal(false, "Pointer must be in C heap only."); #define CHECK_MUTEX(mutex_op) \ CHECK_SYNCH_OP(int, mutex_op, (mutex_t *mu), (mu), CHECK_MU); CHECK_MUTEX( mutex_lock) CHECK_MUTEX( _mutex_lock) CHECK_MUTEX( mutex_unlock) CHECK_MUTEX(_mutex_unlock) CHECK_MUTEX( mutex_trylock) CHECK_MUTEX(_mutex_trylock) #define CHECK_COND(cond_op) \ CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu), (cv, mu), CHECK_MU;CHECK_CV); CHECK_COND( cond_wait); CHECK_COND(_cond_wait); CHECK_COND(_cond_wait_cancel); #define CHECK_COND2(cond_op) \ CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu, timestruc_t* ts), (cv, mu, ts), CHECK_MU;CHECK_CV); CHECK_COND2( cond_timedwait); CHECK_COND2(_cond_timedwait); CHECK_COND2(_cond_timedwait_cancel); // do the _lwp_* versions too #define mutex_t lwp_mutex_t #define cond_t lwp_cond_t CHECK_MUTEX( _lwp_mutex_lock) CHECK_MUTEX( _lwp_mutex_unlock) CHECK_MUTEX( _lwp_mutex_trylock) CHECK_MUTEX( __lwp_mutex_lock) CHECK_MUTEX( __lwp_mutex_unlock) CHECK_MUTEX( __lwp_mutex_trylock) CHECK_MUTEX(___lwp_mutex_lock) CHECK_MUTEX(___lwp_mutex_unlock) CHECK_COND( _lwp_cond_wait); CHECK_COND( __lwp_cond_wait); CHECK_COND(___lwp_cond_wait); CHECK_COND2( _lwp_cond_timedwait); CHECK_COND2( __lwp_cond_timedwait); #undef mutex_t #undef cond_t CHECK_SYNCH_OP(int, _lwp_suspend2, (int lwp, int *n), (lwp, n), 0); CHECK_SYNCH_OP(int,__lwp_suspend2, (int lwp, int *n), (lwp, n), 0); CHECK_SYNCH_OP(int, _lwp_kill, (int lwp, int n), (lwp, n), 0); CHECK_SYNCH_OP(int,__lwp_kill, (int lwp, int n), (lwp, n), 0); CHECK_SYNCH_OP(int, _lwp_sema_wait, (lwp_sema_t* p), (p), CHECK_P(p)); CHECK_SYNCH_OP(int,__lwp_sema_wait, (lwp_sema_t* p), (p), CHECK_P(p)); CHECK_SYNCH_OP(int, _lwp_cond_broadcast, (lwp_cond_t* cv), (cv), CHECK_CV); CHECK_SYNCH_OP(int,__lwp_cond_broadcast, (lwp_cond_t* cv), (cv), CHECK_CV); // recording machinery: enum { RECORD_SYNCH_LIMIT = 200 }; char* record_synch_name[RECORD_SYNCH_LIMIT]; void* record_synch_arg0ptr[RECORD_SYNCH_LIMIT]; bool record_synch_returning[RECORD_SYNCH_LIMIT]; thread_t record_synch_thread[RECORD_SYNCH_LIMIT]; int record_synch_count = 0; bool record_synch_enabled = false; // in dbx, examine recorded data this way: // for n in name arg0ptr returning thread; do print record_synch_$n[0..record_synch_count-1]; done void record_synch(char* name, bool returning) { if (record_synch_enabled) { if (record_synch_count < RECORD_SYNCH_LIMIT) { record_synch_name[record_synch_count] = name; record_synch_returning[record_synch_count] = returning; record_synch_thread[record_synch_count] = thr_self(); record_synch_arg0ptr[record_synch_count] = &name; record_synch_count++; } // put more checking code here: // ... } } void record_synch_enable() { // start collecting trace data, if not already doing so if (!record_synch_enabled) record_synch_count = 0; record_synch_enabled = true; } void record_synch_disable() { // stop collecting trace data record_synch_enabled = false; } #endif // INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS #endif // PRODUCT const intptr_t thr_time_off = (intptr_t)(&((prusage_t *)(NULL))->pr_utime); const intptr_t thr_time_size = (intptr_t)(&((prusage_t *)(NULL))->pr_ttime) - (intptr_t)(&((prusage_t *)(NULL))->pr_utime); // JVMTI & JVM monitoring and management support // The thread_cpu_time() and current_thread_cpu_time() are only // supported if is_thread_cpu_time_supported() returns true. // They are not supported on Solaris T1. // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool) // are used by JVM M&M and JVMTI to get user+sys or user CPU time // of a thread. // // current_thread_cpu_time() and thread_cpu_time(Thread *) // returns the fast