/* * Copyright (c) 2002, 2013, Oracle and/or its affiliates. All rights reserved. * Copyright 2012, 2013 SAP AG. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef CPU_PPC_VM_MACROASSEMBLER_PPC_INLINE_HPP #define CPU_PPC_VM_MACROASSEMBLER_PPC_INLINE_HPP #include "asm/assembler.inline.hpp" #include "asm/macroAssembler.hpp" #include "asm/codeBuffer.hpp" #include "code/codeCache.hpp" inline bool MacroAssembler::is_ld_largeoffset(address a) { const int inst1 = *(int *)a; const int inst2 = *(int *)(a+4); return (is_ld(inst1)) || (is_addis(inst1) && is_ld(inst2) && inv_ra_field(inst2) == inv_rt_field(inst1)); } inline int MacroAssembler::get_ld_largeoffset_offset(address a) { assert(MacroAssembler::is_ld_largeoffset(a), "must be ld with large offset"); const int inst1 = *(int *)a; if (is_ld(inst1)) { return inv_d1_field(inst1); } else { const int inst2 = *(int *)(a+4); return (inv_d1_field(inst1) << 16) + inv_d1_field(inst2); } } inline void MacroAssembler::round_to(Register r, int modulus) { assert(is_power_of_2_long((jlong)modulus), "must be power of 2"); addi(r, r, modulus-1); clrrdi(r, r, log2_long((jlong)modulus)); } // Move register if destination register and target register are different. inline void MacroAssembler::mr_if_needed(Register rd, Register rs) { if(rs !=rd) mr(rd, rs); } // Address of the global TOC. inline address MacroAssembler::global_toc() { return CodeCache::low_bound(); } // Offset of given address to the global TOC. inline int MacroAssembler::offset_to_global_toc(const address addr) { intptr_t offset = (intptr_t)addr - (intptr_t)MacroAssembler::global_toc(); assert(Assembler::is_simm((long)offset, 31) && offset >= 0, "must be in range"); return (int)offset; } // Address of current method's TOC. inline address MacroAssembler::method_toc() { return code()->consts()->start(); } // Offset of given address to current method's TOC. inline int MacroAssembler::offset_to_method_toc(address addr) { intptr_t offset = (intptr_t)addr - (intptr_t)method_toc(); assert(is_simm((long)offset, 31) && offset >= 0, "must be in range"); return (int)offset; } inline bool MacroAssembler::is_calculate_address_from_global_toc_at(address a, address bound) { const address inst2_addr = a; const int inst2 = *(int *) a; // The relocation points to the second instruction, the addi. if (!is_addi(inst2)) return false; // The addi reads and writes the same register dst. const int dst = inv_rt_field(inst2); if (inv_ra_field(inst2) != dst) return false; // Now, find the preceding addis which writes to dst. int inst1 = 0; address inst1_addr = inst2_addr - BytesPerInstWord; while (inst1_addr >= bound) { inst1 = *(int *) inst1_addr; if (is_addis(inst1) && inv_rt_field(inst1) == dst) { // stop, found the addis which writes dst break; } inst1_addr -= BytesPerInstWord; } if (!(inst1 == 0 || inv_ra_field(inst1) == 29 /* R29 */)) return false; return is_addis(inst1); } #ifdef _LP64 // Detect narrow oop constants. inline bool MacroAssembler::is_set_narrow_oop(address a, address bound) { const address inst2_addr = a; const int inst2 = *(int *)a; // The relocation points to the second instruction, the addi. if (!is_addi(inst2)) return false; // The addi reads and writes the same register dst. const int dst = inv_rt_field(inst2); if (inv_ra_field(inst2) != dst) return false; // Now, find the preceding addis which writes to dst. int inst1 = 0; address inst1_addr = inst2_addr - BytesPerInstWord; while (inst1_addr >= bound) { inst1 = *(int *) inst1_addr; if (is_lis(inst1) && inv_rs_field(inst1) == dst) return true; inst1_addr -= BytesPerInstWord; } return false; } #endif inline bool MacroAssembler::is_load_const_at(address a) { const int* p_inst = (int *) a; bool b = is_lis(*p_inst++); if (is_ori(*p_inst)) { p_inst++; b = b && is_rldicr(*p_inst++); // TODO: could be made more precise: `sldi'! b = b && is_oris(*p_inst++); b = b && is_ori(*p_inst); } else if (is_lis(*p_inst)) { p_inst++; b = b && is_ori(*p_inst++); b = b && is_ori(*p_inst); // TODO: could enhance reliability by adding is_insrdi } else return false; return b; } inline void MacroAssembler::set_oop_constant(jobject obj, Register d) { set_oop(constant_oop_address(obj), d); } inline void MacroAssembler::set_oop(AddressLiteral obj_addr, Register d) { assert(obj_addr.rspec().type() == relocInfo::oop_type, "must be an oop reloc"); load_const(d, obj_addr); } inline void MacroAssembler::pd_patch_instruction(address branch, address target) { jint& stub_inst = *(jint*) branch; stub_inst = patched_branch(target - branch, stub_inst, 0); } // Relocation of conditional far branches. inline bool MacroAssembler::is_bc_far_variant1_at(address instruction_addr) { // Variant 1, the 1st instruction contains the destination address: // // bcxx DEST // endgroup // const int instruction_1 = *(int*)(instruction_addr); const int instruction_2 = *(int*)(instruction_addr + 4); return is_bcxx(instruction_1) && (inv_bd_field(instruction_1, (intptr_t)instruction_addr) != (intptr_t)(instruction_addr + 2*4)) && is_endgroup(instruction_2); } // Relocation of conditional far branches. inline bool MacroAssembler::is_bc_far_variant2_at(address instruction_addr) { // Variant 2, the 2nd instruction contains the destination address: // // b!cxx SKIP // bxx DEST // SKIP: // const int instruction_1 = *(int*)(instruction_addr); const int instruction_2 = *(int*)(instruction_addr + 4); return is_bcxx(instruction_1) && (inv_bd_field(instruction_1, (intptr_t)instruction_addr) == (intptr_t)(instruction_addr + 2*4)) && is_bxx(instruction_2); } // Relocation for conditional branches inline bool MacroAssembler::is_bc_far_variant3_at(address instruction_addr) { // Variant 3, far cond branch to the next instruction, already patched to nops: // // nop // endgroup // SKIP/DEST: // const int instruction_1 = *(int*)(instruction_addr); const int instruction_2 = *(int*)(instruction_addr + 4); return is_nop(instruction_1) && is_endgroup(instruction_2); } // Convenience bc_far versions inline void MacroAssembler::blt_far(ConditionRegister crx, Label& L, int optimize) { MacroAssembler::bc_far(bcondCRbiIs1, bi0(crx, less), L, optimize); } inline void MacroAssembler::bgt_far(ConditionRegister crx, Label& L, int optimize) { MacroAssembler::bc_far(bcondCRbiIs1, bi0(crx, greater), L, optimize); } inline void MacroAssembler::beq_far(ConditionRegister crx, Label& L, int optimize) { MacroAssembler::bc_far(bcondCRbiIs1, bi0(crx, equal), L, optimize); } inline void MacroAssembler::bso_far(ConditionRegister crx, Label& L, int optimize) { MacroAssembler::bc_far(bcondCRbiIs1, bi0(crx, summary_overflow), L, optimize); } inline void MacroAssembler::bge_far(ConditionRegister crx, Label& L, int optimize) { MacroAssembler::bc_far(bcondCRbiIs0, bi0(crx, less), L, optimize); } inline void MacroAssembler::ble_far(ConditionRegister crx, Label& L, int optimize) { MacroAssembler::bc_far(bcondCRbiIs0, bi0(crx, greater), L, optimize); } inline void MacroAssembler::bne_far(ConditionRegister crx, Label& L, int optimize) { MacroAssembler::bc_far(bcondCRbiIs0, bi0(crx, equal), L, optimize); } inline void MacroAssembler::bns_far(ConditionRegister crx, Label& L, int optimize) { MacroAssembler::bc_far(bcondCRbiIs0, bi0(crx, summary_overflow), L, optimize); } inline address MacroAssembler::call_stub(Register function_entry) { mtctr(function_entry); bctrl(); return pc(); } inline void MacroAssembler::call_stub_and_return_to(Register function_entry, Register return_pc) { assert_different_registers(function_entry, return_pc); mtlr(return_pc); mtctr(function_entry); bctr(); } // Get the pc where the last emitted call will return to. inline address MacroAssembler::last_calls_return_pc() { return _last_calls_return_pc; } // Read from the polling page, its address is already in a register. inline void MacroAssembler::load_from_polling_page(Register polling_page_address, int offset) { ld(R0, offset, polling_page_address); } // Trap-instruction-based