/* * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #ifndef _WINDOWS #include "alloca.h" #endif #include "asm/macroAssembler.hpp" #include "asm/macroAssembler.inline.hpp" #include "code/debugInfoRec.hpp" #include "code/icBuffer.hpp" #include "code/vtableStubs.hpp" #include "interpreter/interpreter.hpp" #include "oops/compiledICHolder.hpp" #include "prims/jvmtiRedefineClassesTrace.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/vframeArray.hpp" #include "vmreg_x86.inline.hpp" #ifdef COMPILER1 #include "c1/c1_Runtime1.hpp" #endif #ifdef COMPILER2 #include "opto/runtime.hpp" #endif #define __ masm-> const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size; class SimpleRuntimeFrame { public: // Most of the runtime stubs have this simple frame layout. // This class exists to make the layout shared in one place. // Offsets are for compiler stack slots, which are jints. enum layout { // The frame sender code expects that rbp will be in the "natural" place and // will override any oopMap setting for it. We must therefore force the layout // so that it agrees with the frame sender code. rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt, rbp_off2, return_off, return_off2, framesize }; }; class RegisterSaver { // Capture info about frame layout. Layout offsets are in jint // units because compiler frame slots are jints. #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off enum layout { fpu_state_off = frame::arg_reg_save_area_bytes/BytesPerInt, // fxsave save area xmm_off = fpu_state_off + 160/BytesPerInt, // offset in fxsave save area DEF_XMM_OFFS(0), DEF_XMM_OFFS(1), DEF_XMM_OFFS(2), DEF_XMM_OFFS(3), DEF_XMM_OFFS(4), DEF_XMM_OFFS(5), DEF_XMM_OFFS(6), DEF_XMM_OFFS(7), DEF_XMM_OFFS(8), DEF_XMM_OFFS(9), DEF_XMM_OFFS(10), DEF_XMM_OFFS(11), DEF_XMM_OFFS(12), DEF_XMM_OFFS(13), DEF_XMM_OFFS(14), DEF_XMM_OFFS(15), fpu_state_end = fpu_state_off + ((FPUStateSizeInWords-1)*wordSize / BytesPerInt), fpu_stateH_end, r15_off, r15H_off, r14_off, r14H_off, r13_off, r13H_off, r12_off, r12H_off, r11_off, r11H_off, r10_off, r10H_off, r9_off, r9H_off, r8_off, r8H_off, rdi_off, rdiH_off, rsi_off, rsiH_off, ignore_off, ignoreH_off, // extra copy of rbp rsp_off, rspH_off, rbx_off, rbxH_off, rdx_off, rdxH_off, rcx_off, rcxH_off, rax_off, raxH_off, // 16-byte stack alignment fill word: see MacroAssembler::push/pop_IU_state align_off, alignH_off, flags_off, flagsH_off, // The frame sender code expects that rbp will be in the "natural" place and // will override any oopMap setting for it. We must therefore force the layout // so that it agrees with the frame sender code. rbp_off, rbpH_off, // copy of rbp we will restore return_off, returnH_off, // slot for return address reg_save_size // size in compiler stack slots }; public: static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors = false); static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false); // Offsets into the register save area // Used by deoptimization when it is managing result register // values on its own static int rax_offset_in_bytes(void) { return BytesPerInt * rax_off; } static int rdx_offset_in_bytes(void) { return BytesPerInt * rdx_off; } static int rbx_offset_in_bytes(void) { return BytesPerInt * rbx_off; } static int xmm0_offset_in_bytes(void) { return BytesPerInt * xmm0_off; } static int return_offset_in_bytes(void) { return BytesPerInt * return_off; } // During deoptimization only the result registers need to be restored, // all the other values have already been extracted. static void restore_result_registers(MacroAssembler* masm); }; OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors) { int vect_words = 0; #ifdef COMPILER2 if (save_vectors) { assert(UseAVX > 0, "256bit vectors are supported only with AVX"); assert(MaxVectorSize == 32, "only 256bit vectors are supported now"); // Save upper half of YMM registes vect_words = 16 * 16 / wordSize; additional_frame_words += vect_words; } #else assert(!save_vectors, "vectors are generated only by C2"); #endif // Always make the frame size 16-byte aligned int frame_size_in_bytes = round_to(additional_frame_words*wordSize + reg_save_size*BytesPerInt, 16); // OopMap frame size is in compiler stack slots (jint's) not bytes or words int frame_size_in_slots = frame_size_in_bytes / BytesPerInt; // The caller will allocate additional_frame_words int additional_frame_slots = additional_frame_words*wordSize / BytesPerInt; // CodeBlob frame size is in words. int frame_size_in_words = frame_size_in_bytes / wordSize; *total_frame_words = frame_size_in_words; // Save registers, fpu state, and flags. // We assume caller has already pushed the return address onto the // stack, so rsp is 8-byte aligned here. // We push rpb twice in this sequence because we want the real rbp // to be under the return like a normal enter. __ enter(); // rsp becomes 16-byte aligned here __ push_CPU_state(); // Push a multiple of 16 bytes if (vect_words > 0) { assert(vect_words*wordSize == 256, ""); __ subptr(rsp, 256); // Save upper half of YMM registes __ vextractf128h(Address(rsp, 0),xmm0); __ vextractf128h(Address(rsp, 16),xmm1); __ vextractf128h(Address(rsp, 32),xmm2); __ vextractf128h(Address(rsp, 48),xmm3); __ vextractf128h(Address(rsp, 64),xmm4); __ vextractf128h(Address(rsp, 80),xmm5); __ vextractf128h(Address(rsp, 96),xmm6); __ vextractf128h(Address(rsp,112),xmm7); __ vextractf128h(Address(rsp,128),xmm8); __ vextractf128h(Address(rsp,144),xmm9); __ vextractf128h(Address(rsp,160),xmm10); __ vextractf128h(Address(rsp,176),xmm11); __ vextractf128h(Address(rsp,192),xmm12); __ vextractf128h(Address(rsp,208),xmm13); __ vextractf128h(Address(rsp,224),xmm14); __ vextractf128h(Address(rsp,240),xmm15); } if (frame::arg_reg_save_area_bytes != 0) { // Allocate argument register save area __ subptr(rsp, frame::arg_reg_save_area_bytes); } // Set an oopmap for the call site. This oopmap will map all // oop-registers and debug-info registers as callee-saved. This // will allow deoptimization at this safepoint to find all possible // debug-info recordings, as well as let GC find all oops. OopMapSet *oop_maps = new OopMapSet(); OopMap* map = new OopMap(frame_size_in_slots, 0); #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_slots) map->set_callee_saved(STACK_OFFSET( rax_off ), rax->as_VMReg()); map->set_callee_saved(STACK_OFFSET( rcx_off ), rcx->as_VMReg()); map->set_callee_saved(STACK_OFFSET( rdx_off ), rdx->as_VMReg()); map->set_callee_saved(STACK_OFFSET( rbx_off ), rbx->as_VMReg()); // rbp location is known implicitly by the frame sender code, needs no oopmap // and the location where rbp was saved by is ignored map->set_callee_saved(STACK_OFFSET( rsi_off ), rsi->as_VMReg()); map->set_callee_saved(STACK_OFFSET( rdi_off ), rdi->as_VMReg()); map->set_callee_saved(STACK_OFFSET( r8_off ), r8->as_VMReg()); map->set_callee_saved(STACK_OFFSET( r9_off ), r9->as_VMReg()); map->set_callee_saved(STACK_OFFSET( r10_off ), r10->as_VMReg()); map->set_callee_saved(STACK_OFFSET( r11_off ), r11->as_VMReg()); map->set_callee_saved(STACK_OFFSET( r12_off ), r12->as_VMReg()); map->set_callee_saved(STACK_OFFSET( r13_off ), r13->as_VMReg()); map->set_callee_saved(STACK_OFFSET( r14_off ), r14->as_VMReg()); map->set_callee_saved(STACK_OFFSET( r15_off ), r15->as_VMReg()); map->set_callee_saved(STACK_OFFSET(xmm0_off ), xmm0->as_VMReg()); map->set_callee_saved(STACK_OFFSET(xmm1_off ), xmm1->as_VMReg()); map->set_callee_saved(STACK_OFFSET(xmm2_off ), xmm2->as_VMReg()); map->set_callee_saved(STACK_OFFSET(xmm3_off ), xmm3->as_VMReg()); map->set_callee_saved(STACK_OFFSET(xmm4_off ), xmm4->as_VMReg()); map->set_callee_saved(STACK_OFFSET(xmm5_off ), xmm5->as_VMReg()); map->set_callee_saved(STACK_OFFSET(xmm6_off ), xmm6->as_VMReg()); map->set_callee_saved(STACK_OFFSET(xmm7_off ), xmm7->as_VMReg()); map->set_callee_saved(STACK_OFFSET(xmm8_off ), xmm8->as_VMReg()); map->set_callee_saved(STACK_OFFSET(xmm9_off ), xmm9->as_VMReg()); map->set_callee_saved(STACK_OFFSET(xmm10_off), xmm10->as_VMReg()); map->set_callee_saved(STACK_OFFSET(xmm11_off), xmm11->as_VMReg()); map->set_callee_saved(STACK_OFFSET(xmm12_off), xmm12->as_VMReg()); map->set_callee_saved(STACK_OFFSET(xmm13_off), xmm13->as_VMReg()); map->set_callee_saved(STACK_OFFSET(xmm14_off), xmm14->as_VMReg()); map->set_callee_saved(STACK_OFFSET(xmm15_off), xmm15->as_VMReg()); // %%% These should all be a waste but we'll keep things as they were for now if (true) { map->set_callee_saved(STACK_OFFSET( raxH_off ), rax->as_VMReg()->next()); map->set_callee_saved(STACK_OFFSET( rcxH_off ), rcx->as_VMReg()->next()); map->set_callee_saved(STACK_OFFSET( rdxH_off ), rdx->as_VMReg()->next()); map->set_callee_saved(STACK_OFFSET( rbxH_off ), rbx->as_VMReg()->next()); // rbp location is known implicitly by the frame sender code, needs no oopmap map->set_callee_saved(STACK_OFFSET( rsiH_off ), rsi->as_VMReg()->next()); map->set_callee_saved(STACK_OFFSET( rdiH_off ), rdi->as_VMReg()->next()); map->set_callee_saved(STACK_OFFSET( r8H_off ), r8->as_VMReg()->next()); map->set_callee_saved(STACK_OFFSET( r9H_off ), r9->as_VMReg()->next()); map->set_callee_saved(STACK_OFFSET( r10H_off ), r10->as_VMReg()->next()); map->set_callee_saved(STACK_OFFSET( r11H_off ), r11->as_VMReg()->next()); map->set_callee_saved(STACK_OFFSET( r12H_off ), r12->as_VMReg()->next()); map->set_callee_saved(STACK_OFFSET( r13H_off ), r13->as_VMReg()->next()); map->set_callee_saved(STACK_OFFSET( r14H_off ), r14->as_VMReg()->next()); map->set_callee_saved(STACK_OFFSET( r15H_off ), r15->as_VMReg()->next()); map->set_callee_saved(STACK_OFFSET(xmm0H_off ), xmm0->as_VMReg()->next()); map->set_callee_saved(STACK_OFFSET(xmm1H_off ), xmm1->as_VMReg()->next()); map->set_callee_saved(STACK_OFFSET(xmm2H_off ), xmm2->as_VMReg()->next()); map->set_callee_saved(STACK_OFFSET(xmm3H_off ), xmm3->as_VMReg()->next()); map->set_callee_saved(STACK_OFFSET(xmm4H_off ), xmm4->as_VMReg()->next()); map->set_callee_saved(STACK_OFFSET(xmm5H_off ), xmm5->as_VMReg()->next()); map->set_callee_saved(STACK_OFFSET(xmm6H_off ), xmm6->as_VMReg()->next()); map->set_callee_saved(STACK_OFFSET(xmm7H_off ), xmm7->as_VMReg()->next()); map->set_callee_saved(STACK_OFFSET(xmm8H_off ), xmm8->as_VMReg()->next()); map->set_callee_saved(STACK_OFFSET(xmm9H_off ), xmm9->as_VMReg()->next()); map->set_callee_saved(STACK_OFFSET(xmm10H_off), xmm10->as_VMReg()->next()); map->set_callee_saved(STACK_OFFSET(xmm11H_off), xmm11->as_VMReg()->next()); map->set_callee_saved(STACK_OFFSET(xmm12H_off), xmm12->as_VMReg()->next()); map->set_callee_saved(STACK_OFFSET(xmm13H_off), xmm13->as_VMReg()->next()); map->set_callee_saved(STACK_OFFSET(xmm14H_off), xmm14->as_VMReg()->next()); map->set_callee_saved(STACK_OFFSET(xmm15H_off), xmm15->as_VMReg()->next()); } return map; } void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) { if (frame::arg_reg_save_area_bytes != 0) { // Pop arg register save area __ addptr(rsp, frame::arg_reg_save_area_bytes); } #ifdef COMPILER2 if (restore_vectors) { // Restore upper half of YMM registes. assert(UseAVX > 0, "256bit vectors are supported only with AVX"); assert(MaxVectorSize == 32, "only 256bit vectors are supported now"); __ vinsertf128h(xmm0, Address(rsp, 0)); __ vinsertf128h(xmm1, Address(rsp, 16)); __ vinsertf128h(xmm2, Address(rsp, 32)); __ vinsertf128h(xmm3, Address(rsp, 48)); __ vinsertf128h(xmm4, Address(rsp, 64)); __ vinsertf128h(xmm5, Address(rsp, 80)); __ vinsertf128h(xmm6, Address(rsp, 96)); __ vinsertf128h(xmm7, Address(rsp,112)); __ vinsertf128h(xmm8, Address(rsp,128)); __ vinsertf128h(xmm9, Address(rsp,144)); __ vinsertf128h(xmm10, Address(rsp,160)); __ vinsertf128h(xmm11, Address(rsp,176)); __ vinsertf128h(xmm12, Address(rsp,192)); __ vinsertf128h(xmm13, Address(rsp,208)); __ vinsertf128h(xmm14, Address(rsp,224)); __ vinsertf128h(xmm15, Address(rsp,240)); __ addptr(rsp, 256); } #else assert(!restore_vectors, "vectors are generated only by C2"); #endif // Recover CPU state __ pop_CPU_state(); // Get the rbp described implicitly by the calling convention (no oopMap) __ pop(rbp); } void RegisterSaver::restore_result_registers(MacroAssembler* masm) { // Just restore result register. Only used by deoptimization. By // now any callee save register that needs to be restored to a c2 // caller of the deoptee has been extracted into the vframeArray // and will be stuffed into the c2i adapter we create for later // restoration so only result registers need to be restored here. // Restore fp result register __ movdbl(xmm0, Address(rsp, xmm0_offset_in_bytes())); // Restore integer result register __ movptr(rax, Address(rsp, rax_offset_in_bytes())); __ movptr(rdx, Address(rsp, rdx_offset_in_bytes())); // Pop all of the register save are off the stack except the return address __ addptr(rsp, return_offset_in_bytes()); } // Is vector's size (in bytes) bigger than a size saved by default? // 16 bytes XMM registers are saved by default using fxsave/fxrstor instructions. bool SharedRuntime::is_wide_vector(int size) { return size > 16; } // The java_calling_convention describes stack locations as ideal slots on // a frame with no abi restrictions. Since we must observe abi restrictions // (like the placement of the register window) the slots must be biased by // the following value. static int reg2offset_in(VMReg r) { // Account for saved rbp and return address // This should really be in_preserve_stack_slots return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size; } static int reg2offset_out(VMReg r) { return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; } // --------------------------------------------------------------------------- // Read the array of BasicTypes from a signature, and compute where the // arguments should go. Values in the VMRegPair regs array refer to 4-byte // quantities. Values less than VMRegImpl::stack0 are registers, those above // refer to 4-byte stack slots. All stack slots are based off of the stack pointer // as framesizes are fixed. // VMRegImpl::stack0 refers to the first slot 0(sp). // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. Register // up to RegisterImpl::number_of_registers) are the 64-bit // integer registers. // Note: the INPUTS in sig_bt are in units of Java argument words, which are // either 32-bit or 64-bit depending on the build. The OUTPUTS are in 32-bit // units regardless of build. Of course for i486 there is no 64 bit build // The Java calling convention is a "shifted" version of the C ABI. // By skipping the first C ABI register we can call non-static jni methods // with small numbers of arguments without having to shuffle the arguments // at all. Since we control the java ABI we ought to at least get some // advantage out of it. int SharedRuntime::java_calling_convention(const BasicType *sig_bt, VMRegPair *regs, int total_args_passed, int is_outgoing) { // Create the mapping between argument positions and // registers. static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = { j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5 }; static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_j] = { j_farg0, j_farg1, j_farg2, j_farg3, j_farg4, j_farg5, j_farg6, j_farg7 }; uint int_args = 0; uint fp_args = 0; uint stk_args = 0; // inc by 2 each time for (int i = 0; i < total_args_passed; i++) { switch (sig_bt[i]) { case T_BOOLEAN: case T_CHAR: case T_BYTE: case T_SHORT: case T_INT: if (int_args < Argument::n_int_register_parameters_j) { regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); } else { regs[i].set1(VMRegImpl::stack2reg(stk_args)); stk_args += 2; } break; case T_VOID: // halves of T_LONG or T_DOUBLE assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half"); regs[i].set_bad(); break; case T_LONG: assert(sig_bt[i + 1] == T_VOID, "expecting half"); // fall through case T_OBJECT: case T_ARRAY: case T_ADDRESS: if (int_args < Argument::n_int_register_parameters_j) { regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); } else { regs[i].set2(VMRegImpl::stack2reg(stk_args)); stk_args += 2; } break; case T_FLOAT: if (fp_args < Argument::n_float_register_parameters_j) { regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg()); } else { regs[i].set1(VMRegImpl::stack2reg(stk_args)); stk_args += 2; } break; case T_DOUBLE: assert(sig_bt[i + 1] == T_VOID, "expecting half"); if (fp_args < Argument::n_float_register_parameters_j) { regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg()); } else { regs[i].set2(VMRegImpl::stack2reg(stk_args)); stk_args += 2; } break; default: ShouldNotReachHere(); break; } } return round_to(stk_args, 2); } // Patch the callers callsite with entry to compiled code if it exists. static void patch_callers_callsite(MacroAssembler *masm) { Label L; __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD); __ jcc(Assembler::equal, L); // Save the current stack pointer __ mov(r13, rsp); // Schedule the branch target address early. // Call into the VM to patch the caller, then jump to compiled callee // rax isn't live so