estimate available on the platform. // hrtime_t gethrvtime() return value includes // user time but does not include system time jlong os::current_thread_cpu_time() { return (jlong) gethrvtime(); } jlong os::thread_cpu_time(Thread *thread) { // return user level CPU time only to be consistent with // what current_thread_cpu_time returns. // thread_cpu_time_info() must be changed if this changes return os::thread_cpu_time(thread, false /* user time only */); } jlong os::current_thread_cpu_time(bool user_sys_cpu_time) { if (user_sys_cpu_time) { return os::thread_cpu_time(Thread::current(), user_sys_cpu_time); } else { return os::current_thread_cpu_time(); } } jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) { char proc_name[64]; int count; prusage_t prusage; jlong lwp_time; int fd; sprintf(proc_name, "/proc/%d/lwp/%d/lwpusage", getpid(), thread->osthread()->lwp_id()); fd = ::open(proc_name, O_RDONLY); if ( fd == -1 ) return -1; do { count = ::pread(fd, (void *)&prusage.pr_utime, thr_time_size, thr_time_off); } while (count < 0 && errno == EINTR); ::close(fd); if ( count < 0 ) return -1; if (user_sys_cpu_time) { // user + system CPU time lwp_time = (((jlong)prusage.pr_stime.tv_sec + (jlong)prusage.pr_utime.tv_sec) * (jlong)1000000000) + (jlong)prusage.pr_stime.tv_nsec + (jlong)prusage.pr_utime.tv_nsec; } else { // user level CPU time only lwp_time = ((jlong)prusage.pr_utime.tv_sec * (jlong)1000000000) + (jlong)prusage.pr_utime.tv_nsec; } return(lwp_time); } void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) { info_ptr->max_value = ALL_64_BITS; // will not wrap in less than 64 bits info_ptr->may_skip_backward = false; // elapsed time not wall time info_ptr->may_skip_forward = false; // elapsed time not wall time info_ptr->kind = JVMTI_TIMER_USER_CPU; // only user time is returned } void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) { info_ptr->max_value = ALL_64_BITS; // will not wrap in less than 64 bits info_ptr->may_skip_backward = false; // elapsed time not wall time info_ptr->may_skip_forward = false; // elapsed time not wall time info_ptr->kind = JVMTI_TIMER_USER_CPU; // only user time is returned } bool os::is_thread_cpu_time_supported() { if ( os::Solaris::T2_libthread() || UseBoundThreads ) { return true; } else { return false; } } // System loadavg support. Returns -1 if load average cannot be obtained. // Return the load average for our processor set if the primitive exists // (Solaris 9 and later). Otherwise just return system wide loadavg. int os::loadavg(double loadavg[], int nelem) { if (pset_getloadavg_ptr != NULL) { return (*pset_getloadavg_ptr)(PS_MYID, loadavg, nelem); } else { return ::getloadavg(loadavg, nelem); } } //--------------------------------------------------------------------------------- bool os::find(address addr, outputStream* st) { Dl_info dlinfo; memset(&dlinfo, 0, sizeof(dlinfo)); if (dladdr(addr, &dlinfo) != 0) { st->print(PTR_FORMAT ": ", addr); if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) { st->print("%s+%#lx", dlinfo.dli_sname, addr-(intptr_t)dlinfo.dli_saddr); } else if (dlinfo.dli_fbase != NULL) st->print("", addr-(intptr_t)dlinfo.dli_fbase); else st->print(""); if (dlinfo.dli_fname != NULL) { st->print(" in %s", dlinfo.dli_fname); } if (dlinfo.dli_fbase != NULL) { st->print(" at " PTR_FORMAT, dlinfo.dli_fbase); } st->cr(); if (Verbose) { // decode some bytes around the PC address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size()); address end = clamp_address_in_page(addr+40, addr, os::vm_page_size()); address lowest = (address) dlinfo.dli_sname; if (!lowest) lowest = (address) dlinfo.dli_fbase; if (begin < lowest) begin = lowest; Dl_info dlinfo2; if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) end = (address) dlinfo2.dli_saddr; Disassembler::decode(begin, end, st); } return true; } return false; } // Following function has been added to support HotSparc's libjvm.so running // under Solaris production JDK 1.2.2 / 1.3.0. These came from // src/solaris/hpi/native_threads in the EVM codebase. // // NOTE: This is no longer needed in the 1.3.1 and 1.4 production release // libraries and should thus be removed. We will leave it behind for a while // until we no longer want to able to run on top of 1.3.0 Solaris production // JDK. See 4341971. #define STACK_SLACK 0x800 extern "C" { intptr_t sysThreadAvailableStackWithSlack() { stack_t st; intptr_t retval, stack_top; retval = thr_stksegment(&st); assert(retval == 0, "incorrect return value from thr_stksegment"); assert((address)&st < (address)st.ss_sp, "Invalid stack base returned"); assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned"); stack_top=(intptr_t)st.ss_sp-st.ss_size; return ((intptr_t)&stack_top - stack_top - STACK_SLACK); } } // ObjectMonitor park-unpark infrastructure ... // // We implement Solaris and Linux PlatformEvents with the // obvious condvar-mutex-flag triple. // Another alternative that works quite well is pipes: // Each PlatformEvent consists of a pipe-pair. // The thread associated with the PlatformEvent // calls park(), which reads from the input end of the pipe. // Unpark() writes into the other end of the pipe. // The write-side of the pipe must be set NDELAY. // Unfortunately pipes consume a large # of handles. // Native solaris lwp_park() and lwp_unpark() work nicely, too. // Using pipes for the 1st few threads might be workable, however. // // park() is permitted to return spuriously. // Callers of park() should wrap the call to park() in // an appropriate loop. A litmus test for the correct // usage of park is the following: if park() were modified // to immediately return 0 your code should still work, // albeit degenerating to a spin loop. // // An interesting optimization for park() is to use a trylock() // to attempt to acquire the mutex. If the trylock() fails // then we know that a concurrent unpark() operation is in-progress. // in that case the park() code could simply set _count to 0 // and return immediately. The subsequent park() operation *might* // return immediately. That's harmless as the caller of park() is // expected to loop. By using trylock() we will have avoided a // avoided a context switch caused by contention on the per-thread mutex. // // TODO-FIXME: // 1. Reconcile Doug's JSR166 j.u.c park-unpark with the // objectmonitor implementation. // 2. Collapse the JSR166 parker event, and the // objectmonitor ParkEvent into a single "Event" construct. // 3. In park() and unpark() add: // assert (Thread::current() == AssociatedWith). // 4. add spurious wakeup injection on a -XX:EarlyParkReturn=N switch. // 1-out-of-N park() operations will return immediately. // // _Event transitions in park() // -1 => -1 : illegal // 1 => 0 : pass - return immediately // 0 => -1 : block // // _Event serves as a restricted-range semaphore. // // Another possible encoding of _Event would be with // explicit "PARKED" == 01b and "SIGNALED" == 10b bits. // // TODO-FIXME: add DTRACE probes for: // 1. Tx parks // 2. Ty unparks Tx // 3. Tx resumes from park // value determined through experimentation #define ROUNDINGFIX 11 // utility to compute the abstime argument to timedwait. // TODO-FIXME: switch from compute_abstime() to unpackTime(). static timestruc_t* compute_abstime(timestruc_t* abstime, jlong millis) { // millis