/* * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_OPTO_CHAITIN_HPP #define SHARE_VM_OPTO_CHAITIN_HPP #include "code/vmreg.hpp" #include "libadt/port.hpp" #include "memory/resourceArea.hpp" #include "opto/connode.hpp" #include "opto/live.hpp" #include "opto/matcher.hpp" #include "opto/phase.hpp" #include "opto/regalloc.hpp" #include "opto/regmask.hpp" class LoopTree; class MachCallNode; class MachSafePointNode; class Matcher; class PhaseCFG; class PhaseLive; class PhaseRegAlloc; class PhaseChaitin; #define OPTO_DEBUG_SPLIT_FREQ BLOCK_FREQUENCY(0.001) #define OPTO_LRG_HIGH_FREQ BLOCK_FREQUENCY(0.25) //------------------------------LRG-------------------------------------------- // Live-RanGe structure. class LRG : public ResourceObj { friend class VMStructs; public: static const uint AllStack_size = 0xFFFFF; // This mask size is used to tell that the mask of this LRG supports stack positions enum { SPILL_REG=29999 }; // Register number of a spilled LRG double _cost; // 2 for loads/1 for stores times block freq double _area; // Sum of all simultaneously live values double score() const; // Compute score from cost and area double _maxfreq; // Maximum frequency of any def or use Node *_def; // Check for multi-def live ranges #ifndef PRODUCT GrowableArray* _defs; #endif uint _risk_bias; // Index of LRG which we want to avoid color uint _copy_bias; // Index of LRG which we want to share color uint _next; // Index of next LRG in linked list uint _prev; // Index of prev LRG in linked list private: uint _reg; // Chosen register; undefined if mask is plural public: // Return chosen register for this LRG. Error if the LRG is not bound to // a single register. OptoReg::Name reg() const { return OptoReg::Name(_reg); } void set_reg( OptoReg::Name r ) { _reg = r; } private: uint _eff_degree; // Effective degree: Sum of neighbors _num_regs public: int degree() const { assert( _degree_valid , "" ); return _eff_degree; } // Degree starts not valid and any change to the IFG neighbor // set makes it not valid. void set_degree( uint degree ) { _eff_degree = degree; debug_only(_degree_valid = 1;) assert(!_mask.is_AllStack() || (_mask.is_AllStack() && lo_degree()), "_eff_degree can't be bigger than AllStack_size - _num_regs if the mask supports stack registers"); } // Made a change that hammered degree void invalid_degree() { debug_only(_degree_valid=0;) } // Incrementally modify degree. If it was correct, it should remain correct void inc_degree( uint mod ) { _eff_degree += mod; assert(!_mask.is_AllStack() || (_mask.is_AllStack() && lo_degree()), "_eff_degree can't be bigger than AllStack_size - _num_regs if the mask supports stack registers"); } // Compute the degree between 2 live ranges int compute_degree( LRG &l ) const; private: RegMask _mask; // Allowed registers for this LRG uint _mask_size; // cache of _mask.Size(); public: int compute_mask_size() const { return _mask.is_AllStack() ? AllStack_size : _mask.Size(); } void set_mask_size( int size ) { assert((size == (int)AllStack_size) || (size == (int)_mask.Size()), ""); _mask_size = size; #ifdef ASSERT _msize_valid=1; if (_is_vector) { assert(!_fat_proj, "sanity"); _mask.verify_sets(_num_regs); } else if (_num_regs == 2 && !_fat_proj) { _mask.verify_pairs(); } #endif } void compute_set_mask_size() { set_mask_size(compute_mask_size()); } int mask_size() const { assert( _msize_valid, "mask size not valid" ); return _mask_size; } // Get the last mask size computed, even if it does not match the // count of bits in the current mask. int get_invalid_mask_size() const { return _mask_size; } const RegMask &mask() const { return _mask; } void set_mask( const RegMask &rm ) { _mask = rm; debug_only(_msize_valid=0;)} void AND( const RegMask &rm ) { _mask.AND(rm); debug_only(_msize_valid=0;)} void SUBTRACT( const RegMask &rm ) { _mask.SUBTRACT(rm); debug_only(_msize_valid=0;)} void Clear() { _mask.Clear() ; debug_only(_msize_valid=1); _mask_size = 0; } void Set_All() { _mask.Set_All(); debug_only(_msize_valid=1); _mask_size = RegMask::CHUNK_SIZE; } void Insert( OptoReg::Name reg ) { _mask.Insert(reg); debug_only(_msize_valid=0;) } void Remove( OptoReg::Name reg ) { _mask.Remove(reg); debug_only(_msize_valid=0;) } void clear_to_pairs() { _mask.clear_to_pairs(); debug_only(_msize_valid=0;) } void clear_to_sets() { _mask.clear_to_sets(_num_regs); debug_only(_msize_valid=0;) } // Number of registers this live range uses when it colors private: uint8 _num_regs; // 2 for Longs and Doubles, 1 for all else // except _num_regs is kill count for fat_proj public: int num_regs() const { return _num_regs; } void set_num_regs( int reg ) { assert( _num_regs == reg || !