/* * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "code/compiledIC.hpp" #include "code/nmethod.hpp" #include "code/scopeDesc.hpp" #include "compiler/compilerOracle.hpp" #include "interpreter/interpreter.hpp" #include "oops/methodData.hpp" #include "oops/method.hpp" #include "oops/oop.inline.hpp" #include "prims/nativeLookup.hpp" #include "runtime/advancedThresholdPolicy.hpp" #include "runtime/compilationPolicy.hpp" #include "runtime/frame.hpp" #include "runtime/handles.inline.hpp" #include "runtime/rframe.hpp" #include "runtime/simpleThresholdPolicy.hpp" #include "runtime/stubRoutines.hpp" #include "runtime/thread.hpp" #include "runtime/timer.hpp" #include "runtime/vframe.hpp" #include "runtime/vm_operations.hpp" #include "utilities/events.hpp" #include "utilities/globalDefinitions.hpp" CompilationPolicy* CompilationPolicy::_policy; elapsedTimer CompilationPolicy::_accumulated_time; bool CompilationPolicy::_in_vm_startup; // Determine compilation policy based on command line argument void compilationPolicy_init() { CompilationPolicy::set_in_vm_startup(DelayCompilationDuringStartup); switch(CompilationPolicyChoice) { case 0: CompilationPolicy::set_policy(new SimpleCompPolicy()); break; case 1: #ifdef COMPILER2 CompilationPolicy::set_policy(new StackWalkCompPolicy()); #else Unimplemented(); #endif break; case 2: #ifdef TIERED CompilationPolicy::set_policy(new SimpleThresholdPolicy()); #else Unimplemented(); #endif break; case 3: #ifdef TIERED CompilationPolicy::set_policy(new AdvancedThresholdPolicy()); #else Unimplemented(); #endif break; default: fatal("CompilationPolicyChoice must be in the range: [0-3]"); } CompilationPolicy::policy()->initialize(); } void CompilationPolicy::completed_vm_startup() { if (TraceCompilationPolicy) { tty->print("CompilationPolicy: completed vm startup.\n"); } _in_vm_startup = false; } // Returns true if m must be compiled before executing it // This is intended to force compiles for methods (usually for // debugging) that would otherwise be interpreted for some reason. bool CompilationPolicy::must_be_compiled(methodHandle m, int comp_level) { // Don't allow Xcomp to cause compiles in replay mode if (ReplayCompiles) return false; if (m->has_compiled_code()) return false; // already compiled if (!can_be_compiled(m, comp_level)) return false; return !UseInterpreter || // must compile all methods (UseCompiler && AlwaysCompileLoopMethods && m->has_loops() && CompileBroker::should_compile_new_jobs()); // eagerly compile loop methods } // Returns true if m is allowed to be compiled bool CompilationPolicy::can_be_compiled(methodHandle m, int comp_level) { if (m->is_abstract()) return false; if (DontCompileHugeMethods && m->code_size() > HugeMethodLimit) return false; // Math intrinsics should never be compiled as this can lead to // monotonicity problems because the interpreter will prefer the // compiled code to the intrinsic version. This can't happen in // production because the invocation counter can't be incremented // but we shouldn't expose the system to this problem in testing // modes. if (!AbstractInterpreter::can_be_compiled(m)) { return false; } if (comp_level == CompLevel_all) { return !m->is_not_compilable(CompLevel_simple) && !m->is_not_compilable(CompLevel_full_optimization); } else if (is_compile(comp_level)) { return !m->is_not_compilable(comp_level); } return false; } bool CompilationPolicy::is_compilation_enabled() { // NOTE: CompileBroker::should_compile_new_jobs() checks for UseCompiler return !delay_compilation_during_startup() && CompileBroker::should_compile_new_jobs(); } #ifndef PRODUCT void CompilationPolicy::print_time() { tty->print_cr ("Accumulated compilationPolicy times:"); tty->print_cr ("---------------------------"); tty->print_cr (" Total: %3.3f sec.", _accumulated_time.seconds()); } void NonTieredCompPolicy::trace_osr_completion(nmethod* osr_nm) { if (TraceOnStackReplacement) { if (osr_nm == NULL) tty->print_cr("compilation failed"); else tty->print_cr("nmethod " INTPTR_FORMAT, osr_nm); } } #endif // !PRODUCT void NonTieredCompPolicy::initialize() { // Setup the compiler thread numbers if (CICompilerCountPerCPU) { // Example: if CICompilerCountPerCPU is true, then we get // max(log2(8)-1,1) = 2 compiler threads on an 8-way machine. // May help big-app startup time. _compiler_count = MAX2(log2_intptr(os::active_processor_count())-1,1); } else { _compiler_count = CICompilerCount; } } // Note: this policy is used ONLY if TieredCompilation is off. // compiler_count() behaves the following way: // - with TIERED build (with both COMPILER1 and COMPILER2 defined) it should return // zero for the c1 compilation levels, hence the particular ordering of the // statements. // - the same should happen when COMPILER2 is defined and COMPILER1 is not // (server build without TIERED defined). // - if only COMPILER1 is defined (client build), zero should be returned for // the c2 level. // - if neither is defined - always return zero. int NonTieredCompPolicy::compiler_count(CompLevel comp_level) { assert(!TieredCompilation, "This policy should not be used with TieredCompilation"); #ifdef COMPILER2 if (is_c2_compile(comp_level)) { return _compiler_count; } else { return 0; } #endif #ifdef COMPILER1 if (is_c1_compile(comp_level)) { return _compiler_count; } else { return 0; } #endif return 0; } void NonTieredCompPolicy::reset_counter_for_invocation_event(methodHandle m) { // Make sure invocation and backedge counter doesn't overflow again right away // as would be the case for native methods. // BUT also make sure the method doesn't look like it was never executed. // Set carry bit and reduce counter's value to min(count, CompileThreshold/2). MethodCounters* mcs = m->method_counters(); assert(mcs != NULL, "MethodCounters cannot be NULL for profiling"); mcs->invocation_counter()->set_carry(); mcs->backedge_counter()->set_carry(); assert(!m->was_never_executed(), "don't reset to 0 -- could be mistaken for never-executed"); } void NonTieredCompPolicy::reset_counter_for_back_branch_event(methodHandle m) { // Delay next back-branch event but pump up invocation counter to triger // whole method compilation. MethodCounters* mcs = m->method_counters(); assert(mcs != NULL, "MethodCounters cannot be NULL for profiling"); InvocationCounter* i = mcs->invocation_counter(); InvocationCounter* b = mcs->backedge_counter(); // Don't set invocation_counter's value too low otherwise the method will // look like immature (ic < ~5300) which prevents the inlining based on // the type profiling. i->set(i->state(), CompileThreshold); // Don't reset counter too low - it is used to check if OSR method is ready. b->set(b->state(), CompileThreshold / 2); } // // CounterDecay // // Interates through invocation counters and decrements them. This // is done at each safepoint. // class CounterDecay : public AllStatic { static jlong _last_timestamp; static void do_method(Method* m) { MethodCounters* mcs = m->method_counters(); if (mcs != NULL) { mcs->invocation_counter()->decay(); } } public: static void decay(); static bool is_decay_needed() { return (os::javaTimeMillis() - _last_timestamp) > CounterDecayMinIntervalLength; } }; jlong CounterDecay::_last_timestamp = 0; void CounterDecay::decay() { _last_timestamp = os::javaTimeMillis(); // This operation is going to be performed only at the end of a safepoint // and hence GC's will not be going on, all Java mutators are suspended // at this point and hence SystemDictionary_lock is also not needed. assert(SafepointSynchronize::is_at_safepoint(), "can only be executed at a safepoint"); int nclasses = SystemDictionary::number_of_classes(); double classes_per_tick = nclasses * (CounterDecayMinIntervalLength * 1e-3 / CounterHalfLifeTime); for (int i = 0; i < classes_per_tick; i++) { Klass* k = SystemDictionary::try_get_next_class(); if (k != NULL && k->oop_is_instance()) { InstanceKlass::cast(k)->methods_do(do_method); } } } // Called at the end of the safepoint void NonTieredCompPolicy::do_safepoint_work() { if(UseCounterDecay && CounterDecay::is_decay_needed()) { CounterDecay::decay(); } } void NonTieredCompPolicy::reprofile(ScopeDesc* trap_scope, bool is_osr) { ScopeDesc* sd = trap_scope; MethodCounters* mcs; InvocationCounter* c; for (; !sd->is_top(); sd = sd->sender()) { mcs = sd->method()->method_counters(); if (mcs != NULL) { // Reset ICs of inlined methods, since they can trigger compilations also. mcs->invocation_counter()->reset(); } } mcs = sd->method()->method_counters(); if (mcs != NULL) { c = mcs->invocation_counter(); if (is_osr) { // It was an OSR method, so bump the count higher. c->set(c->state(), CompileThreshold); } else { c->reset(); } mcs->backedge_counter()->reset(); } } // This