capture return address while we easily can __ movptr(rax, Address(rsp, 0)); // align stack so push_CPU_state doesn't fault __ andptr(rsp, -(StackAlignmentInBytes)); __ push_CPU_state(); // VM needs caller's callsite // VM needs target method // This needs to be a long call since we will relocate this adapter to // the codeBuffer and it may not reach // Allocate argument register save area if (frame::arg_reg_save_area_bytes != 0) { __ subptr(rsp, frame::arg_reg_save_area_bytes); } __ mov(c_rarg0, rbx); __ mov(c_rarg1, rax); __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite))); // De-allocate argument register save area if (frame::arg_reg_save_area_bytes != 0) { __ addptr(rsp, frame::arg_reg_save_area_bytes); } __ pop_CPU_state(); // restore sp __ mov(rsp, r13); __ bind(L); } static void gen_c2i_adapter(MacroAssembler *masm, int total_args_passed, int comp_args_on_stack, const BasicType *sig_bt, const VMRegPair *regs, Label& skip_fixup) { // Before we get into the guts of the C2I adapter, see if we should be here // at all. We've come from compiled code and are attempting to jump to the // interpreter, which means the caller made a static call to get here // (vcalls always get a compiled target if there is one). Check for a // compiled target. If there is one, we need to patch the caller's call. patch_callers_callsite(masm); __ bind(skip_fixup); // Since all args are passed on the stack, total_args_passed * // Interpreter::stackElementSize is the space we need. Plus 1 because // we also account for the return address location since // we store it first rather than hold it in rax across all the shuffling int extraspace = (total_args_passed * Interpreter::stackElementSize) + wordSize; // stack is aligned, keep it that way extraspace = round_to(extraspace, 2*wordSize); // Get return address __ pop(rax); // set senderSP value __ mov(r13, rsp); __ subptr(rsp, extraspace); // Store the return address in the expected location __ movptr(Address(rsp, 0), rax); // Now write the args into the outgoing interpreter space for (int i = 0; i < total_args_passed; i++) { if (sig_bt[i] == T_VOID) { assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half"); continue; } // offset to start parameters int st_off = (total_args_passed - i) * Interpreter::stackElementSize; int next_off = st_off - Interpreter::stackElementSize; // Say 4 args: // i st_off // 0 32 T_LONG // 1 24 T_VOID // 2 16 T_OBJECT // 3 8 T_BOOL // - 0 return address // // However to make thing extra confusing. Because we can fit a long/double in // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter // leaves one slot empty and only stores to a single slot. In this case the // slot that is occupied is the T_VOID slot. See I said it was confusing. VMReg r_1 = regs[i].first(); VMReg r_2 = regs[i].second(); if (!r_1->is_valid()) { assert(!r_2->is_valid(), ""); continue; } if (r_1->is_stack()) { // memory to memory use rax int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace; if (!r_2->is_valid()) { // sign extend?? __ movl(rax, Address(rsp, ld_off)); __ movptr(Address(rsp, st_off), rax); } else { __ movq(rax, Address(rsp, ld_off)); // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG // T_DOUBLE and T_LONG use two slots in the interpreter if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) { // ld_off == LSW, ld_off+wordSize == MSW // st_off == MSW, next_off == LSW __ movq(Address(rsp, next_off), rax); #ifdef ASSERT // Overwrite the unused slot with known junk __ mov64(rax, CONST64(0xdeadffffdeadaaaa)); __ movptr(Address(rsp, st_off), rax); #endif /* ASSERT */ } else { __ movq(Address(rsp, st_off), rax); } } } else if (r_1->is_Register()) { Register r = r_1->as_Register(); if (!r_2->is_valid()) { // must be only an int (or less ) so move only 32bits to slot // why not sign extend?? __ movl(Address(rsp, st_off), r); } else { // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG // T_DOUBLE and T_LONG use two slots in the interpreter if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) { // long/double in gpr #ifdef ASSERT // Overwrite the unused slot with known junk __ mov64(rax, CONST64(0xdeadffffdeadaaab)); __ movptr(Address(rsp, st_off), rax); #endif /* ASSERT */ __ movq(Address(rsp, next_off), r); } else { __ movptr(Address(rsp, st_off), r); } } } else { assert(r_1->is_XMMRegister(), ""); if (!r_2->is_valid()) { // only a float use just part of the slot __ movflt(Address(rsp, st_off), r_1->as_XMMRegister()); } else { #ifdef ASSERT // Overwrite the unused slot with known junk __ mov64(rax, CONST64(0xdeadffffdeadaaac)); __ movptr(Address(rsp, st_off), rax); #endif /* ASSERT */ __ movdbl(Address(rsp, next_off), r_1->as_XMMRegister()); } } } // Schedule the branch target address early. __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset()))); __ jmp(rcx); } static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg, address code_start, address code_end, Label& L_ok) { Label L_fail; __ lea(temp_reg, ExternalAddress(code_start)); __ cmpptr(pc_reg, temp_reg); __ jcc(Assembler::belowEqual, L_fail); __ lea(temp_reg, ExternalAddress(code_end)); __ cmpptr(pc_reg, temp_reg); __ jcc(Assembler::below, L_ok); __ bind(L_fail); } static void gen_i2c_adapter(MacroAssembler *masm, int total_args_passed, int comp_args_on_stack, const BasicType *sig_bt, const VMRegPair *regs) { // Note: r13 contains the senderSP on entry. We must preserve it since // we may do a i2c -> c2i transition if we lose a race where compiled // code goes non-entrant while we get args ready. // In addition we use r13 to locate all the interpreter args as // we must align the stack to 16 bytes on an i2c entry else we // lose alignment we expect in all compiled code and register // save code can segv when fxsave instructions find improperly // aligned stack pointer. // Adapters can be frameless because they do not require the caller // to perform additional cleanup work, such as correcting the stack pointer. // An i2c adapter is frameless because the *caller* frame, which is interpreted, // routinely repairs its own stack pointer (from interpreter_frame_last_sp), // even if a callee has modified the stack pointer. // A c2i adapter is frameless because the *callee* frame, which is interpreted, // routinely repairs its caller's stack pointer (from sender_sp, which is set // up via the senderSP register). // In other words, if *either* the caller or callee is interpreted, we can // get the stack pointer repaired after a call. // This is why c2i and i2c adapters cannot be indefinitely composed. // In particular, if a c2i adapter were to somehow call an i2c adapter, // both caller and callee would be compiled methods, and neither would // clean up the stack pointer changes performed by the two adapters. // If this happens, control eventually transfers back to the compiled // caller, but with an uncorrected stack, causing delayed havoc. // Pick up the return address __ movptr(rax, Address(rsp, 0)); if (VerifyAdapterCalls && (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) { // So, let's test for cascading c2i/i2c adapters right now. // assert(Interpreter::contains($return_addr) || // StubRoutines::contains($return_addr), // "i2c adapter must return to an interpreter frame"); __ block_comment("verify_i2c { "); Label L_ok; if (Interpreter::code() != NULL) range_check(masm, rax, r11, Interpreter::code()->code_start(), Interpreter::code()->code_end(), L_ok); if (StubRoutines::code1() != NULL) range_check(masm, rax, r11, StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(), L_ok); if (StubRoutines::code2() != NULL) range_check(masm, rax, r11, StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(), L_ok); const char* msg = "i2c adapter must return to an interpreter frame"; __ block_comment(msg); __ stop(msg); __ bind(L_ok); __ block_comment("} verify_i2ce "); } // Must preserve original SP for loading incoming arguments because // we need to align the outgoing SP for compiled code. __ movptr(r11, rsp); // Cut-out for having no stack args. Since up to 2 int/oop args are passed // in registers, we will occasionally have no stack args. int comp_words_on_stack = 0; if (comp_args_on_stack) { // Sig words on the stack are greater-than VMRegImpl::stack0. Those in // registers are below. By subtracting stack0, we either get a negative // number (all values in registers) or the maximum stack slot accessed. // Convert 4-byte c2 stack slots to words. comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord; // Round up to miminum stack alignment, in wordSize comp_words_on_stack = round_to(comp_words_on_stack, 2); __ subptr(rsp, comp_words_on_stack * wordSize); } // Ensure compiled code always sees stack at proper alignment __ andptr(rsp, -16); // push the return address and misalign the stack that youngest frame always sees // as far as the placement of the call instruction __ push(rax); // Put saved SP in another register const Register saved_sp = rax; __ movptr(saved_sp, r11); // Will jump to the compiled code just as if compiled code was doing it. // Pre-load the register-jump target early, to schedule it better. __ movptr(r11, Address(rbx, in_bytes(Method::from_compiled_offset()))); // Now generate the shuffle code. Pick up all register args and move the // rest through the floating point stack top. for (int i = 0; i < total_args_passed; i++) { if (sig_bt[i] == T_VOID) { // Longs and doubles are passed in native word order, but misaligned // in the 32-bit build. assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half"); continue; } // Pick up 0, 1 or 2 words from SP+offset. assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(), "scrambled load targets?"); // Load in argument order going down. int ld_off = (total_args_passed - i)*Interpreter::stackElementSize; // Point to interpreter value (vs. tag) int next_off = ld_off - Interpreter::stackElementSize; // // // VMReg r_1 = regs[i].first(); VMReg r_2 = regs[i].second(); if (!r_1->is_valid()) { assert(!r_2->is_valid(), ""); continue; } if (r_1->is_stack()) { // Convert stack slot to an SP offset (+ wordSize to account for return address ) int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize; // We can use r13 as a temp here because compiled code doesn't need r13 as an input // and if we end up going thru a c2i because of a miss a reasonable value of r13 // will be generated. if (!r_2->is_valid()) { // sign extend??? __ movl(r13, Address(saved_sp, ld_off)); __ movptr(Address(rsp, st_off), r13); } else { // // We are using two optoregs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case // So we must adjust where to pick up the data to match the interpreter. // // Interpreter local[n] == MSW, local[n+1] == LSW however locals // are accessed as negative so LSW is at LOW address // ld_off is MSW so get LSW const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)? next_off : ld_off; __ movq(r13, Address(saved_sp, offset)); // st_off is LSW (i.e. reg.first()) __ movq(Address(rsp, st_off), r13); } } else if (r_1->is_Register()) { // Register argument Register r = r_1->as_Register(); assert(r != rax, "must be different"); if (r_2->is_valid()) { // // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case // So we must adjust where to pick up the data to match the interpreter. const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)? next_off : ld_off; // this can be a misaligned move __ movq(r, Address(saved_sp, offset)); } else { // sign extend and use a full word? __ movl(r, Address(saved_sp, ld_off)); } } else { if (!r_2->is_valid()) { __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off)); } else { __ movdbl(r_1->as_XMMRegister(), Address(saved_sp, next_off)); } } } // 6243940 We might end up in handle_wrong_method if // the callee is deoptimized as we race thru here. If that // happens we don't want to take a safepoint because the // caller frame will look interpreted and arguments are now // "compiled" so it is much better to make this transition // invisible to the stack walking code. Unfortunately if // we try and find the callee by normal means a safepoint // is possible. So we stash the desired callee in the thread // and the vm will find there should this case occur. __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx); // put Method* where a c2i would expect should we end up there // only needed becaus eof c2 resolve stubs return Method* as a result in // rax __ mov(rax, rbx); __ jmp(r11); } // --------------------------------------------------------------- AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm, int total_args_passed, int comp_args_on_stack, const BasicType *sig_bt, const VMRegPair *regs, AdapterFingerPrint* fingerprint) { address i2c_entry = __ pc(); gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs); // ------------------------------------------------------------------------- // Generate a C2I adapter. On entry we know rbx holds the Method* during calls // to the interpreter. The args start out packed in the compiled layout. They // need to be unpacked into the interpreter layout. This will almost always // require some stack space. We grow the current (compiled) stack, then repack // the args. We finally end in a jump to the generic interpreter entry point. // On exit from the interpreter, the interpreter will restore our SP (lest the // compiled code, which relys solely on SP and not RBP, get sick). address c2i_unverified_entry = __ pc(); Label skip_fixup; Label ok; Register holder = rax; Register receiver = j_rarg0; Register temp = rbx; { __ load_klass(temp, receiver); __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset())); __ movptr(rbx, Address(holder, CompiledICHolder::holder_metadata_offset())); __ jcc(Assembler::equal, ok); __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); __ bind(ok); // Method might have been compiled since the call site was patched to // interpreted if that is the case treat it as a miss so we can get // the call site corrected. __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD); __ jcc(Assembler::equal, skip_fixup); __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); } address c2i_entry = __ pc(); gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup); __ flush(); return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry); } int SharedRuntime::c_calling_convention(const BasicType *sig_bt, VMRegPair *regs, VMRegPair *regs2, int total_args_passed) { assert(regs2 == NULL, "not needed on x86"); // We return the amount of VMRegImpl stack slots we need to reserve for all // the arguments NOT counting out_preserve_stack_slots. // NOTE: These arrays will have to change when c1 is ported #ifdef _WIN64 static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = { c_rarg0, c_rarg1, c_rarg2, c_rarg3 }; static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = { c_farg0, c_farg1, c_farg2, c_farg3 }; #else static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = { c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5 }; static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = { c_farg0, c_farg1, c_farg2, c_farg3, c_farg4, c_farg5, c_farg6, c_farg7 }; #endif // _WIN64 uint int_args = 0; uint fp_args = 0; uint stk_args = 0; // inc by 2 each time for (int i = 0; i < total_args_passed; i++) { switch (sig_bt[i]) { case T_BOOLEAN: case T_CHAR: case T_BYTE: case T_SHORT: case T_INT: if (int_args < Argument::n_int_register_parameters_c) { regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); #ifdef _WIN64 fp_args++; // Allocate slots for callee to stuff register args the stack. stk_args += 2; #endif } else { regs[i].set1(VMRegImpl::stack2reg(stk_args)); stk_args += 2; } break; case T_LONG: assert(sig_bt[i + 1] == T_VOID, "expecting half"); // fall through case T_OBJECT: case T_ARRAY: case T_ADDRESS: case T_METADATA: if (int_args < Argument::n_int_register_parameters_c) { regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); #ifdef _WIN64 fp_args++; stk_args += 2; #endif } else { regs[i].set2(VMRegImpl::stack2reg(stk_args)); stk_args += 2; } break; case T_FLOAT: if (fp_args < Argument::n_float_register_parameters_c) { regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg()); #ifdef _WIN64 int_args++; // Allocate slots for callee to stuff register args the stack. stk_args += 2; #endif } else { regs[i].set1(VMRegImpl::stack2reg(stk_args)); stk_args += 2; } break; case T_DOUBLE: assert(sig_bt[i + 1] == T_VOID, "expecting half"); if (fp_args < Argument::n_float_register_parameters_c) { regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg()); #ifdef _WIN64 int_args++; // Allocate slots for callee to stuff register args the stack. stk_args += 2; #endif } else { regs[i].set2(VMRegImpl::stack2reg(stk_args)); stk_args += 2; } break; case T_VOID: // Halves of longs and doubles assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half"); regs[i].set_bad(); break; default: ShouldNotReachHere(); break; } } #ifdef _WIN64 // windows abi requires that