_num_regs, "" ); _num_regs = reg; } private: // Number of physical registers this live range uses when it colors // Architecture and register-set dependent uint8 _reg_pressure; public: void set_reg_pressure(int i) { _reg_pressure = i; } int reg_pressure() const { return _reg_pressure; } // How much 'wiggle room' does this live range have? // How many color choices can it make (scaled by _num_regs)? int degrees_of_freedom() const { return mask_size() - _num_regs; } // Bound LRGs have ZERO degrees of freedom. We also count // must_spill as bound. bool is_bound () const { return _is_bound; } // Negative degrees-of-freedom; even with no neighbors this // live range must spill. bool not_free() const { return degrees_of_freedom() < 0; } // Is this live range of "low-degree"? Trivially colorable? bool lo_degree () const { return degree() <= degrees_of_freedom(); } // Is this live range just barely "low-degree"? Trivially colorable? bool just_lo_degree () const { return degree() == degrees_of_freedom(); } uint _is_oop:1, // Live-range holds an oop _is_float:1, // True if in float registers _is_vector:1, // True if in vector registers _was_spilled1:1, // True if prior spilling on def _was_spilled2:1, // True if twice prior spilling on def _is_bound:1, // live range starts life with no // degrees of freedom. _direct_conflict:1, // True if def and use registers in conflict _must_spill:1, // live range has lost all degrees of freedom // If _fat_proj is set, live range does NOT require aligned, adjacent // registers and has NO interferences. // If _fat_proj is clear, live range requires num_regs() to be a power of // 2, and it requires registers to form an aligned, adjacent set. _fat_proj:1, // _was_lo:1, // Was lo-degree prior to coalesce _msize_valid:1, // _mask_size cache valid _degree_valid:1, // _degree cache valid _has_copy:1, // Adjacent to some copy instruction _at_risk:1; // Simplify says this guy is at risk to spill // Alive if non-zero, dead if zero bool alive() const { return _def != NULL; } bool is_multidef() const { return _def == NodeSentinel; } bool is_singledef() const { return _def != NodeSentinel; } #ifndef PRODUCT void dump( ) const; #endif }; //------------------------------IFG-------------------------------------------- // InterFerence Graph // An undirected graph implementation. Created with a fixed number of // vertices. Edges can be added & tested. Vertices can be removed, then // added back later with all edges intact. Can add edges between one vertex // and a list of other vertices. Can union vertices (and their edges) // together. The IFG needs to be really really fast, and also fairly // abstract! It needs abstraction so I can fiddle with the implementation to // get even more speed. class PhaseIFG : public Phase { friend class VMStructs; // Current implementation: a triangular adjacency list. // Array of adjacency-lists, indexed by live-range number IndexSet *_adjs; // Assertion bit for proper use of Squaring bool _is_square; // Live range structure goes here LRG *_lrgs; // Array of LRG structures public: // Largest live-range number uint _maxlrg; Arena *_arena; // Keep track of inserted and deleted Nodes VectorSet *_yanked; PhaseIFG( Arena *arena ); void init( uint maxlrg ); // Add edge between a and b. Returns true if actually addded. int add_edge( uint a, uint b ); // Add edge between a and everything in the vector void add_vector( uint a, IndexSet *vec ); // Test for edge existance int test_edge( uint a, uint b ) const; // Square-up matrix for faster Union void SquareUp(); // Return number of LRG neighbors uint neighbor_cnt( uint a ) const { return _adjs[a].count(); } // Union edges of b into a on Squared-up matrix void Union( uint a, uint b ); // Test