is the relative timeout time // abstime will be the absolute timeout time if (millis < 0) millis = 0; struct timeval now; int status = gettimeofday(&now, NULL); assert(status == 0, "gettimeofday"); jlong seconds = millis / 1000; jlong max_wait_period; if (UseLWPSynchronization) { // forward port of fix for 4275818 (not sleeping long enough) // There was a bug in Solaris 6, 7 and pre-patch 5 of 8 where // _lwp_cond_timedwait() used a round_down algorithm rather // than a round_up. For millis less than our roundfactor // it rounded down to 0 which doesn't meet the spec. // For millis > roundfactor we may return a bit sooner, but // since we can not accurately identify the patch level and // this has already been fixed in Solaris 9 and 8 we will // leave it alone rather than always rounding down. if (millis > 0 && millis < ROUNDINGFIX) millis = ROUNDINGFIX; // It appears that when we go directly through Solaris _lwp_cond_timedwait() // the acceptable max time threshold is smaller than for libthread on 2.5.1 and 2.6 max_wait_period = 21000000; } else { max_wait_period = 50000000; } millis %= 1000; if (seconds > max_wait_period) { // see man cond_timedwait(3T) seconds = max_wait_period; } abstime->tv_sec = now.tv_sec + seconds; long usec = now.tv_usec + millis * 1000; if (usec >= 1000000) { abstime->tv_sec += 1; usec -= 1000000; } abstime->tv_nsec = usec * 1000; return abstime; } // Test-and-clear _Event, always leaves _Event set to 0, returns immediately. // Conceptually TryPark() should be equivalent to park(0). int os::PlatformEvent::TryPark() { for (;;) { const int v = _Event ; guarantee ((v == 0) || (v == 1), "invariant") ; if (Atomic::cmpxchg (0, &_Event, v) == v) return v ; } } void os::PlatformEvent::park() { // AKA: down() // Invariant: Only the thread associated with the Event/PlatformEvent // may call park(). int v ; for (;;) { v = _Event ; if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ; } guarantee (v >= 0, "invariant") ; if (v == 0) { // Do this the hard way by blocking ... // See http://monaco.sfbay/detail.jsf?cr=5094058. // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking. // Only for SPARC >= V8PlusA #if defined(__sparc) && defined(COMPILER2) if (ClearFPUAtPark) { _mark_fpu_nosave() ; } #endif int status = os::Solaris::mutex_lock(_mutex); assert_status(status == 0, status, "mutex_lock"); guarantee (_nParked == 0, "invariant") ; ++ _nParked ; while (_Event < 0) { // for some reason, under 2.7 lwp_cond_wait() may return ETIME ... // Treat this the same as if the wait was interrupted // With usr/lib/lwp going to kernel, always handle ETIME status = os::Solaris::cond_wait(_cond, _mutex); if (status == ETIME) status = EINTR ; assert_status(status == 0 || status == EINTR, status, "cond_wait"); } -- _nParked ; _Event = 0 ; status = os::Solaris::mutex_unlock(_mutex); assert_status(status == 0, status, "mutex_unlock"); // Paranoia to ensure our locked and lock-free paths interact // correctly with each other. OrderAccess::fence(); } } int os::PlatformEvent::park(jlong millis) { guarantee (_nParked == 0, "invariant") ; int v ; for (;;) { v = _Event ; if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ; } guarantee (v >= 0, "invariant") ; if (v != 0) return OS_OK ; int ret = OS_TIMEOUT; timestruc_t abst; compute_abstime (&abst, millis); // See http://monaco.sfbay/detail.jsf?cr=5094058. // For Solaris SPARC set fprs.FEF=0 prior to parking. // Only for SPARC >= V8PlusA #if defined(__sparc) && defined(COMPILER2) if (ClearFPUAtPark) { _mark_fpu_nosave() ; } #endif int status = os::Solaris::mutex_lock(_mutex); assert_status(status == 0, status, "mutex_lock"); guarantee (_nParked == 0, "invariant") ; ++ _nParked ; while (_Event < 0) { int status = os::Solaris::cond_timedwait(_cond, _mutex, &abst); assert_status(status == 0 || status == EINTR || status == ETIME || status == ETIMEDOUT, status, "cond_timedwait"); if (!FilterSpuriousWakeups) break ; // previous semantics if (status == ETIME || status == ETIMEDOUT) break ; // We consume and ignore EINTR and spurious wakeups. } -- _nParked ; if (_Event >= 0) ret = OS_OK ; _Event = 0 ; status = os::Solaris::mutex_unlock(_mutex); assert_status(status == 0, status, "mutex_unlock"); // Paranoia to ensure our locked and lock-free paths interact // correctly with each other. OrderAccess::fence(); return ret; } void os::PlatformEvent::unpark() { // Transitions for _Event: // 0 :=> 1 // 1 :=> 1 // -1 :=> either 0 or 1; must signal target thread // That is, we can safely transition _Event from -1 to either // 0 or 1. Forcing 1 is slightly more efficient for back-to-back // unpark() calls. // See also: "Semaphores in Plan 9" by Mullender & Cox // // Note: Forcing a transition from "-1" to "1" on an unpark() means // that it will take two back-to-back park() calls for the owning // thread to block. This has the benefit of forcing a spurious return // from the first park() call after an unpark() call which will help // shake out uses of park() and unpark() without condition variables. if (Atomic::xchg(1, &_Event) >= 0) return; // If the thread associated with the event was parked, wake it. // Wait for the thread assoc with the PlatformEvent to vacate. int status = os::Solaris::mutex_lock(_mutex); assert_status(status == 0, status, "mutex_lock"); int AnyWaiters = _nParked; status = os::Solaris::mutex_unlock(_mutex); assert_status(status == 0, status, "mutex_unlock"); guarantee(AnyWaiters == 0 || AnyWaiters == 1, "invariant"); if (AnyWaiters != 0) { // We intentional signal *after* dropping the lock // to avoid a common class of futile wakeups. status = os::Solaris::cond_signal(_cond); assert_status(status == 0, status, "cond_signal"); } } // JSR166 // ------------------------------------------------------- /* * The solaris and linux implementations of park/unpark are fairly * conservative for now, but can be improved. They currently use a * mutex/condvar pair, plus _counter. * Park decrements _counter if > 0, else does a condvar wait. Unpark * sets count to 1 and signals condvar. Only one thread ever waits * on the condvar. Contention seen when trying to park implies that someone * is unparking you, so don't wait. And spurious returns are fine, so there * is no need to track notifications. */ #define MAX_SECS 100000000 /* * This code is common to linux and solaris and will be moved to a * common place in dolphin. * * The passed in time value is either a relative time in nanoseconds * or an absolute time in milliseconds. Either way it has to be unpacked * into suitable seconds and nanoseconds components and stored in the * given timespec structure. * Given time is a 64-bit value and the time_t used in the timespec is only * a signed-32-bit value (except on 64-bit Linux) we have to watch for * overflow if times way in the future are given. Further on Solaris versions * prior to 10 there is a restriction (see cond_timedwait) that the specified * number of seconds, in abstime, is less than current_time + 100,000,000. * As it will be 28 years before "now + 100000000" will overflow we can * ignore overflow and just impose a hard-limit on seconds using the value * of "now + 100,000,000". This places a limit on the timeout of about 3.17 * years from "now". */ static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) { assert (time > 0, "convertTime"); struct timeval now; int status = gettimeofday(&now, NULL); assert(status == 0, "gettimeofday"); time_t max_secs = now.tv_sec + MAX_SECS; if (isAbsolute) { jlong secs = time / 1000; if (secs > max_secs) { absTime->tv_sec = max_secs; } else { absTime->tv_sec = secs; } absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC; } else { jlong secs = time / NANOSECS_PER_SEC; if (secs >= MAX_SECS) { absTime->tv_sec = max_secs; absTime->tv_nsec = 0; } else { absTime->tv_sec = now.tv_sec + secs; absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000; if (absTime->tv_nsec >= NANOSECS_PER_SEC) { absTime->tv_nsec -= NANOSECS_PER_SEC; ++absTime->tv_sec; // note: this must be <= max_secs } } } assert(absTime->tv_sec >= 0, "tv_sec < 0"); assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs"); assert(absTime->tv_nsec >= 0, "tv_nsec < 0"); assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec"); } void Parker::park(bool isAbsolute, jlong time) { // Ideally we'd do something useful while spinning, such // as calling unpackTime(). // Optional fast-path check: // Return immediately if a permit is available. // We depend on Atomic::xchg() having full barrier semantics // since we are doing a lock-free update to _counter. if (Atomic::xchg(0, &_counter) > 0) return; // Optional fast-exit: Check interrupt before trying to wait Thread* thread = Thread::current(); assert(thread->is_Java_thread(), "Must be JavaThread"); JavaThread *jt = (JavaThread *)thread; if (Thread::is_interrupted(thread, false)) { return; } // First, demultiplex/decode time arguments timespec absTime; if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all return; } if (time > 0) { // Warning: this code might be exposed to the old Solaris time // round-down bugs. Grep "roundingFix" for details. unpackTime(&absTime, isAbsolute, time); } // Enter safepoint region // Beware of deadlocks such as 6317397. // The per-thread Parker:: _mutex is a classic leaf-lock. // In particular a thread must never block on the Threads_lock while // holding the Parker:: mutex. If safepoints are pending both the // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock. ThreadBlockInVM tbivm(jt); // Don't wait if cannot get lock since interference arises from // unblocking. Also. check interrupt before trying wait if (Thread::is_interrupted(thread, false) || os::Solaris::mutex_trylock(_mutex) != 0) { return; } int status ; if (_counter > 0) { // no wait needed _counter = 0; status = os::Solaris::mutex_unlock(_mutex); assert (status == 0, "invariant") ; // Paranoia to ensure our locked and lock-free paths interact // correctly with each other and Java-level accesses. OrderAccess::fence(); return; } #ifdef ASSERT // Don't catch signals while blocked; let the running threads have the signals. // (This allows a debugger to break into the running thread.) sigset_t oldsigs; sigset_t* allowdebug_blocked = os::Solaris::allowdebug_blocked_signals(); thr_sigsetmask(SIG_BLOCK, allowdebug_blocked, &oldsigs); #endif OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */); jt->set_suspend_equivalent(); // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self() // Do this the hard way by blocking ... // See http://monaco.sfbay/detail.jsf?cr=5094058. // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking. // Only for SPARC >= V8PlusA #if defined(__sparc) && defined(COMPILER2) if (ClearFPUAtPark) { _mark_fpu_nosave() ; } #endif if (time == 0) { status = os::Solaris::cond_wait (_cond, _mutex) ; } else { status = os::Solaris::cond_timedwait (_cond, _mutex, &absTime); } // Note that an untimed cond_wait() can sometimes return ETIME on