we always allocate enough stack space // for 4 64bit registers to be stored down. if (stk_args < 8) { stk_args = 8; } #endif // _WIN64 return stk_args; } // On 64 bit we will store integer like items to the stack as // 64 bits items (sparc abi) even though java would only store // 32bits for a parameter. On 32bit it will simply be 32 bits // So this routine will do 32->32 on 32bit and 32->64 on 64bit static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { if (src.first()->is_stack()) { if (dst.first()->is_stack()) { // stack to stack __ movslq(rax, Address(rbp, reg2offset_in(src.first()))); __ movq(Address(rsp, reg2offset_out(dst.first())), rax); } else { // stack to reg __ movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()))); } } else if (dst.first()->is_stack()) { // reg to stack // Do we really have to sign extend??? // __ movslq(src.first()->as_Register(), src.first()->as_Register()); __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register()); } else { // Do we really have to sign extend??? // __ movslq(dst.first()->as_Register(), src.first()->as_Register()); if (dst.first() != src.first()) { __ movq(dst.first()->as_Register(), src.first()->as_Register()); } } } static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { if (src.first()->is_stack()) { if (dst.first()->is_stack()) { // stack to stack __ movq(rax, Address(rbp, reg2offset_in(src.first()))); __ movq(Address(rsp, reg2offset_out(dst.first())), rax); } else { // stack to reg __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()))); } } else if (dst.first()->is_stack()) { // reg to stack __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register()); } else { if (dst.first() != src.first()) { __ movq(dst.first()->as_Register(), src.first()->as_Register()); } } } // An oop arg. Must pass a handle not the oop itself static void object_move(MacroAssembler* masm, OopMap* map, int oop_handle_offset, int framesize_in_slots, VMRegPair src, VMRegPair dst, bool is_receiver, int* receiver_offset) { // must pass a handle. First figure out the location we use as a handle Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register(); // See if oop is NULL if it is we need no handle if (src.first()->is_stack()) { // Oop is already on the stack as an argument int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); if (is_receiver) { *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; } __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD); __ lea(rHandle, Address(rbp, reg2offset_in(src.first()))); // conditionally move a NULL __ cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first()))); } else { // Oop is in an a register we must store it to the space we reserve // on the stack for oop_handles and pass a handle if oop is non-NULL const Register rOop = src.first()->as_Register(); int oop_slot; if (rOop == j_rarg0) oop_slot = 0; else if (rOop == j_rarg1) oop_slot = 1; else if (rOop == j_rarg2) oop_slot = 2; else if (rOop == j_rarg3) oop_slot = 3; else if (rOop == j_rarg4) oop_slot = 4; else { assert(rOop == j_rarg5, "wrong register"); oop_slot = 5; } oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset; int offset = oop_slot*VMRegImpl::stack_slot_size; map->set_oop(VMRegImpl::stack2reg(oop_slot)); // Store oop in handle area, may be NULL __ movptr(Address(rsp, offset), rOop); if (is_receiver) { *receiver_offset = offset; } __ cmpptr(rOop, (int32_t)NULL_WORD); __ lea(rHandle, Address(rsp, offset)); // conditionally move a NULL from the handle area where it was just stored __ cmovptr(Assembler::equal, rHandle, Address(rsp, offset)); } // If arg is on the stack then place it otherwise it is already in correct reg. if (dst.first()->is_stack()) { __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle); } } // A float arg may have to do float reg int reg conversion static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move"); // The calling conventions assures us that each VMregpair is either // all really one physical register or adjacent stack slots. // This greatly simplifies the cases here compared to sparc. if (src.first()->is_stack()) { if (dst.first()->is_stack()) { __ movl(rax, Address(rbp, reg2offset_in(src.first()))); __ movptr(Address(rsp, reg2offset_out(dst.first())), rax); } else { // stack to reg assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters"); __ movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()))); } } else if (dst.first()->is_stack()) { // reg to stack assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters"); __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister()); } else { // reg to reg // In theory these overlap but the ordering is such that this is likely a nop if ( src.first() != dst.first()) { __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister()); } } } // A long move static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { // The calling conventions assures us that each VMregpair is either // all really one physical register or adjacent stack slots. // This greatly simplifies the cases here compared to sparc. if (src.is_single_phys_reg() ) { if (dst.is_single_phys_reg()) { if (dst.first() != src.first()) { __ mov(dst.first()->as_Register(), src.first()->as_Register()); } } else { assert(dst.is_single_reg(), "not a stack pair"); __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register()); } } else if (dst.is_single_phys_reg()) { assert(src.is_single_reg(), "not a stack pair"); __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_out(src.first()))); } else { assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs"); __ movq(rax, Address(rbp, reg2offset_in(src.first()))); __ movq(Address(rsp, reg2offset_out(dst.first())), rax); } } // A double move static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { // The calling conventions assures us that each VMregpair is either // all really one physical register or adjacent stack slots. // This greatly simplifies the cases here compared to sparc. if (src.is_single_phys_reg() ) { if (dst.is_single_phys_reg()) { // In theory these overlap but the ordering is such that this is likely a nop if ( src.first() != dst.first()) { __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister()); } } else { assert(dst.is_single_reg(), "not a stack pair"); __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister()); } } else if (dst.is_single_phys_reg()) { assert(src.is_single_reg(), "not a stack pair"); __ movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_out(src.first()))); } else { assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs"); __ movq(rax, Address(rbp, reg2offset_in(src.first()))); __ movq(Address(rsp, reg2offset_out(dst.first())), rax); } } void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { // We always ignore the frame_slots arg and just use the space just below frame pointer // which by this time is free to use switch (ret_type) { case T_FLOAT: __ movflt(Address(rbp, -wordSize), xmm0); break; case T_DOUBLE: __ movdbl(Address(rbp, -wordSize), xmm0); break; case T_VOID: break; default: { __ movptr(Address(rbp, -wordSize), rax); } } } void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { // We always ignore the frame_slots arg and just use the space just below frame pointer // which by this time is free to use switch (ret_type) { case T_FLOAT: __ movflt(xmm0, Address(rbp, -wordSize)); break; case T_DOUBLE: __ movdbl(xmm0, Address(rbp, -wordSize)); break; case T_VOID: break; default: { __ movptr(rax, Address(rbp, -wordSize)); } } } static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) { for ( int i = first_arg ; i < arg_count ; i++ ) { if (args[i].first()->is_Register()) { __ push(args[i].first()->as_Register()); } else if (args[i].first()->is_XMMRegister()) { __ subptr(rsp, 2*wordSize); __ movdbl(Address(rsp, 0), args[i].first()->as_XMMRegister()); } } } static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) { for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) { if (args[i].first()->is_Register()) { __ pop(args[i].first()->as_Register()); } else if (args[i].first()->is_XMMRegister()) { __ movdbl(args[i].first()->as_XMMRegister(), Address(rsp, 0)); __ addptr(rsp, 2*wordSize); } } } static void save_or_restore_arguments(MacroAssembler* masm, const int stack_slots, const int total_in_args, const int arg_save_area, OopMap* map, VMRegPair* in_regs, BasicType* in_sig_bt) { // if map is non-NULL then the code should store the values, // otherwise it should load them. int slot = arg_save_area; // Save down double word first for ( int i = 0; i < total_in_args; i++) { if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) { int offset = slot * VMRegImpl::stack_slot_size; slot += VMRegImpl::slots_per_word; assert(slot <= stack_slots, "overflow"); if (map != NULL) { __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister()); } else { __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset)); } } if (in_regs[i].first()->is_Register() && (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_ARRAY)) { int offset = slot * VMRegImpl::stack_slot_size; if (map != NULL) { __ movq(Address(rsp, offset), in_regs[i].first()->as_Register()); if (in_sig_bt[i] == T_ARRAY) { map->set_oop(VMRegImpl::stack2reg(slot));; } } else { __ movq(in_regs[i].first()->as_Register(), Address(rsp, offset)); } slot += VMRegImpl::slots_per_word; } } // Save or restore single word registers for ( int i = 0; i < total_in_args; i++) { if (in_regs[i].first()->is_Register()) { int offset = slot * VMRegImpl::stack_slot_size; slot++; assert(slot <= stack_slots, "overflow"); // Value is in an input register pass we must flush it to the stack const Register reg = in_regs[i].first()->as_Register(); switch (in_sig_bt[i]) { case T_BOOLEAN: case T_CHAR: case T_BYTE: case T_SHORT: case T_INT: if (map != NULL) { __ movl(Address(rsp, offset), reg); } else { __ movl(reg, Address(rsp, offset)); } break; case T_ARRAY: case T_LONG: // handled above break; case T_OBJECT: default: ShouldNotReachHere(); } } else if (in_regs[i].first()->is_XMMRegister()) { if (in_sig_bt[i] == T_FLOAT) { int offset = slot * VMRegImpl::stack_slot_size; slot++; assert(slot <= stack_slots, "overflow"); if (map != NULL) { __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister()); } else { __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset)); } } } else if (in_regs[i].first()->is_stack()) { if (in_sig_bt[i] == T_ARRAY && map != NULL) { int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots)); } } } } // Check GC_locker::needs_gc and enter the runtime if it's true. This // keeps a new JNI critical region from starting until a GC has been // forced. Save down any oops in registers and describe them in an // OopMap. static void check_needs_gc_for_critical_native(MacroAssembler* masm, int stack_slots, int total_c_args, int total_in_args, int arg_save_area, OopMapSet* oop_maps, VMRegPair* in_regs, BasicType* in_sig_bt) { __ block_comment("check GC_locker::needs_gc"); Label cont; __ cmp8(ExternalAddress((address)GC_locker::needs_gc_address()), false); __ jcc(Assembler::equal, cont); // Save down any incoming oops and call into the runtime to halt for a GC OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/); save_or_restore_arguments(masm, stack_slots, total_in_args, arg_save_area, map, in_regs, in_sig_bt); address the_pc = __ pc(); oop_maps->add_gc_map( __ offset(), map); __ set_last_Java_frame(rsp, noreg, the_pc); __ block_comment("block_for_jni_critical"); __ movptr(c_rarg0, r15_thread); __ mov(r12, rsp); // remember sp __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows __ andptr(rsp, -16); // align stack as required by ABI __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical))); __ mov(rsp, r12); // restore sp __ reinit_heapbase(); __ reset_last_Java_frame(false); save_or_restore_arguments(masm, stack_slots, total_in_args, arg_save_area, NULL, in_regs, in_sig_bt); __ bind(cont); #ifdef ASSERT if (StressCriticalJNINatives) { // Stress register saving OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/); save_or_restore_arguments(masm, stack_slots, total_in_args, arg_save_area, map, in_regs, in_sig_bt); // Destroy argument registers for (int i = 0; i < total_in_args - 1; i++) { if (in_regs[i].first()->is_Register()) { const Register reg = in_regs[i].first()->as_Register(); __ xorptr(reg, reg); } else if (in_regs[i].first()->is_XMMRegister()) { __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister()); } else if (in_regs[i].first()->is_FloatRegister()) { ShouldNotReachHere(); } else if (in_regs[i].first()->is_stack()) { // Nothing to do } else { ShouldNotReachHere(); } if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) { i++; } } save_or_restore_arguments(masm, stack_slots, total_in_args, arg_save_area, NULL, in_regs, in_sig_bt); } #endif } // Unpack an array argument into a pointer to the body and the length // if the array is non-null, otherwise pass 0 for both. static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) { Register tmp_reg = rax; assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg, "possible collision"); assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg, "possible collision"); __ block_comment("unpack_array_argument {"); // Pass the length, ptr pair Label is_null, done; VMRegPair tmp; tmp.set_ptr(tmp_reg->as_VMReg()); if (reg.first()->is_stack()) { // Load the arg up from the stack move_ptr(masm, reg, tmp); reg = tmp; } __ testptr(reg.first()->as_Register(), reg.first()->as_Register()); __ jccb(Assembler::equal, is_null); __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type))); move_ptr(masm, tmp, body_arg); // load the length relative to the body. __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(in_elem_type))); move32_64(masm, tmp, length_arg); __ jmpb(done); __ bind(is_null); // Pass zeros __ xorptr(tmp_reg, tmp_reg); move_ptr(masm, tmp, body_arg); move32_64(masm, tmp, length_arg); __ bind(done); __ block_comment("} unpack_array_argument"); } // Different signatures may require very different orders for the move // to avoid clobbering other arguments. There's no simple way to // order them safely. Compute a safe order for issuing stores and // break any cycles in those stores. This code is fairly general but // it's not necessary on the other platforms so we keep it in the // platform dependent code instead of moving it into a shared file. // (See bugs 7013347 & 7145024.) // Note that this code is specific to LP64. class ComputeMoveOrder: public StackObj { class MoveOperation: public ResourceObj { friend class ComputeMoveOrder; private: VMRegPair _src; VMRegPair _dst; int _src_index; int _dst_index; bool _processed; MoveOperation* _next; MoveOperation* _prev; static int get_id(VMRegPair r) { return r.first()->value(); } public: MoveOperation(int src_index, VMRegPair src, int dst_index, VMRegPair dst): _src(src) , _src_index(src_index) , _dst(dst) , _dst_index(dst_index) , _next(NULL) , _prev(NULL) , _processed(false) { } VMRegPair src() const { return _src; } int src_id() const { return get_id(src()); } int src_index() const { return _src_index; } VMRegPair dst() const { return _dst; } void set_dst(int i, VMRegPair dst) { _dst_index = i, _dst = dst; } int dst_index() const { return _dst_index; } int dst_id() const { return get_id(dst()); } MoveOperation* next() const { return _next; } MoveOperation* prev() const { return _prev; } void set_processed() { _processed = true; } bool is_processed() const { return _processed; } // insert void break_cycle(VMRegPair temp_register) { // create a new store following the last store // to move from the temp_register to the original MoveOperation* new_store = new MoveOperation(-1, temp_register, dst_index(), dst()); // break the cycle of links and insert new_store at the end // break the reverse link. MoveOperation* p = prev(); assert(p->next() == this, "must be"); _prev = NULL; p->_next = new_store; new_store->_prev = p; // change the original store to save it's value in the temp. set_dst(-1, temp_register); } void link(GrowableArray& killer) { // link this store in front the store that it depends on MoveOperation* n = killer.at_grow(src_id(), NULL); if (n != NULL) { assert(_next == NULL && n->_prev == NULL, "shouldn't have been set yet"); _next = n; n->_prev = this; } } }; private: GrowableArray edges; public: ComputeMoveOrder(int total_in_args, VMRegPair* in_regs, int total_c_args, VMRegPair* out_regs, BasicType* in_sig_bt, GrowableArray& arg_order, VMRegPair tmp_vmreg) { // Move operations where the dest is the stack can all be // scheduled first since they can't interfere with the other moves. for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) { if (in_sig_bt[i] == T_ARRAY) { c_arg--; if (out_regs[c_arg].first()->is_stack() && out_regs[c_arg + 1].first()->is_stack()) { arg_order.push(i); arg_order.push(c_arg); } else { if (out_regs[c_arg].first()->is_stack() || in_regs[i].first() == out_regs[c_arg].first()) { add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg + 1]); } else { add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]); } } } else if (in_sig_bt[i] == T_VOID) { arg_order.push(i); arg_order.push(c_arg); } else { if (out_regs[c_arg].first()->is_stack() || in_regs[i].first() == out_regs[c_arg].first()) { arg_order.push(i); arg_order.push(c_arg); } else { add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]); } } } // Break any cycles in the register moves and emit the in the // proper order. GrowableArray* stores = get_store_order(tmp_vmreg); for (int i = 0; i < stores->length(); i++) { arg_order.push(stores->at(i)->src_index()); arg_order.push(stores->at(i)->dst_index()); } } // Collected all the move operations void add_edge(int src_index, VMRegPair src, int dst_index, VMRegPair dst) { if (src.first() == dst.first()) return; edges.append(new MoveOperation(src_index, src, dst_index, dst)); } // Walk the edges breaking cycles between moves. The result list // can be walked in order to produce the proper set of loads GrowableArray* get_store_order(VMRegPair temp_register) { // Record which moves kill which values GrowableArray killer; for (int i = 0; i < edges.length(); i++) { MoveOperation* s = edges.at(i); assert(killer.at_grow(s->dst_id(), NULL) == NULL, "only one killer"); killer.at_put_grow(s->dst_id(), s, NULL); } assert(killer.at_grow(MoveOperation::get_id(temp_register), NULL) == NULL, "make sure temp isn't in the registers that are killed"); // create links between loads and stores for (int i = 0; i < edges.length(); i++) { edges.at(i)->link(killer); } // at this point, all the move operations are chained together // in a doubly linked list. Processing it backwards finds // the beginning of the chain, forwards finds the end. If there's // a cycle it can be broken at any point, so pick an edge and walk // backward until the list ends or we end where we started. GrowableArray* stores = new GrowableArray(); for (int e = 0; e < edges.length(); e++) { MoveOperation* s = edges.at(e); if (!s->is_processed()) { MoveOperation* start = s; // search for the beginning of the chain or cycle while (start->prev() != NULL && start->prev() != s) { start = start->prev(); } if (start->prev() == s) { start->break_cycle(temp_register); } // walk the chain forward inserting to store list while (start != NULL) { stores->append(start); start->set_processed(); start = start->next(); } } } return stores; } }; static void verify_oop_args(MacroAssembler* masm, methodHandle method, const BasicType* sig_bt, const VMRegPair* regs) { Register temp_reg = rbx; // not part of any compiled calling seq if (VerifyOops) { for (int i = 0; i < method->size_of_parameters(); i++) { if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) { VMReg r = regs[i].first(); assert(r->is_valid(), "bad oop arg"); if (r->is_stack()) { __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize)); __ verify_oop(temp_reg); } else { __ verify_oop(r->as_Register()); } } } } } static void gen_special_dispatch(MacroAssembler* masm, methodHandle method, const BasicType* sig_bt, const VMRegPair* regs) { verify_oop_args(masm, method, sig_bt, regs); vmIntrinsics::ID iid = method->intrinsic_id(); // Now write the args into the outgoing interpreter space bool has_receiver = false; Register receiver_reg = noreg; int member_arg_pos = -1; Register member_reg = noreg; int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid); if (ref_kind != 0) { member_arg_pos = method->size_of_parameters() - 1; // trailing MemberName argument member_reg = rbx; // known to be free at this point has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind); } else if (iid == vmIntrinsics::_invokeBasic) { has_receiver = true; } else { fatal(err_msg_res("unexpected intrinsic id %d", iid)); } if (member_reg != noreg) { // Load the member_arg into register, if necessary. SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs); VMReg r = regs[member_arg_pos].first(); if (r->is_stack()) { __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize)); } else { // no data motion is needed member_reg = r->as_Register(); } } if (has_receiver) { // Make sure the receiver is loaded into a register. assert(method->size_of_parameters() > 0, "oob"); assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object"); VMReg r = regs[0].first(); assert(r->is_valid(), "bad receiver arg"); if (r->is_stack()) { // Porting note: This assumes that compiled calling conventions always // pass the receiver oop in a register. If this is not true on some // platform, pick a temp and load the receiver from stack. fatal("receiver always in a register"); receiver_reg = j_rarg0; // known to be free at this point __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize)); } else { // no data motion is needed receiver_reg = r->as_Register(); } } // Figure out which address we are really jumping to: MethodHandles::generate_method_handle_dispatch(masm, iid, receiver_reg, member_reg, /*for_compiler_entry:*/ true); } // --------------------------------------------------------------------------- // Generate a native wrapper for a given method. The method takes arguments // in the Java compiled code convention, marshals them to the native // convention (handlizes oops, etc), transitions to native, makes the call, // returns to java state (possibly blocking), unhandlizes any result and // returns. // // Critical native functions are a shorthand for the use of // GetPrimtiveArrayCritical and disallow the use of any other JNI // functions. The wrapper is expected to unpack the arguments before // passing them to the callee and perform checks before and after the // native call to ensure that they GC_locker // lock_critical/unlock_critical semantics are followed. Some other // parts of JNI setup are skipped like the tear down of the JNI handle // block and the check for pending exceptions it's impossible for them // to be thrown. // // They are roughly structured like this: // if (GC_locker::needs_gc()) // SharedRuntime::block_for_jni_critical(); // tranistion to thread_in_native // unpack arrray arguments and call native entry point // check for safepoint in progress // check if any thread suspend flags are set // call into JVM and possible unlock the JNI critical // if a GC was suppressed while in the critical native. // transition back to thread_in_Java // return to caller // nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm, methodHandle method, int compile_id, BasicType* in_sig_bt, VMRegPair* in_regs, BasicType ret_type) { if (method->is_method_handle_intrinsic()) { vmIntrinsics::ID iid = method->intrinsic_id(); intptr_t start = (intptr_t)__ pc(); int vep_offset = ((intptr_t)__ pc()) - start; gen_special_dispatch(masm, method, in_sig_bt, in_regs); int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period __ flush(); int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually return nmethod::new_native_nmethod(method, compile_id, masm->code(), vep_offset, frame_complete, stack_slots / VMRegImpl::slots_per_word, in_ByteSize(-1), in_ByteSize(-1), (OopMapSet*)NULL); } bool is_critical_native = true; address native_func = method->critical_native_function(); if (native_func == NULL) { native_func = method->native_function(); is_critical_native = false; } assert(native_func != NULL, "must have function"); // An OopMap for lock (and class if static) OopMapSet *oop_maps = new OopMapSet(); intptr_t start = (intptr_t)__ pc(); // We have received a description of where all the java arg are located // on entry to the wrapper. We need to convert these args to where // the jni function will expect them. To figure out where they go // we convert the java signature to a C signature by inserting // the hidden arguments as arg[0] and possibly arg[1] (static method) const int total_in_args = method->size_of_parameters(); int total_c_args = total_in_args; if (!is_critical_native) { total_c_args += 1; if (method->is_static()) { total_c_args++; } } else { for (int i = 0; i < total_in_args; i++) { if (in_sig_bt[i] == T_ARRAY) { total_c_args++; } } } BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args); VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args); BasicType* in_elem_bt = NULL; int argc = 0; if (!is_critical_native) { out_sig_bt[argc++] = T_ADDRESS; if (method->is_static()) { out_sig_bt[argc++] = T_OBJECT; } for (int i = 0; i < total_in_args ; i++ ) { out_sig_bt[argc++] = in_sig_bt[i]; } } else { Thread* THREAD = Thread::current(); in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args); SignatureStream ss(method->signature()); for (int i = 0; i < total_in_args ; i++ ) { if (in_sig_bt[i] == T_ARRAY) { // Arrays are passed as int, elem* pair out_sig_bt[argc++] = T_INT; out_sig_bt[argc++] = T_ADDRESS; Symbol* atype = ss.as_symbol(CHECK_NULL); const char* at = atype->as_C_string(); if (strlen(at) == 2) { assert(at[0] == '[', "must be"); switch (at[1]) { case 'B': in_elem_bt[i] = T_BYTE; break; case 'C': in_elem_bt[i] = T_CHAR; break; case 'D': in_elem_bt[i] = T_DOUBLE; break; case 'F': in_elem_bt[i] = T_FLOAT; break; case 'I': in_elem_bt[i] = T_INT; break; case 'J': in_elem_bt[i] = T_LONG; break; case 'S': in_elem_bt[i] = T_SHORT; break; case 'Z': in_elem_bt[i] = T_BOOLEAN; break; default: ShouldNotReachHere(); } } } else { out_sig_bt[argc++] = in_sig_bt[i]; in_elem_bt[i] = T_VOID; } if (in_sig_bt[i] != T_VOID) { assert(in_sig_bt[i] == ss.type(), "must match"); ss.next(); } } } // Now figure out where the args must be stored and how much stack space // they require. int out_arg_slots; out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args); // Compute framesize for the wrapper. We need to handlize all oops in // incoming registers // Calculate the total number of stack slots we will need. // First count the abi requirement plus all of the outgoing args int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots; // Now the space for the inbound oop handle area int total_save_slots = 6 * VMRegImpl::slots_per_word; // 6 arguments passed in registers if (is_critical_native) { // Critical natives may have to call out so they need a save area // for register arguments. int double_slots = 0; int single_slots = 0; for ( int i = 0; i < total_in_args; i++) { if (in_regs[i].first()->is_Register()) { const Register reg = in_regs[i].first()->as_Register(); switch (in_sig_bt[i]) { case T_BOOLEAN: case T_BYTE: case T_SHORT: case T_CHAR: case T_INT: single_slots++; break; case T_ARRAY: // specific to LP64 (7145024) case T_LONG: double_slots++; break; default: ShouldNotReachHere(); } } else if (in_regs[i].first()->is_XMMRegister()) { switch (in_sig_bt[i]) { case T_FLOAT: single_slots++; break; case T_DOUBLE: double_slots++; break; default: ShouldNotReachHere(); } } else if (in_regs[i].first()->is_FloatRegister()) { ShouldNotReachHere(); } } total_save_slots = double_slots * 2 + single_slots; // align the save area if (double_slots != 0) { stack_slots = round_to(stack_slots, 2); } } int oop_handle_offset = stack_slots; stack_slots += total_save_slots; // Now any space we need for handlizing a klass if static method int klass_slot_offset = 0; int klass_offset = -1; int lock_slot_offset = 0; bool is_static = false; if (method->is_static()) { klass_slot_offset = stack_slots; stack_slots += VMRegImpl::slots_per_word; klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size; is_static = true; } // Plus a lock if needed if (method->is_synchronized()) { lock_slot_offset = stack_slots; stack_slots += VMRegImpl::slots_per_word; } // Now a place (+2) to save return values or temp during shuffling // + 4 for return address (which we own) and saved rbp stack_slots += 6; // Ok The space we have allocated will look like: // // // FP-> | | // |---------------------| // | 2 slots for moves | // |---------------------| // | lock box (if sync) | // |---------------------| <- lock_slot_offset // | klass (if static) | // |---------------------| <- klass_slot_offset // | oopHandle area | // |---------------------| <- oop_handle_offset (6 java arg registers) // | outbound memory | // | based arguments | // | | // |---------------------| // | | // SP-> | out_preserved_slots | // // // Now compute actual number of stack words we need rounding to make // stack properly aligned. stack_slots = round_to(stack_slots, StackAlignmentInSlots); int stack_size = stack_slots * VMRegImpl::stack_slot_size; // First thing make an ic check to see if we should even be here // We are free to use all registers as temps without saving them and // restoring them except rbp. rbp is the only callee save register // as far as the interpreter and the compiler(s) are concerned. const Register ic_reg = rax; const Register receiver = j_rarg0; Label hit; Label exception_pending; assert_different_registers(ic_reg, receiver, rscratch1); __ verify_oop(receiver); __ load_klass(rscratch1, receiver); __ cmpq(ic_reg, rscratch1); __ jcc(Assembler::equal, hit); __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); // Verified entry point must be aligned __ align(8); __ bind(hit); int vep_offset = ((intptr_t)__ pc()) - start; // The instruction at the verified entry point must be 5 bytes or longer // because it can be patched on the fly by make_non_entrant. The stack bang // instruction fits that requirement. // Generate stack overflow check if (UseStackBanging) { __ bang_stack_with_offset(StackShadowPages*os::vm_page_size()); } else { // need a 5 byte instruction to allow MT safe patching to non-entrant __ fat_nop(); } // Generate a new frame for the wrapper. __ enter(); // -2 because return address is already present and so is saved rbp __ subptr(rsp, stack_size - 2*wordSize); // Frame is now completed as far as size and linkage. int frame_complete = ((intptr_t)__ pc()) - start; if (UseRTMLocking) { // Abort RTM transaction before calling JNI // because critical section will be large and will be // aborted anyway. Also nmethod could be deoptimized. __ xabort(0); } #ifdef ASSERT { Label L; __ mov(rax, rsp); __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI) __ cmpptr(rax, rsp); __ jcc(Assembler::equal, L); __ stop("improperly aligned stack"); __ bind(L); } #endif /* ASSERT */ // We use r14 as the oop handle for the receiver/klass // It is callee save so it survives the call to native const Register oop_handle_reg = r14; if (is_critical_native) { check_needs_gc_for_critical_native(masm, stack_slots, total_c_args, total_in_args, oop_handle_offset, oop_maps, in_regs, in_sig_bt); } // // We immediately shuffle the arguments so that any vm call we have to // make from here on out (sync slow path, jvmti, etc.) we will have // captured the oops from our caller and have a valid oopMap for // them. // ----------------- // The Grand Shuffle // The Java calling convention is either equal (linux) or denser (win64) than the // c calling convention. However the because of the jni_env argument the c calling // convention always has at least one more (and two for static) arguments than Java. // Therefore if we move the args from java -> c backwards then we will never have // a register->register conflict and we don't have to build a dependency graph // and figure out how to break any cycles. // // Record esp-based slot for receiver on stack for non-static methods int receiver_offset = -1; // This is a trick. We double the stack slots so we can claim // the oops in the caller's frame. Since we are sure to have // more args than the caller doubling is enough to make // sure we can capture all the incoming oop args from the // caller. // OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/); // Mark location of rbp (someday) // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rbp)); // Use eax, ebx as temporaries during any memory-memory moves we have to do // All inbound args are referenced based on rbp and all outbound args via rsp. #ifdef ASSERT bool reg_destroyed[RegisterImpl::number_of_registers]; bool freg_destroyed[XMMRegisterImpl::number_of_registers]; for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) { reg_destroyed[r] = false; } for ( int f = 0 ; f < XMMRegisterImpl::number_of_registers ; f++ ) { freg_destroyed[f] = false; } #endif /* ASSERT */ // This may iterate in two different directions depending on the // kind of native it is. The reason is that for regular JNI natives // the incoming and outgoing registers are offset upwards and for // critical natives they are offset down. GrowableArray arg_order(2 * total_in_args); VMRegPair tmp_vmreg; tmp_vmreg.set2(rbx->as_VMReg()); if (!is_critical_native) { for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) { arg_order.push(i); arg_order.push(c_arg); } } else { // Compute a valid move order, using tmp_vmreg to break any cycles ComputeMoveOrder cmo(total_in_args, in_regs, total_c_args, out_regs, in_sig_bt, arg_order, tmp_vmreg); } int temploc = -1; for (int ai = 0; ai < arg_order.length(); ai += 2) { int i = arg_order.at(ai); int c_arg = arg_order.at(ai + 1); __ block_comment(err_msg("move %d -> %d", i, c_arg)); if (c_arg == -1) { assert(is_critical_native, "should only be required for critical natives"); // This arg needs to be moved to a temporary __ mov(tmp_vmreg.first()->as_Register(), in_regs[i].first()->as_Register()); in_regs[i] = tmp_vmreg; temploc = i; continue; } else if (i == -1) { assert(is_critical_native, "should only be required for critical natives"); // Read from the temporary location assert(temploc != -1, "must be valid"); i = temploc; temploc = -1; } #ifdef ASSERT if (in_regs[i].first()->is_Register()) { assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!"); } else if (in_regs[i].first()->is_XMMRegister()) { assert(!freg_destroyed[in_regs[i].first()->as_XMMRegister()->encoding()], "destroyed reg!"); } if (out_regs[c_arg].first()->is_Register()) { reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true; } else if (out_regs[c_arg].first()->is_XMMRegister()) { freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true; } #endif /* ASSERT */ switch (in_sig_bt[i]) { case T_ARRAY: if (is_critical_native) { unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]); c_arg++; #ifdef ASSERT if (out_regs[c_arg].first()->is_Register()) { reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true; } else if (out_regs[c_arg].first()->is_XMMRegister()) { freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true; } #endif break; } case T_OBJECT: assert(!is_critical_native, "no oop arguments"); object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg], ((i == 0) && (!is_static)), &receiver_offset); break; case T_VOID: break; case T_FLOAT: float_move(masm, in_regs[i], out_regs[c_arg]); break; case T_DOUBLE: assert( i + 1 < total_in_args && in_sig_bt[i + 1] == T_VOID && out_sig_bt[c_arg+1] == T_VOID, "bad arg list"); double_move(masm, in_regs[i], out_regs[c_arg]); break; case T_LONG : long_move(masm, in_regs[i], out_regs[c_arg]); break; case T_ADDRESS: assert(false, "found T_ADDRESS in java args"); default: move32_64(masm, in_regs[i], out_regs[c_arg]); } } int c_arg; // Pre-load a static method's oop into r14. Used both by locking code and // the normal JNI call code. if (!is_critical_native) { // point c_arg at the first arg that is already loaded in case we // need to spill before we call out c_arg = total_c_args - total_in_args; if (method->is_static()) { // load oop into a register __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror())); // Now handlize the static class mirror it's known not-null. __ movptr(Address(rsp, klass_offset), oop_handle_reg); map->set_oop(VMRegImpl::stack2reg(klass_slot_offset)); // Now get the handle __ lea(oop_handle_reg, Address(rsp, klass_offset)); // store the klass handle as second argument __ movptr(c_rarg1, oop_handle_reg); // and protect the arg if we must spill c_arg--; } } else { // For JNI critical methods we need to save all registers in save_args. c_arg = 0; } // Change state to native (we save the return address in the thread, since it might not // be pushed on the stack when we do a a stack traversal). It is enough that the pc() // points into the right code segment. It does not have to be the correct return pc. // We use the same pc/oopMap repeatedly when we call out intptr_t the_pc = (intptr_t) __ pc(); oop_maps->add_gc_map(the_pc - start, map); __ set_last_Java_frame(rsp, noreg, (address)the_pc); // We have all of the arguments setup at this point. We must not touch any register // argument registers at this point (what if we save/restore them there are no oop? { SkipIfEqual skip(masm, &DTraceMethodProbes, false); // protect the args we've loaded save_args(masm, total_c_args, c_arg, out_regs); __ mov_metadata(c_rarg1, method()); __ call_VM_leaf( CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), r15_thread, c_rarg1); restore_args(masm, total_c_args, c_arg, out_regs); } // RedefineClasses() tracing support for obsolete method entry if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) { // protect the args we've loaded save_args(masm, total_c_args, c_arg, out_regs); __ mov_metadata(c_rarg1, method()); __ call_VM_leaf( CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), r15_thread, c_rarg1); restore_args(masm, total_c_args, c_arg, out_regs); } // Lock a synchronized method // Register definitions used by locking and unlocking const Register swap_reg = rax; // Must use rax for cmpxchg instruction const Register obj_reg = rbx; // Will contain the oop const Register lock_reg = r13; // Address of compiler lock object (BasicLock) const Register old_hdr = r13; // value of old header at unlock time Label slow_path_lock; Label lock_done; if (method->is_synchronized()) { assert(!is_critical_native, "unhandled"); const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes(); // Get the handle (the 2nd argument) __ mov(oop_handle_reg, c_rarg1); // Get address of the box __ lea(lock_reg, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size)); // Load the oop from the handle __ movptr(obj_reg, Address(oop_handle_reg, 0)); if (UseBiasedLocking) { __ biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, lock_done, &slow_path_lock); } // Load immediate 1 into swap_reg %rax __ movl(swap_reg, 1); // Load (object->mark() | 1) into swap_reg %rax __ orptr(swap_reg, Address(obj_reg, 0)); // Save (object->mark() | 1) into BasicLock's displaced header __ movptr(Address(lock_reg, mark_word_offset), swap_reg); if (os::is_MP()) { __ lock(); } // src -> dest iff dest == rax else rax <- dest __ cmpxchgptr(lock_reg, Address(obj_reg, 0)); __ jcc(Assembler::equal, lock_done); // Hmm should this move to the slow path code area??? // Test if the oopMark is an obvious stack pointer, i.e., // 1) (mark & 3) == 0, and // 2) rsp <= mark < mark + os::pagesize() // These 3 tests can be done by evaluating the following // expression: ((mark - rsp) & (3 - os::vm_page_size())), // assuming both stack pointer and pagesize have their // least significant 2 bits clear. // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg __ subptr(swap_reg, rsp); __ andptr(swap_reg, 3 - os::vm_page_size()); // Save the test result, for recursive case, the result is zero __ movptr(Address(lock_reg, mark_word_offset), swap_reg); __ jcc(Assembler::notEqual, slow_path_lock); // Slow path will re-enter here __ bind(lock_done); } // Finally just about ready to make the JNI call // get JNIEnv* which is first argument to native if (!is_critical_native) { __ lea(c_rarg0, Address(r15_thread, in_bytes(JavaThread::jni_environment_offset()))); } // Now set thread in native __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native); __ call(RuntimeAddress(native_func)); // Verify or restore cpu control state after JNI call __ restore_cpu_control_state_after_jni(); // Unpack native results. switch (ret_type) { case T_BOOLEAN: __ c2bool(rax); break; case T_CHAR : __ movzwl(rax, rax); break; case T_BYTE : __ sign_extend_byte (rax); break; case T_SHORT : __ sign_extend_short(rax); break; case T_INT : /* nothing to do */ break; case T_DOUBLE : case T_FLOAT : // Result is in xmm0 we'll save as needed break; case T_ARRAY: // Really a handle case T_OBJECT: // Really a handle break; // can't de-handlize until after safepoint check case T_VOID: break; case T_LONG: break; default : ShouldNotReachHere(); } // Switch thread to "native transition" state before reading the synchronization state. // This additional state is necessary because reading and testing the synchronization // state is not atomic w.r.t. GC, as this scenario demonstrates: // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted. // VM thread changes sync state to synchronizing and suspends threads for GC. // Thread A is resumed to finish this native method, but doesn't block here since it // didn't see any synchronization is progress, and escapes. __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native_trans); if(os::is_MP()) { if (UseMembar) { // Force this write out before the read below __ membar(Assembler::Membar_mask_bits( Assembler::LoadLoad | Assembler::LoadStore | Assembler::StoreLoad | Assembler::StoreStore)); } else { // Write serialization page so VM thread can do a pseudo remote membar. // We use the current thread pointer to calculate a thread specific // offset to write to within the page. This minimizes bus traffic // due to cache line collision. __ serialize_memory(r15_thread, rcx); } } Label after_transition; // check for safepoint operation in progress and/or pending suspend requests { Label Continue; __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()), SafepointSynchronize::_not_synchronized); Label L; __ jcc(Assembler::notEqual, L); __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0); __ jcc(Assembler::equal, Continue); __ bind(L); // Don't use call_VM as it will see a possible pending exception and forward it // and never return here preventing us from clearing _last_native_pc down below. // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are // preserved and correspond to the bcp/locals pointers. So we do a runtime call // by hand. // save_native_result(masm, ret_type, stack_slots); __ mov(c_rarg0, r15_thread); __ mov(r12, rsp); // remember sp __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows __ andptr(rsp, -16); // align stack as required by ABI if (!is_critical_native) { __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans))); } else { __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition))); } __ mov(rsp, r12); // restore sp __ reinit_heapbase(); // Restore any method result value restore_native_result(masm, ret_type, stack_slots); if (is_critical_native) { // The call above performed the transition to thread_in_Java so // skip the transition logic below. __ jmpb(after_transition); } __ bind(Continue); } // change thread state __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java); __ bind(after_transition); Label reguard; Label reguard_done; __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled); __ jcc(Assembler::equal, reguard); __ bind(reguard_done); // native result if any is live // Unlock Label unlock_done; Label slow_path_unlock; if (method->is_synchronized()) { // Get locked oop from the handle we passed to jni __ movptr(obj_reg, Address(oop_handle_reg, 0)); Label done; if (UseBiasedLocking) { __ biased_locking_exit(obj_reg, old_hdr, done); } // Simple recursive lock? __ cmpptr(Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size), (int32_t)NULL_WORD); __ jcc(Assembler::equal, done); // Must save rax if if it is live now because cmpxchg must use it if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { save_native_result(masm, ret_type, stack_slots); } // get address of the stack lock __ lea(rax, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size)); // get old displaced header __ movptr(old_hdr, Address(rax, 0)); // Atomic swap old header if oop still contains the stack lock if (os::is_MP()) { __ lock(); } __ cmpxchgptr(old_hdr, Address(obj_reg, 0)); __ jcc(Assembler::notEqual, slow_path_unlock); // slow path re-enters here __ bind(unlock_done); if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { restore_native_result(masm, ret_type, stack_slots); } __ bind(done); } { SkipIfEqual skip(masm, &DTraceMethodProbes, false); save_native_result(masm, ret_type, stack_slots); __ mov_metadata(c_rarg1, method()); __ call_VM_leaf( CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), r15_thread, c_rarg1); restore_native_result(masm, ret_type, stack_slots); } __ reset_last_Java_frame(false); // Unbox oop result, e.g. JNIHandles::resolve value. if (ret_type == T_OBJECT || ret_type == T_ARRAY) { __ resolve_jobject(rax /* value */, r15_thread /* thread */, rcx /* tmp */); } if (!is_critical_native) { // reset handle block __ movptr(rcx, Address(r15_thread, JavaThread::active_handles_offset())); __ movl(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD); } // pop our frame __ leave(); if (!is_critical_native) { // Any exception pending? __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD); __ jcc(Assembler::notEqual, exception_pending); } // Return __ ret(0); // Unexpected paths are out of line and go here if (!is_critical_native) { // forward the exception __ bind(exception_pending); // and forward the exception __ jump(RuntimeAddress(StubRoutines::forward_exception_entry())); } // Slow path locking & unlocking if (method->is_synchronized()) { // BEGIN Slow path lock __ bind(slow_path_lock); // has last_Java_frame setup. No exceptions so do vanilla call not call_VM // args are (oop obj, BasicLock* lock, JavaThread* thread) // protect the args we've loaded save_args(masm, total_c_args, c_arg, out_regs); __ mov(c_rarg0, obj_reg); __ mov(c_rarg1, lock_reg); __ mov(c_rarg2, r15_thread); // Not a leaf but we have last_Java_frame setup as we want __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3); restore_args(masm, total_c_args, c_arg, out_regs); #ifdef ASSERT { Label L; __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD); __ jcc(Assembler::equal, L); __ stop("no pending exception allowed on exit from monitorenter"); __ bind(L); } #endif __ jmp(lock_done); // END Slow path lock // BEGIN Slow path unlock __ bind(slow_path_unlock); // If we haven't already saved the native result we must save it now as xmm registers // are still exposed. if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) { save_native_result(masm, ret_type, stack_slots); } __ lea(c_rarg1, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size)); __ mov(c_rarg0, obj_reg); __ mov(r12, rsp); // remember sp __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows __ andptr(rsp, -16); // align stack as required by ABI // Save pending exception around call to VM (which contains an EXCEPTION_MARK) // NOTE that obj_reg == rbx currently __ movptr(rbx, Address(r15_thread, in_bytes(Thread::pending_exception_offset()))); __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD); __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C))); __ mov(rsp, r12); // restore sp __ reinit_heapbase(); #ifdef ASSERT { Label L; __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD); __ jcc(Assembler::equal, L); __ stop("no pending exception allowed on exit complete_monitor_unlocking_C"); __ bind(L); } #endif /* ASSERT */ __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), rbx); if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) { restore_native_result(masm, ret_type, stack_slots); } __ jmp(unlock_done); // END Slow path unlock } // synchronized // SLOW PATH Reguard the stack if needed __ bind(reguard); save_native_result(masm, ret_type, stack_slots); __ mov(r12, rsp); // remember sp __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows __ andptr(rsp, -16); // align stack as required by ABI __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages))); __ mov(rsp, r12); // restore sp __ reinit_heapbase(); restore_native_result(masm, ret_type, stack_slots); // and continue __ jmp(reguard_done); __ flush(); nmethod *nm = nmethod::new_native_nmethod(method, compile_id, masm->code(), vep_offset, frame_complete, stack_slots / VMRegImpl::slots_per_word, (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)), in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size), oop_maps); if (is_critical_native) { nm->set_lazy_critical_native(true); } return nm; } #ifdef HAVE_DTRACE_H // --------------------------------------------------------------------------- // Generate a dtrace nmethod for a given signature. The method takes arguments // in the Java compiled code convention, marshals them to the native // abi and then leaves nops at the position you would expect to call a native // function. When the probe is enabled the nops are replaced with a trap // instruction that dtrace inserts and the trace will cause a notification // to dtrace. // // The probes are only able to take primitive types and java/lang/String as // arguments. No other java types are allowed. Strings are converted to utf8 // strings so that from dtrace point of view java strings are converted to C // strings. There is an arbitrary fixed limit on the total space that a method // can use for converting the strings. (256 chars per string in the signature). // So any java string larger then this is truncated. static int fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 }; static bool offsets_initialized = false; nmethod *SharedRuntime::generate_dtrace_nmethod(MacroAssembler *masm, methodHandle method) { // generate_dtrace_nmethod is guarded by a mutex so we are sure to // be single threaded in this method. assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be"); if (!offsets_initialized) { fp_offset[c_rarg0->as_VMReg()->value()] = -1 * wordSize; fp_offset[c_rarg1->as_VMReg()->value()] = -2 * wordSize; fp_offset[c_rarg2->as_VMReg()->value()] = -3 * wordSize; fp_offset[c_rarg3->as_VMReg()->value()] = -4 * wordSize; fp_offset[c_rarg4->as_VMReg()->value()] = -5 * wordSize; fp_offset[c_rarg5->as_VMReg()->value()] = -6 * wordSize; fp_offset[c_farg0->as_VMReg()->value()] = -7 * wordSize; fp_offset[c_farg1->as_VMReg()->value()] = -8 * wordSize; fp_offset[c_farg2->as_VMReg()->value()] = -9 * wordSize; fp_offset[c_farg3->as_VMReg()->value()] = -10 * wordSize; fp_offset[c_farg4->as_VMReg()->value()] = -11 * wordSize; fp_offset[c_farg5->as_VMReg()->value()] = -12 * wordSize; fp_offset[c_farg6->as_VMReg()->value()] = -13 * wordSize; fp_offset[c_farg7->as_VMReg()->value()] = -14 * wordSize; offsets_initialized = true; } // Fill in the signature array, for the calling-convention call. int total_args_passed = method->size_of_parameters(); BasicType* in_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed); VMRegPair *in_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); // The signature we are going to use for the trap that dtrace will see // java/lang/String is converted. We drop "this" and any other object // is converted to NULL. (A one-slot java/lang/Long object reference // is converted to a two-slot long, which is why we double the allocation). BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2); VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2); int i=0; int total_strings = 0; int first_arg_to_pass = 0; int total_c_args = 0; // Skip the receiver as dtrace doesn't want to see it if( !method->is_static() ) { in_sig_bt[i++] = T_OBJECT; first_arg_to_pass = 1; } // We need to convert the java args to where a native (non-jni) function // would expect them. To figure out where they go we convert the java // signature to a C signature. SignatureStream ss(method->signature()); for ( ; !ss.at_return_type(); ss.next()) { BasicType bt = ss.type(); in_sig_bt[i++] = bt; // Collect remaining bits of signature out_sig_bt[total_c_args++] = bt; if( bt == T_OBJECT) { Symbol* s = ss.as_symbol_or_null(); // symbol is created if (s == vmSymbols::java_lang_String()) { total_strings++; out_sig_bt[total_c_args-1] = T_ADDRESS; } else if (s == vmSymbols::java_lang_Boolean() || s == vmSymbols::java_lang_Character() || s == vmSymbols::java_lang_Byte() || s == vmSymbols::java_lang_Short() || s == vmSymbols::java_lang_Integer() || s == vmSymbols::java_lang_Float()) { out_sig_bt[total_c_args-1] = T_INT; } else if (s == vmSymbols::java_lang_Long() || s == vmSymbols::java_lang_Double()) { out_sig_bt[total_c_args-1] = T_LONG; out_sig_bt[total_c_args++] = T_VOID; } } else if ( bt == T_LONG || bt == T_DOUBLE ) { in_sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots // We convert double to long out_sig_bt[total_c_args-1] = T_LONG; out_sig_bt[total_c_args++] = T_VOID; } else if ( bt == T_FLOAT) { // We convert float to int out_sig_bt[total_c_args-1] = T_INT; } } assert(i==total_args_passed, "validly parsed signature"); // Now get the compiled-Java layout as input arguments int comp_args_on_stack; comp_args_on_stack = SharedRuntime::java_calling_convention( in_sig_bt, in_regs, total_args_passed, false); // Now figure out where the args must be stored and how much stack space // they require (neglecting out_preserve_stack_slots but space for storing // the 1st six register arguments). It's weird see int_stk_helper. int out_arg_slots; out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args); // Calculate the total number of stack slots we will need. // First count the abi requirement plus all of the outgoing args int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots; // Now space for the string(s) we must convert int* string_locs = NEW_RESOURCE_ARRAY(int, total_strings + 1); for (i = 0; i < total_strings ; i++) { string_locs[i] = stack_slots; stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size; } // Plus the temps we might need to juggle register args // regs take two slots each stack_slots += (Argument::n_int_register_parameters_c + Argument::n_float_register_parameters_c) * 2; // + 4 for return address (which we own) and saved rbp, stack_slots += 4; // Ok The space we have allocated will look like: // // // FP-> | | // |---------------------| // | string[n] | // |---------------------| <- string_locs[n] // | string[n-1] | // |---------------------| <- string_locs[n-1] // | ... | // | ... | // |---------------------| <- string_locs[1] // | string[0] | // |---------------------| <- string_locs[0] // | outbound memory | // | based arguments | // | | // |---------------------| // | | // SP-> | out_preserved_slots | // // // Now compute actual number of stack words we need rounding to make // stack properly aligned. stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word); int stack_size = stack_slots * VMRegImpl::stack_slot_size; intptr_t start = (intptr_t)__ pc(); // First thing make an ic check to see if we should even be here // We are free to use all registers as temps without saving them and // restoring them except rbp. rbp, is the only callee save register // as far as the interpreter and the compiler(s) are concerned. const Register ic_reg = rax; const Register receiver = rcx; Label hit; Label exception_pending; __ verify_oop(receiver); __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes())); __ jcc(Assembler::equal, hit); __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); // verified entry must be aligned for code patching. // and the first 5 bytes must be in the same cache line // if we align at 8 then we will be sure 5 bytes are in the same line __ align(8); __ bind(hit); int vep_offset = ((intptr_t)__ pc()) - start; // The instruction at the verified entry point must be 5 bytes or longer // because it can be patched on the fly by make_non_entrant. The stack bang // instruction fits that requirement. // Generate stack overflow check if (UseStackBanging) { if (stack_size <= StackShadowPages*os::vm_page_size()) { __ bang_stack_with_offset(StackShadowPages*os::vm_page_size()); } else { __ movl(rax, stack_size); __ bang_stack_size(rax, rbx); } } else { // need a 5 byte instruction to allow MT safe patching to non-entrant __ fat_nop(); } assert(((uintptr_t)__ pc() - start - vep_offset) >= 5, "valid size for make_non_entrant"); // Generate a new frame for the wrapper. __ enter(); // -4 because return address is already present and so is saved rbp, if (stack_size - 2*wordSize != 0) { __ subq(rsp, stack_size - 2*wordSize); } // Frame is now completed as far a size and linkage. int frame_complete = ((intptr_t)__ pc()) - start; int c_arg, j_arg; // State of input register args bool live[ConcreteRegisterImpl::number_of_registers]; live[j_rarg0->as_VMReg()->value()] = false; live[j_rarg1->as_VMReg()->value()] = false; live[j_rarg2->as_VMReg()->value()] = false; live[j_rarg3->as_VMReg()->value()] = false; live[j_rarg4->as_VMReg()->value()] = false; live[j_rarg5->as_VMReg()->value()] = false; live[j_farg0->as_VMReg()->value()] = false; live[j_farg1->as_VMReg()->value()] = false; live[j_farg2->as_VMReg()->value()] = false; live[j_farg3->as_VMReg()->value()] = false; live[j_farg4->as_VMReg()->value()] = false; live[j_farg5->as_VMReg()->value()] = false; live[j_farg6->as_VMReg()->value()] = false; live[j_farg7->as_VMReg()->value()] = false; bool rax_is_zero = false; // All args (except strings) destined for the stack are moved first for (j_arg = first_arg_to_pass, c_arg = 0 ; j_arg < total_args_passed ; j_arg++, c_arg++ ) { VMRegPair src = in_regs[j_arg]; VMRegPair dst = out_regs[c_arg]; // Get the real reg value or a dummy (rsp) int src_reg = src.first()->is_reg() ? src.first()->value() : rsp->as_VMReg()->value(); bool useless = in_sig_bt[j_arg] == T_ARRAY || (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] != T_INT && out_sig_bt[c_arg] != T_ADDRESS && out_sig_bt[c_arg] != T_LONG); live[src_reg] = !useless; if (dst.first()->is_stack()) { // Even though a string arg in a register is still live after this loop // after the string conversion loop (next) it will be dead so we take // advantage of that now for simpler code to manage live. live[src_reg] = false; switch (in_sig_bt[j_arg]) { case T_ARRAY: case T_OBJECT: { Address stack_dst(rsp, reg2offset_out(dst.first())); if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) { // need to unbox a one-word value Register in_reg = rax; if ( src.first()->is_reg() ) { in_reg = src.first()->as_Register(); } else { __ movq(rax, Address(rbp, reg2offset_in(src.first()))); rax_is_zero = false; } Label skipUnbox; __ movptr(Address(rsp, reg2offset_out(dst.first())), (int32_t)NULL_WORD); __ testq(in_reg, in_reg); __ jcc(Assembler::zero, skipUnbox); BasicType bt = out_sig_bt[c_arg]; int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt); Address src1(in_reg, box_offset); if ( bt == T_LONG ) { __ movq(in_reg, src1); __ movq(stack_dst, in_reg); assert(out_sig_bt[c_arg+1] == T_VOID, "must be"); ++c_arg; // skip over T_VOID to keep the loop indices in sync } else { __ movl(in_reg, src1); __ movl(stack_dst, in_reg); } __ bind(skipUnbox); } else if (out_sig_bt[c_arg] != T_ADDRESS) { // Convert the arg to NULL if (!rax_is_zero) { __ xorq(rax, rax); rax_is_zero = true; } __ movq(stack_dst, rax); } } break; case T_VOID: break; case T_FLOAT: // This does the right thing since we know it is destined for the // stack float_move(masm, src, dst); break; case T_DOUBLE: // This does the right thing since we know it is destined for the // stack double_move(masm, src, dst); break; case T_LONG : long_move(masm, src, dst); break; case T_ADDRESS: assert(false, "found T_ADDRESS in java args"); default: move32_64(masm, src, dst); } } } // If we have any strings we must store any register based arg to the stack // This includes any still live xmm registers too. int sid = 0; if (total_strings > 0 ) { for (j_arg = first_arg_to_pass, c_arg = 0 ; j_arg < total_args_passed ; j_arg++, c_arg++ ) { VMRegPair src = in_regs[j_arg]; VMRegPair dst = out_regs[c_arg]; if (src.first()->is_reg()) { Address src_tmp(rbp, fp_offset[src.first()->value()]); // string oops were left untouched by the previous loop even if the // eventual (converted) arg is destined for the stack so park them // away now (except for first) if (out_sig_bt[c_arg] == T_ADDRESS) { Address utf8_addr = Address( rsp, string_locs[sid++] * VMRegImpl::stack_slot_size); if (sid != 1) { // The first string arg won't be killed until after the utf8 // conversion __ movq(utf8_addr, src.first()->as_Register()); } } else if (dst.first()->is_reg()) { if (in_sig_bt[j_arg] == T_FLOAT || in_sig_bt[j_arg] == T_DOUBLE) { // Convert the xmm register to an int and store it in the reserved // location for the eventual c register arg XMMRegister f = src.first()->as_XMMRegister(); if (in_sig_bt[j_arg] == T_FLOAT) { __ movflt(src_tmp, f); } else { __ movdbl(src_tmp, f); } } else { // If the arg is an oop type we don't support don't bother to store // it remember string was handled above. bool useless = in_sig_bt[j_arg] == T_ARRAY || (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] != T_INT && out_sig_bt[c_arg] != T_LONG); if (!useless) { __ movq(src_tmp, src.first()->as_Register()); } } } } if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) { assert(out_sig_bt[c_arg+1] == T_VOID, "must be"); ++c_arg; // skip over T_VOID to keep the loop indices in sync } } // Now that the volatile registers are safe, convert all the strings sid = 0; for (j_arg = first_arg_to_pass, c_arg = 0 ; j_arg < total_args_passed ; j_arg++, c_arg++ ) { if (out_sig_bt[c_arg] == T_ADDRESS) { // It's a string Address utf8_addr = Address( rsp, string_locs[sid++] * VMRegImpl::stack_slot_size); // The first string we find might still be in the original java arg // register VMReg src = in_regs[j_arg].first(); // We will need to eventually save the final argument to the trap // in the von-volatile location dedicated to src. This is the offset // from fp we will use. int src_off = src->is_reg() ? fp_offset[src->value()] : reg2offset_in(src); // This is where the argument will eventually reside VMRegPair dst = out_regs[c_arg]; if (src->is_reg()) { if (sid == 1) { __ movq(c_rarg0, src->as_Register()); } else { __ movq(c_rarg0, utf8_addr); } } else { // arg is still in the original location __ movq(c_rarg0, Address(rbp, reg2offset_in(src))); } Label done, convert; // see if the oop is NULL __ testq(c_rarg0, c_rarg0); __ jcc(Assembler::notEqual, convert); if (dst.first()->is_reg()) { // Save the ptr to utf string in the origina src loc or the tmp // dedicated to it __ movq(Address(rbp, src_off), c_rarg0); } else { __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg0); } __ jmp(done); __ bind(convert); __ lea(c_rarg1, utf8_addr); if (dst.first()->is_reg()) { __ movq(Address(rbp, src_off), c_rarg1); } else { __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg1); } // And do the conversion __ call(RuntimeAddress( CAST_FROM_FN_PTR(address, SharedRuntime::get_utf))); __ bind(done); } if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) { assert(out_sig_bt[c_arg+1] == T_VOID, "must be"); ++c_arg; // skip over T_VOID to keep the loop indices in sync } } // The get_utf call killed all the c_arg registers live[c_rarg0->as_VMReg()->value()] = false; live[c_rarg1->as_VMReg()->value()] = false; live[c_rarg2->as_VMReg()->value()] = false; live[c_rarg3->as_VMReg()->value()] = false; live[c_rarg4->as_VMReg()->value()] = false; live[c_rarg5->as_VMReg()->value()] = false; live[c_farg0->as_VMReg()->value()] = false; live[c_farg1->as_VMReg()->value()] = false; live[c_farg2->as_VMReg()->value()] = false; live[c_farg3->as_VMReg()->value()] = false; live[c_farg4->as_VMReg()->value()] = false; live[c_farg5->as_VMReg()->value()] = false; live[c_farg6->as_VMReg()->value()] = false; live[c_farg7->as_VMReg()->value()] = false; } // Now we can finally move the register args to their desired locations rax_is_zero = false; for (j_arg = first_arg_to_pass, c_arg = 0 ; j_arg < total_args_passed ; j_arg++, c_arg++ ) { VMRegPair src = in_regs[j_arg]; VMRegPair dst = out_regs[c_arg]; // Only need to look for args destined for the interger registers (since we // convert float/double args to look like int/long outbound) if (dst.first()->is_reg()) { Register r = dst.first()->as_Register(); // Check if the java arg is unsupported and thereofre useless bool useless = in_sig_bt[j_arg] == T_ARRAY || (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] != T_INT && out_sig_bt[c_arg] != T_ADDRESS && out_sig_bt[c_arg] != T_LONG); // If we're going to kill an existing arg save it first if (live[dst.first()->value()]) { // you can't kill yourself if (src.first() != dst.first()) { __ movq(Address(rbp, fp_offset[dst.first()->value()]), r); } } if (src.first()->is_reg()) { if (live[src.first()->value()] ) { if (in_sig_bt[j_arg] == T_FLOAT) { __ movdl(r, src.first()->as_XMMRegister()); } else if (in_sig_bt[j_arg] == T_DOUBLE) { __ movdq(r, src.first()->as_XMMRegister()); } else if (r != src.first()->as_Register()) { if (!useless) { __ movq(r, src.first()->as_Register()); } } } else { // If the arg is an oop type we don't support don't bother to store // it if (!useless) { if (in_sig_bt[j_arg] == T_DOUBLE || in_sig_bt[j_arg] == T_LONG || in_sig_bt[j_arg] == T_OBJECT ) { __ movq(r, Address(rbp, fp_offset[src.first()->value()])); } else { __ movl(r, Address(rbp, fp_offset[src.first()->value()])); } } } live[src.first()->value()] = false; } else if (!useless) { // full sized move even for int should be ok __ movq(r, Address(rbp, reg2offset_in(src.first()))); } // At this point r has the original java arg in the final location // (assuming it wasn't useless). If the java arg was an oop // we have a bit more to do if (in_sig_bt[j_arg] == T_ARRAY || in_sig_bt[j_arg] == T_OBJECT ) { if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) { // need to unbox a one-word value Label skip; __ testq(r, r); __ jcc(Assembler::equal, skip); BasicType bt = out_sig_bt[c_arg]; int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt); Address src1(r, box_offset); if ( bt == T_LONG ) { __ movq(r, src1); } else { __ movl(r, src1); } __ bind(skip); } else if (out_sig_bt[c_arg] != T_ADDRESS) { // Convert the arg to NULL __ xorq(r, r); } } // dst can longer be holding an input value live[dst.first()->value()] = false; } if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) { assert(out_sig_bt[c_arg+1] == T_VOID, "must be"); ++c_arg; // skip over T_VOID to keep the loop indices in sync } } // Ok now we are done. Need to place the nop that dtrace wants in order to // patch in the trap int patch_offset = ((intptr_t)__ pc()) - start; __ nop(); // Return __ leave(); __ ret(0); __ flush(); nmethod *nm = nmethod::new_dtrace_nmethod( method, masm->code(), vep_offset, patch_offset, frame_complete, stack_slots / VMRegImpl::slots_per_word); return nm; } #endif // HAVE_DTRACE_H // this function returns the adjust size (in number of words) to a c2i adapter // activation for use during deoptimization int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) { return (callee_locals - callee_parameters) * Interpreter::stackElementWords; } uint SharedRuntime::out_preserve_stack_slots() { return 