for edge in Squared-up matrix int test_edge_sq( uint a, uint b ) const; // Yank a Node and all connected edges from the IFG. Be prepared to // re-insert the yanked Node in reverse order of yanking. Return a // list of neighbors (edges) yanked. IndexSet *remove_node( uint a ); // Reinsert a yanked Node void re_insert( uint a ); // Return set of neighbors IndexSet *neighbors( uint a ) const { return &_adjs[a]; } #ifndef PRODUCT // Dump the IFG void dump() const; void stats() const; void verify( const PhaseChaitin * ) const; #endif //--------------- Live Range Accessors LRG &lrgs(uint idx) const { assert(idx < _maxlrg, "oob"); return _lrgs[idx]; } // Compute and set effective degree. Might be folded into SquareUp(). void Compute_Effective_Degree(); // Compute effective degree as the sum of neighbors' _sizes. int effective_degree( uint lidx ) const; }; // The LiveRangeMap class is responsible for storing node to live range id mapping. // Each node is mapped to a live range id (a virtual register). Nodes that are // not considered for register allocation are given live range id 0. class LiveRangeMap VALUE_OBJ_CLASS_SPEC { private: uint _max_lrg_id; // Union-find map. Declared as a short for speed. // Indexed by live-range number, it returns the compacted live-range number LRG_List _uf_map; // Map from Nodes to live ranges LRG_List _names; // Straight out of Tarjan's union-find algorithm uint find_compress(const Node *node) { uint lrg_id = find_compress(_names.at(node->_idx)); _names.at_put(node->_idx, lrg_id); return lrg_id; } uint find_compress(uint lrg); public: const LRG_List& names() { return _names; } uint max_lrg_id() const { return _max_lrg_id; } void set_max_lrg_id(uint max_lrg_id) { _max_lrg_id = max_lrg_id; } uint size() const { return _names.length(); } uint live_range_id(uint idx) const { return _names.at(idx); } uint live_range_id(const Node *node) const { return _names.at(node->_idx); } uint uf_live_range_id(uint lrg_id) const { return _uf_map.at(lrg_id); } void map(uint idx, uint lrg_id) { _names.at_put(idx, lrg_id); } void uf_map(uint dst_lrg_id, uint src_lrg_id) { _uf_map.at_put(dst_lrg_id, src_lrg_id); } void extend(uint idx, uint lrg_id) { _names.at_put_grow(idx, lrg_id); } void uf_extend(uint dst_lrg_id, uint src_lrg_id) { _uf_map.at_put_grow(dst_lrg_id, src_lrg_id); } LiveRangeMap(Arena* arena, uint unique) : _names(arena, unique, unique, 0) , _uf_map(arena, unique, unique, 0) , _max_lrg_id(0) {} uint find_id( const Node *n ) { uint retval = live_range_id(n); assert(retval == find(n),"Invalid node to lidx mapping"); return retval; } // Reset the Union-Find map to identity void reset_uf_map(uint max_lrg_id); // Make all Nodes map directly to their final live range; no need for // the Union-Find mapping after this call. void compress_uf_map_for_nodes(); uint find(uint lidx) { uint uf_lidx = _uf_map.at(lidx); return (uf_lidx == lidx) ? uf_lidx : find_compress(lidx); } // Convert a Node into a Live Range Index - a lidx uint find(const Node *node) { uint lidx = live_range_id(node); uint uf_lidx = _uf_map.at(lidx); return (uf_lidx == lidx) ? uf_lidx : find_compress(node); } // Like Find above, but no path compress, so bad asymptotic behavior uint find_const(uint lrg) const; // Like Find above, but no path compress, so bad asymptotic behavior uint find_const(const Node *node) const { if(node->_idx >= (uint)_names.length()) { return 0; // not mapped, usual for debug dump } return find_const(_names.at(node->_idx)); } }; //------------------------------Chaitin---------------------------------------- // Briggs-Chaitin style allocation, mostly. class PhaseChaitin : public PhaseRegAlloc { friend class VMStructs; int _trip_cnt; int _alternate; LRG &lrgs(uint idx) const { return _ifg->lrgs(idx); } PhaseLive *_live; // Liveness, used in the interference graph PhaseIFG *_ifg; // Interference graph (for original chunk) Node_List **_lrg_nodes; // Array of node; lists for lrgs which spill VectorSet _spilled_once; // Nodes that have been spilled VectorSet _spilled_twice; // Nodes that have been spilled twice // Combine the Live Range Indices for these 2 Nodes into a single live // range. Future requests for any Node in either live range