method can be called by any component of the runtime to notify the policy // that it's recommended to delay the complation of this method. void NonTieredCompPolicy::delay_compilation(Method* method) { MethodCounters* mcs = method->method_counters(); if (mcs != NULL) { mcs->invocation_counter()->decay(); mcs->backedge_counter()->decay(); } } void NonTieredCompPolicy::disable_compilation(Method* method) { MethodCounters* mcs = method->method_counters(); if (mcs != NULL) { mcs->invocation_counter()->set_state(InvocationCounter::wait_for_nothing); mcs->backedge_counter()->set_state(InvocationCounter::wait_for_nothing); } } CompileTask* NonTieredCompPolicy::select_task(CompileQueue* compile_queue) { return compile_queue->first(); } bool NonTieredCompPolicy::is_mature(Method* method) { MethodData* mdo = method->method_data(); assert(mdo != NULL, "Should be"); uint current = mdo->mileage_of(method); uint initial = mdo->creation_mileage(); if (current < initial) return true; // some sort of overflow uint target; if (ProfileMaturityPercentage <= 0) target = (uint) -ProfileMaturityPercentage; // absolute value else target = (uint)( (ProfileMaturityPercentage * CompileThreshold) / 100 ); return (current >= initial + target); } nmethod* NonTieredCompPolicy::event(methodHandle method, methodHandle inlinee, int branch_bci, int bci, CompLevel comp_level, nmethod* nm, JavaThread* thread) { assert(comp_level == CompLevel_none, "This should be only called from the interpreter"); NOT_PRODUCT(trace_frequency_counter_overflow(method, branch_bci, bci)); if (JvmtiExport::can_post_interpreter_events() && thread->is_interp_only_mode()) { // If certain JVMTI events (e.g. frame pop event) are requested then the // thread is forced to remain in interpreted code. This is // implemented partly by a check in the run_compiled_code // section of the interpreter whether we should skip running // compiled code, and partly by skipping OSR compiles for // interpreted-only threads. if (bci != InvocationEntryBci) { reset_counter_for_back_branch_event(method); return NULL; } } if (CompileTheWorld || ReplayCompiles) { // Don't trigger other compiles in testing mode if (bci == InvocationEntryBci) { reset_counter_for_invocation_event(method); } else { reset_counter_for_back_branch_event(method); } return NULL; } if (bci == InvocationEntryBci) { // when code cache is full, compilation gets switched off, UseCompiler // is set to false if (!method->has_compiled_code() && UseCompiler) { method_invocation_event(method, thread); } else { // Force counter overflow on method entry, even if no compilation // happened. (The method_invocation_event call does this also.) reset_counter_for_invocation_event(method); } // compilation at an invocation overflow no longer goes and retries test for // compiled method. We always run the loser of the race as interpreted. // so return NULL return NULL; } else { // counter overflow in a loop => try to do on-stack-replacement nmethod* osr_nm = method->lookup_osr_nmethod_for(bci, CompLevel_highest_tier, true); NOT_PRODUCT(trace_osr_request(method, osr_nm, bci)); // when code cache is full, we should not compile any more... if (osr_nm == NULL && UseCompiler) { method_back_branch_event(method, bci, thread); osr_nm = method->lookup_osr_nmethod_for(bci, CompLevel_highest_tier, true); } if (osr_nm == NULL) { reset_counter_for_back_branch_event(method); return NULL; } return osr_nm; } return NULL; } #ifndef PRODUCT void NonTieredCompPolicy::trace_frequency_counter_overflow(methodHandle m, int branch_bci, int bci) { if (TraceInvocationCounterOverflow) { MethodCounters* mcs = m->method_counters(); assert(mcs != NULL, "MethodCounters cannot be NULL for profiling"); InvocationCounter* ic = mcs->invocation_counter(); InvocationCounter* bc = mcs->backedge_counter(); ResourceMark rm; const char* msg = bci == InvocationEntryBci ? "comp-policy cntr ovfl @ %d in entry of " : "comp-policy cntr ovfl @ %d in loop of "; tty->print(msg, bci); m->print_value(); tty->cr(); ic->print(); bc->print(); if (ProfileInterpreter) { if (bci != InvocationEntryBci) { MethodData* mdo = m->method_data(); if (mdo != NULL) { int count = mdo->bci_to_data(branch_bci)->as_JumpData()->taken(); tty->print_cr("back branch count = %d", count); } } } } } void NonTieredCompPolicy::trace_osr_request(methodHandle method, nmethod* osr, int