older // versions of the Solaris. assert_status(status == 0 || status == EINTR || status == ETIME || status == ETIMEDOUT, status, "cond_timedwait"); #ifdef ASSERT thr_sigsetmask(SIG_SETMASK, &oldsigs, NULL); #endif _counter = 0 ; status = os::Solaris::mutex_unlock(_mutex); assert_status(status == 0, status, "mutex_unlock") ; // Paranoia to ensure our locked and lock-free paths interact // correctly with each other and Java-level accesses. OrderAccess::fence(); // If externally suspended while waiting, re-suspend if (jt->handle_special_suspend_equivalent_condition()) { jt->java_suspend_self(); } } void Parker::unpark() { int s, status ; status = os::Solaris::mutex_lock (_mutex) ; assert (status == 0, "invariant") ; s = _counter; _counter = 1; status = os::Solaris::mutex_unlock (_mutex) ; assert (status == 0, "invariant") ; if (s < 1) { status = os::Solaris::cond_signal (_cond) ; assert (status == 0, "invariant") ; } } extern char** environ; // Run the specified command in a separate process. Return its exit value, // or -1 on failure (e.g. can't fork a new process). // Unlike system(), this function can be called from signal handler. It // doesn't block SIGINT et al. int os::fork_and_exec(char* cmd) { char * argv[4]; argv[0] = (char *)"sh"; argv[1] = (char *)"-c"; argv[2] = cmd; argv[3] = NULL; // fork is async-safe, fork1 is not so can't use in signal handler pid_t pid; Thread* t = ThreadLocalStorage::get_thread_slow(); if (t != NULL && t->is_inside_signal_handler()) { pid = fork(); } else { pid = fork1(); } if (pid < 0) { // fork failed warning("fork failed: %s", strerror(errno)); return -1; } else if (pid == 0) { // child process // try to be consistent with system(), which uses "/usr/bin/sh" on Solaris execve("/usr/bin/sh", argv, environ); // execve failed _exit(-1); } else { // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't // care about the actual exit code, for now. int status; // Wait for the child process to exit. This returns immediately if // the child has already exited. */ while (waitpid(pid, &status, 0) < 0) { switch (errno) { case ECHILD: return 0; case EINTR: break; default: return -1; } } if (WIFEXITED(status)) { // The child exited normally; get its exit code. return WEXITSTATUS(status); } else if (WIFSIGNALED(status)) { // The child exited because of a signal // The best value to return is 0x80 + signal number, // because that is what all Unix shells do, and because // it allows callers to distinguish between process exit and // process death by signal. return 0x80 + WTERMSIG(status); } else { // Unknown exit code; pass it through return status; } } } // is_headless_jre() // // Test for the existence of xawt/libmawt.so or libawt_xawt.so // in order to report if we are running in a headless jre // // Since JDK8 xawt/libmawt.so was moved into the same directory // as libawt.so, and renamed libawt_xawt.so // bool os::is_headless_jre() { struct stat statbuf; char buf[MAXPATHLEN]; char libmawtpath[MAXPATHLEN]; const char *xawtstr = "/xawt/libmawt.so"; const char *new_xawtstr = "/libawt_xawt.so"; char *p; // Get path to libjvm.so os::jvm_path(buf, sizeof(buf)); // Get rid of libjvm.so p = strrchr(buf, '/'); if (p == NULL) return false; else *p = '\0'; // Get rid of client or server p = strrchr(buf, '/'); if (p == NULL) return false; else *p = '\0'; // check xawt/libmawt.so strcpy(libmawtpath, buf); strcat(libmawtpath, xawtstr); if (::stat(libmawtpath, &statbuf) == 0) return false; // check libawt_xawt.so strcpy(libmawtpath, buf); strcat(libmawtpath, new_xawtstr); if (::stat(libmawtpath, &statbuf) == 0) return false; return true; } size_t os::write(int fd, const void *buf, unsigned