0; } //------------------------------generate_deopt_blob---------------------------- void SharedRuntime::generate_deopt_blob() { // Allocate space for the code ResourceMark rm; // Setup code generation tools CodeBuffer buffer("deopt_blob", 2048, 1024); MacroAssembler* masm = new MacroAssembler(&buffer); int frame_size_in_words; OopMap* map = NULL; OopMapSet *oop_maps = new OopMapSet(); // ------------- // This code enters when returning to a de-optimized nmethod. A return // address has been pushed on the the stack, and return values are in // registers. // If we are doing a normal deopt then we were called from the patched // nmethod from the point we returned to the nmethod. So the return // address on the stack is wrong by NativeCall::instruction_size // We will adjust the value so it looks like we have the original return // address on the stack (like when we eagerly deoptimized). // In the case of an exception pending when deoptimizing, we enter // with a return address on the stack that points after the call we patched // into the exception handler. We have the following register state from, // e.g., the forward exception stub (see stubGenerator_x86_64.cpp). // rax: exception oop // rbx: exception handler // rdx: throwing pc // So in this case we simply jam rdx into the useless return address and // the stack looks just like we want. // // At this point we need to de-opt. We save the argument return // registers. We call the first C routine, fetch_unroll_info(). This // routine captures the return values and returns a structure which // describes the current frame size and the sizes of all replacement frames. // The current frame is compiled code and may contain many inlined // functions, each with their own JVM state. We pop the current frame, then // push all the new frames. Then we call the C routine unpack_frames() to // populate these frames. Finally unpack_frames() returns us the new target // address. Notice that callee-save registers are BLOWN here; they have // already been captured in the vframeArray at the time the return PC was // patched. address start = __ pc(); Label cont; // Prolog for non exception case! // Save everything in sight. map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words); // Normal deoptimization. Save exec mode for unpack_frames. __ movl(r14, Deoptimization::Unpack_deopt); // callee-saved __ jmp(cont); int reexecute_offset = __ pc() - start; // Reexecute case // return address is the pc describes what bci to do re-execute at // No need to update map as each call to save_live_registers will produce identical oopmap (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words); __ movl(r14, Deoptimization::Unpack_reexecute); // callee-saved __ jmp(cont); int exception_offset = __ pc() - start; // Prolog for exception case // all registers are dead at this entry point, except for rax, and // rdx which contain the exception oop and exception pc // respectively. Set them in TLS and fall thru to the // unpack_with_exception_in_tls entry point. __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx); __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), rax); int exception_in_tls_offset = __ pc() - start; // new implementation because exception oop is now passed in JavaThread // Prolog for exception case // All registers must be preserved because they might be used by LinearScan // Exceptiop oop and throwing PC are passed in JavaThread // tos: stack at point of call to method that threw the exception (i.e. only // args are on the stack, no return address) // make room on stack for the return address // It will be patched later with the throwing pc. The correct value is not // available now because loading it from memory would destroy registers. __ push(0); // Save everything in sight. map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words); // Now it is safe to overwrite any register // Deopt during an exception. Save exec mode for unpack_frames. __ movl(r14, Deoptimization::Unpack_exception); // callee-saved // load throwing pc from JavaThread and patch it as the return address // of the current frame. Then clear the field in JavaThread __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset())); __ movptr(Address(rbp, wordSize), rdx); __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD); #ifdef ASSERT // verify that there is really an exception oop in JavaThread __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset())); __ verify_oop(rax); // verify that there is no pending exception Label no_pending_exception; __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset())); __ testptr(rax, rax); __ jcc(Assembler::zero, no_pending_exception); __ stop("must not have pending exception here"); __ bind(no_pending_exception); #endif __ bind(cont); // Call C code. Need thread and this frame, but NOT official VM entry // crud. We cannot block on this call, no GC can happen. // // UnrollBlock* fetch_unroll_info(JavaThread* thread) // fetch_unroll_info needs to call last_java_frame(). __ set_last_Java_frame(noreg, noreg, NULL); #ifdef ASSERT { Label L; __ cmpptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), (int32_t)0); __ jcc(Assembler::equal, L); __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared"); __ bind(L); } #endif // ASSERT __ mov(c_rarg0, r15_thread); __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info))); // Need to have an oopmap that tells fetch_unroll_info where to // find any register it might need. oop_maps->add_gc_map(__ pc() - start, map); __ reset_last_Java_frame(false); // Load UnrollBlock* into rdi __ mov(rdi, rax); Label noException; __ cmpl(r14, Deoptimization::Unpack_exception); // Was exception pending? __ jcc(Assembler::notEqual, noException); __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset())); // QQQ this is useless it was NULL above __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset())); __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD); __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD); __ verify_oop(rax); // Overwrite the result registers with the exception results. __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax); // I think this is useless __ movptr(Address(rsp, RegisterSaver::rdx_offset_in_bytes()), rdx); __ bind(noException); // Only register save data is on the stack. // Now restore the result registers. Everything else is either dead // or captured in the vframeArray. RegisterSaver::restore_result_registers(masm); // All of the register save area has been popped of the stack. Only the // return address remains. // Pop all the frames we must move/replace. // // Frame picture (youngest to oldest) // 1: self-frame (no frame link) // 2: deopting frame (no frame link) // 3: caller of deopting frame (could be compiled/interpreted). // // Note: by leaving the return address of self-frame on the stack // and using the size of frame 2 to adjust the stack // when we are done the return to frame 3 will still be on the stack. // Pop deoptimized frame __ movl(rcx, Address(rdi, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes())); __ addptr(rsp, rcx); // rsp should be pointing at the return address to the caller (3) // Pick up the initial fp we should save // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved) __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes())); #ifdef ASSERT // Compilers generate code that bang the stack by as much as the // interpreter would need. So this stack banging should never // trigger a fault. Verify that it does not on non product builds. if (UseStackBanging) { __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes())); __ bang_stack_size(rbx, rcx); } #endif // Load address of array of frame pcs into rcx __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes())); // Trash the old pc __ addptr(rsp, wordSize); // Load address of array of frame sizes into rsi __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes())); // Load counter into rdx __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes())); // Now adjust the caller's stack to make up for the extra locals // but record the original sp so that we can save it in the skeletal interpreter // frame and the stack walking of interpreter_sender will get the unextended sp // value and not the "real" sp value. const Register sender_sp = r8; __ mov(sender_sp, rsp); __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock:: caller_adjustment_offset_in_bytes())); __ subptr(rsp, rbx); // Push interpreter frames in a loop Label loop; __ bind(loop); __ movptr(rbx, Address(rsi, 0)); // Load frame size #ifdef CC_INTERP __ subptr(rbx, 4*wordSize); // we'll push pc and ebp by hand and #ifdef ASSERT __ push(0xDEADDEAD); // Make a recognizable pattern __ push(0xDEADDEAD); #else /* ASSERT */ __ subptr(rsp, 2*wordSize); // skip the "static long no_param" #endif /* ASSERT */ #else __ subptr(rbx, 2*wordSize); // We'll push pc and ebp by hand #endif // CC_INTERP __ pushptr(Address(rcx, 0)); // Save return address __ enter(); // Save old & set new ebp __ subptr(rsp, rbx); // Prolog #ifdef CC_INTERP __ movptr(Address(rbp, -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))), sender_sp); // Make it walkable #else /* CC_INTERP */ // This value is corrected by layout_activation_impl __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD ); __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), sender_sp); // Make it walkable #endif /* CC_INTERP */ __ mov(sender_sp, rsp); // Pass sender_sp to next frame __ addptr(rsi, wordSize); // Bump array pointer (sizes) __ addptr(rcx, wordSize); // Bump array pointer (pcs) __ decrementl(rdx); // Decrement counter __ jcc(Assembler::notZero, loop); __ pushptr(Address(rcx, 0)); // Save final return address // Re-push self-frame __ enter(); // Save old & set new ebp // Allocate a full sized register save area. // Return address and rbp are in place, so we allocate two less words. __ subptr(rsp, (frame_size_in_words - 2) * wordSize); // Restore frame locals after moving the frame __ movdbl(Address(rsp, RegisterSaver::xmm0_offset_in_bytes()), xmm0); __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax); // Call C code. Need thread but NOT official VM entry // crud. We cannot block on this call, no GC can happen. Call should // restore return values to their stack-slots with the new SP. // // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode) // Use rbp because the frames look interpreted now // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP. // Don't need the precise return PC here, just precise enough to point into this code blob. address the_pc = __ pc(); __ set_last_Java_frame(noreg, rbp, the_pc); __ andptr(rsp, -(StackAlignmentInBytes)); // Fix stack alignment as required by ABI __ mov(c_rarg0, r15_thread); __ movl(c_rarg1, r14); // second arg: exec_mode __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames))); // Revert SP alignment after call since we're going to do some SP relative addressing below __ movptr(rsp, Address(r15_thread, JavaThread::last_Java_sp_offset())); // Set an oopmap for the call site // Use the same PC we used for the last java frame oop_maps->add_gc_map(the_pc - start, new OopMap( frame_size_in_words, 0 )); // Clear fp AND pc __ reset_last_Java_frame(true); // Collect return values __ movdbl(xmm0, Address(rsp, RegisterSaver::xmm0_offset_in_bytes())); __ movptr(rax, Address(rsp, RegisterSaver::rax_offset_in_bytes())); // I think this is useless (throwing pc?) __ movptr(rdx, Address(rsp, RegisterSaver::rdx_offset_in_bytes())); // Pop self-frame. __ leave(); // Epilog // Jump to interpreter __ ret(0); // Make sure all code is generated masm->flush(); _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words); _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset); } #ifdef COMPILER2 //------------------------------generate_uncommon_trap_blob-------------------- void SharedRuntime::generate_uncommon_trap_blob() { // Allocate space for the code ResourceMark rm; // Setup code generation tools CodeBuffer buffer("uncommon_trap_blob", 2048, 1024); MacroAssembler* masm = new MacroAssembler(&buffer); assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned"); address start = __ pc(); if (UseRTMLocking) { // Abort RTM transaction before possible nmethod deoptimization. __ xabort(0); } // Push self-frame. We get here with a return address on the // stack, so rsp is 8-byte aligned until we allocate our frame. __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog! // No callee saved registers. rbp is assumed implicitly saved __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp); // compiler left unloaded_class_index in j_rarg0 move to where the // runtime expects it. __ movl(c_rarg1, j_rarg0); __ set_last_Java_frame(noreg, noreg, NULL); // Call C code. Need thread but NOT official VM entry // crud. We cannot block on this call, no GC can happen. Call should // capture callee-saved registers as well as return values. // Thread is in rdi already. // // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index); __ mov(c_rarg0, r15_thread); __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap))); // Set an oopmap for the call site OopMapSet* oop_maps = new OopMapSet(); OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0); // location of rbp is known implicitly by the frame sender code oop_maps->add_gc_map(__ pc() - start, map); __ reset_last_Java_frame(false); // Load UnrollBlock* into rdi __ mov(rdi, rax); // Pop all the frames we must move/replace. // // Frame picture (youngest to oldest) // 1: self-frame (no frame link) // 2: deopting frame (no frame link) // 3: caller of deopting frame (could be compiled/interpreted). // Pop self-frame. We have no frame, and must rely only on rax and rsp. __ addptr(rsp, (SimpleRuntimeFrame::framesize - 2) << LogBytesPerInt); // Epilog! // Pop deoptimized frame (int) __ movl(rcx, Address(rdi, Deoptimization::UnrollBlock:: size_of_deoptimized_frame_offset_in_bytes())); __ addptr(rsp, rcx); // rsp should be pointing at the return address to the caller (3) // Pick up the initial fp we should save // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved) __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes())); #ifdef ASSERT // Compilers generate code that bang the stack by as much as the // interpreter would need. So this stack banging should never // trigger a fault. Verify that it does not on non product builds. if (UseStackBanging) { __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes())); __ bang_stack_size(rbx, rcx); } #endif // Load address of array of frame pcs into rcx (address*) __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes())); // Trash the return pc __ addptr(rsp, wordSize); // Load address of array of frame sizes into rsi (intptr_t*) __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock:: frame_sizes_offset_in_bytes())); // Counter __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock:: number_of_frames_offset_in_bytes())); // (int) // Now adjust the caller's stack to make up for the extra locals but // record the original sp so that we can save it in the skeletal // interpreter frame and the stack walking of interpreter_sender // will get the unextended sp value and not the "real" sp value. const Register sender_sp = r8; __ mov(sender_sp, rsp); __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock:: caller_adjustment_offset_in_bytes())); // (int) __ subptr(rsp, rbx); // Push interpreter frames in a loop Label loop; __ bind(loop); __ movptr(rbx, Address(rsi, 0)); // Load frame size __ subptr(rbx, 2 * wordSize); // We'll push pc and rbp by hand __ pushptr(Address(rcx, 0)); // Save return address __ enter(); // Save old & set new rbp __ subptr(rsp, rbx); // Prolog #ifdef CC_INTERP __ movptr(Address(rbp, -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))), sender_sp); // Make it walkable #else // CC_INTERP __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), sender_sp); // Make it walkable // This value is corrected by layout_activation_impl __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD ); #endif // CC_INTERP __ mov(sender_sp, rsp); // Pass sender_sp to next frame __ addptr(rsi, wordSize); // Bump array pointer (sizes) __ addptr(rcx, wordSize); // Bump array pointer (pcs) __ decrementl(rdx); // Decrement counter __ jcc(Assembler::notZero, loop); __ pushptr(Address(rcx, 0)); // Save final return address // Re-push self-frame __ enter(); // Save old & set new rbp __ subptr(rsp, (SimpleRuntimeFrame::framesize - 4) << LogBytesPerInt); // Prolog // Use rbp because the frames look interpreted now // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP. // Don't need the precise return PC here, just precise enough to point into this code blob. address the_pc = __ pc(); __ set_last_Java_frame(noreg, rbp, the_pc); // Call C code. Need thread but NOT official VM entry // crud. We cannot block on this call, no GC can happen. Call should // restore