bci) { if (TraceOnStackReplacement) { ResourceMark rm; tty->print(osr != NULL ? "Reused OSR entry for " : "Requesting OSR entry for "); method->print_short_name(tty); tty->print_cr(" at bci %d", bci); } } #endif // !PRODUCT // SimpleCompPolicy - compile current method void SimpleCompPolicy::method_invocation_event(methodHandle m, JavaThread* thread) { const int comp_level = CompLevel_highest_tier; const int hot_count = m->invocation_count(); reset_counter_for_invocation_event(m); const char* comment = "count"; if (is_compilation_enabled() && can_be_compiled(m)) { nmethod* nm = m->code(); if (nm == NULL ) { CompileBroker::compile_method(m, InvocationEntryBci, comp_level, m, hot_count, comment, thread); } } } void SimpleCompPolicy::method_back_branch_event(methodHandle m, int bci, JavaThread* thread) { const int comp_level = CompLevel_highest_tier; const int hot_count = m->backedge_count(); const char* comment = "backedge_count"; if (is_compilation_enabled() && !m->is_not_osr_compilable(comp_level) && can_be_compiled(m)) { CompileBroker::compile_method(m, bci, comp_level, m, hot_count, comment, thread); NOT_PRODUCT(trace_osr_completion(m->lookup_osr_nmethod_for(bci, comp_level, true));) } } // StackWalkCompPolicy - walk up stack to find a suitable method to compile #ifdef COMPILER2 const char* StackWalkCompPolicy::_msg = NULL; // Consider m for compilation void StackWalkCompPolicy::method_invocation_event(methodHandle m, JavaThread* thread) { const int comp_level = CompLevel_highest_tier; const int hot_count = m->invocation_count(); reset_counter_for_invocation_event(m); const char* comment = "count"; if (is_compilation_enabled() && m->code() == NULL && can_be_compiled(m)) { ResourceMark rm(thread); frame fr = thread->last_frame(); assert(fr.is_interpreted_frame(), "must be interpreted"); assert(fr.interpreter_frame_method() == m(), "bad method"); if (TraceCompilationPolicy) { tty->print("method invocation trigger: "); m->print_short_name(tty); tty->print(" ( interpreted " INTPTR_FORMAT ", size=%d ) ", (address)m(), m->code_size()); } RegisterMap reg_map(thread, false); javaVFrame* triggerVF = thread->last_java_vframe(®_map); // triggerVF is the frame that triggered its counter RFrame* first = new InterpretedRFrame(triggerVF->fr(), thread, m); if (first->top_method()->code() != NULL) { // called obsolete method/nmethod -- no need to recompile if (TraceCompilationPolicy) tty->print_cr(" --> " INTPTR_FORMAT, first->top_method()->code()); } else { if (TimeCompilationPolicy) accumulated_time()->start(); GrowableArray* stack = new GrowableArray(50); stack->push(first); RFrame* top = findTopInlinableFrame(stack); if (TimeCompilationPolicy) accumulated_time()->stop(); assert(top != NULL, "findTopInlinableFrame returned null"); if (TraceCompilationPolicy) top->print(); CompileBroker::compile_method(top->top_method(), InvocationEntryBci, comp_level, m, hot_count, comment, thread); } } } void StackWalkCompPolicy::method_back_branch_event(methodHandle m, int bci, JavaThread* thread) { const int comp_level = CompLevel_highest_tier; const int hot_count = m->backedge_count(); const char* comment = "backedge_count"; if (is_compilation_enabled() && !m->is_not_osr_compilable(comp_level) && can_be_compiled(m)) { CompileBroker::compile_method(m, bci, comp_level, m, hot_count, comment, thread); NOT_PRODUCT(trace_osr_completion(m->lookup_osr_nmethod_for(bci, comp_level, true));) } } RFrame* StackWalkCompPolicy::findTopInlinableFrame(GrowableArray* stack) { // go up the stack until finding a frame that (probably) won't be inlined // into its caller RFrame* current = stack->at(0); // current choice for stopping assert( current && !current->is_compiled(), "" ); const char* msg = NULL; while (1) { // before going up the stack further, check if doing so would get us into // compiled code RFrame* next = senderOf(current, stack); if( !next ) // No next frame up the stack? break; // Then compile with current frame methodHandle m = current->top_method(); methodHandle next_m = next->top_method(); if (TraceCompilationPolicy && Verbose) { tty->print("[caller: "); next_m->print_short_name(tty); tty->print("] "); } if( !Inline ) { // Inlining turned off msg = "Inlining turned off"; break; } if (next_m->is_not_compilable()) { // Did fail to compile this before/ msg = "caller not compilable"; break; } if (next->num() > MaxRecompilationSearchLength) { // don't go up too high when searching for recompilees msg = "don't go up any further: > MaxRecompilationSearchLength"; break; } if (next->distance() > MaxInterpretedSearchLength) { // don't go up too high when searching for recompilees msg = "don't go up any further: next > MaxInterpretedSearchLength"; break; } // Compiled frame above already decided not to inline; // do not recompile him. if (next->is_compiled()) { msg = "not going up into optimized code"; break; } // Interpreted frame above us was already compiled. Do not force // a recompile, although if the frame above us runs long enough an // OSR might still happen. if( current->is_interpreted() && next_m->has_compiled_code() ) { msg = "not going up -- already compiled caller"; break; } // Compute how frequent this call site is. We have current method 'm'. // We know next method 'next_m' is interpreted. Find the call site and // check the various invocation counts. int invcnt = 0; // Caller counts if (ProfileInterpreter) { invcnt = next_m->interpreter_invocation_count(); } int cnt = 0; // Call site counts if (ProfileInterpreter && next_m->method_data() != NULL) { ResourceMark rm; int bci = next->top_vframe()->bci(); ProfileData* data = next_m->method_data()->bci_to_data(bci); if (data != NULL && data->is_CounterData()) cnt = data->as_CounterData()->count(); } // Caller counts / call-site counts; i.e. is this call site // a hot call site for method next_m? int freq = (invcnt) ? cnt/invcnt : cnt; // Check size and frequency limits if ((msg = shouldInline(m, freq, cnt)) != NULL) { break; } // Check inlining negative tests if ((msg = shouldNotInline(m)) != NULL) { break; } // If the caller method is too big or something then we do not want to // compile it just to inline a method if (!can_be_compiled(next_m)) { msg = "caller cannot be compiled"; break; } if( next_m->name() == vmSymbols::class_initializer_name() ) { msg = "do not compile class initializer (OSR ok)"; break; } if (TraceCompilationPolicy && Verbose) { tty->print("\n\t check caller: "); next_m->print_short_name(tty); tty->print(" ( interpreted " INTPTR_FORMAT ", size=%d ) ", (address)next_m(), next_m->code_size()); } current = next; } assert( !current || !current->is_compiled(), "" ); if (TraceCompilationPolicy && msg) tty->print("(%s)\n", msg); return current; } RFrame* StackWalkCompPolicy::senderOf(RFrame* rf, GrowableArray* stack) { RFrame* sender = rf->caller(); if (sender && sender->num() == stack->length()) stack->push(sender); return sender; } const char* StackWalkCompPolicy::shouldInline(methodHandle m, float freq, int cnt) { // Allows targeted inlining // positive filter: should send be inlined? returns NULL (--> yes) // or rejection msg int max_size = MaxInlineSize; int cost = m->code_size(); // Check for too many throws (and not too huge) if (m->interpreter_throwout_count() > InlineThrowCount && cost < InlineThrowMaxSize ) { return NULL; } // bump the max size if the call is frequent if ((freq >= InlineFrequencyRatio) || (cnt >= InlineFrequencyCount)) { if (TraceFrequencyInlining) { tty->print("(Inlined frequent method)\n"); m->print(); } max_size = FreqInlineSize; } if (cost > max_size) { return (_msg = "too big"); } return NULL; } const char* StackWalkCompPolicy::shouldNotInline(methodHandle m) { // negative filter: should send NOT be inlined? returns NULL (--> inline) or rejection msg if (m->is_abstract()) return (_msg = "abstract method"); // note: we allow ik->is_abstract() if (!m->method_holder()->is_initialized()) return (_msg = "method holder not initialized"); if (m->is_native()) return (_msg = "native method"); nmethod* m_code = m->code(); if (m_code != NULL && m_code->code_size() > InlineSmallCode) return (_msg = "already compiled into a big method"); // use frequency-based objections only for non-trivial methods if (m->code_size() <= MaxTrivialSize) return NULL; if (UseInterpreter) { // don't use counts with -Xcomp if ((m->code() == NULL) && m->was_never_executed()) return (_msg = "never executed"); if (!m->was_executed_more_than(MIN2(MinInliningThreshold, CompileThreshold >> 1))) return (_msg = "executed < MinInliningThreshold times"); } if (Method::has_unloaded_classes_in_signature(m, JavaThread::current())) return (_msg = "unloaded signature classes"); return NULL; } #endif // COMPILER2