int nBytes) { INTERRUPTIBLE_RETURN_INT(::write(fd, buf, nBytes), os::Solaris::clear_interrupted); } int os::close(int fd) { return ::close(fd); } int os::socket_close(int fd) { return ::close(fd); } int os::recv(int fd, char* buf, size_t nBytes, uint flags) { INTERRUPTIBLE_RETURN_INT((int)::recv(fd, buf, nBytes, flags), os::Solaris::clear_interrupted); } int os::send(int fd, char* buf, size_t nBytes, uint flags) { INTERRUPTIBLE_RETURN_INT((int)::send(fd, buf, nBytes, flags), os::Solaris::clear_interrupted); } int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) { RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags)); } // As both poll and select can be interrupted by signals, we have to be // prepared to restart the system call after updating the timeout, unless // a poll() is done with timeout == -1, in which case we repeat with this // "wait forever" value. int os::timeout(int fd, long timeout) { int res; struct timeval t; julong prevtime, newtime; static const char* aNull = 0; struct pollfd pfd; pfd.fd = fd; pfd.events = POLLIN; gettimeofday(&t, &aNull); prevtime = ((julong)t.tv_sec * 1000) + t.tv_usec / 1000; for(;;) { INTERRUPTIBLE_NORESTART(::poll(&pfd, 1, timeout), res, os::Solaris::clear_interrupted); if(res == OS_ERR && errno == EINTR) { if(timeout != -1) { gettimeofday(&t, &aNull); newtime = ((julong)t.tv_sec * 1000) + t.tv_usec /1000; timeout -= newtime - prevtime; if(timeout <= 0) return OS_OK; prevtime = newtime; } } else return res; } } int os::connect(int fd, struct sockaddr *him, socklen_t len) { int _result; INTERRUPTIBLE_NORESTART(::connect(fd, him, len), _result,\ os::Solaris::clear_interrupted); // Depending on when thread interruption is reset, _result could be // one of two values when errno == EINTR if (((_result == OS_INTRPT) || (_result == OS_ERR)) && (errno == EINTR)) { /* restarting a connect() changes its errno semantics */ INTERRUPTIBLE(::connect(fd, him, len), _result,\ os::Solaris::clear_interrupted); /* undo these changes */ if (_result == OS_ERR) { if (errno == EALREADY) { errno = EINPROGRESS; /* fall through */ } else if (errno == EISCONN) { errno = 0; return OS_OK; } } } return _result; } int os::accept(int fd, struct sockaddr* him, socklen_t* len) { if (fd < 0) { return OS_ERR; } INTERRUPTIBLE_RETURN_INT((int)::accept(fd, him, len),\ os::Solaris::clear_interrupted); } int os::recvfrom(int fd, char* buf, size_t nBytes, uint flags, sockaddr* from, socklen_t* fromlen) { INTERRUPTIBLE_RETURN_INT((int)::recvfrom(fd, buf, nBytes, flags, from, fromlen),\ os::Solaris::clear_interrupted); } int os::sendto(int fd, char* buf, size_t len, uint flags, struct sockaddr* to, socklen_t tolen) { INTERRUPTIBLE_RETURN_INT((int)::sendto(fd, buf, len, flags, to, tolen),\ os::Solaris::clear_interrupted); } int os::socket_available(int fd, jint *pbytes) { if (fd < 0) { return OS_OK; } int ret; RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret); // note: ioctl can return 0 when successful, JVM_SocketAvailable // is expected to return 0 on failure and 1 on success to the jdk. return (ret == OS_ERR) ? 0 : 1; } int os::bind(int fd, struct sockaddr* him, socklen_t len) { INTERRUPTIBLE_RETURN_INT_NORESTART(::bind(fd, him, len),\ os::Solaris::clear_interrupted); } // Get the default path to the core file // Returns the length of the string int os::get_core_path(char* buffer, size_t bufferSize) { const char* p = get_current_directory(buffer, bufferSize); if (p == NULL) { assert(p != NULL, "failed to get current directory"); return 0; } return strlen(buffer); } #ifndef PRODUCT void TestReserveMemorySpecial_test() { // No tests available for this platform } #endif