checks. inline void MacroAssembler::trap_null_check(Register a, trap_to_bits cmp) { assert(TrapBasedNullChecks, "sanity"); tdi(cmp, a/*reg a*/, 0); } inline void MacroAssembler::trap_zombie_not_entrant() { tdi(traptoUnconditional, 0/*reg 0*/, 1); } inline void MacroAssembler::trap_should_not_reach_here() { tdi_unchecked(traptoUnconditional, 0/*reg 0*/, 2); } inline void MacroAssembler::trap_ic_miss_check(Register a, Register b) { td(traptoGreaterThanUnsigned | traptoLessThanUnsigned, a, b); } // Do an explicit null check if access to a+offset will not raise a SIGSEGV. // Either issue a trap instruction that raises SIGTRAP, or do a compare that // branches to exception_entry. // No support for compressed oops (base page of heap). Does not distinguish // loads and stores. inline void MacroAssembler::null_check_throw(Register a, int offset, Register temp_reg, address exception_entry) { if (!ImplicitNullChecks || needs_explicit_null_check(offset) || !os::zero_page_read_protected()) { if (TrapBasedNullChecks) { assert(UseSIGTRAP, "sanity"); trap_null_check(a); } else { Label ok; cmpdi(CCR0, a, 0); bne(CCR0, ok); load_const_optimized(temp_reg, exception_entry); mtctr(temp_reg); bctr(); bind(ok); } } } inline void MacroAssembler::ld_with_trap_null_check(Register d, int si16, Register s1) { if (!os::zero_page_read_protected()) { if (TrapBasedNullChecks) { trap_null_check(s1); } } ld(d, si16, s1); } // Attention: No null check for loaded uncompressed OOP. Can be used for loading klass field. inline void MacroAssembler::load_heap_oop_with_trap_null_check(Register d, RegisterOrConstant si16, Register s1) { if ( !os::zero_page_read_protected()) { if (TrapBasedNullChecks) { trap_null_check(s1); } } load_heap_oop_not_null(d, si16, s1); } inline void MacroAssembler::load_heap_oop_not_null(Register d, RegisterOrConstant offs, Register s1) { if (UseCompressedOops) { lwz(d, offs, s1); // Attention: no null check here! decode_heap_oop_not_null(d); } else { ld(d, offs, s1); } } inline void MacroAssembler::load_heap_oop(Register d, RegisterOrConstant offs, Register s1) { if (UseCompressedOops) { lwz(d, offs, s1); decode_heap_oop(d); } else { ld(d, offs, s1); } } inline void MacroAssembler::encode_heap_oop_not_null(Register d) { if (Universe::narrow_oop_base() != NULL) { sub(d, d, R30); } if (Universe::narrow_oop_shift() != 0) { srdi(d, d, LogMinObjAlignmentInBytes); } } inline void MacroAssembler::decode_heap_oop_not_null(Register d) { if (Universe::narrow_oop_shift() != 0) { assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong"); sldi(d, d, LogMinObjAlignmentInBytes); } if (Universe::narrow_oop_base() != NULL) { add(d, d, R30); } } inline void MacroAssembler::decode_heap_oop(Register d) { Label isNull; if (Universe::narrow_oop_base() != NULL) { cmpwi(CCR0, d, 0); beq(CCR0, isNull); } if (Universe::narrow_oop_shift() != 0) { assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong"); sldi(d, d, LogMinObjAlignmentInBytes); } if (Universe::narrow_oop_base() != NULL) { add(d, d, R30); } bind(isNull); } // SIGTRAP-based range checks for arrays. inline void MacroAssembler::trap_range_check_l(Register a, Register b) { tw (traptoLessThanUnsigned, a/*reg a*/, b/*reg b*/); } inline void MacroAssembler::trap_range_check_l(Register a, int si16) { twi(traptoLessThanUnsigned, a/*reg a*/, si16); } inline void MacroAssembler::trap_range_check_le(Register a, int si16) { twi(traptoEqual | traptoLessThanUnsigned, a/*reg a*/, si16); } inline void MacroAssembler::trap_range_check_g(Register a, int si16) { twi(traptoGreaterThanUnsigned, a/*reg a*/, si16); } inline void MacroAssembler::trap_range_check_ge(Register a, Register b) { tw (traptoEqual | traptoGreaterThanUnsigned, a/*reg a*/, b/*reg b*/); } inline void MacroAssembler::trap_range_check_ge(Register a, int si16) { twi(traptoEqual | traptoGreaterThanUnsigned, a/*reg a*/, si16); } #endif // CPU_PPC_VM_MACROASSEMBLER_PPC_INLINE_HPP