will // return the live range index for the combined live range. void Union( const Node *src, const Node *dst ); void new_lrg( const Node *x, uint lrg ); // Compact live ranges, removing unused ones. Return new maxlrg. void compact(); uint _lo_degree; // Head of lo-degree LRGs list uint _lo_stk_degree; // Head of lo-stk-degree LRGs list uint _hi_degree; // Head of hi-degree LRGs list uint _simplified; // Linked list head of simplified LRGs // Helper functions for Split() uint split_DEF( Node *def, Block *b, int loc, uint max, Node **Reachblock, Node **debug_defs, GrowableArray splits, int slidx ); uint split_USE( Node *def, Block *b, Node *use, uint useidx, uint max, bool def_down, bool cisc_sp, GrowableArray splits, int slidx ); //------------------------------clone_projs------------------------------------ // After cloning some rematerialized instruction, clone any MachProj's that // follow it. Example: Intel zero is XOR, kills flags. Sparc FP constants // use G3 as an address temp. int clone_projs(Block* b, uint idx, Node* orig, Node* copy, uint& max_lrg_id); int clone_projs(Block* b, uint idx, Node* orig, Node* copy, LiveRangeMap& lrg_map) { uint max_lrg_id = lrg_map.max_lrg_id(); int found_projs = clone_projs(b, idx, orig, copy, max_lrg_id); if (found_projs > 0) { // max_lrg_id is updated during call above lrg_map.set_max_lrg_id(max_lrg_id); } return found_projs; } Node *split_Rematerialize(Node *def, Block *b, uint insidx, uint &maxlrg, GrowableArray splits, int slidx, uint *lrg2reach, Node **Reachblock, bool walkThru); // True if lidx is used before any real register is def'd in the block bool prompt_use( Block *b, uint lidx ); Node *get_spillcopy_wide( Node *def, Node *use, uint uidx ); // Insert the spill at chosen location. Skip over any intervening Proj's or // Phis. Skip over a CatchNode and projs, inserting in the fall-through block // instead. Update high-pressure indices. Create a new live range. void insert_proj( Block *b, uint i, Node *spill, uint maxlrg ); bool is_high_pressure( Block *b, LRG *lrg, uint insidx ); uint _oldphi; // Node index which separates pre-allocation nodes Block **_blks; // Array of blocks sorted by frequency for coalescing float _high_frequency_lrg; // Frequency at which LRG will be spilled for debug info #ifndef PRODUCT bool _trace_spilling; #endif public: PhaseChaitin( uint unique, PhaseCFG &cfg, Matcher &matcher ); ~PhaseChaitin() {} LiveRangeMap _lrg_map; // Do all the real work of allocate void Register_Allocate(); float high_frequency_lrg() const { return _high_frequency_lrg; } #ifndef PRODUCT bool trace_spilling() const { return _trace_spilling; } #endif private: // De-SSA the world. Assign registers to Nodes. Use the same register for // all inputs to a PhiNode, effectively coalescing live ranges. Insert // copies as needed. void de_ssa(); // Add edge between reg and everything in the vector. // Same as _ifg->add_vector(reg,live) EXCEPT use the RegMask // information to trim the set of interferences. Return the // count of edges added. void interfere_with_live( uint reg, IndexSet *live ); // Count register pressure for asserts uint count_int_pressure( IndexSet *liveout ); uint count_float_pressure( IndexSet *liveout ); // Build the interference graph using virtual registers only. // Used for aggressive coalescing. void build_ifg_virtual( ); // Build the interference graph using physical registers when available. // That is, if 2 live ranges are simultaneously alive but in their // acceptable register sets do not overlap, then they do not interfere. uint build_ifg_physical( ResourceArea *a ); // Gather LiveRanGe information, including register masks and base pointer/ // derived pointer relationships. void gather_lrg_masks( bool mod_cisc_masks ); // Force the bases of derived pointers to be alive at GC points. bool stretch_base_pointer_live_ranges( ResourceArea *a ); // Helper to stretch above; recursively discover the base Node for // a given derived Node. Easy for AddP-related machine nodes, but // needs to be recursive for derived Phis. Node *find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg ); // Set the was-lo-degree bit. Conservative coalescing should not change the // colorability of the graph. If any live range was of low-degree before // coalescing, it should Simplify. This call sets the was-lo-degree bit. void set_was_low(); // Split live-ranges that must spill due to register conflicts (as opposed // to capacity spills). Typically these are things def'd in a register // and used on the stack or vice-versa. void pre_spill(); // Init LRG caching of degree, numregs. Init lo_degree list. void cache_lrg_info( ); // Simplify the IFG by removing LRGs of low degree with no copies void Pre_Simplify(); // Simplify the IFG by removing LRGs of low degree void Simplify(); // Select colors by re-inserting edges into the IFG. // Return TRUE if any spills occurred. uint Select( ); // Helper function for select which allows biased coloring OptoReg::Name choose_color( LRG &lrg, int chunk ); // Helper function which implements biasing heuristic OptoReg::Name bias_color( LRG &lrg, int chunk ); // Split uncolorable live ranges // Return new number of live ranges uint Split(uint maxlrg, ResourceArea* split_arena); // Copy 'was_spilled'-edness from one Node to another. void copy_was_spilled( Node *src, Node *dst ); // Set the 'spilled_once' or 'spilled_twice' flag on a node. void set_was_spilled( Node *n ); // Convert ideal spill-nodes into machine loads & stores // Set C->failing when fixup spills could not complete, node limit exceeded. void fixup_spills(); // Post-Allocation peephole copy removal void post_allocate_copy_removal(); Node *skip_copies( Node *c ); // Replace the old node with the current live version of that value // and yank the old value if it's dead. int replace_and_yank_if_dead( Node *old, OptoReg::Name nreg, Block *current_block, Node_List& value, Node_List& regnd ) { Node* v = regnd[nreg]; assert(v->outcnt() != 0, "no dead values"); old->replace_by(v); return yank_if_dead(old, current_block, &value, ®nd); } int yank_if_dead( Node *old, Block *current_block, Node_List *value, Node_List *regnd ) { return yank_if_dead_recurse(old, old, current_block, value, regnd); } int yank_if_dead_recurse(Node *old, Node *orig_old, Block *current_block, Node_List *value, Node_List *regnd); int yank( Node *old, Block *current_block, Node_List *value, Node_List *regnd ); int elide_copy( Node *n, int k, Block *current_block, Node_List &value, Node_List ®nd, bool can_change_regs ); int use_prior_register( Node *copy, uint idx, Node *def, Block *current_block, Node_List &value, Node_List ®nd ); bool may_be_copy_of_callee( Node *def ) const; // If nreg already contains the same constant as val then eliminate it bool eliminate_copy_of_constant(Node* val, Node* n, Block *current_block, Node_List& value, Node_List ®nd, OptoReg::Name nreg, OptoReg::Name nreg2); // Extend the node to LRG mapping void add_reference( const Node *node, const Node *old_node); private: static int _final_loads, _final_stores, _final_copies, _final_memoves; static double _final_load_cost, _final_store_cost, _final_copy_cost, _final_memove_cost; static int _conserv_coalesce, _conserv_coalesce_pair; static int _conserv_coalesce_trie, _conserv_coalesce_quad; static int _post_alloc; static int _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce; static int _used_cisc_instructions, _unused_cisc_instructions; static int _allocator_attempts, _allocator_successes; #ifndef PRODUCT static uint _high_pressure, _low_pressure; void dump() const; void dump( const Node *n ) const; void dump( const Block * b ) const; void dump_degree_lists() const; void dump_simplified() const; void dump_lrg( uint lidx, bool defs_only) const; void dump_lrg( uint lidx) const { // dump defs and uses by default dump_lrg(lidx, false); } void dump_bb( uint pre_order ) const; // Verify that base pointers and derived pointers are still sane void verify_base_ptrs( ResourceArea *a ) const; void verify( ResourceArea *a, bool verify_ifg = false ) const; void dump_for_spill_split_recycle() const; public: void dump_frame() const; char *dump_register( const Node *n, char *buf ) const; private: static void print_chaitin_statistics(); #endif friend class PhaseCoalesce; friend class PhaseAggressiveCoalesce; friend class PhaseConservativeCoalesce; }; #endif // SHARE_VM_OPTO_CHAITIN_HPP