return values to their stack-slots with the new SP. // Thread is in rdi already. // // BasicType unpack_frames(JavaThread* thread, int exec_mode); __ andptr(rsp, -(StackAlignmentInBytes)); // Align SP as required by ABI __ mov(c_rarg0, r15_thread); __ movl(c_rarg1, Deoptimization::Unpack_uncommon_trap); __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames))); // Set an oopmap for the call site // Use the same PC we used for the last java frame oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0)); // Clear fp AND pc __ reset_last_Java_frame(true); // Pop self-frame. __ leave(); // Epilog // Jump to interpreter __ ret(0); // Make sure all code is generated masm->flush(); _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1); } #endif // COMPILER2 //------------------------------generate_handler_blob------ // // Generate a special Compile2Runtime blob that saves all registers, // and setup oopmap. // SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) { assert(StubRoutines::forward_exception_entry() != NULL, "must be generated before"); ResourceMark rm; OopMapSet *oop_maps = new OopMapSet(); OopMap* map; // Allocate space for the code. Setup code generation tools. CodeBuffer buffer("handler_blob", 2048, 1024); MacroAssembler* masm = new MacroAssembler(&buffer); address start = __ pc(); address call_pc = NULL; int frame_size_in_words; bool cause_return = (poll_type == POLL_AT_RETURN); bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP); if (UseRTMLocking) { // Abort RTM transaction before calling runtime // because critical section will be large and will be // aborted anyway. Also nmethod could be deoptimized. __ xabort(0); } // Make room for return address (or push it again) if (!cause_return) { __ push(rbx); } // Save registers, fpu state, and flags map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, save_vectors); // The following is basically a call_VM. However, we need the precise // address of the call in order to generate an oopmap. Hence, we do all the // work outselves. __ set_last_Java_frame(noreg, noreg, NULL); // The return address must always be correct so that frame constructor never // sees an invalid pc. if (!cause_return) { // overwrite the dummy value we pushed on entry __ movptr(c_rarg0, Address(r15_thread, JavaThread::saved_exception_pc_offset())); __ movptr(Address(rbp, wordSize), c_rarg0); } // Do the call __ mov(c_rarg0, r15_thread); __ call(RuntimeAddress(call_ptr)); // Set an oopmap for the call site. This oopmap will map all // oop-registers and debug-info registers as callee-saved. This // will allow deoptimization at this safepoint to find all possible // debug-info recordings, as well as let GC find all oops. oop_maps->add_gc_map( __ pc() - start, map); Label noException; __ reset_last_Java_frame(false); __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD); __ jcc(Assembler::equal, noException); // Exception pending RegisterSaver::restore_live_registers(masm, save_vectors); __ jump(RuntimeAddress(StubRoutines::forward_exception_entry())); // No exception case __ bind(noException); // Normal exit, restore registers and exit. RegisterSaver::restore_live_registers(masm, save_vectors); __ ret(0); // Make sure all code is generated masm->flush(); // Fill-out other meta info return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words); } // // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss // // Generate a stub that calls into vm to find out the proper destination // of a java call. All the argument registers are live at this point // but since this is generic code we don't know what they are and the caller // must do any gc of the args. // RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) { assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before"); // allocate space for the code ResourceMark rm; CodeBuffer buffer(name, 1000, 512); MacroAssembler* masm = new MacroAssembler(&buffer); int frame_size_in_words; OopMapSet *oop_maps = new OopMapSet(); OopMap* map = NULL; int start = __ offset(); map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words); int frame_complete = __ offset(); __ set_last_Java_frame(noreg, noreg, NULL); __ mov(c_rarg0, r15_thread); __ call(RuntimeAddress(destination)); // Set an oopmap for the call site. // We need this not only for callee-saved registers, but also for volatile // registers that the compiler might be keeping live across a safepoint. oop_maps->add_gc_map( __ offset() - start, map); // rax contains the address we are going to jump to assuming no exception got installed // clear last_Java_sp __ reset_last_Java_frame(false); // check for pending exceptions Label pending; __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD); __ jcc(Assembler::notEqual, pending); // get the returned Method* __ get_vm_result_2(rbx, r15_thread); __ movptr(Address(rsp, RegisterSaver::rbx_offset_in_bytes()), rbx); __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax); RegisterSaver::restore_live_registers(masm); // We are back the the original state on entry and ready to go. __ jmp(rax); // Pending exception after the safepoint __ bind(pending); RegisterSaver::restore_live_registers(masm); // exception pending => remove activation and forward to exception handler __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), (int)NULL_WORD); __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset())); __ jump(RuntimeAddress(StubRoutines::forward_exception_entry())); // ------------- // make sure all code is generated masm->flush(); // return the blob // frame_size_words or bytes?? return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true); } //------------------------------Montgomery multiplication------------------------ // #ifndef _WINDOWS #define ASM_SUBTRACT #ifdef ASM_SUBTRACT // Subtract 0:b from carry:a. Return carry. static unsigned long sub(unsigned long a[], unsigned long b[], unsigned long carry, long len) { long i = 0, cnt = len; unsigned long tmp; asm volatile("clc; " "0: ; " "mov (%[b], %[i], 8), %[tmp]; " "sbb %[tmp], (%[a], %[i], 8); " "inc %[i]; dec %[cnt]; " "jne 0b; " "mov %[carry], %[tmp]; sbb $0, %[tmp]; " : [i]"+r"(i), [cnt]"+r"(cnt), [tmp]"=&r"(tmp) : [a]"r"(a), [b]"r"(b), [carry]"r"(carry) : "memory"); return tmp; } #else // ASM_SUBTRACT typedef int __attribute__((mode(TI))) int128; // Subtract 0:b from carry:a. Return carry. static unsigned long sub(unsigned long a[], unsigned long b[], unsigned long carry, int len) { int128 tmp = 0; int i; for (i = 0; i < len; i++) { tmp += a[i]; tmp -= b[i]; a[i] = tmp; tmp >>= 64; assert(-1 <= tmp && tmp <= 0, "invariant"); } return tmp + carry; } #endif // ! ASM_SUBTRACT // Multiply (unsigned) Long A by Long B, accumulating the double- // length result into the accumulator formed of T0, T1, and T2. #define MACC(A, B, T0, T1, T2) \ do { \ unsigned long hi, lo; \ asm volatile("mul %5; add %%rax, %2; adc %%rdx, %3; adc $0, %4" \ : "=&d"(hi), "=a"(lo), "+r"(T0), "+r"(T1), "+g"(T2) \ : "r"(A), "a"(B) : "cc"); \ } while(0) // As above, but add twice the double-length result into the // accumulator. #define MACC2(A, B, T0, T1, T2) \ do { \ unsigned long hi, lo; \ asm volatile("mul %5; add %%rax, %2; adc %%rdx, %3; adc $0, %4;" \ "add %%rax, %2; adc %%rdx, %3; adc $0, %4" \ : "=&d"(hi), "=a"(lo), "+r"(T0), "+r"(T1), "+g"(T2) \ : "r"(A), "a"(B) : "cc"); \ } while(0) // Fast Montgomery multiplication. The derivation of the algorithm is // in A Cryptographic Library for the Motorola DSP56000, // Dusse and Kaliski, Proc. EUROCRYPT 90, pp. 230-237. static void __attribute__((noinline)) montgomery_multiply(unsigned long a[], unsigned long b[], unsigned long n[], unsigned long m[], unsigned long inv, int len) { unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator int i; assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply"); for (i = 0; i < len; i++) { int j; for (j = 0; j < i; j++) { MACC(a[j], b[i-j], t0, t1, t2); MACC(m[j], n[i-j], t0, t1, t2); } MACC(a[i], b[0], t0, t1, t2); m[i] = t0 * inv; MACC(m[i], n[0], t0, t1, t2); assert(t0 == 0, "broken Montgomery multiply"); t0 = t1; t1 = t2; t2 = 0; } for (i = len; i < 2*len; i++) { int j; for (j = i-len+1; j < len; j++) { MACC(a[j], b[i-j], t0, t1, t2); MACC(m[j], n[i-j], t0, t1, t2); } m[i-len] = t0; t0 = t1; t1 = t2; t2 = 0; } while (t0) t0 = sub(m, n, t0, len); } // Fast Montgomery squaring. This uses asymptotically 25% fewer // multiplies so it should be up to 25% faster than Montgomery // multiplication. However, its loop control is more complex and it // may actually run slower on some machines. static void __attribute__((noinline)) montgomery_square(unsigned long a[], unsigned long n[], unsigned long m[], unsigned long inv, int len) { unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator int i; assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply"); for (i = 0; i < len; i++) { int j; int end = (i+1)/2; for (j = 0; j < end; j++) { MACC2(a[j], a[i-j], t0, t1, t2); MACC(m[j], n[i-j], t0, t1, t2); } if ((i & 1) == 0) { MACC(a[j], a[j], t0, t1, t2); } for (; j < i; j++) { MACC(m[j], n[i-j], t0, t1, t2); } m[i] = t0 * inv; MACC(m[i], n[0], t0, t1, t2); assert(t0 == 0, "broken Montgomery square"); t0 = t1; t1 = t2; t2 = 0; } for (i = len; i < 2*len; i++) { int start = i-len+1; int end = start + (len - start)/2; int j; for (j = start; j < end; j++) { MACC2(a[j], a[i-j], t0, t1, t2); MACC(m[j], n[i-j], t0, t1, t2); } if ((i & 1) == 0) { MACC(a[j], a[j], t0, t1, t2); } for (; j < len; j++) { MACC(m[j], n[i-j], t0, t1, t2); } m[i-len] = t0; t0 = t1; t1 = t2; t2 = 0; } while (t0) t0 = sub(m, n, t0, len); } // Swap words in a longword. static unsigned long swap(unsigned long x) { return (x << 32) | (x >> 32); } // Copy len longwords from s to d, word-swapping as we go. The // destination array is reversed. static void reverse_words(unsigned long *s, unsigned long *d, int len) { d += len; while(len-- > 0) { d--; *d = swap(*s); s++; } } // The threshold at which squaring is advantageous was determined // experimentally on an i7-3930K (Ivy Bridge) CPU @ 3.5GHz. #define MONTGOMERY_SQUARING_THRESHOLD 64 void SharedRuntime::montgomery_multiply(jint *a_ints, jint *b_ints, jint *n_ints, jint len, jlong inv, jint *m_ints) { assert(len % 2 == 0, "array length in montgomery_multiply must be even"); int longwords = len/2; // Make very sure we don't use so much space that the stack might // overflow. 512 jints corresponds to an 16384-bit integer and // will use here a total of 8k bytes of stack space. int total_allocation = longwords * sizeof (unsigned long) * 4; guarantee(total_allocation <= 8192, "must be"); unsigned long *scratch = (unsigned long *)alloca(total_allocation); // Local scratch arrays unsigned long *a = scratch + 0 * longwords, *b = scratch + 1 * longwords, *n = scratch + 2 * longwords, *m = scratch + 3 * longwords; reverse_words((unsigned long *)a_ints, a, longwords); reverse_words((unsigned long *)b_ints, b, longwords); reverse_words((unsigned long *)n_ints, n, longwords); ::montgomery_multiply(a, b, n, m, (unsigned long)inv, longwords); reverse_words(m, (unsigned long *)m_ints, longwords); } void SharedRuntime::montgomery_square(jint *a_ints, jint *n_ints, jint len, jlong inv, jint *m_ints) { assert(len % 2 == 0, "array length in montgomery_square must be even"); int longwords = len/2; // Make very sure we don't use so much space that the stack might // overflow. 512 jints corresponds to an 16384-bit integer and // will use here a total of 6k bytes of stack space. int total_allocation = longwords * sizeof (unsigned long) * 3; guarantee(total_allocation <= 8192, "must be"); unsigned long *scratch = (unsigned long *)alloca(total_allocation); // Local scratch arrays unsigned long *a = scratch + 0 * longwords, *n = scratch + 1 * longwords, *m = scratch + 2 * longwords; reverse_words((unsigned long *)a_ints, a, longwords); reverse_words((unsigned long *)n_ints, n, longwords); //montgomery_square fails to pass BigIntegerTest on solaris amd64 //on jdk7 and jdk8. #ifndef SOLARIS if (len >= MONTGOMERY_SQUARING_THRESHOLD) { #else if (0) { #endif ::montgomery_square(a, n, m, (unsigned long)inv, longwords); } else { ::montgomery_multiply(a, a, n, m, (unsigned long)inv, longwords); } reverse_words(m, (unsigned long *)m_ints, longwords); } #endif // WINDOWS #ifdef COMPILER2 // This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame // //------------------------------generate_exception_blob--------------------------- // creates exception blob at the end // Using exception blob, this code is jumped from a compiled method. // (see emit_exception_handler in x86_64.ad file) // // Given an exception pc at a call we call into the runtime for the // handler in this method. This handler might merely restore state // (i.e. callee save registers) unwind the frame and jump to the // exception handler for the nmethod if there is no Java level handler // for the nmethod. // // This code is entered with a jmp. // // Arguments: // rax: exception oop // rdx: exception pc // // Results: // rax: exception oop // rdx: exception pc in caller or ??? // destination: exception handler of caller // // Note: the exception pc MUST be at a call (precise debug information) // Registers rax, rdx, rcx, rsi, rdi, r8-r11 are not callee saved. // void OptoRuntime::generate_exception_blob() { assert(!OptoRuntime::is_callee_saved_register(RDX_num), ""); assert(!OptoRuntime::is_callee_saved_register(RAX_num), ""); assert(!OptoRuntime::is_callee_saved_register(RCX_num), ""); assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned"); // Allocate space for the code ResourceMark rm; // Setup code generation tools CodeBuffer buffer("exception_blob", 2048, 1024); MacroAssembler* masm = new MacroAssembler(&buffer); address start = __ pc(); // Exception pc is 'return address' for stack walker __ push(rdx); __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Prolog // Save callee-saved registers. See x86_64.ad. // rbp is an implicitly saved callee saved register (i.e., the calling // convention will save/restore it in the prolog/epilog). Other than that // there are no callee save registers now that adapter frames are gone. __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp); // Store exception in Thread object. We cannot pass any arguments to the // handle_exception call, since we do not want to make any assumption // about the size of the frame where the exception happened in. // c_rarg0 is either rdi (Linux) or rcx (Windows). __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()),rax); __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx); // This call does all the hard work. It checks if an exception handler // exists in the method. // If so, it returns the handler address. // If not, it prepares for stack-unwinding, restoring the callee-save // registers of the frame being removed. // // address OptoRuntime::handle_exception_C(JavaThread* thread) // At a method handle call, the stack may not be properly aligned // when returning with an exception. address the_pc = __ pc(); __ set_last_Java_frame(noreg, noreg, the_pc); __ mov(c_rarg0, r15_thread); __ andptr(rsp, -(StackAlignmentInBytes)); // Align stack __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C))); // Set an oopmap for the call site. This oopmap will only be used if we // are unwinding the stack. Hence, all locations will be dead. // Callee-saved registers will be the same as the frame above (i.e., // handle_exception_stub), since they were restored when we got the // exception. OopMapSet* oop_maps = new OopMapSet(); oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0)); __ reset_last_Java_frame(false); // Restore callee-saved registers // rbp is an implicitly saved callee-saved register (i.e., the calling // convention will save restore it in prolog/epilog) Other than that // there are no callee save registers now that adapter frames are gone. __ movptr(rbp, Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt)); __ addptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog __ pop(rdx); // No need for exception pc anymore // rax: exception handler // We have a handler in rax (could be deopt blob). __ mov(r8, rax); // Get the exception oop __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset())); // Get the exception pc in case we are deoptimized __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset())); #ifdef ASSERT __ movptr(Address(r15_thread, JavaThread::exception_handler_pc_offset()), (int)NULL_WORD); __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int)NULL_WORD); #endif // Clear the exception oop so GC no longer processes it as a root. __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int)NULL_WORD); // rax: exception oop // r8: exception handler // rdx: exception pc // Jump to handler __ jmp(r8); // Make sure all code is generated masm->flush(); // Set exception blob _exception_blob = ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1); } #endif // COMPILER2